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Abstract. Protocol heterogeneity is pervasive and is a major obstacle to effective
integration of services in large systems. However, standardization is not a
complete answer. Standardized protocols must be general to prevent a
proliferation of standards, and can therefore become complex and inefficient.
Specialized protocols can be simple and efficient, since they can ignore situations
that are precluded by application characteristics.

One solution is to maintain agents for translating between protocols. However,
n protocol types would require O(n2) agents, since an agent must exist for a
source–destination pair. A better solution is to create agents as needed.

This paper examines the issues in the creation and management of protocol
translation agents. We focus on the design of Nestor, an environment for
synthesizing and managing RPC protocol translation agents. We provide rationale
for the translation mechanism and the synthesis environment, with specific
emphasis on the security issues arising in Nestor. Nestor has been implemented
and manages heterogeneous RPC agents generated using the Cicero protocol
construction language and the URPC toolkit.

1. Introduction

Heterogeneity is an inevitable concomitant of distribution.
It complicates interaction between entities in a distributed
system, and is a major obstacle to effective integration
of services in large systems. Protocol heterogeneity often
arises when systems are developed in isolation, but a more
important cause is that protocols are specialized to meet
application-specific requirements. Standardization is not
always a good answer, since standardized protocols must
target the general case in a problem domain to prevent
a proliferation of standards. Such general protocols can
be complex and inefficient. A strong case is made for
application-specific protocols in [3, 4]. Such protocols
can be simple and efficient, since they can safely ignore
conditions precluded by application characteristics, but
which more general protocols must address.

A good example of this phenomenon is the domain
of remote-procedure calls. Figure 1, which was modified
from [5] to include synchronous RPC, illustrates various
RPC protocols available today. It is significant that these
protocols all differ significantly in their semantics, not
simply in their mechanics. Despite this great variety, there
will almost certainly be a continued need to build RPCs
with new semantics, because it is unlikely that current
RPCs address the requirements of all future applications.
Further, RPCs customized to application semantics will
improve throughput, response time, and failure resilience
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Figure 1. The current RPC domain.

even for existing distributed applications. As distributed
applications become more sophisticated, customized RPCs
can also reduce the effort of application development if they
include more functionalities common to a specific class
of applications. For example, it is easier to implement
distributed transaction applications by using RPC with
atomic transactions than by using traditional RPCs. Within
emerging areas such as multimedia conferencing and
distributed real-time applications, it is likely that more RPC
protocols will be designed and implemented.

Standardization of protocols and interfaces is a common
approach to handing the problem of heterogeneity. Good
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examples of such standards are CORBA’s general inter-
ORB protocol (GIOP) and internet inter-ORB protocol
(IIOP) [6]. However, this approach may not always work,
particularly for legacy software, since it is unrealistic to
expect that all existing software will be recoded to new
standards. Another problem is that standards must address
the general case in a problem domain, for otherwise,
a separate standard will be required for each specific
situation or context, leading to a proliferation of standards.
Such generality rules out application- or situation-specific
customization, though communication patterns between
applications can be quite specialized. For example, [7]
observes that over 95% of remote-procedure calls do not
cross machine boundaries, and proposes a customized,
light-weight RPC machanism which is over three times as
fast as native RPC. Also, a general-purpose protocol must
be robust in the face of arbitrary program behaviour, while a
protocol customized to an application can ignore behaviours
that the programmer or compiler knows will never occur.

Another solution to handling the problem of protocol
heterogeneity is to maintain agents for translating between
protocols. However, an agent must exist for a source–
destination pair in such a solution, requiring a total of
n ∗ (n− 1) agents forn different protocol types. This is a
clearly unacceptable rate of growth in the number of agents.
CORBA’s approach [6] is to provide for environment-
specific inter-ORB protocols (ESIOPs) to handle cases
where certain distributed computing infrastructures may
already be in use. An example is the DCE common
inter-ORB protocol (DCE-CIOP) which is useful when
existing applications use DCE. This approach combines
standardization with the use of predefined cross-domain
mappings. Thus, it appears not to scale well. Clearly,
a better solution would be to create agents as needed.

1.1. Addressing heterogeneity

This paper concentrates on the issues that arise in creating
and executing protocol-translation agents at client sites
in a secure fashion. However, to provide background,
we outline the issues that motivate the agent synthesis
approach. Some of this exposition also appears in [1]
and [3], which provide details on how the agent synthesis
process operates in the case of RPC heterogeneities.

The RPC domain is a good model of the more general
issues of protocol heterogenity, and we use it to illustrate
more general issues. As figure 1 shows, different RPC
protocols are often designed to satisfy different application
requirements, making it hard for programs built using
different RPC protocols to be interconnected directly.
This difficulty greatly reduces the availability of software
and resources in a large heterogeneously distributed
environment, and increases the costs of developing and
maintaining distributed applications with multiprotocol
support. This problem is most acute when trying to
integrate distributed applications from different sources.
Some examples are integrating different distributed file
systems, implementing federated distributed databases, or
grouping various scientific computation servers. The
same problem also arises when building an application

with multiple-protocol support, such as a client that can
communicate with different name servers using different
RPCs, or a server that must accept requests from many
clients.

We encountered this problem whilst working on the
client–service model in the Cygnus distributed system
[8]. The classical client–server model requires the client
both to identify servers as well as to speak the server
protocol. Therefore, clients are typically able to interact
only with a limited number of servers in such systems. The
Cygnus system [8] solves this difficulty by introducing the
client–servicemodel, in which clients requestservices, not
servers. The mapping from services to servers is performed
by Cygnus. Although the work on Cygnus was done
independently of CORBA (and in fact, largely predates
it), their respective approaches have both similarities
and differences. Cygnus and CORBA both present the
client with an object-oriented programming model which
emphasizes transparency and hides many of the system
details from the client, and in which object operations
may execute either locally or remotely. However, Cygnus
completely eliminates the notion of server, so that objects
representservice. Thus, when a service provider (server)
fails, Cygnus is often able to reconfigure the connection
to another equivalent server, and continue the identical
service. Cygnus also assumes that servers are completely
insular, so it may be required to operate in an environment
with little standardization.

