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Taub numbers at future null infinity: III. The Bondi mass
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Abstract. This work extends the ideas developed in two previous papers by the authors. First-
and second-order perturbation solutions of Einstein’s equations (in Newman–Penrose form) for
the Bondi–Sachs metric are found on a background Minkowski manifold. These solutions allow
a tensorial calculation of the Bondi mass using the Taub superpotential.

PACS numbers: 0425N, 0440N

1. Introduction

The goal of this work is to present a relativistic tensorial method for computing the global
mass of isolated astrophysical systems. We use the Bondi–Sachs metric, which describes
asymptotically flat radiative systems, and present the Taub method for computing the Bondi
mass. The Taub method has been developed in [1, 2] and extended to Einstein–Maxwell
spaces [3].

An isolated system has a well defined global mass. If the systemis not radiating, the
mass at spatial infinity agrees with the mass at future null infinityI+ [4–6]. The Komar
superpotential [7] provides a tensorial method for such a calculation (up to the well known
factor of two anomaly [8]) and so does the Penrose–Goldberg superpotential [9, 10], when
it exists, which seems to be only for asymptotically flat type D solutions [11].

When the systemis radiating, i.e. when the matter fields produce a flux of energy–
momentum, we focus exclusively upon null infinity, since there is no field which can
produce a flux of any sort at spatial infinity. Withnon-zero news, the first calculation which
yielded the Bondi mass as a 2-surface integral over a spherical cut ofI+ was done by
Goldberg [12] in an heroic work, which used the Einstein pseudotensor and an associated
superpotential, and a transformation from asymptotically rectangular coordinates to Bondi
coordinates.

Winicour and Tamburino [13] constructed a tensorial calculation by modifying the
Komar superpotential. For the null surfaceu = constant they added a term which eliminated
off-surface derivatives. Using an asymptotic symmetry, the integral of the modified Komar
superpotential, called a ‘linkage’, yields the Bondi mass atI+. Unfortunately, the linkage
construction does not arise from a variational principle.

This work presents a calculation of the Bondi mass which is tensorial, arises from a
variational principle, and yields the Bondi mass as a sum of perturbations from a background
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manifold. Each of the Taub numbers in the sequenceτ1, τ2, . . . , τn is derived from a
variational derivative of

∫ √−g gαβRαβ d4x, the nth number from the(n + 1)th variation.
We show below that the Bondi mass is the sum ofτ1 andτ2, whereτ1 gives the curvature
part of the mass andτ2 contains the news function.

This paper is organized as follows: in the second section Taub numbers and the
Taub superpotential are reviewed. The space of Lorentz metrics containing the curve of
solutions of Einstein’s equations is discussed and the Taub mass is defined as a sum of
Taub numbers for a timelike Killing translation. The Minkowski metric is chosen as the
background metric with background massM0 = 0. In section 3 the Bondi–Sachs metric
and associated Newman–Penrose tetrad are discussed. The Bondi mass is therein defined
as the 2-surface integral of the mass aspect over a topological 2-sphere at future null
infinity. Initial data are given for the Newman–Penrose form of Einstein’s equations whose
Bondi–Sachs solution is the background Minkowski metric. In section 4 the Bondi–Sachs
perturbations are presented. Minkowski null tetrad components of the Taub superpotential
are evaluated for the perturbation tensorhµν . Solutions of the linearized Newman–Penrose
equations for the Bondi–Sachs metric along with the details of the tetrad constraints which
precede linearization are given in section 5 where the first-order Taub mass is obtained.
Similarly, second-order solutions are given in section 6 and the second-order Taub mass is
obtained. The Bondi mass and quadrupole mass loss are presented in section 7. Following
the discussion, the linearized Newman–Penrose field equations are given in appendix A,
and the second-order equations appear in appendix B.

In this work, Greek indices range over 0, 1, 2, 3 and upper case Latin indices range
over 2, 3. Our sign conventions are 2Aν;[αβ] = AµRµναβ , andRµν = Rαµνα. We use∂/ to
symbolize the differential operator edth acting on 2-spheres in Minkowski space.

