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Grant Number: HE 10549-02 Effect of Ultrasonic Waves on Biological
Mass Transport.

Principal Investigator: Hugh Scott Fogler
Sponsoring Institution: Department of Chemical and Metallurgical Engineering

University of Michigan, Ann Arbor, Michigan 48104

Period Covered: Sept. 1, 1967 - Dec. 31, 1969
Date of Report: Jan. 31, 1970
Summary

The following reports describe the preliminary results of the effect of
ultrasonic waves on mass transfer. The mass transfer studies conducted under
NIH Grant Number HE 10549 were in two areas: 1) gas absorption and 2) membrane
transport.

The studies on gas absorption were divided into two areas: Tlarge scale
bulk streaming and our recent findings on high speed streaming in thin films.
In the bulk streaming experiments, increases in the gas absorption rate of up
to 800% were observed in the ultrasonic runs over the runs in which no ultra-
sonics were applied. However, one of the most interesting and potentially
useful things we found in our study was that of the small scale streaming.

This streaming was extremely rapid and was induced in thin films which were

fractions of a centimeter in height. The fluid velocities in this film were
greater than any previously reported streaming velocities which were either

experimentally observed or theoretically predicted. These intense streaming
currents will bring about an even greater increase in the mass transfer rate
than was observed in the bulk streaming experiment mentioned above.

In the membrane transport area, both theoretical and experimental investi-

gations were also undertaken to determine the effect of ultrasonic waves on mass

transfer.



In the theoretical analysis by Fogler and Lund, first results show that
significant increases in the rate of mass transport through membrane ducts
should be found with the application of ultrasonics. Experimental studies do
indeed reveal that ultrasonic waves do increase the rate of transport through
membranes. Steady flow experiments utilizing Amicon PM-30 and XM-100 membranes
showed increases in mass transfer rates of 300% and 400% respectively, when
ultrasonic waves were applied to the system.

With the application of ultrasonics to biological systems, one must take
care that the wave conditions are properly adjusted so as not to induce any
harmful side effects to the tissue and body fluids by acoustic cavitation.
Since it is known that various biological fluids behave as viscoelastic liquids,
a brief and preliminary investigation was undertaken on cavitation in visco-
elastic fluids to determine whether the degrading effects of cavitation could
be accelerated or retarded in this fluid type. Preliminary results show that
the elasticity can significantly retard the collapse process and certain
situations produce damped oscillatory motion of the cavity rather than the usual
damaging catastrophic collapse observed in purely viscous liquids. This
suggests that under proper control, the damaging effects of cavitation could
be minimized in biological fluids, and possibly bring about an additional
enhancement in the transport rates as a result of the stirring produced by
the oscillatory bubble motion.

There was no cavitation present in either the membrane or gas absorption
experiments reported above, as the observed increases were for systems operated

below the cavitation threshold.



SECTION II
Ultrasonic Gas Absorption

The following paper represents a portion of the work by Mr. M. L.
Cadwell and Prof. H. S. Fogler which has been accepted for publication
in the Chemical Engineering Progress Symposium Series. This work is
also to be presented at the 67th National A.I.Ch.E. meeting in May.







ULTRASONIC GAS ABSORPTION

M. L. Cadwell and H. S. Fogler
Division of Chemical Engineering
University of Michigan
Ann Arbor, Michigan 48104



I. Introduction

The intent of this research was to study the influence
of ultrasonics on the absorption of a gas contacted directly
with a liquid. It was originally anticipated that ultrasonically
induced "acoustic streaming" or "microstreaming" currents would
be the primary mechanisms enhancing the mass transport process.

A brief derivation and review of the equations governing
acoustic streaming is presented in the first part of this phase
of this report, and solutions to the streaming equations are
presented for a few simple geometries.

Initial results on the enhancement of gas-liquid mass
transport are presented for streaming occurring in a cylindrical
tube in which a high frequency (800 kHZ) ultrasonic transducer
was aimed perpendicular to the liquid surface, thereby inducing
gross circular streaming patterns within the liquid.