Since clients do not see servers at all, the Cygnus
system must handle all protocol heterogeneities. Since
servers in Cygnus are insular, clients must conform to
server protocols. Cygnus uses agent synthesis as its
solution to this difficulty. When a remote server must
be contacted to obtain service, a protocol specification is
retrieved from the server site, and an agent is synthesized
at the client site to map to the server protocol. In CORBA,
standards exist for communications within and across ORBs
[6]. Work is already in progress [9, 10] on building
effective implementations of cross-ORB communications
using bridges and half-bridges, particularly for DCE
environments. Rosenberry and Teague [11] discussed
the interesting issue of the interoperability of DCE and
windows NT domains, the two environments likely to
be among the most pervasive in the future. However,
in contrast to CORBA and other such efforts, Cygnus
does not have the notion of ORBs. Any client–server
connection established as a result of a service request
may be a connection between entities speaking different
protocols. Cygnus synthesizes code to handle such
heterogeneity on demand. We have a full implementation
for handling heterogeneous remote-procedure calls, and
we observe no loss of performance over native RPC (see
section 3.4). We have built both customized RPCs with
specialized semantics (multicast, at-most-once, call-back,
asynchronous, etc) and cross-RPC (Sun, Apollo, Mach,
NCS, etc) implementations in our experiments. For further
details and examples see [1–3].

Another real issue with RPCs is that the cost of
implementing a new RPC system is usually much higher
than it needs to be. Much development effort is often
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spent on redoing significant parts of supporting facilities,
such as stub generators, name servers, and low-level
communication functions. The main obstacle to reusing
these components is that they are often tightly integrated
with the RPC runtime, and modifications are often required
to support new RPC features. Therefore, without clever
design of the RPC runtime interface and architecture,
it would be impossible to provide highly reusable RPC
runtime components useful for a variety of RPC protocols.

1.2. Our approach: agent synthesis

An agent synthesis scheme uses a synthesizer to
generate implementations of RPC agents from high-
level descriptions, and is attractive because it meets
our requirements well, and since much of the effort of
coding agents can be saved. Also, there are fewer
restrictions on the kinds of RPC agents that can be
described and generated. Therefore, if designed properly, a
synthesis scheme can provide a more general solution than
existing approaches [12–16], and with much lower agent
development and maintenance costs.

There is a major difference between our agent synthesis
scheme and that of others [17, 18]: in addition to traditional
stubs, we also generate implementations of RPC protocol
machines as a part of the RPC runtime. In other words, for
each different RPC protocol, a different RPC runtime may
be generated along with the necessary stubs. This synthesis
capability can also be used for rapid prototyping of new
RPC systems [3], which is very useful to RPC developers.

Our system provides two services:customizationand
cross-RPC service. Customization supports fast prototyping
of customized RPC systems and for experimenting with
new RPC features and semantics. This service is designed
to help prototype a new RPC system, including the RPC
runtime, the stub generator, and the name server. Cross-
RPC service supports cross-RPC communication to increase
software availability. This service assumes a common
transport-layer protocol between the client and the server
machines, and provides an interconnecting program that
preserves the largest subset of RPC semantics common to
the two RPCs.

It is economical to provide these two services in one
system because cross-RPC service can be built on top of
customized RPC service. The easiest way, and sometimes
the only way, to perform cross RPC is to introduce
intermediaries (RPC agents) to facilitate communication
between clients and servers. RPC agents are gateways that
can translate between different RPC protocols. Therefore,
implementing RPC protocols is the central task for building
RPC agents, and the customized RPC service is designed
for exactly this type of task.

Broadly speaking, our RPC agent synthesis scheme (see
figure 2) has two components: a language to describe
RPC protocol constructions, and a runtime environment
to synthesize and activate RPC agents automatically.
Agents are synthesized by combining libraries with the
implementation code generated from the specifications.

Our agent synthesis scheme is realized through three
subsystems: a universal RPC toolkit (URPC toolkit)

[3], a protocol construction language (Cicero) [2], and a
runtime support system for agent synthesis and management
(Nestor). The URPC toolkit provides semantics-
independent library functions, allowing programmers to
prototype diversified new RPC systems with minimal
coding effort. Cicero is an executable specification
language designed for describing complex protocol
constructions. Nestor is the subsystem integrating the
URPC toolkit, Cicero, and other software utilities to
perform agent synthesis and management for cross-RPC
communication. To facilitate agent synthesis, Nestor also
provides support for importing protocol constructions from
remote hosts. This paper focuses on Nestor.

2. The mechanics of agent synthesis

This section provides an introduction to the mechanics of
synthesizing agents for RPC protocols using Nestor. Some
of this discussion appears in [1], and is reproduced here
to provide a background for our discussion. The agent
synthesis system comprises a specification language Cicero
[2], the URPC toolkit for generating RPC runtimes [3], and
Nestor, the environment in which the synthesis and activa-
tion of agents takes place. This paper focuses on Nestor.

Nestor facilitates the synthesis of agents with various
RPC semantics. It provides services for importing and
exporting specifications, and can activate and terminate
agents for cross-RPC communication. Therefore, Nestor
is responsible for the entire lifecycle of RPC agents, i.e.
their creation, activation and termination.