2. Taub numbers and superpotential

Here we review the basic ideas of the Taub method for computing mass. A Taub number
τn is defined with respect to tensorsh(n)µν on a curve of asymptotically flat Einstein solutions
ĝµν where

ĝµν(λ) = gµν + hµν(λ),
hµν(λ) = λh(1)µν + λ2h(2)µν + · · · ,

(1)

and a linearized Einstein operatorDgGαβ · h(n) (a directional derivative on the space
of Lorentz metrics in the directionh(n)µν evaluated atgµν). Taub’s theorem, namely
∇α(DgGαβ · h(n)) = 0, must hold in order for all Taub numbers to be well defined. Taub’s
theorem is true whenGαβ(g) = 0. Since all curveŝgµν(λ) pass through the backgroundgµν ,
the background metrics are required to satisfyGαβ(g) = 0. In this work the background is
chosen to be the flat Minkowski metricηµν . A sequence of field equations is determined
by the coefficients ofGαβ(ĝ) expanded as a series inλ along the curve of solutionŝgµν(λ)

Gαβ(g) = 0, (2a)

DgGαβ · h(1) = 0, (2b)

D2
gGαβ · (h(1), h(1))+DgGαβ · h(2) = 0, (2c)

etc.
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The first equation of the sequence is the vacuum Einstein equation for the background
metric. The next equation is the linearized Einstein equation forh(1)µν , and the subsequent
equations each determine anh(n)µν .

Taub numbers result from integrating a vector densitytα(n) = (−g)1/2(DgG
α
β · h(n))kβ ,

conserved by virtue of Taub’s theorem and Killing’s equation, over a 3-surface.

τn :=
∫
6→N

tα(n) dSα (3)

tα(n) is integrated over a four-dimensional regionD given in [1]. D is bounded by two
3-surfaces61 and62, which meet in the sameS2 cut of I+. 61 is a null surface in the
vacuum region (becoming smoothly spacelike in the interior source region), and62 lies
to the future of61; it is spacelike in the source and vacuum regions and becomes null
asymptotically where both61 and62→ N and intersectI+ in the same cut.

A superpotentialUαβ

T aub(h
(n)) for all τn, n > 1 has been found [2]. The superpotential

has the same functional form for all theh(n) where

h(n)µν := 1

n!

[
dnĝµν(λ)

dλn

]
λ=0

. (4)

Whenhµν is known, one can compute the entire sum of Taub numbers by usinghµν in the
superpotential:

U
αβ

T aub = (−g)1/2(k[αhβ] ;µ
µ − k[αh;β] + 1

2hk
[α;β] + kµh [α;β]

µ + kµ;[αhβ]
µ), (5)

where

∇βUαβ

T aub = (−g)1/2(DgG
α
β · h)kβ. (6)

For Einstein solutions which admit Kerr–Schild form, such as the Kerr metric (given in
appendix B of [1])ĝµν = ηµν − 2mNµNν , one knowshµν since 2mNµNν is a solution of
the linearized Einstein equations. The sequence of solutionsh(n)µν terminates withh(1)µν = hµν .

Any point on the curve of solutions can be chosen as a background metric provided it has
a Killing symmetry for the physical quantity one wishes to compute. The superpotential
is a function of the background metric, a Killing vectorkµ on the background (timelike
for mass), andhµν . The covariant derivatives in (5) are with respect to the background
gµν = ηµν andh := gµνhµν = ηµνhµν . The sum of all Taub numbers is

τ6 =
∞∑
n=1

τn. (7)

(Note that (7) differs byn! from equations (3.4) and (3.5) in [2]. Here we include then!
within the definition ofh(n)µν .) Global Taub numbers are evaluated on anS2 cut of I+ as
one goes out on a null surfaceN to future null infinity. The global Taub mass is

τ6(kt , h) = − 1

8π

∮
∂N
U
αβ

T aub dSαβ. (8)

