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Abstract
We find a new family of supersymmetric vacuum solutions in the six-
dimensional chiral gauged N = (1, 0) supergravity theory. They are
generically of the form AdS3 × S3, where the 3-sphere is squashed
homogeneously along its Hopf fibres. The squashing is freely adjustable,
corresponding to changing the 3-form charge, and the solution is
supersymmetric for all squashings. In a limit where the length of the Hopf
fibres goes to zero, one recovers, after a compensating rescaling of the
fibre coordinate, a solution that is locally the same as the well-known
(Minkowski)4 × S2 vacuum of this theory. It can now be viewed as a fine
tuning of the new more general family. The traditional ‘cosmological constant
problem’ is replaced in this theory by the problem of why the four-dimensional
(Minkowski)4 × S2 vacuum should be selected over other members of the
equally supersymmetric AdS3 × S3 family. We also obtain a family of dyonic
string solutions in the gauged N = (1, 0) theory, whose near-horizon limits
approach the AdS3 times squashed S3 solutions.

PACS number: 11.25.−w

1. Introduction

Six-dimensional chiral supergravities with eight real supersymmetries admitting spontaneous
compactifications to four-dimensional Minkowski spacetimes have received both early
[1–5] and more recent [6–8] attention as possible scenarios for achieving a naturally small
cosmological constant. The starting point for a minimal model of this type is a six-dimensional
chiral N = (1, 0) Einstein–Maxwell supergravity with an exponential potential for the
dilaton, which results from the gauging of a U(1) R-symmetry. In the absence of branes,
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compactification to four dimensions proceeds by turning on a monopole configuration on a
2-sphere, resulting in a geometry of the form (Minkowski)4 × S2 [1].

In general, achieving a small four-dimensional cosmological constant requires a fine
tuning to balance the bulk vacuum energy with the monopole flux4. However, it has been
argued [2–4] that a form of self-tuning occurs naturally in the gauged chiral N = (1, 0)

supergravity of [1]. The bosonic sector of this theory includes a 2-form potential and a
dilaton, in addition to the metric and a Maxwell field. Self-tuning in this theory occurs
because the cosmological constant is replaced by an exponential potential for the dilaton
field. In this case, the only possibility for a maximally symmetric solution turns out to be
(Minkowski)4 ×S2 [1], thus selecting a Minkowski vacuum without the need for any apparent
fine tuning. The vacuum yields N = 1 supergravity in four dimensions with chiral matter [1].

In the framework of [6–8], this basic scenario is extended by introducing 3-branes into the
(Minkowski)4 ×S2 background, giving rise to (American) ‘football-shaped’ extra dimensions.
Being co-dimension two objects, the only effect of the 3-branes on the background is to
introduce deficit angles on the S2. In particular, the four-dimensional cosmological constant
remains zero (or at least small), provided it is initially vanishing in the absence of branes. It
is remarkable that this is true regardless of whether supersymmetry is preserved or broken on
the 3-branes themselves. Thus we could be living on a braneworld without supersymmetry
and yet still experience a naturally small cosmological constant. Essentially what happens in
these models is that the cosmological constant problem is transformed into that of finding a
naturally stable bulk solution admitting a flat Minkowski background.

Since the (Minkowski)4 × S2 background is the starting point for the braneworld models
with football-shaped extra dimensions, it is important to address the argued uniqueness of this
background in the context of the N = (1, 0) gauged supergravity theory. In this paper, we show
that there is in fact a more general class of N = 1 supersymmetric vacuum solutions. We find
a family of solutions of the form AdS3 × S3, where S3 is the 3-sphere with a homogeneously
squashed metric. There is a non-trivial parameter in the family of solutions, which allows the
length L of U(1) fibres in the description of S3 as the Hopf bundle over S2 to be adjusted
freely, relative to the size of the S2 base. In the singular limit where the length L goes to zero
one can recover, after making an appropriate rescaling of the fibre coordinate, a solution that
is locally the same as the previous (Minkowski)4 × S2 solution found in [1]. The new feature
in the more general family of AdS3 × S3 solutions is that in addition to the 2-form ‘monopole
flux’, there are also electric and magnetic charges carried by the 3-form field.

In the light of our new solutions, all of which are supersymmetric, it can be argued that
the ostensible absence of fine tuning in the (Minkowski)4 × S2 solution of [1] is somewhat
deceptive. In fact there is a fine tuning, in that it is the special case of our new supersymmetric
vacua in which the electric and magnetic 3-form charges are set to zero. The familiar notion of
fine tuning a maximally symmetric vacuum solution to have vanishing cosmological constant
is now replaced by a rather less familiar type of fine tuning. If the 3-form charges are allowed
to become non-zero not only does one lose the feature of a vanishing cosmological constant,
but one also loses a dimension. Namely, one of the three spatial dimensions of the previous
(Minkowski)4 vacuum acquires a non-trivial ‘twist’ and becomes the Hopf fibre coordinate of
a 3-sphere, whose S2 base formed the original internal space in the Minkowski vacuum.

