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Taub numbers at future null infinity: 1ll. The Bondi mass
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Abstract. This work extends the ideas developed in two previous papers by the authors. First-
and second-order perturbation solutions of Einstein’s equations (in Newman—Penrose form) for
the Bondi—Sachs metric are found on a background Minkowski manifold. These solutions allow
a tensorial calculation of the Bondi mass using the Taub superpotential.

PACS numbers: 0425N, 0440N

1. Introduction

The goal of this work is to present a relativistic tensorial method for computing the global
mass of isolated astrophysical systems. We use the Bondi—Sachs metric, which describes
asymptotically flat radiative systems, and present the Taub method for computing the Bondi
mass. The Taub method has been developed in [1, 2] and extended to Einstein—Maxwell
spaces [3].

An isolated system has a well defined global mass. If the sy&emt radiating, the
mass at spatial infinity agrees with the mass at future null infifiity[4—6]. The Komar
superpotential [7] provides a tensorial method for such a calculation (up to the well known
factor of two anomaly [8]) and so does the Penrose—Goldberg superpotential [9, 10], when
it exists, which seems to be only for asymptotically flat type D solutions [11].

When the systenis radiating, i.e. when the matter fields produce a flux of energy—
momentum, we focus exclusively upon null infinity, since there is no field which can
produce a flux of any sort at spatial infinity. Witton-zero newsthe first calculation which
yielded the Bondi mass as a 2-surface integral over a spherical ciit afas done by
Goldberg [12] in an heroic work, which used the Einstein pseudotensor and an associated
superpotential, and a transformation from asymptotically rectangular coordinates to Bondi
coordinates.

Winicour and Tamburino [13] constructed a tensorial calculation by modifying the
Komar superpotential. For the null surface= constant they added a term which eliminated
off-surface derivatives. Using an asymptotic symmetry, the integral of the modified Komar
superpotential, called a ‘linkage’, yields the Bondi mas§ &t Unfortunately, the linkage
construction does not arise from a variational principle.

This work presents a calculation of the Bondi mass which is tensorial, arises from a
variational principle, and yields the Bondi mass as a sum of perturbations from a background
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manifold. Each of the Taub numbers in the sequencey, ..., t, is derived from a
variational derivative off /=g g*# R,s d*x, the nth number from the(n + 1)th variation.

We show below that the Bondi mass is the sunrpéndz,, wherer; gives the curvature
part of the mass ane, contains the news function.

This paper is organized as follows: in the second section Taub numbers and the
Taub superpotential are reviewed. The space of Lorentz metrics containing the curve of
solutions of Einstein’s equations is discussed and the Taub mass is defined as a sum of
Taub numbers for a timelike Killing translation. The Minkowski metric is chosen as the
background metric with background ma&%& = 0. In section 3 the Bondi—Sachs metric
and associated Newman—Penrose tetrad are discussed. The Bondi mass is therein defined
as the 2-surface integral of the mass aspect over a topological 2-sphere at future null
infinity. Initial data are given for the Newman—Penrose form of Einstein’s equations whose
Bondi—Sachs solution is the background Minkowski metric. In section 4 the Bondi—-Sachs
perturbations are presented. Minkowski null tetrad components of the Taub superpotential
are evaluated for the perturbation tengqr. Solutions of the linearized Newman—Penrose
equations for the Bondi—-Sachs metric along with the details of the tetrad constraints which
precede linearization are given in section 5 where the first-order Taub mass is obtained.
Similarly, second-order solutions are given in section 6 and the second-order Taub mass is
obtained. The Bondi mass and quadrupole mass loss are presented in section 7. Following
the discussion, the linearized Newman—Penrose field equations are given in appendix A,
and the second-order equations appear in appendix B.

In this work, Greek indices range over ) 2, 3 and upper case Latin indices range
over 2 3. Our sign conventions areA2..,5) = A,R",,;, andR,, = R, We used to

nve

symbolize the differential operator edth acting on 2-spheres in Minkowski space.