The Taub mass calculation is done in the coordinate system of the background metric. We
require that the metric components of the physical Einstein solutionĝµν have a valid Taylor
expansion over the domain of their coordinates. This insures that when all of the source
parameters are set to zero the resulting metric is globally diffeomorphic to the Minkowski
metric. The mass of solution̂g is

Mass(ĝ) = M0+ τ6(kt , h). (9)

The backgroundηµν is flat with massM0 = 0.
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There are an infinite number of solution curves that go between the background solution
ηµν at λ = 0 and the asymptotically flat solution̂gµν at λ = 1. We can select a family
of curves (a 1-jet) by requiring the tangent to the curve, [dĝ/dλ]λ=0, to be the linearized
solution which gives the monopole moment of the source. (Asymptotically flat systems are
linearization stable [14].) Janis and Newman [15] have defined the multipole structure of
gravitational sources in terms of initial data for the asymptotic solutions. We can use their
data for the monopole to fixh(1):

90 = 91 = 93 = 94 = 0, σ 0 = 0,

92 = a0/r
3, a0 real, constant.

(10)

Of course a unique curve will be known only when all theh(n) and their respective initial
data are given.

It can be useful to define the reverse trace metricγαβ := hαβ − 1
2hgαβ since it allows

DgGαβ · h to be written as

DgGαβ = 1
2∇µ∇ν(γαβgµν + γ µνgαβ − 2γ µ(αδ

ν
β)). (11)

The Taub superpotential then has the simpler form

U
αβ

T aub = (−g)1/2(kµ;[αγ β]
µ + kµγ [α;β]

µ + k[αγ β];µ
µ ). (12)

The de Donder/Hilbert/harmonic gauge is∇βγ αβ = 0, analogous to the Lorentz gauge
∇βAβ = 0. This gauge would simplify the Taub superpotential above but will not be used
here since it is difficult to preserve the gauge to all orders.

3. The Bondi–Sachs metric

The radiative systems considered here are described by

ĝB–S
µν dxµ dxν = V e2b

r
du2+ 2e2b du dr − r2HAB(dx

A − UA du)(dxB − UB du), (13)

where outgoing null hypersurfaces are labelled byx0 = u = constant. The Bondi–Sachs
metric [16] extends Bondi’s original metric [17] to includeϕ dependence and has six
independent functionsV , b, UA, y and q, of u, r, ϑ, ϕ. The rays of eachu = constant
null surface are null geodesicsxα(r) with tangent dxα/dr wherex1 = r is a luminosity
parameter. Coordinatesx2 = ϑ and x3 = ϕ are constant along each ray. The luminosity
parameter is defined byr4 sin2 ϑ = det(gAB) = det(r2HAB), where

HAB =
[

e2y cosh(2q) sinh(2q) sinϑ

sinh(2q) sinϑ e−2y cosh(2q) sin2 ϑ

]
.

The boundary conditions on the metric functions in the limit ofI+ are

rUA→ 0, b→ 0, y → 0, q → 0, V/r → 1.

We use the tetrad choice and asymptotic solution given in Glass and Goldberg [18] with
the functionsy andq contained inξA, wherer2HAB = ξAξ̄B + ξ̄AξB . The notation in [18]
was chosen to avoid confusion between Sachs metric functions and Newman–Penrose spin
coefficients:

2y = γ + δ (Sachs), 2q = γ − δ (Sachs), b = β (Sachs).



Taub numbers at future null infinity: III. The Bondi mass 1903

Theu = constant hypersurfaces have null geodesic tangentl̂α∂α, which is also hypersurface
orthogonal aŝlα dxα = du. The twist of l̂α is zero and its expansion and shear are given by

ρ = −e−2b/r, σ = −e−2b[(∂ry) cosh(2q)+ i(∂rq)] (14)

which follow from taking r as a luminosity parameter, and where the phase ofσ is
determined by the choice of tetrad orientation. The asymptotic solution for the metric
functionV is found in equation (B16) of [18]:

V = r − 2M +O(1/r),

whereM(u, ϑ, ϕ) is the Bondi mass aspect given by

−2M = 90
2 + 9̄0

2 + ∂u(σ 0σ̄ 0). (15)