The celebrated ‘cosmological constant problem’ is thus replaced, in this theory, by the
‘Hopf fibration problem’.

4 For example see [9], where six-dimensional Einstein–Maxwell gravity with an arbitrary cosmological constant is
compactified to M4 × S2, where M4 is Minkowski, de Sitter or anti-de Sitter spacetime, depending on the fine tuning
of the S2 monopole charge relative to the 6D cosmological constant.
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After constructing the family of AdS3 times squashed S3 solutions we then show that they
can be viewed as the near-horizon limits of a family of dyonic strings in the six-dimensional
gauged N = (1, 0) supergravity. These solutions can be viewed as generalizations of the
usual dyonic strings of the ungauged theory [10]. As in those examples, the dyonic strings
that we find here preserve one quarter of the original six-dimensional supersymmetry. As one
reaches the AdS3 times squashed S3 near-horizon limit, the supersymmetry fraction increases
from one quarter to one half in the standard way.

2. The six-dimensional N = (1, 0) gauged supergravity

A large class of six-dimensional N = (1, 0) gauged supergravities has been constructed
[11–15]. In this paper, we shall be focusing on the simplest example, for which the field
content comprises a graviton multiplet with bosonic fields

(
gMN,B+

MN

)
and a chiral (complex)

gravitino superpartner ψM ; a tensor multiplet with bosonic field B−
MN and a chiral spin-1/2

superpartner χ ; and a vector multiplet with bosonic field AM and a chiral superpartner λ [1].
The bosonic sector of the six-dimensional N = (1, 0) gauged supergravity is described

by the Lagrangian

L = R∗11 − 1
4∗ dφ ∧ dφ − 1

2 eφ ∗H(3) ∧ H(3) − 1
2 e

1
2 φ ∗F(2) ∧ F(2) − 8g2 e− 1

2 φ11, (1)

where F(2) = dA(1), H(3) = dB(2) + 1
2F(2) ∧ A(1), and g is the gauge-coupling constant. This

leads to the bosonic equations of motion

RMN = 1
4∂Mφ∂Nφ + 1

2 e
1
2 φ

(
F 2

MN − 1
8F 2gMN

)
+ 1

4 eφ
(
H 2

MN − 1
6H 2gMN

)
+ 2g2 e− 1

2 φgMN,

�φ = 1
4 e

1
2 φF 2 + 1

6 eφH 2 − 8g2 e− 1
2 φ,

(2)
d
(
e

1
2 φ ∗F(2)

) = eφ∗H(3) ∧ F(2),

d(eφ ∗H(3)) = 0.

The transformation rules for the fermionic fields are given by5

δψM ≡ D̃Mε = [
DM + 1

48 e
1
2 φH +

NPQ�NPQ�M

]
ε,

δχ ≡ − 1
4	φε = − 1

4

[
�M∂Mφ − 1

6 e
1
2 φH−

MNP �MNP
]
ε, (3)

δλ ≡ 1
4
√

2
	F ε = 1

4
√

2

[
e

1
4 φFMN�MN − 8ig e− 1

4 φ
]
ε,

where DM is the gauge-covariant derivative, DMε ≡ (∇M − igAM)ε. Note that the ±
superscripts appearing on the 3-form HMNP in these expressions are redundant, since the
chirality of ε already implies projections onto the self-dual or anti-self-dual parts, but we
include them for convenience, to emphasize which projection occurs in which transformation
rule.

3. Vacuum solution

In this section, we show that the N = (1, 0) gauged supergravity theory admits a one-
parameter family of supersymmetric solutions that generically are of the form AdS3 ×S3. The
non-trivial parameter in the solution characterizes the degree of ‘squashing’ of the internal
3-sphere, which is viewed as the Hopf bundle over S2. For a particular limiting value of
the parameter, in which the length of the U(1) Hopf fibres tends to zero, the solution locally
5 Note that, compared to [1], we have chosen units in which the gravitational coupling constant κ = 1/2, and have
additionally rescaled the supersymmetry parameter ε.
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approaches, after an appropriate rescaling of the shrinking Hopf fibres, the (Minkowski)4 ×S2

solution found long ago in [1].
The construction of our family of AdS3 × S3 solutions proceeds straightforwardly. We

make the following ansatz for the metric and other bosonic fields:

ds2
6 = ds2

3 + a2
(
σ 2

1 + σ 2
2

)
+ b2σ 2

3 ,

F(2) = kσ1 ∧ σ2, (4)

H(3) = Pσ1 ∧ σ2 ∧ σ3 +
P

a2b
ε(3).

Here, a, b, k and P are constants, and the σi are left-invariant 1-forms on the 3-sphere,
satisfying the exterior algebra

dσi = − 1
2εijkσj ∧ σk. (5)

They can be represented, in terms of Euler angles (θ, ϕ, ψ), by

σ1 + iσ2 = e−iψ(dθ + i sin θ dϕ), σ3 = dψ + cos θ dϕ. (6)

The 3-form ε(3) appearing in the ansatz for H(3) in (4) denotes the volume form in the metric
ds2

3 . Note that H(3) in (4) is explicitly constructed to be self-dual. Locally, we can choose the
potential for F(2) to be given by A(1) = −kσ3.