2. Taub numbers and superpotential

Here we review the basic ideas of the Taub method for computing mass. A Taub number
7, is defined with respect to tensdrg“g on a curve of asymptotically flat Einstein solutions
8uv Where

g;w()‘) = &uv + h/,LU()\')v

RO = AhQ) + 2202 + - @
and a linearized Einstein operatd,G,s - k™ (a directional derivative on the space
of Lorentz metrics in the directiomffv) evaluated atg,,). Taub’s theorem, namely
V¥ (DgGyp - h™) = 0, must hold in order for all Taub numbers to be well defined. Taub’s
theorem is true whetr,4(g) = 0. Since all curveg,, (1) pass through the backgrougg,,
the background metrics are required to sati§fy;(g) = 0. In this work the background is
chosen to be the flat Minkowski metrig,,. A sequence of field equations is determined
by the coefficients of5,4(¢) expanded as a seriesinalong the curve of solutiong,, (1)

Gaﬁ (g) = 09 (za)
DyGop - hP =0, (2b)
D2Gup - (WY 1Y) + DyGup - h® =0, (20)

etc.
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The first equation of the sequence is the vacuum Einstein equation for the background
metric. The next equation is the linearized Einstein equatiorhjf%jr and the subsequent
equations each determine aff).

Taub numbers result from integrating a vector densjty= (—g)l/z(DgG“ﬂ AN ZE
conserved by virtue of Taub’s theorem and Killing's equation, over a 3-surface.

T, = / 1, dS, ©)
>N

1, 1s integrated over a four-dimensional regi@n given in [1]. D is bounded by two
3-surfacesy; and =,, which meet in the sam&? cut of Z+. ¥ is a null surface in the
vacuum region (becoming smoothly spacelike in the interior source region)Xarligs
to the future ofX; it is spacelike in the source and vacuum regions and becomes null
asymptotically where botit; and £, — A and intersecf ™ in the same cut.

A superpotentiaU?fub(h(”)) for all z,, n > 1 has been found [2]. The superpotential
has the same functional form for all thé&” where

17d"g()
(n) ._ — 1%
Py = n![ dxn ]Azo' “)

When#,, is known, one can compute the entire sum of Taub numbers by agin the
superpotential:

U?suh — (_g)l/Z(k[ahﬁ]ﬂm — koAl 4 %hk[a:ﬂ] + kuhM[a;ﬁ] + k“;[“hﬂ]ﬂ), (5)
where
VaUsh,y = (—0)Y2(Dy G - P (6)

Tau

For Einstein solutions which admit Kerr—Schild form, such as the Kerr metric (given in
appendix B of [1])§,, = . — 2nN,N,, one knowsh,, since 2:N, N, is a solution of

the linearized Einstein equations. The sequence of solutiihgerminates witth () = /..

Any point on the curve of solutions can be chosen as a background metric provided it has

a Killing symmetry for the physical quantity one wishes to compute. The superpotential
is a function of the background metric, a Killing vectbt on the backgroundtifmelike

for mass), andq,,. The covariant derivatives in (5) are with respect to the background
8uv = N andh := g*’h,,, = n*'h,,. The sum of all Taub numbers is

Ty = Z Ty- (7)
n=1

(Note that (7) differs by:! from equations (3.4) and (3.5) in [2]. Here we include iHe
within the definition of#().) Global Taub numbers are evaluated ons&ncut of Z*+ as
one goes out on a null surfagé to future null infinity. The global Taub mass is

1 “
wa ki h) = — ygN Ut dSp. ®)

The Taub mass calculation is done in the coordinate system of the background metric. We
require that the metric components of the physical Einstein solgtipmave a valid Taylor
expansion over the domain of their coordinates. This insures that when all of the source
parameters are set to zero the resulting metric is globally diffeomorphic to the Minkowski
metric. The mass of solutiod is

