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Abstract. We consider a two-dimensional conformal theory based on G×G′
H

coset sigma model

introduced by Guadagnini, Martellini and Mintchev. It is shown that in the case of SU(2)×SU(2)
U(1) the

metric of the corresponding background is of T p,q coset space form (but is not an Einstein one).
A similar interpretation is possible for the Lorentzian coset space W4,2 = SL(2,R)×SL(2,R)

U(1) . The
resulting ten-dimensional homogeneous space metric on W4,2 ×T p,q supplemented with a 2-form
field gives a critical NS–NS superstring background with a conformal sigma model interpretation.

PACS number: 1125H

1. Introduction

Metrics of physically interesting backgrounds usually have a large amount of global symmetry.
One set of examples are black hole metrics with rotational symmetry, and another are symmetric
spaces AdSn × Sn supported by R–R antisymmetric tensor backgrounds. At the same time,
string solutions which have a known two-dimensional (2D) conformal field theory (CFT)
interpretation, like gauged WZW models, have associated spacetime metrics with very few or
no global symmetries. It is of interest to look for new examples of conformal sigma models
related to metrics on spaces with global symmetries.

Special homogeneous spaces that were recently discussed in connection with AdS–CFT
correspondence are T p,q spaces. These are cosets of the form T p,q = [SU(2)×SU(2)]/U(1)
with the integers p and q determining the embedding of the U(1) subgroup. Their metric is
[1–3]

ds2 = λ2
1(dθ

2
1 + sin2 θ1 dφ2

1) + λ2
2(dθ

2
2 + sin2 θ2 dφ2

2) + λ2(dψ + p cos θ1 dφ1 + q cos θ2 dφ2)
2.

(1.1)

A particular case ofp = q = 1 relevant for discussions of AdS supergravity solutions preserves
part of supersymmetry, and with λ2

1 = λ2
2 = 1

6 and λ2 = 1
9 its metric is an Einstein space one.

Below we shall show that certain metrics on T p,q spaces can be interpreted as parts of
NS–NS string backgrounds associated with a class of conformal coset sigma models proposed
by Guadagnini, Martellini and Mintchev (GMM) [4, 5]. Though these metrics supported by
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the NS–NS 2-form field are not Einstein ones (in contrast with the T 1,1 example studied in
connection with AdS–CFT correspondence [6]), they may still turn out to be of some interest.

The conformal sigma model with a T p,q metric should be supplemented by another one
to balance the central charge. One example of a critical D = 10 string model has a metric of
the form W4,2 × T 1,q , where W4,2 = SO(2, 2)/SO(2) = [SL(2, R) × SL(2, R)]/U(1). An
Einstein representative in the class of metrics on W4,2 was discussed in [7] as a generalization
of AdS5.

In section 2 we shall review the GMM construction [4] and its interpretation as a coset
CFT [5]. We shall also comment on its relation to a class of gauged WZW models as discussed
in [8]. In section 3 we shall consider a GMM model that leads to a T p,q metric. Section 4 is
devoted to an explicit check of conformal invariance of the corresponding sigma model at the
one- and two-loop levels.

2. The Guadagnini–Martellini–Mintchev model

The starting point is the WZW action [9]

I (U ; n) = n

8π

∫
∂M

d2x Tr(∂µU∂µU−1) +
n

12π

∫
M

d3y εijk Tr(U−1∂iUU−1∂jUU−1∂kU),

(2.1)

where U is an element of the group G and n is the level of the associated affine Kac–Moody
algebra. The property of the WZW model that is used in the GMM construction is that under
an arbitrary variation of the group element δU the WZW action changes by

δI (U ; n) = n

4π

∫
d2x Tr[U−1δU(ηµν − εµν)∂µ(U

−1∂νU)]. (2.2)

This variation can also be written as

δI (U ; n) = n

4π

∫
d2x Tr[δUU−1(ηµν + εµν)∂µ(∂νUU−1)], (2.3)

or as
∫

d2zTr[U−1δU∂z(U
−1∂z̄U)] = ∫

d2zTr[δUU−1∂z̄(∂zUU−1)]. From these variations
one can read off the currents associated with the symmetry U → )(z)U)̄−1(z̄) [9].