2.1. Specifications and agent synthesis

Synthesizing agents involves two steps: (1) constructing
necessary synthesis specifications, and (2) synthesizing
agents from specifications. The first step involves
describing RPC semantics, interfaces and instructions for
synthesis. The second step involves generating code,
compiling, and linking all the components and libraries
to create executable images of agents. The first step is
accomplished by programmers manually, and the second
step is accomplished by Nestor with little or no intervention
from programmers.

To synthesize an RPC agent, three specifications are
required: the RPC protocol construction, the RPC interface
specification and the RPC agent profile specification.
The RPC protocol construction and the RPC interface
specification together determine what agent will be
synthesized. Specifically, the RPC protocol construction
(written in Cicero) describes the implementation of RPC
semantics. The RPC interface specification describes the
RPC operation interface, and is used to generate stubs to
interface with the client, the server and the URPC runtime
library. The agent profile specification determines how
an agent will be synthesized and managed. It contains
instructions for synthesizing and managing agents. For
example, the agent profile specification defines the synthesis
environment, and the activation parameters for an agent.
For each protocol, two sets of these specifications are
needed: one for the client agent and one for the server
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Figure 2. The RPC agent synthesis scheme.
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Figure 3. Specifications and components of an agent.

agent. The remote interface specification and RPC protocol
construction language have already been described in [3]
and [2] respectively, and RPC agent profile specification
will be described in section 2.3.

Nestor uses a set of libraries and utility programs to syn-
thesize executable images of RPC agents. These libraries
include the URPC and Cicero runtime libraries. The URPC
runtime library provides routines for constructing communi-
cation mechanisms between agents, and the Cicero runtime
library supports Cicero language constructions for describ-
ing the link protocol of agents. The utility programs used by
Nestor consist of compilers for Cicero and C, stub genera-
tors, and a software packaging utility (e.g. the UNIXmake).

Figure 3 illustrates how these specifications and utility
programs work together to synthesize an agent. The
Cicero compiler compiles the RPC protocol construction
and outputs a C-code implementation of the specified RPC
semantics. This C code will be compiled by the native
C compiler and linked with the libraries to implement
the link protocol. The stub generator compiles the RPC
interface specifications and generates the stub routines
which interface with the client or server program, and
with the link protocol implementation. For customized
RPC service, Nestor uses the URPC stub generator to
generate stubs to link with client and server programs.
For cross-RPC service, in addition to the URPC stub
generator, Nestor expects stub generators from the native
RPC facilities, which it uses to synthesize the native RPC
stub for the agent. When a stub generator is not available,
users are required to provide RPC stubs. Finally, RPC
stubs, libraries, and the link-protocol implementation are
linked together to form an agent. This entire synthesis
process is specified in the RPC agent profile specification
and controlled by the software packaging utility.

2.2. Other related support for agent synthesis

There are two other kinds of support related to agent
synthesis: the specification-transfer support and the agent-
management support. The specification-transfer support

facilitates importing or exporting protocol constructions
between sites, and is useful since the protocol constructions
may not be available at the machine where an agent will be
synthesized. For example, a user may wish to perform
a heterogeneous RPC using server RPC semantics, and
the client–agent construction for the server RPC protocol
may not be available at the client machine. To synthesize
the client agent, the user can import the client–agent
construction from the server. The transfer support is
introduced to encourage sharing RPC protocol constructions
in a large heterogeneous environment, so that programmers
can use or customize existing protocol constructions instead
of writing new ones themselves.

The ability to import protocol constructions from the
outside not only reduces agent development costs, but also
offers other advantages. It provides immediate software
availability after a protocol construction is created or
updated. Users would just import the new specifications
and synthesize local agents. It minimizes disturbance when
updating existing RPCs and introducing new RPCs. Hence,
RPC protocol evolution is well supported. It also offers
the opportunity to synthesize specialized code to improve
performance. Finally, it also makes the synthesis solution
scalable, and makes each site fully autonomous. For details
on how protocols may be specified and used, see [1–3].

The agent-management support is responsible for
controlling the activation, execution and the termination
of agents. All these activities are specified in RPC agent
profile specifications. For example, users can provide
the activation instructions for a newly synthesized agent
in the RPC agent profile specification, so that Nestor
can automatically activate the synthesized agent. If an
agent is linked with a client or server program, the agent-
management support can be used to activate the client and
the server directly.

2.3. RPC agent profile specification

An RPC agent profile specification consists of a list
of attributes and values, defining how agents can be
synthesized, activated and when they are to be terminated.
The attributes currently supported are listed below, and are
categorized according to their usage. Figure 4 shows an
example RPC profile specification.

• Identity related attributes
– sp title: This attribute defines the name of an

RPC agent profile specification, and can be referred
by programmers. This name, independent of the
specification file name, is used to match up client
and server agent profile specifications.
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sptitle = test
role = client
instance id = 0
spec server = taipei.eecs.umich.edu
workdir = /users/yenmin/test
spec path = /users/yenmin/test
import list = test.rif test fsm.cic
export list =
makecmd = make test cl
exec cmd = test cl
time to live = 300
acls = 1540 2008
end

Figure 4. Example RPC profile specification.

– role: This attribute indicates the type of the
specification, i.e. whether it is for a client agent
or a server agent.

• Environment related attributes

– specserver: This attribute contains the address
of the host, which will participate in transferring
specifications. The direction of the transfer will be
given by the user at the time of transfer.

– work dir : This attribute indicates the working
directory where the agent will be synthesized and
activated.

– specpath: This attribute indicates the directory
where the specifications are kept locally, so that
Nestor can know the source and destination for the
specification transfer.