Mass(g) = Mo + 15 (k;, h). 9)
The backgroundy,,, is flat with massMy = 0.
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There are an infinite number of solution curves that go between the background solution
nuw at A = 0 and the asymptotically flat solutio),, at . = 1. We can select a family
of curves (a 1-jet) by requiring the tangent to the curve,/fil];—o, to be the linearized
solution which gives the monopole moment of the source. (Asymptotically flat systems are
linearization stable [14].) Janis and Newman [15] have defined the multipole structure of
gravitational sources in terms of initial data for the asymptotic solutions. We can use their
data for the monopole to fikV:

\1‘02\1‘1:\1’3:\11420, GOIO,
] (10)
Wy =ag/r>, ap real constant

Of course a unique curve will be known only when all & and their respective initial
data are given.

It can be useful to define the reverse trace mejc:= hos — 3hgep Since it allows
D,Gygp - h to be written as

DgGozﬁ = %Vﬂvv(yﬂtﬂgﬂv + ylwgaﬁ - Zylzaavﬁ))- (11)
The Taub superpotential then has the simpler form
U;[fub — (_g)l/Z(ku;[ayfﬂ + kuyﬂ[a;ﬁ] + k[“y’jl;“). (12)

The de Donder/Hilbert/harmonic gauge ¥%y* = 0, analogous to the Lorentz gauge
Vs AP = 0. This gauge would simplify the Taub superpotential above but will not be used
here since it is difficult to preserve the gauge to all orders.

3. The Bondi—Sachs metric

The radiative systems considered here are described by

b

gE;de“ dx” = g du? + 26 du dr — r?Hup(dx? — U du)(dx® — UZ du), (13)
where outgoing null hypersurfaces are labelleddly= « = constant. The Bondi-Sachs
metric [16] extends Bondi's original metric [17] to include dependence and has six
independent function¥, b, U4, y andgq, of u,r,®, ¢. The rays of eaclh = constant
null surface are null geodesiag (r) with tangent d*/dr wherex! = r is a luminosity
parameter. Coordinates’ = ¥ andx® = ¢ are constant along each ray. The luminosity
parameter is defined by* sir ¥ = det(gx) = detr2H45), where

- e” cosh2q) sinh(2g) sin®
A7 sinh2g)sing e cosh2g) it |
The boundary conditions on the metric functions in the limitZof are
rU% — 0, b— 0, y— 0, qg — 0, V/r—> 1

We use the tetrad choice and asymptotic solution given in Glass and Goldberg [18] with
the functionsy andg contained int,, wherer?H,p = £,&p + £4£5. The notation in [18]

was chosen to avoid confusion between Sachs metric functions and Newman—Penrose spin
coefficients:

2y =y + 8 (Sachsg, 2q =y — & (Sachsg, b = B (Sachs.
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Theu = constant hypersurfaces have null geodesic taniyépt which is also hypersurface
orthogonal ag, dx* = du. The twist of/* is zero and its expansion and shear are given by

p=—e2/r, o = —e [(3,y) cosh2g) +i(3,9)] (14)

which follow from taking r as a luminosity parameter, and where the phaser a6
determined by the choice of tetrad orientation. The asymptotic solution for the metric
function V is found in equation (B16) of [18]:

V=r—-—2M+0O(/r),
where M (u, 9, ¢) is the Bondi mass aspect given by

—2M = W3 + U9 + 3,(0%"°). (15)
The Bondi mass is the 2-surface integral of the mass aspect over a topological 2-sphere at
I+

M gonai = —% ﬁz[wg + 99 + 3, (0% de2. (16)

There is characteristic initial data for the Newman—Penrose equations
Wo(uo, r, ¥, ¢) = WP(uo, ¥, 9) = W3(uo, 9, 9) + W(uo, 9, ) = 0°(u, ¥, ) =0,

which yields Bondi-Sachs metric functiois' = b =y = ¢ = 0, V = r. The Bondi-
Sachs solution is then the flat Minkowski metric

Ny At dx” = du? + 2 dudr — r?Hyp dx? dx®. a7

This is the background metric for perturbation calculations. The Bondi—Sachs metric covers
the vacuum region outside the sources and in that region the coordinates of the Minkowski
metric (17) and the Bondi—Sachs metric (13) coincide. In the following, carets over tetrad
letters distinguish the Bondi—Sachs tetrad from the zero-order Minkowski tetrad.