An elementary calculation shows that in the natural vielbein basis e1 = aσ1, e
2 =

aσ2, e
3 = bσ3, the torsion-free spin connection for the S3 factor in the metric ds2

6 in (4) is
given by

ω23 = − b

2a2
e1, ω31 = − b

2a2
e2, ω12 =

(
b

2a2
− 1

b

)
e3, (7)

and the non-vanishing vielbein components of the Ricci tensor are given by

R11 = R22 = 1

a2
− b2

2a4
, R33 = b2

2a4
. (8)

The equation of motion for H(3) in (2) implies, in view of the ansatz (4), that φ is a
constant, which without loss of generality we can take to be zero. The equations of motion
then lead to the following relations:

k2 = 16g2a4, b2 = P, a2 = b2 + 1
2k2, (9)

together with

Rµν = − b2

2a4
gµν. (10)

Thus we can view the 3-form charge P as a free parameter, with the remaining parameters in
the ansatz (4) determined by

b2 = P, a2 = k

4g
, k(1 − 2gk) = 4gP. (11)

We have, without loss of generality, made a specific sign choice when taking the square root
of the first equation in (9). When P is non-vanishing, the solution is of the form AdS3 × S3,
and since the ratio b/a is not equal to 1, the metric on the S3 is squashed along the Hopf fibres.
The equation determining a2 has two branches, with

a2 = 1

16g2

(
1 ±

√
1 − 32Pg2

)
. (12)
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If we choose the + sign in (12), then a is non-vanishing in the limit P −→ 0, while b tends
to zero. If the Euler angle ψ is rescaled to ψ = b−1z before taking the limit, then the metric
takes the form

ds2
6 = ds2

3 + a2(dθ2 + sin2 θ dϕ2) + (dz + b cos θ dϕ)2. (13)

If b goes to zero, we see from (10) that ds2
3 becomes Ricci flat. This leads to an ‘untwisting’

of the Hopf fibre coordinate z, leaving in the limit a metric that is the direct sum of the metric
on S2 and a Ricci-flat 4-metric, which could be taken to be (Minkowski)4. Thus one recovers
the (Minkowski)4 × S2 solution of [1] as a special limiting case of our family of AdS3 times
squashed S3 solutions, as the 3-form charge P is sent to zero6. The (Minkowski)4 ×S2 solution
can therefore be viewed as a fine tuning in which the 3-form charge P is set to zero, implying
that the strength of the 2-form flux takes the specific value

k = 1

2g
. (14)

It is straightforward to verify that our solution is supersymmetric for all values of P. First
of all, we see from (3) that we shall have δχ = 0, since φ = 0 and H(3) is self-dual. In fact,
the tensor multiplet is completely decoupled from this solution. Next, we see that δλ = 0
implies

k

a2
�12ε = 4igε, (15)

which requires, since we chose k = +4ga2, that

�12ε = +iε. (16)

Note that the Dirac matrices �1, �2 and �3 are given with frame indices corresponding to
the S3. Condition (16) implies a halving of the original six-dimensional supersymmetry.
Turning finally to the gravitino variation, from δψM = 0 with M in the S3 directions, we find
for δψ1 = 0 and δψ2 = 0 that b2 = P , which is consistent with (9). From δψ3 = 0 we
find b2 = a2(1 − 2gk), which, since k = 4ga2, is also consistent with (9). Note that we
have ∂iε = 0, i.e. the Killing spinors are independent of the coordinates of S3. Finally from
δψµ = 0 in the AdS3 directions we obtain

∇µε = − iP

4a2b
�3�µε = − i

2

√
−�

2
�3�µε, (17)

where � ≡ −P 2/(2a4b2) = −b2/(2a4) is, from (10), the cosmological constant of the AdS3

spacetime. Equation (17) is nothing but a statement that ε must be a Killing spinor in AdS3.
This completes the demonstration that our AdS3×S3 solutions preserve one half of the original
six-dimensional supersymmetry.

6 Since the U(1) fibre coordinate ψ on S3 has period 4π , it follows that the period of the rescaled coordinate z

will tend to zero as b = √
P goes to zero. Once the limit b = 0 is reached, one can ‘unwrap’ the collapsed circle

and allow z to range over the entire real line, thus giving a (Minkowski)4 × S2 topology. An alternative viewpoint
would be to start from the ‘fine-tuned’ (Minkowski)4 × S2 solution at P = 0, using the coordinate z ranging over
the entire real line. When P is then allowed to become non-zero, one would encounter conical singularities in the
solution, since the coordinate z would be covering the U(1) fibre in S3 infinitely many times (and the 3-form charge∫

H(3) = 4π
√

P(	z) would be infinite owing to the infinite period (	z) for z). These solutions can then be made
regular, giving AdS3 × S3, by restricting z to have period (	z) = 4π

√
P .
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4. Dyonic string solutions in N = (1, 0) gauged supergravity

Having shown that the N = (1, 0) gauged supergravity admits a family of AdS3 times squashed
S3 solutions, it is natural to ask whether such vacua may be related to string-like objects. In
this section we show that this is indeed the case. In particular, we construct dyonic string
solutions preserving 1/4 of the original six-dimensional supersymmetry. In the near-horizon
limit, these strings approach the AdS3 times squashed S3 solutions of the previous section,
whereupon supersymmetry is partially restored from 1/4 to 1/2 of the original supersymmetry.