The Bondi mass is the 2-surface integral of the mass aspect over a topological 2-sphere at
I+

MBondi = − 1

8π

∮
S2

[90
2 + 9̄0

2 + ∂u(σ 0σ̄ 0)] d�. (16)

There is characteristic initial data for the Newman–Penrose equations

90(u0, r, ϑ, ϕ) = 90
1(u0, ϑ, ϕ) = 90

2(u0, ϑ, ϕ)+ 9̄0
2(u0, ϑ, ϕ) = σ 0(u, ϑ, ϕ) = 0,

which yields Bondi–Sachs metric functionsUA = b = y = q = 0, V = r. The Bondi–
Sachs solution is then the flat Minkowski metric

ηµν dxµ dxν = du2+ 2 du dr − r2HAB dxA dxB. (17)

This is the background metric for perturbation calculations. The Bondi–Sachs metric covers
the vacuum region outside the sources and in that region the coordinates of the Minkowski
metric (17) and the Bondi–Sachs metric (13) coincide. In the following, carets over tetrad
letters distinguish the Bondi–Sachs tetrad from the zero-order Minkowski tetrad.

4. The Bondi–Sachs metric and perturbations

In order to understand the individual terms in the Bondi mass, we use a direct perturbation
method to find theh(n)µν . In the background Minkowski frameh(n)µν is computed by integrating
the nth-order Newman–Penrose field equations. The general form ofh(n)µν is

h(n)µν = h0lµlν + h1(lµnν + nµlν)+ h2(lµmν +mµlν)+ h̄2(lµm̄ν + m̄µlν)
+ h3mµmν + h̄3m̄µm̄ν + h4(mµm̄ν + m̄µmν). (18)

Here the components ofh(n)µν are given in the coordinates and tetrad of the background
Minkowski frame:

du = lα dxα, dr = (nα − 1
2lα) dxα,

dϑ = −(1/
√

2r)(mα + m̄α) dxα,

dϕ = (i/
√

2r sinϑ)(mα − m̄α) dxα.

(19)

The Minkowski spin coefficients are

ρ = −1/r, µ = −1/(2r), α = − cotϑ/(2
√

2r), β = −α. (20)

The background timelike Killing vectorkt = (nα + 1
2l
α)∂α = ∂u is used to compute the

mass in the Taub superpotential and is covariantly constant. Thus (5) reduces to

U
αβ

T aub(kt , h) = (−g)1/2kν(δ [α
ν hβ] ;µ

µ − δ [α
ν h;β] + h [α;β]

ν ). (21)
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The global Taub mass will be computed from (8), (18) and (21). The superpotential,
evaluated from (21), has bivector components

(−g)−1/2U
αβ

T aub = l[αnβ] [2ρh0− (ρ + 2µ)h1− (δ − 2α)h2− (δ̄ − 2α)h̄2

+ (D − ρ)h4− 2(1+ µ)h4]

+ l[αmβ] 1
2[−2δ̄h0+ (D − 3ρ)h2− 2(1+ µ)h2+ (δ − 4α)h3− δ̄h4]

+ l[αm̄β] 1
2[−2δh0+ (D − 3ρ)h̄2− 2(1+ µ)h̄2+ (δ̄ − 4α)h̄3− δh4]

+ n[αmβ] [δ̄h1− 2ρh2+ (δ − 4α)h3− δ̄h4]

+ n[αm̄β] [δh1− 2ρh̄2+ (δ̄ − 4α)h̄3− δh4]

+m[αm̄β] [(δ̄ − 2α)h̄2− (δ − 2α)h2]. (22)

HereD = ∂r , 1 = ∂u − 1
2∂r , and(δ + 2sα)η = −(∂/η)/r for η a spin-weights scalar. The

tetrad components given in (18) have the following spin-weights:

Component h0 h1 h2 h3 h4

Spin-weight 0 0 −1 −2 0

5. The linearized asymptotic solution

The linearized Newman–Penrose equations were developed by Torrence and Janis [19] for a
slightly different tetrad choice and so the linearized spin coefficients given here differ from
theirs because of our different tetrad constraints. Choosing du = l̂µ dxµ requires

κ = 0, ρ = ρ̄, τ = ᾱ + β, ε + ε̄ = 0.

