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String fluid dynamical models in the Einstein–Cartan theory
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Abstract. Using the general, energy–momentum tensor for a dynamical, string fluid developed
from the Ray–Hilbert variational principle, physically motivated applications to Riemann–Cartan
spacetime are given within the framework of the Einstein–Cartan theory. The string density is
considered for the cases when it is or is not a thermodynamical variable of the fluid. Solutions are
given for both cases and compared with other models in both general relativity and the Einstein–
Cartan theory. The use of a string fluid as a contributer to galactic halo density is also discussed.

PACS numbers: 0440N, 0450, 0570, 1127, 9880C, 9880H

1. Introduction

Fluid atmospheres and environments for relativistic objects are intrinsic to parameter-extended
Schwarzschild sources. A radiation atmosphere for black holes was developed by Vaidya [1]
by allowing the Schwarzschild mass parameter to be a function of retarded time. A black
hole Hawking atmosphere has been discussed by ’t Hooft [2, 3]. It was shown recently [4]
that allowing the Schwarzschild mass parameter to be a function of the radial coordinate
as well as retarded time generated an anisotropic string fluid atmosphere in addition to the
Vaidya null fluid. With the apparent connections between string states and black hole entropy
[5, 6], string fluid atmospheres have gained increasing importance. Letelier, using a slightly
modified static Schwarzschild source, discussed the effects of a simple atmosphere of dusty
strings [7] and strings with tension [8, 9]. Soleng [10], extending these ideas, pointed out
that a string fluid could provide a mechanism explaining the observed galactic rotation curves.
Some early descriptions of the dark matter halos that modelled the observed data, predicted a
density dropping liker−2. Higher-resolution simulations seem to indicate that the density has
a varying dependence, going likern, with n = −1 close to the centre andn = 3 to 4 for large
radii [11, 12] contributions. On a galactic scale, the average density still goes liker−2.

The Lagrangian used in many string fluid calculations is an extension of the string
formalism developed for high-energy applications by Nambu [13], Nielson [14] and Susskind
[15]. Sherk’s review [16] discusses Nambu’s suggestion that the action for a free string should
be proportional to the area of the string worldsheet, generalizing the worldline action for a
relativistic point particle. Stachel [17] elaborated on this suggestion and developed a stress–
energy content for a fluid of strings that generalized the usual perfect-fluid stress–energy
content. For a dust fluid, the stress–energy is

Tij = ρUiUj (1)
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whereUi is the fluid velocity and is taken to be the timelike member of a tetrad,aµi . Greek
indices are anholonomic and run from 1 to 4. They are raised and lowered with a Minkowski
metric (1, 1, 1,−1). Latin indices run from 0 to 3 and label the holonomic coordinates. They
are raised and lowered with the metric tensor for the spacetime,gij with signature (−,+,+,+).
Since the fluid velocity describes motion by an element of the fluid along its worldline, Stachel
[17] generalized the dust stress–energy to string fluids by writing

Tij = ρ6ik6k
j (2)

where6ij is a simple, surface-forming bivector which spans the two-dimensional (2D) timelike
worldsheet of the string. This stress–energy tensor has been used extensively by Letelier [7–9],
Soleng [10] and others [18] in developing string fluid solutions to the Einstein field equations.

The string bivector is similar in structure to the bivectorSij , describing the spin density
in a spin fluid. The spin bivector, assumed to lie along theµ = 3 direction, is written in terms
of a spin module function,κ, the conserved fluid densityρ and the tetrads

Sij = ρκ(a1
i a

2
j − a1

j a
2
i ) (3)

while the string bivector can be written as

6ij = ρλ(Uia3
j − Uja3

i ). (4)

The form of equation (4) follows closely the form of the spin bivector developed by
Halbwachs [19] and therefore the description of a string fluid energy density will use the
parallel description of the velocity matrix used in discussions of fluid dynamics in continuum
mechanics [20]. Absorbing the density and string module function into a string vector,Si , this
can be rewritten as

6ij = −8S[iUj ] . (5)

Smalley and Krisch [21], noting this similarity, developed a string fluid Lagrangian that
paralleled the spin fluid Lagrangian developed by Ray and Smalley [22, 23].