Consider the variation of the WZW model under the following gauge transformation:

U → UR()−1), (2.4)

where R is a representation of a subgroup H ⊂ G and ) ∈ H . Under infinitesimal
transformations )(x) = 1 + ω(x) the WZW action transforms as (2.2)

δI (U ; n) = − n

4π

∫
d2 Tr[R(ω)∂µ(U−1∂µU − εµνU−1∂νU)], (2.5)

where we set R()−1) = 1 − R(ω) + · · · . In order to cancel this ‘classical anomaly’ GMM
suggested to introduce another field V belonging to a group G′ whose action has a similar
anomalous transformation property under H . It is assumed that the same H is a subgroup of
both G and G′ so that the class of resulting coset models is rather special. Let V ∈ G′ and R′

be a representation of H ⊂ G′ acting on V according to

V → R′())V . (2.6)

Using equation (2.3) we find for the variation of the WZW action I (V ;m) similar to (2.1),

δI (V ;m) = m

4π

∫
d2 Tr[R′(ω)∂µ(∂µV V −1 + εµν∂

νV V −1)]. (2.7)
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One can then check that the model

IGMM = I (U ; n) + I (V ;m) + Iint (U, V ; k),

Iint (U, V ; k) = − k

2π

∫
d2x

[
Tr(RαU

−1∂µU)Tr(R′
α∂

µV V −1)

+εµν Tr(RαU
−1∂µU) Tr(R′

α∂νV V −1)
]

(2.8)

is gauge invariant for

n = kr ′, m = kr,

Tr RαRβ = rδαβ, Tr R′
αR

′
β = r ′δαβ,

(2.9)

where, as in [4], the generators of the Lie algebras of G and G′ are {Ri} = {RI ,Rα} and
{R′

a} = {R′
A,R

′
α}, where Rα and R′

α correspond to the Lie algebra of subgroup H . The one-
loop finiteness of this model was checked in [4] and finiteness at the two-loop level was checked
in [10]. The conformal field theory defined by this sigma model was discussed in [5], which
found the current algebra and the Virasoro algebra with a central charge value coinciding with
that of the GKO construction [11, 12] for the coset (G × G′)/H .

Let us briefly review the conformal structure of the GMM model. The variation of the
action (2.8) with respect to U and V yields the following equations of motion:

∂z̄J
i
z = 0, ∂zJ

a
z̄ = 0, (2.10)

where

J i
z = (∂zUU−1)i +

1

r ′ (URαU
−1)i Tr(R′

α∂zV V −1),

J a
z̄ = −(V −1∂z̄V )a +

1

r
(V −1R′

αV )a Tr(RαU
−1∂z̄U).

(2.11)

The form of the equations of motion and currents suggests, by analogy with the WZW model,
the existence of two copies of affine algebras [5]. Introducing

Ka
z = (∂zV V −1)a, Ki

z̄ = −(U−1∂z̄U)i, (2.12)

one can write the components of the classical energy–momentum tensor as

Tz = 1

kr ′ J
i
z J

i
z +

1

kr
KA

z K
A
z ,

Tz̄ = 1

kr
J a
z̄ J

a
z̄ +

1

kr ′K
I
z̄ K

I
z̄ .

(2.13)

The analysis of this bosonic model at the quantum level reveals that the central charge is [5]

cGMM = c(G, kr ′) + c(G′, kr) − c(H, 2krr ′), (2.14)

with c(G, n) = n dim G/[n + 2cV (G)], where cV (G)δab = facdfbcd . The quantum energy–
momentum tensor is of the same form as the classical one but with rescaled coefficients [5, 13]

Tz = 1

kr ′ + 2cV (G)
: J i

z J
i
z : +

1

kr + 2cV (G′)
: KA

z K
A
z :,

Tz̄ = 1

kr + 2cV (G′)
: J a

z̄ J
a
z̄ : +

1

kr ′ + 2cV (G)
: KI

z̄ K
I
z̄ : .

(2.15)
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The expressions in the supersymmetric case are similar, with levels shifted (kr ′ + 2cV (G) →
kr ′, etc) as in the (gauged) WZW model case (see, e.g., [14] and therein).