• Transfer-support related attributes

– import list : This attribute lists the files that must
be imported before synthesizing a local agent.

– export list : This attribute lists the files that can be
exported when synthesizing a remote agent. The
import list and export list are provided to support
automatic transferring a list of specifications.

• Synthesis and management related attributes

– makecmd: This attribute contains the command for
synthesizing the agent.

– execcmd: This attribute indicates the command for
executing the agent.

– time to live: This attribute defines the lifetime of
the agent.

• Security related attributes

– acls: This attribute contains the ACL for users who
are allowed to synthesize or activate the agent from
a given specification.

3. An agent synthesis scenario

To describe how Nestor synthesizes agents, we will present
a cross-RPC service scenario where agents are synthesized
and activated automatically. We also assume that the user
has already discovered the server host address through the
Nestor name service support (see section 3.3 for details).

3.1. Step 1: specification construction

The client and server programs are built on top of SUN
RPC and HP/Apollo NCS RPC respectively. To keep the
example simple, we assume that there is only one operation
(printmsg()) exported by the server, which displays a
given string. This operation is defined in NCS interface
definition language (NIDL) as follows

[uuid(4448ecb46000.0d.00.00.fe.da.00.00.00),
     port(dds:[19], ip:[6677]), version(1)]
 
interface printmsg_intf
 
{ void printmsg( handle_t      [in]  h,
                 string0[1024] [in]  msg,
                 int           [out] *result);
}

To make the example more interesting, let us assume that
the client cannot be modified and must access this operation
through an existing SUN RPC interface, which is defined
in SUN RPC interface definition language as follows

program MESSAGEPROG {
   version MESSAGEVERS {
      int PRINTMESSAGE(string) = 1;
   } = 1;
} = 99;

We can see that although the client and the server can
be interconnected logically, their RPC protocols and RPC
interfaces are different. To perform cross RPC, these
heterogeneities must be resolved. In general, these will
not be the only kinds of heterogeneities encountered.
For example, there may also be differences in protocol
semantics. For details on how these are resolved see [1–
3]. Our primary interest here is the mechanics of agent
synthesis and activation.

To focus on the synthesis mechanism, let us assume
that the client has already obtained the RPC protocol
construction and RPC interface specification for the server.
These two specifications are required when a server is
exported to the outside world, and may be stored as part of
a ‘name service’ database that covers a local domain. The
RPC interface specification is defined by using our interface
definition language, as follows

[ aptitle = printmsg; version = 1.0; ]
{ int urpc_printmsg( [in]        handle_t  h,
                     [in,string] char     *msg,
                     [out]       int      *result);
}

Although our interface definition language has a different
syntax, one can readily see that the above RPC interface
specification can be easily derived from the server’s remote
interface definition.

Figure 5 illustrates the structure of the client agent.
The client agent consists of five parts: a SUN RPC server
stub, a link-protocol client stub, a piece of connector code,
the SUN-RPC runtime library, and the URPC runtime
library. The SUN RPC server stub is generated from the
given interface definition by the SUN RPC stub generator.
The link protocol client stub is generated by the URPC
stub generator from the RPC interface specification. The
connector code is introduced to bind the server agent,
resolve mismatches between interfaces, and to glue the
native stub and link-protocol stub together. For the client
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Figure 6. The agent synthesis process in Nestor.

agent, the connector code consists of a main program for
establishing bindings and a set of dummy server operations
which we will subsequently call the entry routines in the
link-protocol URPC client stub. The SUN RPC and URPC
runtime libraries are assumed to be available on the client
host. However, it is possible that an implementation of the
client protocol machine is not readily available. In this case,
the implementation of the client protocol machine must
either be generated from an imported protocol construction
or coded by programmers. Finally, to produce the client
agent, Nestor will instruct the package utility to compile
and link all these parts together. Due to symmetry, the
server agent can be similarly synthesized.

3.2. Step 2: agent synthesis and activation

After all the specifications are in place, the programmer in-
structs Nestor to synthesize agents. The steps in the agent
synthesis and activation are shown as numbered arcs in
figure 6.

The Nestor runtime environment consists of two com-
ponents: an internet RPC service daemon (IRSD), and an
agent manager (AM). IRSD is a process that handles all
synthesis requests, and is brought up at machine initial-
ization time. It initializes itself by reading files containing
configuration information, and the specifications of services
exported from the site. It then waits for requests from lo-
cal clients and remote IRSDs. Upon receiving a request,
IRSD forks off a copy of the AM to serve the request. The

AM is responsible for synthesizing, executing and termi-
nating an agent. To facilitate interaction between the user
and Nestor, the user is provided with a command-line in-
terpreter called the Nestor user interface (NUI). It allows
the user to interact with Nestor by issuing commands.

Initially, Nestor runs as an IRSD daemon on the local
machine, and listens on well known ports. When the user
first contacts the local Nestor instance, it creates an AM to
handle the user’s requests. The user issues the synthesis
request to the client AM (step 1). The client AM locates
the client–agent synthesis specifications and contacts the
server-side Nestor instance (step 2). The server-side Nestor
instance now forks off an AM to handle the requests from
the client AM. After the server AM verifies the client’s
requests, both the client and the server AM synthesize the
agents (steps 3–5). After the agents are synthesized, the
client AM notifies the server AM to activate the synthesized
server agent (steps 6 and 7). After the server agent (As)
is activated, the client agent (Ac) is activated, and the port
number used by the server agent is looked up by the client
agent through the server-side URPC name server (steps 8–
11). Now, the agents are ready to perform the specified
heterogeneous RPC.