The matter Lagrangian for a spin fluid can be written as the sum of two terms. The first
is the usual perfect-fluid Lagrangian

Lpf = e{−ρ[1 + ε(ρ, s)] + λµν(gij a
µiaνj − ηµν) + λ2∇∗i (ρUi) + λ3U

iX,i + λ4Uis,i} (6)

where theλ’s are the Lagrange multipliers that enforce tetrad orthonormality, entropy
conservation along the flow lines, continuity and particle number conservation,e = √−g
whereg is the determinant of the metric, and the ‘star’ derivative is given by∇∗i = ∇i + 2Si .
(This same Lagrangian can be used in a regular spacetime with a Christoffel connection or in a
Riemann–Cartan (RC) spacetime with a torsion connection requiring only that∇∗i ←→ ∇i .)
A variation of the action for this Lagrangian alone produces a perfect-fluid stress–energy tensor
[24],

Tij (perfect fluid) = (ρ + p)UiUj + pgij . (7)

The second term in the complete spin fluid Lagrangian is the kinetic energy of the spin
fluid written as the dot product of the spin density times the fluid angular velocityωij ,

KEspin = 1
2S

ijωij (8)

where

ωij = aµi;kUkaµj . (9)

The action variation for the complete Lagrangian results in a spin fluid stress–energy tensor
which can be used in either a general relativistic spacetime or a spacetime with torsion.
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Using the similarity between the structure of a spin fluid and a string fluid, a string fluid
Lagrangian can be written down which also contains two terms. The first is just the perfect-
fluid contribution, equation (7). The second is written in analogy to the spin fluid. Comparing
to equation (8) we write a string contribution to the Lagrangian as

KEstring = 1
26

ijωij . (10)

Some additional justification for this formulation is given by Nieto [25]. An action variation
using the complete string fluid plus gravitational Lagrangian produces the field equations
and allows the identification of the string fluid stress–energy content. The variations and the
string fluid stress–energy content are described in [21]. While the formalism can be used
in either a general relativistic space or a spacetime with torsion, there is a very surprising
difference between the two cases. In a general relativity (GR) spacetime, the stress–energy
involves the string functionSi . In a Riemann-Cartan (RC) spacetime, the stress–energy also
involves the string function but, in addition, the variations identify the string function with the
torsion vector [26] coming from the torsion contributions to the connection. The torsion vector
has been identified with matter–radiation fields in Einstein–Maxwell calculations [27, 28]. Its
variational identification with a string fluid parameter is significant since it provides a geometric
link for the string function and also because the presence of torsion has a direct effect on the
string fluid structure.

In the next section we briefly review the field equations obtained in [21]. In the last two
parts of the paper we develop a solution to the field equations and discuss the modifications
that torsion introduces.

2. Field equations with torsion

The Ray–Hilbert [27] variational method for a string fluid in an RC spacetime gives the
following metric-field equation and the corresponding energy–momentum tensors

G(ij) −∇∗k (T kij + T kji) = κT ij (string fluid). (11)

The star derivative would be the regular covariant derivative in a general relativistic spacetime.
In a space with torsion, the star derivative [26] is

∇∗i (fj ) = fi;j + 2Sifj (12)

where the covariant derivative contains the usual additional torsional contribution to the
connections andSi is the torsion vector which has been identified with the string function.
T kij is the modified torsion [26]. From the variations, the torsion field equation is

T kij = 1
2κ6

kiUj . (13)

As discussed in the introduction, the complete stress–energy tensor,Tij (string fluid), is
the sum of two terms, a perfect-fluid stress–energy tensor and the string stress–energy tensor,
given by

Tij (string fluid) = Tij (perfect fluid) + Tij (string). (14)

For the case where the internal energy is not considered to be a function of the string variables,
the string contribution is [20]