Let us also note that the GMM model can be represented as a kind of generalized gauged
WZW model which is free of anomalies and upon elimination of the 2D gauge fields reduces
to the GMM action. Introducing non-dynamical 2D gauge fields A and B one may consider
the action

ÎGMM = I (U ; n) + I (V ;m) + Iint (U, V,A,B; k),

Iint (U, V ; k) = − k

4π

∫
d2z

[
Tr(RαAz̄)Tr(R′

α∂zV V −1) − Tr(R′
αBz)Tr(RαU

−1∂z̄U)

+ Tr(RαAz̄)Tr(R′
αBz)

]
,

(2.16)

which is invariant under the following gauge transformations:

δU = −Uω, δV = ωV,

δBi = −∂iω − [Bi, ω], δAi = −∂iω − [Ai, ω].
(2.17)

Integrating out the gauge fields gives back the GMM action equation (2.8)†. In the standard
diagonal vector gauged WZW model the gauge action is g → hgh−1. The GMM model may
be interpreted as a gauged WZW model defined on the product group G′ ×G, with the gauged
subgroup acting as (V ,U) → (hV,Uh−1), i.e. it may be viewed as a non-anomalous ‘sum’
of right and left gauged [8] WZW models.

3. T p,q and W4,2 metrics from the GMM model

Let us consider the GMM model for G = SU(2), G′ = SU(2) and H = U(1). The SU(2)
group elements are parametrized according to

U = exp(iφ1σ3) exp(iθ1σ2) exp(iψ1σ3),

V = exp(iφ2σ3) exp(iθ2σ2) exp(iψ2σ3).
(3.1)

The gauge action of the U(1) subgroup is defined by

ψ1 → ψ1 − pε(z, z̄), φ2 → φ2 + qε(z, z̄). (3.2)

This corresponds to gauging the subgroup generated by i(qσL
3 − pσR

3 ). Consider the sum of
the two WZW models on SU(2) with levels k1 and k2 and the GMM interaction term (2.8)
with coefficient k3

I = 1

4π

∫
d2x

[
k1

(
∂µθ1∂

µθ1 + ∂µφ1∂
µφ1 + ∂µψ1∂

µψ1 + cos(2θ1)∂µφ1∂νψ1(η
µν + εµν)

)

+k2
(
∂µθ2∂

µθ2 + ∂µφ2∂
µφ2 + ∂µψ2∂

µψ2 + cos(2θ2)∂µφ2∂νψ2(η
µν + εµν)

)

+k3
(
cos(2θ1)∂µφ1 + ∂µψ1

)(
cos(2θ2)∂νψ2 + ∂νφ2

)
(ηµν + εµν)

]
. (3.3)

For the action to be invariant under (3.2) one needs to impose the following algebraic
constraints:

k1p = k3q, k2q = k3p. (3.4)

† Note that, in contrast to what happens in the usual gauged WZW models [15, 16], integrating out the gauge fields
gives a trivial determinant, i.e. it does not produce a non-constant dilaton coupling.
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Multiplying these equations we find that

k3 =
√
k1k2, p/q =

√
k2/k1. (3.5)

Fixing the gauge as φ2 = 0 one obtains a background whose metric is of the (non-Einstein)
T 1,Q type

ds2 = k[dθ2
1 + sin2 θ1 dφ2

1 + Q2(dθ2
2 + sin2 θ2 dφ2

2) + (dψ + cos θ1 dφ1 + Q cos θ2 dφ2)
2],

(3.6)

where we have rescaled all variables by 1
2 , renamed ψ2 → φ2, ψ1 → ψ and introduced

Q = p/q =
√
k2/k1, k = k1. (3.7)

The background also includes the antisymmetric field

Bφ1ψ = k cos θ1, Bφ1φ2 = kQ cos θ1 cos θ2, Bφ2ψ = −kQ cos θ2. (3.8)

The coefficients in front of the different terms in the action are dictated by gauge invariance
of the total action and cannot be re-adjusted.

Fixing the gauge in the original variables as ψ1 = 0 one ends up with a metric of the type
T Q−1,1. More generally, imposing ψ1 = <φ2 as the gauge-fixing condition is equivalent, at
the level of the metric, to the rescaling ψ → (Q + <)ψ . Undoing this rescaling takes the
resulting background into that of T 1,Q presented above.