4. The Bondi—Sachs metric and perturbations

In order to understand the individual terms in the Bondi mass, we use a direct perturbation
method to find the:). In the background Minkowski frami?") is computed by integrating
the nth-order Newman—Penrose field equations. The general forhf'bfs
R = holyly + ha(luny + nuly) + ha(lym, + myly) + ho(lm, + myly)
+ ham,m, + hain,m, + ha(m,m, + m,m,). (18)

Here the components df}fv) are given in the coordinates and tetrad of the background
Minkowski frame:

du = [, dx*, dr = (n, — %la) dx“,
do = —(1/V2r)(my + 1y) dx®, (19)
de = (i/v/2r sin®)(my — my) dx®.

The Minkowski spin coefficients are

p=—1/r, w=—1/(2r), a = —coty/(2v/2r), g =—a. (20)

The background timelike Killing vectok, = (n® + %l"‘)aa = 9, is used to compute the
mass in the Taub superpotential and is covariantly constant. Thus (5) reduces to

U?’Zuh(kl" h) = (—g)l/zk”((Sv["‘hﬁ]A;" _ (gv[rxh:ﬂ] + hv["‘;ﬂ]). (21)



1904 E N Glass ad M G Naber

The global Taub mass will be computed from (8), (18) and (21). The superpotential,
evaluated from (21), has bivector components

(—9)"Y2Usl,, = 1“nP[2pho — (p + 21)hy — (8 — 2a)hz — (5 — 200z
+ (D = p)ha — 2(A + w)hy)
+ mP L[ =28ho + (D — 3p)ha — 2(A + wha + (8 — 4a)ha — §ha]
+ mP1A[—28ho + (D — 3p)ha — 2(A + () + (8 — da)hs — Sha]
+ n*mPl[8hy — 20hy 4 (8 — 4a)hs — 5hy)
+ nlmP[8hy — 2phy + (8 — da)hz — Sha)
+ mlmP(5 — 2a)hy — (8 — 2a)hy). (22)

Here D = 3,, A = 9, — 33,, and (3 + 2sa)n = —(fn)/r for n a spin-weights scalar. The
tetrad components given in (18) have the following spin-weights:

Component hg h1 h2 h3 ha
Spin-weight 0 o -1 -2 0

5. The linearized asymptotic solution

The linearized Newman—Penrose equations were developed by Torrence and Janis [19] for a
slightly different tetrad choice and so the linearized spin coefficients given here differ from
theirs because of our different tetrad constraints. Choosing ¢, dx* requires

k=0, p=0p, T=a+ 8, e+e=0.

The imaginary part of is set to zero by propagating* alongi* according toDm* = 7i*.
m* and c.cgn*) are required to be surface forming (carets are omitted in the following
equation):

SR
—m!,

m' = aym* + axm*

which in turn requiresu = p. Finally, requiringr to be a luminosity distance fixes the
expansion of* to bep = —e % /r. The tetrad used in [18], which obeys the constraints
above, is

[, dx" = du, "o, = ey,
A, = (Ve? /2r) du + €2 dr, A8, =8, — (V/2r)d, + U%d4, (23)
i, At = 4 dx? — (UAE,) du, mha, =E49, .