κT ij (string) = ∇∗k [U(i6jk)] + ∇∗k [Uk6m(j ]Ui)Um. (15)

When the string variables are considered to be thermodynamic, the string stress–energy tensor
becomes

κT ij (string) = U(i6j)kU̇k − U̇ (i6j)kUk +∇∗k [U(i6j)k] + ∇∗k [Uk6m(j ]Ui)Um. (16)
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From the variation,6ij can be written in terms of the string vectorSi

κ6ij = −8U [iSj ] (17)

where the torsion vector is

Si = − 1
4κρa

3i . (18)

By comparison with the string vector,Si , discussed in [29], the string and torsion vectors are
related byκS i = 16Si . A direct consequence of equation (5) is that the torsion vector is a
spacelike vector. This also implies that the spin vector is proportional to the fluid acceleration,
Si ∼ U̇i .

In the applications described below, it is necessary to consider that the string variable,
may or may not be a thermodynamic variable with respect to the second law. To distinguish
the two cases a parameterb is used where

b = 1 variable not thermodynamic
b = 2 variable is thermodynamic.

(19)

With this parametrization, the string contributions from equations (15) and (16) can be
combined in the form

κT ij (string) = 4{−UiUj (Sk ;k + bSkU̇k + 2SkSk) + bU̇ (iSj) + 2U(iṠj)

+2U(iSj)Uk ;k − Sk∇k(UiUj )}. (20)

3. Applications

3.1. Fluid parameters

As an application of the string fluid formalism in a Riemann–Cartan spacetime, a string fluid
is considered in a static spherically symmetric spacetime describe by the metric

ds2 = −f (r) dt2 +
dr2

f (r)
+ r2 d�2. (21)

Considering only a radial string distribution

Si = (0, S,0, 0) (22)

the general fluid parameters can be written as

ρ = −f
′

r
+

1− f
r2

+ 4S ′ − S
(

2
f ′

f
− 8

r

)
+

4

3

S2

f
+ 4S(b − 1)

(
f ′

2f
− 2S

3f

)
(23)

pr = f ′

r
− 1− f

r2
− 2S

f ′

f
+

4

3

S2

f
− 4S(b − 1)

(
f ′

2f
− 2S

3f

)
(24)

pθ = pϕ = f ′′

2
+
f ′

r
+

4

3

S2

f
(25)

whereb is the thermodynamic parameter and primes indicate derivatives with respect tor.
The usual equation of state for a spherically symmetric string fluid is

ρ + pr = 0. (26)

It is seen from equations (23) and (24) that the equation of state takes the form

ρ + pr = 4S ′ − S
(

4f ′

f
− 8

r

)
+

8

3

S2

f
(27)
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and it is independent of the thermodynamic parameter,b. The inclusion of torsion and its
identification with the string vector provides a family of possible models whose equation of
state depends on the string function andf (r). If we impose the string equation of state we
can relate the string distribution function tof (r) without knowing its explicit form. Imposing
ρ + pr = 0, one finds the string distribution function is

Sr = Af

r(r − 2A/3)
. (28)

3.2. Choice off (r)

The choice off (r) has been made in a variety of ways. For example, Letelier [7] has discussed
a solution

f = 1− h− 2M

r
(29)

wherehmodels the presence of a black hole string atmosphere in general relativity. In general
relativity, the equation for the transverse pressures is equation (25) with theS2 term absent.
Letelier’s choice follows from requiring the transverse stress to be zero. This form off (r)

was used in discussing the general relativistic version of the string fluid model discussed by
Smalley and Krisch [29]. In discussing galactic dark matter, Soleng [10] used

f = A− 2M

r
+
C

r2d
(30)

whered is the Tolman parameter [30]. This choice contains thed = +1 Reissner–Nordström
solution, thed = −1 de Sitter point mass andC = 0, A = 1− h is the Letelier solution.
Soleng’sf (r) produces a gravitational acceleration which for smalld motivates ther−1gravity
sometimes used to explain galactic rotation data [11, 12].