3.3. Name service support

Name service is not the focus of this work; therefore,
for our system, we simply apply existing mechanisms as
appropriate for our purposes. The Nestor name service
support helps a client contact a server by using two items
of information: the server host address and the port number
of its agent. The server host address is discovered by using
a global database† which has knowledge of all available
services in the network. The port number is obtained
through the server-side URPC name server.

Nestor uses the URPC name service as its default
RPC name-service mechanism to bypass name-service
heterogeneity problems. For cross-RPC communication,
different naming mechanisms may be used for the client and
the server RPC systems. In our scheme, the differences in
naming mechanisms are subsumed by RPC agents because
the client and the server always contact their agents using

† It does not matter whether or not the database is distributed, or
replicated. Here we treat it as a single entity.
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Table 1. Comparison of URPC-ATM1/UDP with
SUN-RPC/UDP.

URPC ATM1/UDP SUN-RPC/UDP
Data
size Local LAN Local LAN

null 2.68 ms 2.54 ms 2.68 ms 2.68 ms
1 K 3.59 ms 4.37 ms 3.74 ms 4.51 ms
2 K 5.08 ms 6.37 ms 5.86 ms 7.21 ms

Table 2. Comparison of URPC-ATM1/TCP with
SUN-RPC/TCP.

URPC ATM1/TCP SUN-RPC/TCP
Data
size Local LAN Local LAN

null 3.24 ms 3.19 ms 3.96 ms 3.64 ms
1 K 3.98 ms 5.02 ms 5.33 ms 5.55 ms
2 K 5.55 ms 6.61 ms 7.14 ms 7.36 ms

the native RPC runtime support. How the client agent
locates the server agent is independent of the native naming
mechanisms. Thus, Nestor provides its own name service
support to locate agents without interfering with the native
naming mechanism. This is advantageous because no
explicit mapping is necessary between the native naming
model and the Nestor naming model.

3.4. Performance

A detailed discussion of the performance of our agent
synthesis system appears in [1, 3]. Here we reproduce some
relevant numbers. Our data indicate that the performance
of our synthesized code is usually as good as that of native
implementations, and often better. There are two reasons
for this somewhat non-intuitive result. First, customization
can increase the semantic content of individual messages,
and thus reduce the number of messages required. The
benefit gained from customization obviously depends on the
application and the manner in which the customization is
performed, but can be significant. A second benefit can be
a reduction in time for individual calls since customization
results in implementations tailored for specific situations,
which do not incur the overhead present in implementations
that address more general situations. To facilitate such
performance comparisons, we constructed an RPC (URPC-
ATM1) with at-most-once failure semantics using a protocol
machine implementation similar to that of SUN RPC.
Comparisons of elapsed time were made between URPC-
ATM1 and SUN RPC on different transport-layer protocols
(UDP and TCP), and the results are listed in tables 1 and 2.
For a more detailed analysis of these results, see [1, 3].

4. Security support

Security support is necessary because Nestor operates in
a large heterogeneous distributed environment containing
many different administrative domains. Any point-to-point
communication in this environment may require messages
to travel through many different administrative domains.
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Figure 7. Objects in Nestor.

Without proper security mechanisms, Nestor users and
service providers are subject to various security attacks. To
provide reasonable protection to Nestor users and service
providers, the following security issues must be addressed:
• maintaining the integrity of specifications: The

RPC protocol specifications are sent over the network,
so the integrity of the specifications must be preserved.
If a specification in transit were to be modified, the
consequences would be potentially very serious.
• Controlling access to Nestor services: We may want

to regulate the permission to synthesize agents from any
given specification.
• Providing secrecy for RPC communication: The

integrity of messages between agents must be guaranteed.
Although these issues are typical in a distributed

environment, the design of the security mechanism for
Nestor requires special attention in two areas:
• The security mechanism must handle the delegation

relationships between the client/server and their agents, and
between the client and client/server Nestor instances. This
delegation relationship requires authentication through in-
termediaries, where traditional client–server authentication
protocols [19–22] cannot be readily applied.
• The security mechanism must detect the imperson-

ation of agent executable images, since agents may be syn-
thesized well in advance of their use.

The first step in designing a security scheme is to
examine the objects participating in Nestor activities which
may be subject to security attacks. These objects are
shown in figure 7, and can be processes, executable images,
or messages. Each process and its executable image are
represented by a circle in figure 7; messages passed between
two processes are denoted by the symbolM subscripted
with a label identifying the connection between the two
processes (e.g.Ma). Our mechanism does not prevent an
intruder from exploiting existing security flaws in a system
by becoming a superuser [23]. This type of attack is a
general problem for all systems, not just for Nestor.

Our mechanism is based on the Needham–Schroeder
public-key protocols [19] with three assumptions. The first
assumption is that public keys are distributed by trusted
name servers whose public keys are known by Nestor. The
second assumption is that public keys of each client and
Nestor instance are already advertised among name servers.
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Table 3. Protection for messages.

Message Protected by

Ma digital signature
Mb digital signature
Md session key encryption
Mc/Me native RPC system and kernel

The third assumption is that the private keys of the user and
Nestor instances involved are not compromised.

4.1. Protecting messages

One of our major concerns is protecting the integrity
and secrecy of messages exchanged between machines.
We assume that the local interprocess communication is
secure. In other words, the integrity and the secrecy of
local messages are guaranteed by the operating system
delivering them. The security mechanism design will focus
on protecting messages exchanged between machines.

Two types of intermachine messages need to be
protected: messages passed between the client and server
Nestor instances (Mb) and messages passed between agents
(Md ). The schemes used for message protection are
summarized in table 3.