4.1. The equations of motion, and Killing spinor conditions

Our starting point is the following ansatz for string solutions:

ds2
6 = c2 dxµ dxµ + a2

(
σ 2

1 + σ 2
2

)
+ b2σ 2

3 + h2 dr2,

H(3) = Pσ1 ∧ σ2 ∧ σ3 + u d2x ∧ dr, (18)

F2 = kσ1 ∧ σ2,

where a, b, c, h, u and φ are now all functions of r. The magnetic charge P and the coefficient
k are constants, by virtue of the Bianchi identities for H(3) and F(2). While h may be removed
by a coordinate transformation, dr ′ = h(r) dr , the string solution simplifies for a suitable
choice of h (as will be apparent below). For this reason we will retain h in the following.
When it is necessary to use explicit numerical vielbein component labels, we use the following
basis:

e0̃ = c dt, e1̃ = c dx, e1 = aσ1,
(19)

e2 = aσ2, e3 = bσ3, e4 = h dr.

In this orthonormal frame, the non-vanishing components of the spin connection are given by

ω23 = − b

2a2
e1, ω31 = − b

2a2
e2, ω12 =

(
b

2a2
− 1

b

)
e3,

(20)

ω14 = a′

ah
e1, ω24 = a′

ah
e2, ω34 = b′

bh
e3, ωµ

4 = c′

ch
eµ,

and the non-vanishing components of the Ricci tensor are given by

Rµν = −
[

c′2

h2c2
+

2a′c′

ach2
+

b′c′

bch2
+

1

ch

(
c′

h

)′]
ηµν,

R11 = R22 = −2a′c′

ach2
− a′b′

abh2
− a′2

a2h2
− 1

ah

(
a′

h

)′
− b2

2a4
+

1

a2
,

(21)

R33 = −2b′c′

ach2
− 2a′b′

abh2
− 1

bh

(
b′

h

)′
+

b2

2a4
,

R44 = − 2

ah

(
a′

h

)′
− 1

bh

(
b′

h

)′
− 2

ch

(
c′

h

)′
.

The field equations for F(2) and H(3) given in (2) imply

b2 = P e
1
2 φ, u = hc2Q

a2b
e−φ, (22)
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respectively, where Q is a constant characterizing the electric charge carried by H(3). The
Einstein and dilaton equations of motion give

c′ 2

h2c2
+

2a′c′

ach2
+

b′c′

bch2
+

1

ch

(
c′

h

)′
= k2

8a4
e

1
2 φ +

1

4
eφ

(
u2

h2c4
+

P 2

a4b2

)
− 2g2 e− 1

2 φ,

2a′c′

ach2
+

a′b′

abh2
+

a′2

a2h2
+

1

ah

(
a′

h

)′
+

b2

2a4
− 1

a2

= − 3k2

8a4
e

1
2 φ − 1

4
eφ

(
u2

h2c4
+

P 2

a4b2

)
− 2g2 e− 1

2 φ,

2b′c′

ach2
+

2a′b′

abh2
+

1

bh

(
b′

h

)′
− b2

2a4
= k2

8a4
e

1
2 φ − 1

4
eφ

(
u2

h2c4
+

P 2

a4b2

)
− 2g2 e− 1

2 φ,

2

ah

(
a′

h

)′
+

1

bh

(
b′

h

)′
+

2

ch

(
c′

h

)′
+

φ′ 2

4h2
= k2

8a4
e

1
2 φ +

1

4
eφ

(
u2

h2c4
+

P 2

a4b2

)
− 2g2 e− 1

2 φ,

1

a2bc2h

(
a2bc2φ′

h

)′
= k2

2a4
e

1
2 φ + eφ

(
P 2

a4b2
− u2

h2c4

)
− 8g2 e− 1

2 φ.