There are several possibilities for finding a solution forf (r) to use in the presence of
torsion. We could use the Letelier choice with our string distribution function, equation (28),
and compare the results to the general relativistic string fluid [29]. We could use the form,
equation (28), for the string distribution function and by requiring zero transverse stress,
determinef (r) from the field equations, equation (25). A third possibility is to choosef (r)

to be

f (r) = 1− 2M

r + ro
. (31)

This f (r) is motivated by several results. Dark matter halos may have a very much richer
structure than a simpler−1 fall-off in acceleration would indicate. There seem to be three
regions: a central core going asr−1, and intermediate and outer regions where the density falls
off more and more steeply [31].

The galactic halo dark matter density profile has been found in a number of parameter fits
and simulations to be given by

ρ(r) = b

(r + r1)(r + ro)n
. (32)

Using numericalN -body simulations, Navarroet al [32, 33] have studied this density profile
with r1 = 0, n = 2. The simulations were performed in a variety of cosmological settings,
including various Einstein–de Sitter universes. The density profile provided a good fit to dark
matter halos for two decades in radius for galactic masses from about 3×1011 to 3×1015 solar
masses. Their model gives anr−3 asymptotic fall off in the outer region. Hernquist [34], used
the same form withr1 = 0 andn = 3, giving a faster fall off,r−4. These models were obtained
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without torsion. While this density profile is based on a specific set of metrics, modelling a
torsional density function of the form of equation (32) through the field equations suggests
that f (r) should have the form (31). Also, strings are often considered as a possible dark
matter candidate, and this form forf (r) is also suggested by the string distribution function
S(r) given by equation (28). Because of the similarity in form between the string distribution
function andf (r), we could identifyro with −2A/3. Note that this makes the string density
negative. We will explore all three possibilities and compare them.

3.2.1. The Letelier choice off (r). Using equations (28) and (29) in the field equations one
finds an energy density and stresses

r2ρ = −r2pr = h +
A

(r − 2A/3)

{
4bM

r
− 4Af (2b − 1)

3(r − 2A/3)

}
(33)

pϑ = pϕ = 4

3

S2

f
. (34)

In general relativity, this same model has a string and stress–energy structure [29]

S = Sof

r2

r2ρ = −r2pr = h + 1
4bMSo

pϑ = pϕ = 0.

(35)

The major differences are a non-zero transverse stress which is entirely due to the torsion
vector and the much richer density structure. The asymptotic behaviour of density and radial
stress isr−2 for both cases.

3.2.2. Determiningf (r) by requiring zero transverse stress.Using the string distribution
function equation (28) in the field equation (25), one finds an equation forf (r)

f ′′ +
2f ′

r
+

8

3

fA2

r2(r − 2A/3)2
= 0. (36)

Definingu = 1/r andw = 1− 2Au/3, this can be cast into the form

d2f

dw2
+

6f

w2
= 0 (37)

easily solved by

f (r) = C1

(
1− 2M

3r

)3

+C2

(
1− 2A

3r

)−2

. (38)

Asymptotically this can be cast into the Letelier form with the constants equal to

C1 +C2 = 1− h C1− 2C2

3
= M

A
. (39)

3.2.3. Determiningf (r) from halo modelling. Assuming the form which might be associated
with a halo, equation (31), we will write the energy density and compare it to the simulation
forms,

ρ = 1

r(r + ro)2

[
4Mro(3b − 1)− 3r2

o (2b − 1)

r
− 6Mro(3b − 1)

r + ro

]
(40)
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wherero = −2A/3. Rewriting equation (40) gives

ρ = 1

r2(r + ro)3
{r2
o [4M(3b − 1)− 3ro(2b − 1)] − rro[2M(3b − 1) + 3ro(2b − 1)]}. (41)

If one chooses 4M(3b−1) = 3r2
o (2b−1), the density profile form is that found by Hernquist

but the density is negative,

ρ = −6Mro(3b − 1)

r(r + 8M/3)3
. (42)

This could possibly describe a structure with a negative mass black hole. Mann [35] has
discussed such an object. It is not suggested by the halo models. The second choice that can
be made in the density given by equation (41) sets the second term in the numerator to zero,
so that

2M(3b − 1) = −3ro(2b − 1). (43)

One finds two possible values ofro, depending onb.

ro = − 4
3M for b = 1⇔ string variables are not thermodynamic

ro = − 10
9 M for b = 2⇔ string variables are thermodynamic.