Messages passed between the client and server Nestor
instances are important because they may contain specifi-
cations and keys, whose unforgeability and accountability
are important to both the client and the server. To deal
with intermediaries, we adopt the cascading authentication
protocol proposed in [24] to protect these messages. The
messages exchanged between Nestor instances are digitally
signed [19] by the user and each Nestor instance, so that
their integrity is protected, and the client and each Nestor
instance are identifiable. Therefore, under the cascading
authentication protocol, the messagesMa must also be dig-
itally signed even though they are passed locally. This
security protocol for exchanging messages between Nestor
instances is discussed in section 4.5.

The messages passed between agents (Md ) are
protected using shared session key encryption/decryption
instead of the public-key encryption. Shared key encryption
is used because keys can be created and distributed safely
by Nestor instances, and shared key encryption is about
1000–5000 times faster than public-key encryption [22]. A
new session key is created and passed to the client and
the server agents each time they are invoked. This shared
session key is also used to implement a challenge-response
protocol, which client and server agents use to authenticate
each other. This security protocol for protecting messages
is discussed in section 4.6.

4.2. Access control for Nestor services

We use ACLs to control the access to Nestor services.
The server-side Nestor instance authenticates a client
by decrypting the client’s request which is digitally

Table 4. Detection of impersonated objects.

Object Impersonation detection scheme

Client (U/C) digital signature
Client Nestor (Nc) digital signature
Server Nestor (Ns) digital signature
Client agent (Ac) session key encryption/decryption
Server agent (As) session key encryption/decryption

signed by the user and the client-side Nestor instance†.
Because this client authentication is a direct result of the
digital-signature protection scheme used for messages, no
additional mechanism is necessary. Note that the Nestor
ACL is not responsible for controlling access to servers. It
only controls access to Nestor services.

4.3. Protection against impersonated executable objects

Protection against impersonation should consist of two
parts: substitution prevention and substitution detection.
Substitution prevention for executable objects depends
mostly upon setting access rights carefully and removing
security flaws, which are both functions of system admin-
istrators. Thus, here we focus upon substitution detection.

Substitution detection involves detecting two forms of
substitution: process impersonation and executable image
substitution. Our substitution detection mechanism uses
either public-key or session-key encryption to detect im-
personation of processes, and uses adigest function[25]
to detect the impersonation of executable images (see ta-
ble 4). The same digital signature scheme used in protect-
ing messages is also used for detecting the impersonation
of the user (U), the RPC client (C) and Nestor processes
(Nc andNs). When they fail to identify themselves through
encrypted messages, the receiving process detects possible
impersonation and closes the connection.

The shared session key is used to detect the
impersonation of agent processes. Since it is possible to
impersonate an agent after the agent is activated but before
the client contacts it‡, the agent must be authenticated
when contacted by the client. This authentication between
the client and the Ac is accomplished through a typical
challenge-response protocol using a shared session key
encryption/decryption (see figure 9). However, the
distribution of the session key requires participation of the
client program, which may be difficult. In such cases, the
impersonation may not be detected.

To ensure that the synthesized agent is indeed the
one that is activated, Nestor can use a digest function to
compute the digest§ of the binary image of an agent when

† A request is first encrypted using the user’s private key, and passed
to the local Nestor instance. The local Nestor forwards the encrypted
request to the server-side Nestor by further encrypting the message using
its own private key and the server-side Nestor’s public key. The server-
side Nestor can decrypt the message using its private key, the client-side
Nestor’s public key, and user’s public key.
‡ This is the time that the intruder can register a malicious agent in the
native name service to replace the genuine one.
§ The digest is the result of a one-way digest function. In other words,
it is computationally impossible to compute the input from a given digest
(the output).
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Figure 8. Security protocol for passing messages between Nestor instances.

the agent is synthesized. Before an agent is executed, the
digest of its binary image is computed and compared with
the digest computed when the agent was synthesized.

4.4. Cross-RPC authentication

The native RPC runtime in a cross-RPC agent enables
the agent to communicate with the client or server using
native secure communication protocols. Although different
encryption/decryption schemes are subsumed by the native
runtime in the agent, mapping principal identities across
administration domains remains an issue.

This identity-mapping issue can be addressed differ-
ently depending on whether or not client and server RPCs
use a common authentication protocol. If client and server
RPCs use a common authentication protocol, such as Ker-
beros [21], then the client principal can register directly in
the server domain as a foreign entity, and can be authen-
ticated through Kerberos security servers. Similarly, the
Nestor instances can use Kerberos for authentication with
each other and with the corresponding client or server. Af-
ter mutual authentication, the client and all agents will be
supplied with a shared session key by Kerberos security
servers for secure communication.

If there are no common identities, Nestor relies on a
public key encryption scheme for authenticating the client
and Nestor instances. The authenticated client’s identity
must be mapped into an equivalent principal on the server
side, which is the preselected identity for the server agent.
This mapping may or may not be possible. Assuming an
appropriate identity can be found, a session key shared
between the client and the agents can be generated and
distributed by the client-side Nestor. This session-key
distribution protocol is described and formally analysed in
section 4.5.

4.5. Security protocol between Nestor instances

The security protocol for exchanging messages between
Nestor instances is illustrated in figure 8. Timestamps and

nonce numbers are introduced to guard against the replay
attack and process impersonation (see section 4.3).

The security protocol between Nestor instances works
as follows. When a user wishes to request a service, the
Nestor user interface encrypts the user’s message with the
user’s private key and the client-side Nestor’s public key
before sending to the client-side Nestor. Upon receiving the
user message, the client-side Nestor decrypts the message
using its own private key, and then re-encrypts the user
message with its private key and the server-side Nestor’s
public key before forwarding the message to the server-side
Nestor. The server-side Nestor can decrypt this message
with its own private key, the client-side Nestor’s public key,
and user’s public key. After the user’s request is granted
and processed, the reply message is returned, and the
reply message is encrypted with the user’s public key, the
client-side Nestor’s public key, and the server-side Nestor’s
private key. The client-side Nestor unwraps (decrypts)
the message with its private key, and passes the resulting
message to the Nestor user interface. At the end, the Nestor
user interface extracts the content of the reply message by
decrypting the message with his private key and the server-
side Nestor’s public key. A formal analysis of this protocol
can be found in section 5.1.