The final phase of this investigation involved visual
observations of acoustically induced convection in various
geometrical configurations at frequencies of 800, 175, and 20 kHZ.
Emphasis in this study was on how the convective patterns estab-
lished might enhance absorption rates at the gas liquid interface.
It is believed that the results of these observations fall into
two distinct categories. At high frequency (800 kHZ) bulk

acoustic streaming occurred which was similar to that observed



by Ghabrial and Richardson (1954) and described mathematically
by Piercy and Lamb (1954), Nyborg (1964), and Eckart (1949).

At low frequency (20 kHZ), when the liquid depth between the
transducer and gas-liquid interface was much smaller than the
sonic wavelength, high intensity vortex patterns were observed.
These patterns apparently can not be explained in terms of
simplified acoustic streaming theory, since the velocities
observed were an order of magnitude greater than that predicted
from purely elementary considerations.

The Equations Governing Acoustic Streaming

The following is an abbreviated development of the
equations describing ultrasonic streaming in a fluid. Starting
with the 3 basic equations of fluid mechanics

Equation of Continuity

%% + V(pU) = 0 (1)

Equation of Motion

pU
plgg + (UV)U] = -Vp + {%ﬂ+K]V(V§) = UVxVxU (2)
Equation of State
Vo = C%Vp + RVER (3)

ot

Markham (1952) has shown that the inclusion of the term



R%% in the above equation can adequately account for heat transfer
effects in many situations.

It is assumed that the fluid is being perturbed ultra-
sonically with an angular frequency w = 2nf, and that there is no

movement of the fluid by any other external forces. As usual, we

assume that the velocity, pressure and’density can be represented

by
U=Us +Up +Up + °°° (4)
P=Py +P; +P, + °°° (5)
p=opo+p1+p2t+ """ ~(6)

where U, = o(e) U, _;, P,

~

o (g) Pi-l and Py = o(e) Pio
Substituting the above expressions into equations (1), (2), and
(3) and collecting terms of like orders of magnitude, noting that
Up =0 since there are no applied external forces other than
ultrasonic perturbations, one arrives at the zero, first, and

second order perturbation equations:

Zero Order

| Ug =0 (7)
VP, = 0 (8)
Vpo = 0 (9)

10



First Order

5

g%i + po(VUL) =0 (10)
UL 4

pogi— = ~VP1 + |FUHK|V(V+Uy) - nvxVxy, (11)

VP, = C2Vp; + R%%l (12)

Second Order

202 4 7epiUy + 00¥+U2 = 0 (13)
po{%%i + (gl'v)gl] + Dl%%i = =VP, + [%M+K]V(V‘gz)

- WTXVXU, (14)
VP, = C?Vp, + RVZEZ (15)

Both pressure and density may be eliminated from equation (11)

to yield

oU;

32U1
Z = poC2V(VeU,) + é-u+K+Rpo V|Vesr—| = uUxVxu, (16)
= 5t -

Po 3

at?
Multiplying equation (10) by U,, and adding it to equation (14):

oU2 ,
pog%* + po{(gl'V)g1 + 91(V'g1)} + %E(D191) (17)

11



= - VP, + {%U+K)V(V‘U2) - uVxVxU,
Equations (16) and (17) in more simplified form provide the
basis for ultrasonic acoustic streaming. Since U; represents

the velocity due to sonic perturbations, it is sinusoidal with

respect to time; it can therefore be represented by:

91 = Ul(r)ejwt (18)

~

where U; (r) is a velocity vector dependent only on spacial
position. Because equations 10, 11, 12, which relate p; and P,
to U, are linear, it is seen that p: and P; also vary sinusoidally

with time. Substitution of equation (18) into (16), and dividing

by w2p0/2

2 wpo (3

2 . .
{39—- + 2L [—4-u+K+poR”V(V'E11) + 20, = 228 yxvxg, (19)
w

The following parameters frequently appear in the

literature on ultrasonics: k = w/C, defined as the wave number;

pe® |4 K Rpo

S 3T HT TH
and B = Ywpo/2u , recognized as the reciprocal of the acoustic

, defined as the attenuation coefficient;

boundary layer thickness. Substitution of these terms into

equation (20)