(44)

If this were describing an atmosphere around a black hole, the presence of the string atmosphere
would tend to inflate the horizon. The density profile is

ρ = 6Mr2
o (3b − 1)r2(r + ro)

3 . (45)

This is again most similar to the Hernquist [34] density profile except it has an extrar−1 fall off.
If one considered the entire density described by equation 41 without restricting the parameters
it is clear that there is a point at which the density vanishes,

r = ro 4M(3b − 1)− 3ro(2b − 1)

2M(3b − 1) + 3ro(2b − 1)
. (46)

This implies that there is a boundary in this string model which is not present in the Navarro
and Hernquist models. If there is a singular object at the centre of the galaxy, one would not
expect the density function to be valid past the horizon. The boundary in this model limits the
effect of the strings to intermediate regions. One would not expect to see the effect of the dark
matter strings at infinity.

4. Conclusion

Torsion can have a large influence on modelling outcomes. It is tempting to argue from the
standpoint of a theorem [36] on the uniqueness of a symmetric connection in a Riemannian
manifold (which is both torsion and non-metricity free) that this uniqueness is equivalent to the
‘gauging’ away of the torsion and non-metricity. If this is compared to electromagnetic theory
with the invariance of the electric and magnetic fields under the gauging of the vector potential,
one quickly notes that the gravitational field does not have the same invariant behaviour because
of the different possible manifolds in the metric affine geometry. When considering spin fluids,
for example, the spin energy enters with spin-squared terms in an RC spacetime whereas in GR,
the spin-squared terms are missing. This implies an expanded class of meaningful solutions is
possible in RC spaces compared with GR. Based on an analogy between the structure of the
spin bivector and the string bivector, we have developed a string fluid stress–energy content
that includes the effects of torsion and have examined a string fluid with torsion as a source
for astrophysically interesting spacetimes. The stress–energy tensor that is used was derived
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variationally, and as part of the variation, the string density was identified with the torsion
vector.

We applied the torsional string fluid stress–energy content to modelling a stringy
atmosphere with three different metric functions. The first two choices were asymptotically
the Letelier metric choice. The major difference introduced by including the torsion vector in
the geometry is the presence of a transverse stress. The third model we discussed compared
the field equation results to a suggestive form for a halo density profile. The model atmosphere
generated from the field equations could have a boundary and the overall distance behaviour
appears to be sharper than that found in the Einstein–de Sitter numerical simulations. The
model was based on an extremely simple choice for the metric. A more detailed study of this
behaviour is in progress.

Nucamendi and Sudarsky [37] have discussed in GR a metric for ad = 1 monopole
spacetime that includes an angular deficit. The case for strings in RC is not entirely clear
[38], although the cut in the angular range and the associated conical defect is suggestive. The
question of deficit angles in RC spaces is intimately connected with the existence of torsion
and the idea of parallel transport [39]. This will be discussed elsewhere.

The formalism developed in this work can also be used to consider other kinds of string
distributions. For example, the field equations for a string fluid of loops

Sj = (0, 0, 0, S) (47)

is an interesting possibility. For this case, the off-diagonal equations (Grϕ andGϑϕ) determine
the torsion/string vector which is found to be

SϕSϕ = S2
o r

2 sin2(ϑ)f 2(1−b). (48)

Such a string distribution would be most interestingly placed in a stationary spacetime. The
vorticity in a stationary spacetime could also activate the spin part of the torsion which is linked
to the trace-free part of the torsion tensor. These kinds of models could also be used to treat
more realistic halo models where halo flattening is expected [40]. They might also be used to
model the ring structure [41] which may have been observed in the outer portions of our own
galaxy.