The imaginary part ofε is set to zero by propagatinĝmµ alongl̂µ according toDm̂µ = π̄ l̂µ.
m̂µ and c.c.(m̂µ) are required to be surface forming (carets are omitted in the following
equation):

m
µ

;νm̄
ν − m̄µ;νmν = a1m

µ + a2m̄
µ

which in turn requiresµ = µ̄. Finally, requiringr to be a luminosity distance fixes the
expansion of̂lµ to beρ = −e−2b/r. The tetrad used in [18], which obeys the constraints
above, is

l̂µ dxµ = du, l̂µ∂µ = e−2b∂r ,

n̂µ dxµ = (V e2b/2r) du+ e2b dr, n̂µ∂µ = ∂u − (V/2r)∂r + UA∂A , (23)

m̂µ dxµ = ξA dxA − (UAξA) du, m̂µ∂µ = ξA∂A .
The linearization method developed in [19] starts with the complete set of Newman–
Penrose equations for the tetrad above. The equations are then linearized on the Minkowski
background, with the Minkowski tetrad (19), and zero-order spin coefficients (20). The
linearized equations are given in appendix A. The necessary initial data [15] are

90(u0, r, ϑ, ϕ), 90
1(u0, ϑ, ϕ), 90

2(u0, ϑ, ϕ)+ 9̄0
2(u0, ϑ, ϕ), σ 0(u, ϑ, ϕ).
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In the following O(1/rn) is abbreviated by On and the perturbation order is omitted from
90

2 andσ 0

ρ(1) = 0, σ(1) = σ 0/r2+O4, (24a)

α(1) = ᾱ0σ̄ 0/r2− ∂/σ̄ 0/r2+O3, β(1) = −α0σ 0/r2+O3, (24b)

τ(1) = −∂̄/σ 0/r2+O3, π(1) = τ̄(1), (24c)

γ(1) = −(90
2/2+ ᾱ0∂/σ̄ 0− α0∂̄/σ 0)/r2+O3, (24d)

µ(1) = −(90
2 + 9̄0

2 + ∂/2σ̄ 0+ ∂̄/2σ 0)/(2r2)+O3, (24e)

λ(1) = ∂uσ̄ 0/r + (σ̄ 0− 2∂̄/∂/σ̄ 0)/(2r2)+O3, (24f)

ν(1) = −∂̄/(90
2 + 9̄0

2)/(2r
2)+O3, (24g)

whereα0 = − cotϑ/(2
√

2). The linearized metric components are

b(1) = 0, (25a)

V(1) = 90
2 + 9̄0

2 +O2, (25b)

H
(1)
AB = (2σ̄ 0/r)ξ0

Aξ
0
B + (2σ 0/r)ξ̄0

Aξ̄
0
B +O3, (25c)

UA
(1) = (∂/σ̄ 0/r2)ξA0+ (∂̄/σ 0/r2)ξ̄A0+O4, (25d)

whereξ0
A = (1/r)mαδαA, ξA0 = r mαδAα . The linearized contribution tohµν is given by

h(1)µν = [(90
2 + 9̄0

2)/r +O3]lµlν − (2σ̄ 0/r +O3)mµmν − (2σ 0/r +O3)m̄µm̄ν

− (∂/σ̄ 0/r +O3)(lµmν +mµlν)− (∂̄/σ 0/r +O3)(lµm̄ν + m̄µlν). (26)

We integrateUαβ

T aub over a u = constant,r = constant 2-surface atI+ with dSαβ =
l[αnβ] dϑ dϕ

U
αβ

T aubl[αnβ] = r sinϑ [h0− h1− ∂r(rh4)+ r∂uh4− 1
2∂/h2− 1

2 ∂̄/h̄2]. (27)