(23)

Rather than trying to solve the rather complicated second-order Einstein and dilaton
equations of motion, we shall look directly for supersymmetric solutions by studying the
conditions for the existence of Killing spinors. Having found such configurations, we then
verify that they do indeed satisfy the second-order field equations. First, the condition δλ = 0
implies

k

a2
�12ε = 4ig e− 1

2 φε. (24)

Without loss of generality, we can require that ε satisfies the same projection condition (16)
as in section 3, and hence we have

a2 = k

4g
e

1
2 φ. (25)

Next, from δχ = 0, we find using (3) that

φ′�4ε = h

a2b
e

1
2 φ(P − Q e−φ)�123ε, (26)

where Q is given in (22). This implies a further halving of supersymmetry by a projection
condition which, without loss of generality, we take to be

�1234ε = +ε, (27)

and hence we have the first-order equation

φ′ = −h e
1
2 φ

a2b
(P − Q e−φ). (28)

Turning to the supersymmetry variations of the gravitino, we find that δψµ = 0 in the
string worldsheet directions implies

c′

hc
= − e

1
2 φ

4a2b
(P + Q e−φ), (29)

where ε is independent of the string worldsheet coordinates xµ. From the δψi = 0 conditions
in the S3 directions, we find from i = 1, 2 and i = 3
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a′

ha
= e

1
2 φ

4a2b
(P + Q e−φ) − b

2a2
, (30)

b′

hb
= e

1
2 φ

4a2b
(P + Q e−φ) +

b

2a2
− (1 − 2kg)

b
, (31)

respectively, where ε is independent of the Euler-angle coordinates on S3. (We have made
use of the projection conditions (16) and (27) here.) Finally, the variation δψ4 = 0 allows us
to solve for the r-dependence of the Killing spinor ε. We have

δψ4 = 1

h

∂ε

∂r
+

1

8a2b
e

1
2 φ(P + Q e−φ)�1234ε, (32)

whence, using (27) and comparing with (29), we find that the r-dependence of ε is given by

ε(r) = c1/2ε0, (33)

where ε0 is a constant spinor satisfying the same projection conditions (16) and (27).
From (25), (22), (28) and (31) we also find that the constant parameters P, g, k must be

related as

4gP = k(1 − 2gk). (34)

So far we have shown that the F and H field equations and Bianchi identities, and the
Killing spinor conditions are satisfied. The remaining field equations are the Einstein and
dilaton field equations. We have verified by explicit computation that they are also satisfied.
In fact, this is not surprising as we will show in the next section where we study the integrability
of the Killing spinor conditions.

In summary, we have a dyonic string solution given by (4), (22), (25) and (34), with h
arbitrary and c, φ determined by (29) and (28). In section 4.3, we shall make a convenient
choice for h and study various properties of our solution.

4.2. Integrability of the Killing spinor equations

In this section we shall show that once the F and H field equations and Bianchi identities,
and the Killing spinor conditions are satisfied by our ansatz, the remaining Einstein and
dilaton field equations are automatically satisfied as well as a consequence of the Killing
spinor integrability conditions. As a by-product we will determine the full Killing spinor
integrability conditions and observe that the first-order Killing spinor equations by themselves
are in general insufficient to guarantee that all the equations of motion are satisfied.

We now determine the Killing spinor integrability conditions. For the gravitino variation,
we may take the usual commutator of (generalized) covariant derivatives. After considerable
algebra, we obtain

�N [D̃M, D̃N ] = − 1
2

[
RMN − 1

4∂Mφ∂Nφ − 1
2 e

1
2 φ

(
F 2

MN − 1
8gMNF 2

)
− 1

4 eφ
(
H 2

MN − 1
6gMNH 2

) − 2g2 e− 1
2 φgMN

]
�N

− 1
48 e

1
2 φ

(
∂[NHPQR] − 3

4F[NP FQR]
)
�NPQR�M

− 1
16 e− 1

2 φ∇N(eφHNPQ)�PQ�M

− 1
8

(
∂Mφ + 1

12 e
1
2 φHNPQ�NPQ�M

)
	φ + 1

8 e
1
4 φFMN�N	F

− 1
64�M

(
e

1
4 φFNP �NP + 8ig e− 1

4 φ
)
	F , (35)

where the last two lines vanish when acting on Killing spinors. (The quantities 	φ and 	F

are defined in (3) and are supersymmetry transformations on χ and λ, up to unimportant
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numerical factors.) We see that once the H field equation, Bianchi identity and the Killing
spinor conditions are satisfied, and given that the Ricci tensor is diagonal, the Einstein equation
is then satisfied as well.

Additional integrability conditions may be derived from the δχ and δλ variations. For the
tensor multiplet, we find

�M [D̃M,	φ] = [
�φ − 1

4 e
1
2 φF 2 − 1

6 eφH 2 + 8g2 e− 1
2 φ

]
− 1

6 e
1
2 φ

(
∂[MHNPQ] − 3

4F[MNFPQ]
)
�MNPQ − 1

2 e− 1
2 φ∇M(eφHMNP )�NP

+ 1
24 e

1
2 φHMNP �MNP 	φ − 1

8

(
e

1
4 φFMN�MN + 8ig e− 1

4 φ
)
	F .

(36)

This shows once the H field equation, Bianchi identity and the Killing spinor conditions are
satisfied, then the dilaton field equation is satisfied as well.

Finally, from the Killing spinor condition coming from the Maxwell multiplet we find

�M [D̃M,	F ] = e
1
4 φ∂[MFNP ]�

MNP + 2 e− 1
4 φ

[∇M
(
e

1
2 φFMP

) − 1
2 eφHMNP FMN

]
�P

− 1
4�M∂Mφ	F + 1

2 e− 1
4 φFMN�MN	φ + 1

4 [	φ,	F ], (37)

which is automatically satisfied as a result of the F field equation and the Killing spinor
conditions.