+ EELI]V(V'Ul) + 20; = . VxVxU,

=

2 .3 (4
I}k7+82 [§+ m E

Because, under most conditions o << k << B:

12



2 .3 [4,K, Roo] . __2
k+%7[3+u+u} k-3a)2
Therefore, equation (21) takes the form

T=sayz V0T + 20 = 4 v, (21)

The above solution can be divided into two terms,

(Eckart, 19438)

U; = Ujc + UjR such that

VxUrpr = 0 and V?Uiy = - (k-ja)*Uip (21a)

VeUic = 0 and V2Uic = 2jB%Uic , (21b)
Procedures suggested for solving equation (21) or
equations similar to them have been reviewed extensively (Nyborg,

1964, Rayleigh, 1945, Schlicting, 1960, and Eckart, 1948).

Once U, is obtained, p; and P; can be obtained from
equations (7) and (8); one can then proceed to solve Equation
(19) for Uz. In practice, this is a formidable task, for the
underlined terms in equation (17) are nonlinear. A simplified
approach to the solution of equation (19) is to time average
each individual term over a few sonic cycles. The nonlinear
nature of the term (U;*V)U, + U, (V+U;) suggest that a solution

to U, is of the form

13



Uz = Ua(r) e®3% + T, (x) (22)

where 92(5) and gz(r) are dependent only on spacial position.
Substituting the above expression into Equation (19) and

performing the necessary time averaging (indicated by an overbar)

-

po{(gl‘v)g1 + 91(V'91)} + %E (0191)

= VP, + [% +KJV(V°§2) - uVxVxU, (22)

From the solutions to the first order equations, it can be shown

that
%E (p2U1) =0
and it has been shown that V(VeU,) = (V2T,) O[%%%] (Rayleigh, 1945);
thus, for most systems:
V(V'gz) << v2§2
Therefore equation (22) becomes
pol(U1*V)U, + gl(V’g1)} = -VP, + qugz (23)

This equation is known as the basic streaming equation.

Several examples from the literature will be reviewed here to

1k



illustrate the types of solutions which can result upon appli-
cation of equations (23) and (21).

In the first example, an ultrasonic beam of radius Rb
is propagated along the axis of a very long circular cylinder
whose length is L and radius R. The solution to equation (21)

is assumed to be irrotational. Thus;

V2U1 = - (k"jOL) 2U1

If the length of the cylinder is sufficiently long, oL >> 1,

and the first order solution is:

U; = Aenzaxcos(wt-kx) r < Rb

U, =0 Rb<r<Ro

The discontinuity in first order velocity profile arises from
the assumption that U; is irrotational. The streaming equation

becomes, for radial symmetry:

920, , 1 9U,| _ 9P , pooA?
“[W*‘;'a?]"ﬁ*—z“ r <Ry
920, , 1 3U,| _ _ 9P

“[aﬂ*fa‘f‘} =-3z R < ¥ <R

The boundary conditions are that

ﬁ2=0 at r = Ry

15



3, _ _
= =0 at r=0

and if the ends are capped so that there is no net bulk flow

across any cylindrical cross section,

R
f U, rdr = 0
0

The solution is:

.- 25 - ol ol R

b
and
poaA%R 2} 2 2
= b r r Rb
= —— - -] = = =L =
vz M ] Qn[RO] ! [Ro] ' 2[R0]
for Rb < r < Ry

This solution was derived by Piercy and Lamb (1954),
and represents a slight variation from that originally derived
by Eckart (1948). Nyborg (1964) presents an analogous solution
for the case of propagation of a beam of sound with Zb’ between
two parallel plates separated by a distance h. Defining Z = 0

at the edge of the lower plate, his solution is:

16



— 2 - - Z 2 Z 3
0, = 2% o 20% [(h-zb)z + -Z-ﬁ-zz-l‘llz-3[52] + [EEJ J

for zb/z < Z < h/2

These solutions are characterized by a bulk, non-circular
(except at the ends, x = 0 and x = £)"fluid motion. A somewhat
different pattern results, however, if the first order solution
along the plane mid-way between the plates is that of a standing

wave,
U; = A coswt cos kx
and if the sound beam propagates along the entire distance

between the plates. Under these conditions, both a horizontal

and vertical velocity exists:

) _ -
Uy = = Hp__g_gzcl}_k_z L % (4 singy + 2 cosfy + e ™)
2
3_2 11 |X
) _ -By
88C

+

3 3 3
5 B(h-y) - 5 eh[l - %} }

The fluid patterns are circular, and repeat themselves at integral

k-wavelengths. This solution was originally derived by Rayleigh.

17



List of Symbols Used in Equations Governing Acoustic Streaming

A Amplitude of velocity wave
C Speed of sound

K Ditational viscosity

L Length of cylinder

P Pressure

Py Zero order pressure

P, First order pressure

P, Second order pressure

R Radius of cylinder

R, Radius of transducer

U Velocity vector

Uo Zero order velocity vector
91 First order velocity

U; (r) First order velocity, a function of position only

Ui Incompressible part of first order velocity

Uik Irrotational part of first order velocity

U, First order velocity in axial direction or parallel to
plates

U, Second order velocity vector

Uz (r) Second order velocity vector which is a function of
T position only

?2 Streaming velocity vector, time-averaged value of U

U, Streaming velocity along axis of cylinder

Vs Streaming velocity component perpendicular to flat plates
pA Coordinate perpendicular to plate

Zy, Thickness of sound beam propagating between flat plates

18



f Frequency

h Distance between flat plates

j Complex number, v-1

k Wave number

r Position vector

r Radial coordinate

X Coordinate along axis of cylinder
t Time

o Attenuation coefficient

B Reciprocal of acoustic boundary layer thickness
€ Perturbation parameter

P Density

0o Zero order density

01 First order frequency

P2 Second order frequency

W Radial frequency

19



Experimental Gas Absorption Studies

Experimental Apparatus

The apparatus used to measure the amount of gas absorbed into the
liquid in the absorption cell is shown in the accompanying diagram (Figure 1).
Three vertical manometers, M4, M3, and M1, measure the pressure of tanks
1, 2, and the absorption cell itself, respectively. The pressure regula-
tor and vacuum pump allow operation of the system over a pressure range
from a few millimeters of mercury absolute to about 2 atmospheres. The
slant manometer uses water as the working fluid and measures the difference
in pressure between tanks 1 and 2. The gas used in these initial studies
was C02, although in Tater studies it is anticipated that other gases will
be used.

Tanks 1 and 2 can be isolated from each other by closing valves
VST and V10; in addition, if valves V16 and V13 are open, tank 2 is con-
nected directly to the absorption cell, and thus serves as a source of gas
for the cell. The number of moles of gas absorbed during a run can then
be calculated from the change in height of the slant manometer. Assuming,
therefore, that (1) the pressure in tank 1, tank 2, and the absorption
cell i;7£g;qggme, (2) the pressure in tank 1 is always uniform, (3) the
pressure in tank 2 is also uniform, and equal to that in the absorption
cell at any time, (4) the system operates isothermally, and (5) the den-
sity of the manometer fluid is much greater than that of the gas, the fol-
Towing equation gives a relationship between amount of gas absorbed, n s
and change in height of the slant manometer in terms of system properties:
RT " (1)

st P A T7V ogV 7 AR\/ AR
om =( 1 m”1 m m
2(_v +]>+TP’ U’“‘zv1}(1+_"zv2>

2 o'm

h =

20
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where:

n = amount of gas absorbed in cell

h = change in slant manometer height

P0 = initial system pressure

o = angle slant manometer makes with horizontal
Am = slant manometer cross sectional area
V1 = volume of tank 1