Substituting the components of (26) in (27) and taking the limit toI+, we find the first-order
Taub mass

m(1) = τ1(kt , h
(1))

= − 1

8π

∮
S2
(90

2 + 9̄0
2 + 1

2∂/
2σ̄ 0+ 1

2 ∂̄/
2σ 0) d�

= − 1

8π

∮
S2
(90

2 + 9̄0
2) d�, (28)

which is the monopole mass moment, the Bondi mass when the news∂uσ
0 is zero. It was

not necessary to use the Janis–Newman monopole data (10) to restrict (26), since all the
σ 0 terms integrated out on the 2-sphere. The Komar superpotential also gives this mass [6]
(up to the factor of two mass anomaly [8]). For the Schwarzschild solution, whereσ = 0
and90

2 = −m, we note thatηµν+h(1)µν is a Kerr–Schild representation of the Schwarzschild
metric with Bondi massm.
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6. The second-order asymptotic solution

The second-order Newman–Penrose equations are found in [20] and are the null tetrad
expansion of (2c). The second-order Bianchi identities in Newman–Penrose form are given
in appendix B, where one can see terms fromD2

gGαβ · (h(1), h(1)) in (2c) appearing as
sources. The metric functions at second order are

b(2) = −σ 0σ̄ 0/4r2+O4, (29a)

V(2) = ∂u(σ 0σ̄ 0)+O1, (29b)

H
(2)
AB = (2σ 0σ̄ 0/r2)(ξ0

Aξ̄
0
B + ξ̄0

Aξ
0
B)+O3, (29c)

UA
(2) = O3. (29d)

The difference betweenr as an affine parameter andr as a luminosity distance is first
observed at second order inb(2) above. The second-order contribution tohµν is given by

h
(2)
0 = ∂u(σ 0σ̄ 0)/r +O2, (30a)

h
(2)
1 = −σ 0σ̄ 0/2r2+O4, (30b)

h
(2)
2 = O2, (30c)

h
(2)
3 = O3, (30d)

h
(2)
4 = −2σ 0σ̄ 0/r2+O3. (30e)

We substitute (6) into (27) and obtain

U
αβ

T aubl[αnβ] = sinϑ [∂u(σ
0σ̄ 0)+O1].

Again we integrateUαβ

T aub over a 2-surface atI+ with dSαβ = l[αnβ] dϑ dϕ. This yields

m(2) = τ2(kt , h
(2)) = − 1

8π

∮
S2

[∂u(σ
0σ̄ 0)] d�. (31)

7. The Bondi mass and quadrupole mass loss

h(3)µν and higher orders yield terms which cause the coefficient ofl[αnβ] in (22) to be O3

or greater, therefore only two orders contribute to the result atI+. Adding the first- and
second-order Taub masses yields the Bondi mass

MBondi = m(1) +m(2)

= − 1

8π

∮
S2

[90
2 + 9̄0

2 + ∂u(σ 0σ̄ 0)] d�. (32)

The order-by-order computation reveals where each part of the Bondi mass arises.
Multipole mass loss expressions can be found by differentiating the Bondi mass

ṀBondi = − 1

8π

∮
S2

[∂u9
0
2 + ∂u9̄0

2 + ∂2
u(σ

0σ̄ 0)] d�. (33)

The asymptotic solutions in equations (B28), (B29), and (B33) in [18] provide

∂u9
0
2 + σ 0∂2

uσ̄
0+ ∂/2∂uσ̄

0+ c.c.= 0. (34)
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Substituting (34) in (33) yields the Bondi mass loss

ṀBondi = − 1

8π

∮
S2

2∂uσ
0∂uσ̄

0 d�. (35)

We use first-order solutions from [20], where weak, 2l-pole, gravitational radiation exploding
from a Schwarzschild mass is studied. Withq(u) as the first-order quadrupole moment, we
find σ 0 in appendix C of [20]:

σ 0 = constant× (∂2
uq̄) 2Y20

and so

ṀBondi = −A(∂3
uq) (∂

3
uq̄), A = constant> 0. (36)

This is one of a number of ‘quadrupole equations’ discussed by Damour [21].