The Killing spinor integrability conditions presented above can also be used to analyse in
more general situations the extent to which they imply the field equations. We leave this to a
future work, and we next analyse the properties of our dyonic string solution.

4.3. The properties of the supersymmetric string solution

In this section, we shall make a convenient choice for the ‘coordinate gauge function’ h and
show explicit form of the dyonic string solution, and study its salient properties such as its
behaviour in various limits. In particular, we choose h so that the solutions for φ and c will be
identical to those in [16] for the gauge dyonic string. This is achieved by making the gauge
choice

h = −2a2bc2

r3
, (38)

and defining φ± ≡ φ ± 4 log c, whereupon the equations become diagonalized, with

φ′
+ = 4P

r3
e

1
2 φ+ , φ′

− = −4Q

r3
e− 1

2 φ− . (39)

The solutions can be written as

e− 1
2 φ+ = P0 +

P

r2
, e

1
2 φ− = Q0 +

Q

r2
, (40)

and hence

eφ =
(

Q0 +
Q

r2

) (
P0 +

P

r2

)−1

, c−4 =
(

Q0 +
Q

r2

) (
P0 +

P

r2

)
. (41)

Were we indeed looking for the dyonic string solutions in the ungauged theory, we would
then solve (30) and (31) for a and b, with g = 0. In our present case, however, we already
have the algebraic equations (22) and (25), which came from solving the F2 field equation and
the δλ = 0 supersymmetry condition, respectively. (Both these conditions would have been
vacuous in the dyonic string solutions in the ungauged theory.) Thus our solution is simply
given by (41), together with the expressions for a and b in (25) and (22). Collecting the above
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results, we find that the dyonic string solution of the six-dimensional gauged N = (1, 0)

supergravity is given by

ds2 = H
− 1

2
P H

− 1
2

Q dxµ dxµ +
k2P

4g2r6
H

− 5
2

P H
1
2

Q dr2 +
k

4g
H

− 1
2

P H
1
2

Q

(
σ 2

1 + σ 2
2 +

4gP

k
σ 2

3

)
,

(42)
H(3) = Pσ1 ∧ σ2 ∧ σ3 − d2x ∧ dH−1

Q , F(2) = kσ1 ∧ σ2, eφ = HQ/HP ,

where

HQ = Q0 +
Q

r2
, HP = P0 +

P

r2
. (43)

Note that the H(3) and F(2) charges must satisfy the algebraic constraint (34), namely
4gP = k(1 − 2gk).

Before turning to the properties of this solution, we may examine its relation to the dyonic
string of the ungauged theory [16]. To highlight the similarities, we may reexpress the metric
as

ds2 = (HP HQ)−
1
2 dxµ dxµ + (HP HQ)

1
2
[
4ξ 2�−3dr2 + �−1r2

(
ξ
(
σ 2

1 + σ 2
2

)
+ σ 2

3

)]
, (44)

where

ξ = k

4gP
= (1 − 2gk)−1, � = 1 +

(
P0

P

)
r2. (45)

To obtain the ungauged theory, we may take the limit g → 0, k → 0 with the H(3) magnetic
charge P → k/4g held fixed, so that ξ → 1. The metric, (44), then approaches that of
the dyonic string in the ungauged theory, provided � → 1. This latter condition is perhaps
somewhat surprising, as this restriction is absent in the ungauged theory. Its origin is apparently
related to the nature of turning on both F(2) and H(3) fluxes over the squashed S3.

We now return to the gauged theory, and consider the properties of the dyonic string
solution (42). For small r, the functions HP and HQ blow up as 1/r2 (we take both P and Q
positive). Furthermore, in this limit, we see that � → 1. Hence the near-horizon limit of the
string may be read off from the metric (44) by taking � = 1 and retaining ξ as a squashing
parameter. As a result, we see that this limit in fact precisely yields the AdS3 times squashed
3-sphere family of solutions that we found in section 3.

Turning to the asymptotics away from the horizon, we note that some care must be
involved in handling the constant P0. For P0 > 0,HP → const as r → ∞. However � ∼ r2

in this limit, and this drastically modifies the asymptotics. In particular, ds2 ∼ dr2/r6 at
large r, so that the r interval has a finite range. On the other hand, for P0 = 0, the function
� is identically 1, and in this fashion we are able to recover large-distance asymptotics. For
P0 < 0, the function HP goes through zero when r2 = |P/P0|, thus putting a natural limit on
the coordinate, r ∈ (0, |P/P0|1/2).