The linearization method developed in [19] starts with the complete set of Newman—
Penrose equations for the tetrad above. The equations are then linearized on the Minkowski
background, with the Minkowski tetrad (19), and zero-order spin coefficients (20). The
linearized equations are given in appendix A. The necessary initial data [15] are

Wo(uo, 1, 9, 9), W (uo, 9, ¢), W (ug, 9, @) + W (uo, ¥, 9), o%u, 9, p).
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In the following (1/r") is abbreviated by Pand the perturbation order is omitted from
v ando®

pa =0, ow =0°/r? + Oy, (242)
aq = a’"/r? — 35°/r? + O3, By = —a’0%/r? 4 O3, (24b)
T = —90%/r’ + Os, T = T (24c)
yay = —(3/2+a°95° — a°Jo®)/r? + 05, (24d)
pa = —(W3 + ¥ + §°5° + §%0°) /(2% + Os, (24e)
Ay = 0,6%/r + (3% —2§35°)/(2r%) + Os, (24f)
v =~ (W3 +¥2)/(2r?) + O3, (240)
wherea® = — cot®/(2/2). The linearized metric components are
by =0, (25a)
Vo = 92 + 92 + Op, (250)
H{) = (26°/r)E383 + (20°/r)ESED + O, (250)
UG = §5°/r?)E"° + (Jo°/rHE + Ou, (25d)

where£? = (1/r)m,8%, £4° = r m*s2. The linearized contribution t,,, is given by
h) = [(¥3 + ¥ /r + Osll,ly — (25°/r + Ogymym, — (20°/r + Og)ym,im,

— #6°/r + Oa)Um, +myly) — (Fo/r + O3) (Ui, + i, l,). (26)

We integrateUs” . over au = constant,r = constant 2-surface af* with dS,; =
l[al’lﬁ] dv d(p

Ush Jliang) = rSin®ho — hy — 8,(rha) + rd ha — 2y — 9ho]. (27)

Substituting the components of (26) in (27) and taking the limifto we find the first-order
Taub mass

may = tak, k)

1 _ ) _
=& ﬁz(\yg + 09+ 29%6° + 1§20 da

_ 1 0 7,0
=& }éz(% + 1Y) de, (28)

which is the monopole mass moment, the Bondi mass when the ®@Rds zero. It was

not necessary to use the Janis—Newman monopole data (10) to restrict (26), since all the
o0 terms integrated out on the 2-sphere. The Komar superpotential also gives this mass [6]
(up to the factor of two mass anomaly [8]). For the Schwarzschild solution, wheted

and W = —m, we note that),,, + 1} is a Kerr—Schild representation of the Schwarzschild
metric with Bondi massn.
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6. The second-order asymptotic solution

The second-order Newman—Penrose equations are found in [20] and are the null tetrad
expansion of (B). The second-order Bianchi identities in Newman—Penrose form are given
in appendix B, where one can see terms fréfG,s - (h®, k) in (2c) appearing as
sources. The metric functions at second order are

b = —0°6%/4r + O, (29)
Vi) = 8,(0%°) + Oy, (2%)
H = (20%°/r?) (6383 + £9£9) + Os, 29%)
Ug = Os. (29d)

The difference between as an affine parameter andas a luminosity distance is first
observed at second order b above. The second-order contribution/ig, is given by

h? = 8,(0%%)/r + Oy, (30a)
h(12) =—0%%/2/% + Oy, (30b)
h? = 0y, (30c)
h? = 0, (30d)
hE = —20°6°/r? + Os. (30e)

We substitute (6) into (27) and obtain
Ut liang = sin®[9,(c°5°) + O4].