References

[1] Vaidya P C 1953Nature171260
[2] ’t Hooft G 1998Nucl. Phys. Proc. Supp.68174
[3] ’t Hooft G 1997Plenary Lecture Notes ICMP97 (Brisbane)
[4] Glass E N and Krisch J P 1998Phys. Rev.D 57R5945
[5] Kar S 1997Phys. Rev.D 554872
[6] Larsen F 1997Phys. Rev.D 561005
[7] Letelier P S 1979Phys. Rev.D 201294
[8] Letelier P S 1981Nuovo CimentoB 63519
[9] Letelier P S 1987Class. Quantum Grav.4 L75

[10] Soleng H S 1995Gen. Rel. Grav.27367
[11] Burkert A 1997Proc. Int. Workshop on Dark Matter in Astro-Particle Physicsed H V Klapdor-Kleingrothaus

and Y Ramachers (Singapore: World Scientific) p 35
[12] Smalley L L and Krisch J P 1998 Comparison of string fluid dynamical models in general relativity and Einstein–

Cartan theoryGen. Rel. Grav.to appear
[13] Nambu YProc. Int. Conf. on Symmetries and Quark Models(Wayne State University)
[14] Nielson H 197015th Conf. on High Energy Particle Physics (Kiev)
[15] Susskind L 1970Nuovo Cimento69457
[16] Sherk J 1975Rev. Mod. Phys.47123
[17] Stachel J 1980Phys. Rev.D 212171
[18] Rovelli C 1998Living Reviews



String fluid dynamical models in the Einstein–Cartan theory 1019

[19] Halbwachs F 1960Theorie Relativiste des Fluide a Spin(Paris: Gauthier-Villar)
[20] Smalley L L and Krisch J P 1995J. Math. Phys.36778
[21] Smalley L L and Krisch J P 1996Class. Quantum Grav.13L19
[22] Ray J R and Smalley L L 1982Phys. Rev. Lett.491059

Ray J R and Smalley L L 1982Phys. Rev. Lett.5052E
[23] Ray J R and Smalley L L 1982Phys. Rev.D 261619
[24] Ray J R 1972J. Math. Phys.131451
[25] Nieto J A 1995Mod. Phys. Lett.A 103087
[26] Hehl F W, Mccrea J D, Mielke E W and Nieman Y 1995Phys. Rep.2581
[27] Smalley L L and Krisch J P 1992J. Math. Phys.331073
[28] Hammond R T 1990Gen. Rel. Grav.22451

Hammond R T 1991Gen. Rel. Grav.23973
[29] Smalley L L and Krisch J P 1997Class. Quantum Grav.142405
[30] Tolman R C 1939Phys. Rev.55364
[31] Henriksen R N and Widrew L M 1999Mon. Not. R. Astron. Soc.302321
[32] Navarro J F, Frenk C S and White S D M1996Astrophys. J.462563
[33] Navarro J F, Frenk C S and White S D M1997Astrophys. J.490493
[34] Hernquist L 1990Astrophys. J.356359
[35] Mann R 1997Class. Quantum Grav.142927
[36] Choquet-Bruhat Y, Dewitt-Demorette C and Dillard-Bleich M 1982Analysis, Manifolds and Physics2nd edn

(Amsterdam: North-Holland) pp 300–1
[37] Nucamendi U and Sudarsky D 1997Class. Quantum Grav.141309
[38] Tod K P 1994Class. Quantum Grav.111331
[39] Smalley L L 1986Gen. Rel. Grav.5 549
[40] Pfenniger D 1997Proc. Int. Workshop on Dark Matter in Astro-Particle Physicsed H V Klapdor-Kleingrothaus

and Y Ramachers (Singapore: World Scientific) p 54
[41] Binney J and Dehnen W 1997Mon. Not. R. Astron. Soc.287L5