8. Discussion

The early history of Taub numbers showed their usefulness in the straightforward
establishment of linearization instability for a class of cosmologies. It was shown that closed
cosmologies with isometries and compact Cauchy surfaces had constant Taub numbers with
zero values and these constants over-constrained a well posed initial value problem, leading
directly to linearization instability [22]. On the other hand, asymptotically flat systems have
been shown to be linearization stable [14] and for those systems Taub numbers organize
a set of physical parameters in a logical tensorial manner through Noether’s theorem. In
particular, the global mass and angular momentum of non-radiative systems have been
computed as conserved Taub numbers generated by time translations and axial symmetries,
respectively.

The Bondi mass of radiative systems has previously been computed [12, 13] by using
time translations of the asymptotic BMS group. Here we have used the exact time symmetry
of a Minkowski background and first- and second-order perturbations from that background
manifold. Using the Taub superpotential, the Bondi mass then appeared directly as the
2-surface integral of the mass aspect over a spherical cut ofI+. The second and third
variational derivatives of the Hilbert action provide Taub numbersτ1 andτ2, which comprise
the Bondi mass.
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Appendix A. Linearized equations

The linearized Bianchi identities are (forA = 0, 1, 2, 3)

(r∂r + 4− A)9(1)
A+1+ ∂̄/ 9(1)

A = 0, (A1a)

(2r∂u − r∂r − A− 1)9(1)
A + 2∂/ 9(1)

A+1 = 0, (A1b)
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with solutions given in [20]. The definition of edth is given in [18]. The linearized spin
coefficient equations are

∂r(r
2ρ(1)) = 0, (A2a)

∂r(r
2σ(1)) = r29

(1)
0 , (A2b)

∂r(rτ(1)) = −π̄(1) + r 9(1)
1 , (A2c)

∂r(rα(1)) = −ᾱ0σ̄(1) − π(1), (A2d)

∂r(rβ(1)) = α0σ(1) + r 9(1)
1 , (A2e)

r∂rγ(1) = α0(τ(1) + π̄(1))− ᾱ0(τ̄(1) + π(1))+ r 9(1)
2 , (A2f)

∂r(rλ(1)) = −∂̄/π(1) − σ̄(1)/2, (A2g)

∂r(rµ(1)) = −∂/π(1) + r 9(1)
2 , (A2h)

2∂rν(1) = (2∂u − ∂r − r−1)π(1) − r−1τ̄(1) + 29(1)
3 . (A2i)

The choice ofr as a luminosity distance relatesb to ρ through e2bρ = −1/r and sob(1) = 0.
The remaining linearized metric equations are

∂r(V(1)/2r) = γ(1) + γ̄(1), (A3a)

r∂rU
A
(1) = (τ(1) + π̄(1))ξ̄A0+ (τ̄(1) + π(1))ξA0, (A3b)

∂r(rξ
A
(1)) = σ(1)ξ̄A0, (A3c)

whereξA0 = (1/√2)(δAϑ + i cosecϑ δAϕ ) = r mαδAα . To complete the solution of the first-
order equations, we require

λ0
(1) = ∂uσ̄ 0, (A4a)

90
2(1) − 9̄0

2(1) = ∂̄/2σ 0− ∂/2σ̄ 0, (A4b)

90
3(1) = ∂/(∂uσ̄ 0), (A4c)

90
4(1) = −∂2

uσ̄
0. (A4d)

Appendix B. Second-order equations

The second-order Bianchi identities are (forA = 0, 1, 2, 3)

(r∂r + 4− A)9(2)
A+1+ ∂̄/ 9(2)

A = rRA+1, (B1a)

(2r∂u − r∂r − A− 1)9(2)
A + 2∂/ 9(2)

A+1 = rDA, (B1b)

whereRA+1 andDA are products of first-order terms, with solutions given in [20]. The
equations for second-order spin coefficients and metric components are similarly iterated.
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