The central charge of this model is (see equation (2.14))

c = 3k1

k1 + 2
+

3k2

k2 + 2
− 1 = 3k

k + 2
+

3kQ2

kQ2 + 2
− 1, (3.9)

and reduces to 5 in the semiclassical limit (k → ∞). In order to obtain a critical string
background we need to add another model to compensate for the central charge deficit.
One natural possibility is to consider a Lorentzian version of T p,q . Namely, consider the
GMM model for G = SL(2, R), G′ = SL(2, R) and H = U(1). The group elements are
parametrized as

U = exp(iφ1σ3) exp(r1σ2) exp(iψ1σ3),

V = exp(iφ2σ3) exp(r2σ2) exp(iψ2σ3)
(3.10)

and by analogy with the SU(2)× SU(2) case we define the following action of the subgroup:

ψ1 → ψ1 − pε(z, z̄), φ2 → φ2 + qε(z, z̄). (3.11)

Following the same steps as above we end up with the following background:

ds2 = k
[
dr2

1 + sinh2 r1 dφ2
1 + Q2(dr2

2 + sinh2 r2 dφ2
2) − (dt + cosh r1 dφ1 + Q cosh r2 dφ2)

2
]
,

(3.12)

Bφ1t = k cosh r1, Bφ1φ2 = kQ cosh r1 cosh r2, Bφ2t = −kQ cosh r2. (3.13)

This metric (which may be viewed as a formal analytic continuation of the above T 1,Q metric
(3.5)) belongs to a class of non-compact versions of the Stiefel manifold, and corresponds to
W4,2 = SO(2, 2)/SO(2). The parameters k,Q here are the same as above, so that the deficit
of the central charge cancels just as in the SL(2, R) × SU(2) WZW model (to the leading
approximation in the bosonic case, and exactly in the supersymmetric case).

One can check that the total d = 10 background we constructed is not supersymmetric.
This is in contrast to what happens in the case of a W4,2 ×T 1,1 Freund–Rubin-type solution of
IIB supergravity supported by a 5-form field [7], where the metrics on the cosets are chosen
to be the Einstein ones, and 1

4 of the supersymmetry is preserved.
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4. Check of conformal invariance

It is easy to check that the one-loop conformal invariance equations Rµν − 1
4HµλρHν

λρ = 0
[17, 18] are satisfied. The components of the Ricci tensor and the scalar curvature of the T 1,Q

sector are

Rθ1θ1 = 1

2
, Rφ1φ1 = 1

2Q2
(Q2 + cos2 θ1), Rφ1ψ = Q2 + 1

2Q2
cos θ1,

Rθ2θ2 = 1

2
, Rφ2φ2 = 1

2
(1 + Q2 cos2 θ2), Rφ2ψ = Q2 + 1

2Q
cos θ2,

Rψψ = Q2 + 1

2Q2
, Rφ1φ2 = Q2 + 1

2Q
cos θ1 cos θ2, R = 3

2

Q2 + 1

kQ2
,

(4.1)

and similar expressions are found for W4,2. The total scalar curvature is zero since R(W4,2) =
−R(T 1,Q) = −3(Q2 + 1)/(2kQ2).

The two-loop β-function for the Gµν + Bµν coupling of the bosonic sigma model is
(assuming a specific scheme, see [19, 20])

βµν = α′R̂µν + 1
2α

′2
[
R̂αβγ

νR̂µαβγ − 1
2 R̂

βγα
νR̂µαβγ + 1

2 R̂αµνβ(H
2)αβ

]
+ O(α′3), (4.2)

where R̂αβγ δ is the Riemann tensor for the generalized connection ?̂λ
µν = ?λ

µν − 1
2H

λ
µν .

In this scheme a parallelizable manifold having R̂αβγ δ = 0 (e.g. a group space) automatically
satisfies the two-loop conformal invariance condition. For the background we are discussing
the tensor R̂αβγ δ is non-vanishing; e.g. the generalized curvature of the T 1,Q metric is

R̂θ2φ2θ1φ1 = −kQ sin θ1 sin θ2. (4.3)

One can check, however, that the beta-function (4.2) still vanishes. (Note again that the
one-loop beta function equal to the generalized Ricci tensor R̂µν vanishes since gθ1θ2 =
gφ2φ1 = gθ2φ1 = gθ1φ2 = 0.) Like target space backgrounds appearing in the case of gauged
WZW models [15, 21], these backgrounds, though not parallelizable, define conformal sigma
models.
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