In fact, for either P0 = 0 or P0 < 0, the large-distance asymptotics originate when
HP → 0. Both cases may be treated simultaneously by changing to a new radial coordinate
ρ, related to r by

P0 +
P

r2
= P 2

ρ4
. (46)

We also replace the constants Q0 and Q by

Q̃0 ≡ Q0 − QP0

P
, Q̃2 ≡ QP. (47)
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In terms of these redefined quantities, the dyonic string solution of (42) becomes

ds2 = ρ2

PH 1
2

dxµ dxµ + 16ξ 2H 1
2 dρ2 + H 1

2 ρ2(ξ(
σ 2

1 + σ 2
2

)
+ σ 2

3

)
,

H(3) = Pσ1 ∧ σ2 ∧ σ3 − d2x ∧ dH−1, F(2) = kσ1 ∧ σ2, (48)

eφ = Hρ4

P 2
, H ≡ Q̃0 +

Q̃2

ρ4
.

If Q̃0 is positive, these solutions describe everywhere non-singular dyonic strings7. The
previously noted horizon at r = 0 corresponds here to ρ = 0, and in the near-horizon limit
where ρ −→ 0, the metric approaches

ds2 ∼ (PQ)
1
2

(
16ξ 2 dρ2

ρ2
+

ρ4

P 2Q
dxµ dxµ

)
+ (PQ)

1
2
(
ξ
(
σ 2

1 + σ 2
2

)
+ σ 2

3

)
, (49)

while the dilaton approaches a constant; eφ −→ Q/P . In this limit the tensor multiplet is
frozen, and the projection condition (27) is lost. As a result, the supersymmetry at the horizon
is restored to 1/2 of the original supersymmetry.

At large distance, ρ → ∞, the metric approaches

ds2 ∼ 16ξ 2Q̃
1
2
0

(
dρ2 +

1

16ξ 2
ρ2(ξ(

σ 2
1 + σ 2

2

)
+ σ 2

3

)
+

Pg2

k2Q̃0
ρ2 dxµ dxµ

)
, (50)

which describes a cone over the product of a squashed S3 and the (Minkowski)2 string
worldsheet metric. Unlike the gauge dyonic string [16], or for that matter typical string
solitons [17], the present dyonic string is not asymptotic to the usual vacuum attributed to this
gauged N = (1, 0) theory, namely (Minkowski)4 ×S2. In fact, looking at the dilaton, one finds
eφ ∼ ρ4(Q̃0/P

2), which blows up asymptotically. This is not necessarily surprising, since
the potential is of a single-exponential form, which suggests the possibility of a domain-wall
type solution with runaway dilaton. We note, however, that when the dilaton is active, the
δχ = 0 condition requires non-vanishing H(3) for the preservation of supersymmetry. This
indicates that domain-wall solutions with (Minkowski)5 symmetry do not occur, and that the
(Minkowski)2 times squashed S3 geometry above is perhaps the most symmetric that may be
obtained for a domain-wall configuration.

5. Discussion

The construction of a new family of solutions to the gauged N = (1, 0) theory suggests that
there exists a wider class of supersymmetric vacua than previously anticipated. In particular,
the well-known (Minkowski)4 × S2 solution is but a special singular limiting case of a larger
class of solutions of the form AdS3 times squashed S3. Thus it is apparent that some form of fine
tuning is necessarily present to obtain a flat Minkowski spacetime. The half-supersymmetric
vacua constructed in section 3 are parametrized by the H(3) flux P, with P −→ 0 corresponding
to the Minkowski limit. For non-zero P, on the other hand, the 3-form singles out three of the
six dimensions to form a 3-sphere, and one of the (Minkowski)4 dimensions is lost to become
the Hopf fibre of S3.

We now turn to the implications of this result on the recent braneworld models with
football-shaped extra dimensions [6–8]. While we have little to say about the effect of non-
supersymmetric 3-branes (i.e. deficit angles) on the cosmological constant, it should now
7 If Q̃0 is negative, there is a naked singularity at the value of ρ for which H vanishes. If Q̃0 = 0, the metric (48)
coincides precisely with the near-horizon metric (49), which is nothing but AdS3 times the squashed 3-sphere.
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be evident that a fine tuning of the bulk geometry is nevertheless required, even before the
introduction of branes into the bulk. The vanishing of the cosmological constant in the
(Minkowski)4 × S2 background does indeed arise after assuming an M4 × S2 symmetry of
the vacuum. However, as we have seen, supersymmetry itself is insufficient for selecting such
a symmetry, and the theory itself is perfectly content to compactify spontaneously with an
AdS3 times squashed S3 geometry. This feature is similar to what occurs in 11-dimensional
supergravity, where (Minkowski)11 may be obtained as a limiting case of the AdS4 × S7

Freund–Rubin compactification [18].
In fact, obtaining a naturally small cosmological constant in these braneworld models

comes to the issue of balancing the F(2) and H(3) fluxes against the six-dimensional potential.
Reduced onto the braneworld, this mechanism essentially replaces the effective cosmological
constant by a dynamical variable. This is similar to earlier ideas where the cosmological
constant is replaced by a 4-form field strength in four dimensions [19, 20]. In such models,
the 4-form itself has no local dynamics, but may take on appropriate values so as to cancel the
background vacuum energy. In the end, however, this effective 4-form may take on a range
of values (quantized in the case of M-theory [21]), and one is again reduced to an anthropic
argument to explain the smallness of the cosmological constant.