4.6. Security protocol between agents

Messages passed between agents are protected using shared
session key encryption/decryption. A new session key is
created and passed to the client and the server agents each
time they are invoked. This shared session key is also used
to implement a challenge-response protocol, which client
and server agents use to authenticate each other.

The security protocol between agents is basically a
session key distribution protocol. The session key is
generated by the client-side Nestor upon client request. The
session key is distributed using digitally signed messages
to the client and the server-side Nestor. It is also passed to
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Figure 9. Security protocol for passing messages between agents.

client and server agents as one of the activation parameters.
This distribution protocol is illustrated in figure 9. This
protocol also uses timestamps to guard against replay
attack and nonce numbers as shared secrets for process
impersonation detection (see section 4.3). Once the session
key distribution is completed, agents can use this session
key to encrypt/decrypt messages. In section 5.2 there is a
formal analysis of this protocol.

5. Security protocol analysis

To analyse Nestor security protocols, the logic proposed
in [26] is used. All the analysis steps are also illustrated
in the same notation and style as in [26]. The rules in
figure 10 also appear in [26] and will be used for analysing
our security protocols.

5.1. Security protocol between nestor instances

5.1.1. Messages.

M1. U → Nc : {Ns,U, {Iu,Mu, Tu}Ks
u
}Kp

Nc

M2. Nc → Ns : {Nc{U{Iu,Mu, Tu}Ks
u
}Ks

Nc
}Kp

Ns

M3. Ns → Nc : {U{Ns{Iu,MNs }Ks
Ns
}Kp

u
}Kp

Nc

M4. Nc → U : {Ns{Iu,MNs }Ks
Ns
}Kp

u

5.1.2. Idealized protocol translation.

M1. U → Nc : {{Iu,Mu, Tu}Ks
u
}Kp

Nc

M2. Nc → Ns : {{Iu,Mu, Tu}Ks
u
}Ks

Nc
}Kp

Ns

M3. Ns → Nc : {{{Iu,MNs }Ks
Ns
}Kp

u
}Kp

Nc

M4. Nc → U : {{Iu,MNs }Ks
Ns
}Kp

u

R1 :
P believes Q K→→P, P sees {X}K

P believes Q said X

R2 :
P believes

K
p

7−→ Q, P sees {X}K
s

P believes Q said X

R3 :
P believes Q

Y
⇀↽ P, P sees {X}Y

P believes Q said X

R4 :
P believes fresh (X), P believes Q said X

P believes Q believes X

R5 :
P believes Q controls X, P believes Q believes X

P believes X

R6 :
P believes fresh (X)

P believes fresh (X,Y)

R7 :
P believes Q K→→P, P sees {X}K

P sees X

R8 :
P believes 7−→ P, P sees {X}K

p

P sees X

R9 :
P believes 7−→ Q, P sees {X}K

p

P sees X

R10 :
P sees (X,Y)

P sees X

K
p

K
p

Figure 10. Analysis rules.

5.1.3. Goals.

G1 : Ns believesU saidMu

G2 : Ns believes fresh(Mu)

G3 : Ns believesU believesMu

G4 : U believesNs saidMNs

G5 : U believes fresh(MNs )

G6 : U believesNs believesMNs
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5.1.4. Assumptions.

A1 : U believes
K
p

Nc7−→ Nc

A2 : U believes
K
p

Ns7−→ Ns
A3 : U believesMu

A4 : U believesIu
A5 : U believes fresh(Iu)

A6 : Nc believes
K
p

Ns7−→ Ns

A7 : U believes
K
p
u7−→ U

A8 : Ns believes
K
p
u7−→ U

A9 : Ns believes
K
p

Nc7−→ Nc
A10 : Ns believesMNs

A11 : Ns believes fresh(MNs )

A12 : Ns believes fresh(Tu)

5.1.5. Protocol analysis.

M1,R8 : Nc sees{Iu,Mu, Tu}Ks
u

E1
M2,R8 : Ns sees{{Iu,Mu, Tu}Ks

u
}Ks

Nc
E2

E2,A9,R2 : Ns believesNc said{Iu,Mu, Tu}Ks
u

E3
A8,R2 : Ns believesU said{Iu,Mu, Tu} E4
R10 : Ns believesU saidMu (G1)
R12,R6 : Ns believes fresh(Iu,Mu, Tu) E5
E5 : Ns believes fresh(Mu) (G2)
G1,G2,R4 : Ns believesU believesMu (G3)
M3,R8 : Nc sees{{Iu,MNs }Ks

Ns
}Kp

u
E6

M4,R8 : U sees{Iu,MNs }Ks
Ns

E7
E7,A2,R2 : U believesNs said{Iu,MNs } E8
E8 : U believesNs saidMNs (G4)
E7,A4,R6 : U believes fresh(MNs ) (G5)
G4,G5,R4 : U believesNs believesMNs (G6)