Again we integrateU;":ub over a 2-surface @+ with dS,p = [[ung d¥ dp. This yields

1 _
me = ok, h?) = & fz[ﬁu(aooo)]dsz. (31)
s

7. The Bondi mass and quadrupole mass loss

h(3) and higher orders yield terms which cause the coefficierf“af’! in (22) to be Q
or greater, therefore only two orders contribute to the resuffat Adding the first- and
second-order Taub masses yields the Bondi mass

Mponai = mqy + m)
1 _
= ——y{ [W9 + U2 + 9,(c % )] d2. (32)
87'[ 2

The order-by-order computation reveals where each part of the Bondi mass arises.
Multipole mass loss expressions can be found by differentiating the Bondi mass

. 1 - B
MB(mdi = _g %2[814 \Ijg + au ‘I/g + 85(0000)] dQ (33)
N

The asymptotic solutions in equations (B28), (B29), and (B33) in [18] provide
3,92 + 0%2%5° + 929,6° + c.c.= 0. (34)
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Substituting (34) in (33) yields the Bondi mass loss

. 1
Mponai = 5 P, 29,0%,6°dQ2. (35)
s

We use first-order solutions from [20], where weakpale, gravitational radiation exploding
from a Schwarzschild mass is studied. Wjttx) as the first-order quadrupole moment, we
find o in appendix C of [20]:

0% = constantx (827) 2Y2o
and so
Mponai = —A039) (337), A = constant> 0. (36)

This is one of a number of ‘quadrupole equations’ discussed by Damour [21].

8. Discussion

The early history of Taub numbers showed their usefulness in the straightforward
establishment of linearization instability for a class of cosmologies. It was shown that closed
cosmologies with isometries and compact Cauchy surfaces had constant Taub numbers with
zero values and these constants over-constrained a well posed initial value problem, leading
directly to linearization instability [22]. On the other hand, asymptotically flat systems have
been shown to be linearization stable [14] and for those systems Taub numbers organize
a set of physical parameters in a logical tensorial manner through Noether's theorem. In
particular, the global mass and angular momentum of non-radiative systems have been
computed as conserved Taub numbers generated by time translations and axial symmetries,
respectively.

The Bondi mass of radiative systems has previously been computed [12, 13] by using
time translations of the asymptotic BMS group. Here we have used the exact time symmetry
of a Minkowski background and first- and second-order perturbations from that background
manifold. Using the Taub superpotential, the Bondi mass then appeared directly as the
2-surface integral of the mass aspect over a spherical ct"of The second and third
variational derivatives of the Hilbert action provide Taub numhbem@ndz,, which comprise
the Bondi mass.
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Appendix A. Linearized equations

The linearized Bianchi identities are (far= 0, 1, 2, 3)

ro, +4—- Y + el =0, (Ala)

28, —rd, —A-DWP +2g v, =0, (A1b)
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with solutions given in [20]. The definition of edth is given in [18]. The linearized spin
coefficient equations are

3, (r’p) = 0, (A2a)
3 (r2o) = r2 WY, (A2b)
3, (rry) = —ay +r wiY, (A2¢)
3 (rag) = —a’oq) — mq), (A2d)
3, (rB) = oo +r Wy, (A2€)
rd v = ot + 1) — @ F + 7@) +r Y5, (A2f)
3 (ri) = =97 — 6)/2, (A2g)
0, (rp) = =P +r ¥y, (A2h)
28, vy = (20, — 8, — r YHymay — r L) + 2w, (A2i)

The choice of as a luminosity distance relatego p through & p = —1/r and sob(;) = 0.
The remaining linearized metric equations are

(Vi /2r) =y + 7w, (A3a)
ro, U, = () + 7)E*° + G + 7@, (A3b)
8,(r&(1) = ow&™, (A3c)

where£4% = (1/+/2)(84 + icosec? 8;) = rm*s}. To complete the solution of the first-
order equations, we require

My = 0,6°, (Ada)
wg(l) - qjg(l) = 3200 - a250» (A4b)
Wy, = 73,59, (Adc)
Wy, = —026°. (A4d)

Appendix B. Second-order equations

The second-order Bianchi identities are (for=0, 1, 2, 3)

rd, +4— AW, +J VP =rRaa, (Bla)
28, —rd, —A—DWP + 2§ W, =rDy, (B1b)

where R4,1 and D, are products of first-order terms, with solutions given in [20]. The
equations for second-order spin coefficients and metric components are similarly iterated.
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