More generally, we would like to investigate whether any additional supersymmetric
vacua of this gauged N = (1, 0) theory may exist. In addition to the AdS3 times squashed S3

backgrounds preserving 1/2 of the original supersymmetry, we have also identified a class of
dyonic string solutions preserving 1/4 of the original supersymmetry. Although we believe
we have essentially exhausted the possibility of static vacua, a more systematic treatment
would be necessary. Since the field content of the theory as well as its multiplet structure
are relatively simple, it may be amenable to an analysis similar to that which was performed
in [22, 23] for the case of minimal (gauged and ungauged) supergravity in five dimensions.
Some preliminary analysis is currently under way.

Finally, whether the minimal gauged supergravity may be obtained from a higher-
dimensional theory remains an unresolved issue. While ungauged N = (1, 0) theories are
easily obtained from, for example, heterotic strings reduced on K3, obtaining a chiral gauged
supergravity from higher dimensions appears to be a more difficult task. One may naturally
obtain gauged supergravities from compactifications with fluxes, and in fact gauged N = 2
supergravity in five dimensions may be obtained by a flux compactification on K3 × S1 [24].
However, it is not clear that this could be lifted up to six dimensions. In fact, it is argued
in [24] that no background fluxes can be turned on for the heterotic on K3 reduction to six
dimensions in itself.

Alternatively, the (Minkowski)4 × S2 background with monopole configuration is
suggestive of a seven-dimensional interpretation with (Minkowski)4 × S3 vacuum, where
the S3 may be viewed as a U(1) bundle over S2 [1]. However, attempts at reducing the
gauged N = 2 supergravity in seven dimensions to yield the gauged N = (1, 0) theory in six
dimensions have so far proved unsuccessful. Note that the ungauged N = (1, 0) theory may
be obtained in this fashion through a braneworld reduction for both pure supergravity [25]
and supergravity coupled to a single tensor multiplet [26]. However, to reduce to the gauged
theory, one needs to retain at least a vector multiplet in the braneworld reduction. So far this
has only been accomplished in the bosonic sector [26].

In particular, the gauged theory involves a chiral six-dimensional gravitino charged under
the Maxwell field. Ordinarily, this Maxwell field would be labelled as a graviphoton, namely
a superpartner of the graviton and gravitino. However, in the N = (1, 0) theory, it is actually
part of an ordinary Maxwell multiplet and has a single spin-1/2 superpartner. For a braneworld
reduction from seven dimensions, this Maxwell field can only arise as the U(1) component of
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the SU(2) graviphotons, as one needs to retain the gauged R-symmetry of the gravitino (and
there is no U(1) isometry in the reduction of the metric). However, this leads to an apparent
incomplete gravitino multiplet in the reduction, and not the requisite Maxwell multiplet [26].

More importantly, it is not clear how one obtains a chiral charged gravitino from
dimensional reduction of ten- or eleven-dimensional supergravities. Since the higher-
dimensional theory necessarily involves uncharged gravitini, a gauged R-symmetry must
somehow arise from the dimensional reduction. In this case, one would have to ensure
chirality, either through singularities or non-perturbative effects, or perhaps by an overlooked
mechanism in the braneworld reduction. An alternative approach would be to obtain chirality
by consistent truncation of a non-chiral theory, such as the N = (1, 1) gauged supergravity in
six dimensions. However, a straightforward truncation of the bosonic sector of the N = (1, 1)

supergravity yields an incorrect scalar potential. Furthermore, it is not clear that the fermion
sector (and especially the resulting N = (1, 0) gravitino multiplet) may be consistently
truncated.

Thus the dyonic string solutions that we have obtained are not obviously related to any
of the well-known objects in M-theory, although they do share similarities with the dyonic
strings of the ungauged theory [16]. Of course, the minimal theory considered here [1] is
anomalous, and must be supplemented with additional matter for consistency [27–29]. It is
presumably the anomaly-free models, if any, that may be lifted to higher dimensions.
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1014 R Güven et al

[11] Nishino H and Sezgin E 1984 Matter and gauge couplings of N = 2 supergravity in six-dimensions Phys. Lett.
B 144 187

[12] Nishino H and Sezgin E 1986 The complete N = 2, D = 6 supergravity with matter and Yang–Mills couplings
Nucl. Phys. B 278 353

[13] Nishino H and Sezgin E 1997 New couplings of six-dimensional supergravity Nucl. Phys. B 505 497 (Preprint
hep-th/9703075)

[14] Ferrara S, Riccioni F and Sagnotti A 1998 Tensor and vector multiplets in six-dimensional supergravity Nucl.
Phys. B 519 115 (Preprint hep-th/9711059)

[15] Riccioni F 2001 All couplings of minimal six-dimensional supergravity Nucl. Phys. B 605 245 (Preprint
hep-th/0101074)
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