5.2. Security protocol between agents

5.2.1. Messages.

M1. C → Nc : {C, {Ic, Tc}Ks
c
}Kp

Nc

M2. Nc → Ns : {Nc{Ka, INc , TNc}Ks
Nc
}Kp

Ns

M3. Ns → Nc : {{INc}Ka }Ks
Ns

M4. Nc → C : {{Ic,Ka}Ks
Nc
}Kp

u

5.2.2. Idealized protocol translation.

M1. C → Nc : {{Ic, Tc}Ks
c
}Kp

Nc

M2. Nc → Ns : {{Ac Ka←→ As, INc , TNc}Ks
Nc
}Kp

Ns

M3. Ns → Nc : {INc , Ac
Ka←→ As}Ks

Ns

M4. Nc → C : {{Ic, C Ka←→ Ac}Ks
Nc
}Kp

u

5.2.3. Goals.

G1 : Ac believesAc
Ka←→ As

G2 : As believesAc
Ka←→ As

G3 : C believesC
Ka←→ Ac

G4 : Ns believesAc
Ka←→ As

G5 : Nc believesNs believesAc
Ka←→ As

5.2.4. Assumptions.

A1 : C believes
K
p

Nc7−→ Nc
A2 : C believes fresh(Ic)

A3 : C believesNc controlsC
Ka←→ Ac

A4 : Nc believes
K
p

Ns7−→ Ns

A5 : Nc believes
K
p
c7−→ C

A6 : Nc controlsAc
Ka←→ As

A7 : Nc controlsC
Ka←→ Ac

A8 : Nc believes fresh(Tc)
A9 : Nc believes fresh(INc )

A10 : Ns believes
K
p

Nc7−→ Nc
A11 : Ns believes fresh(TNc )

A12 : Ns believesNc controlsAc
Ka←→ As

A13 : Ac believesNc controlsAc
Ka←→ As

A14 : Ac believes fresh(Ac
Ka←→ As)

A15 : Ac believesNc saidAc
Ka←→ As

A16 : As believesNs controlsAc
Ka←→ As

A17 : As believes fresh(Ac
Ka←→ As)

A18 : As believesNs saidAc
Ka←→ As

5.2.5. Protocol analysis.

A14,A15,R4 : Ac believesNc

believesAc
Ka←→ As E1

E1,A13,R5 : Ac believesAc
Ka←→ As (G1)

A17,A18,R4 : As believesNsm

believesAc
Ka←→ As E2

E2,A16,R5 : As believesAc
Ka←→ As (G2)

M4,R8 : C sees{Ic, C Ka←→ Ac}Ks
Nc

E3
E3,R2 : C believesNc

said{Ic, C Ka←→ Ac} E4

A2,R6 : C believes fresh(C
Ka←→ Ac) E5

E4,E5,R4 : C believesNc

believesC
Ka←→ Ac E6

E6,A3,R5 : C believesC
Ka←→ Ac (G3)

M2,R8 : Ns sees

{Ac Ka←→ As, INc , TNc}Ks
Nc

E7
E7,R2 : Ns seesNc

said{Ac Ka←→ As, INc , TNc} E8
E8,A11,R6 : Ns believes

fresh(Ac
Ka←→ As) E9

E8,E9,R4 : Ns believesNc

believesAc
Ka←→ As E10

E10,A12,R5 : Ns believesAc
Ka←→ As (G4)

M3,R2 : Nc believesNs

said{INc , Ac
Ka←→ As} E11
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A9,R6 : Nc believes

fresh(Ac
Ka←→ As) E12

E11,E12,R4 : Nc believesNs

believesAc
Ka←→ As (G5)

6. Conclusions

Automating the generation of protocol agents can be very
useful in the presence of heterogeneity. This paper presents
a method for automating the process of agent synthesis and
activation. To illustrate our scheme, we provide details for
creating and managing remote-procedure calls agents, since
RPCs are the most widely used paradigm for interprocess
communication. However, the techniques described in
this paper appear to extend to other paradigms as well.
Since security is of a particular concern in distributed
environments, our scheme incorporates security protocols
to guard against various kinds of attacks.

The agent synthesis mechanisms in Nestor are currently
operational, and are being used in conjunction with the
RPC agent synthesis mechanism described in [1]. We are
currently completing the implementation of the security
mechanisms.

Acknowledgments

This work was partly supported by NASA and its
Socioeconomic Data and Applications Center operated by
the Consortium for International Earth Sciences Information
Networking.

References

[1] Huang Y and Ravishankar C V 1994 Designing an agent
synthesis system for cross RPC communicationIEEE
Trans. Software Engng20

[2] Yen-Min Huang and Ravishankar C V 1994 Linguistic
support for controlling protocol executionProc. 14th Int.
Conf. on Distributed Computing Systemspp 581–8

[3] Huang Y and Ravishankar C V 1996 URPC: A universal
RPC toolkitComput. J.39

[4] Felten E 1992 The case for application-specific
communication protocolsProc. Intel Supercomputer
Systems Division Technology Focus Conf.pp 171–81

[5] Ananda A L, Tay B H and Koh E K 1992 A survey of
asynchronous remote procedure callsOperating Syst.
Rev.26 92–109

[6] Vinoski S 1997 CORBA: Integrating diverse applications
within distributed heterogeneous environmentsIEEE
Commun. Mag.14

[7] Bershad B N, Anderson T E, Lazwoska E D and Levy H
M 1990 Lightweight remote procedure callACM Trans.
Comput. Syst.8 37–55

[8] Rong Chang and Ravishankar C V 1994 A service
acquisition mechanism for server-based heterogeneous
systemsIEEE Trans. Parallel Distrib. Syst.5

[9] Zhonghua Yang and Vogel A 1996 achieving
interoperability between CORBA and DCE applications
using bridgesProc. IFIP/IEEE Int. Conf. on Distributed
Platforms(London: Chapman and Hall) pp 144–55

[10] Steinder M, Usok A and Zieliński K 1996 A framework for
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