V2 = volume of tank 2

Py = density of manometer fluid

g = acceleration of gravity

R = gas constant

T = absolute temperature

For the system shown in the accompanying diagram (Figure 1), V, = 600 cm
V, = 8,200 cn>, A= 0.785x10% cn®, p = 1.0 g/em’, and sina = 0.1. Be-
cause the manometer is designed so that h is always less than 100 cm,
V1/V2’ Amh/ZV], and Amh/ZV2 are all less than unity. Substituting the
above numerical values into Equation (1) and taking P, = 2 atm. and
T = 298°K, Equation (1) becomes approximately

h = 3.79x10° n,

It is seen that the system is quite sensitive to very small amounts of
gas absorbed.

The absorption cell used in this study was cylindrical, 12" long and
1-7/8" inside diameter, and was constructed of 3/8" thick transparent plexi-
glass. The cell was designed so that a Macrosonics 800 kHz transducer
could be bolted to the cell bottom. Thus, ultrasonic energy propagated
upward along the axis of the absorption cell; however, the diameter of
the radiating diaphragm of the transducer is 1.45", and therefore the ultra-

sonic beam did not fill the tube entirely. An 0-ring seal was placed

22
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between the transducer and bottom of the cell to prevent leaks. Three
openings were placed near the top of the cell. One of these openings
was connected to manometer M1 to measure the pressure in the cell, another
to the gas absorption measuring apparatus, and the third to a line leading
to the vacuum pump.

Ultrasonic power to drive the transducer-was supplied by a Macro-
sonics 500-2 Ultrasonic Broad Band generator whose maximum output is
500 watts.
Procedure

At the start of a run, the absorption cell was filled with 1iquid
to approximately the desired height and inserted into the system. (If
the fluid was distilled water, it had been boiled for approximately 1 hour
before insertion into the system to drive off any dissolved CO2 vapor.)
The cell was then evacuated for 1 hour to draw off any gases that might
have dissolved in the fluid as a result of exposing the fluid to air
during its transfer into the absorption cell. The height of the 1iquid
above the transducer was then measured with a cathetometer. Once the
cell was inserted into the system, gas was fed from the cylinder through
the humidifier into tanks 1 and 2. Humidification of the gas was essential
when using water as the absorption fluid to minimize evaporation effects.
At this time valves V3, V4, V5, V6, V7, V8, V9, VS1, V16, and V10 were
open, while valves V12, V13, V14, and V15 were closed. When the system
reached desired operating pressure, valves V4 and V3 were closed, and
the system was allowed to stand until pressure equilibrium was attained.
While this was occurring, the ultrasonic generator was adjusted to give

the desired output to the transducer. Measurements of the room temperature

23
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and pressure differences in all manometers were taken when equilibrium was

attained, The actual absorption run was initiated by opening valve V13

to allow gas to enter the absorption cell. When the pressure in the

absorption cell was equal to that in tank 1, valves V10 and then VS1 were

were closed, thereby isolating tank 2 from tank 1, which was connected to

the absorption cell. The timerwas started whén valve VST was closed.

The change in slant manometer height was recorded as a function of time.
Measured values of h were corrected for system leaks by operating

the system without the absorption cell and following the change in manometer

height under conditions nearly identical to that in which the actual absorp-

tion run was performed.

Preliminary Results

Some results, which might be considered representative of the best
data taken thus far, are shown in Figures (2) and (3). Most of the data
taken with ultrasonics lie between the two curves depicted in these accom-
panying figures. Two systems were studied: CO2 absorption into water and
CO2 absorption into glycerol. The number of moles of gas absorbed was
calculated according to the procedure described above and then corrected
to 25°C and 1 atmosphere pressure. A1l data obtained was compared to
the amount of gas dissolved if only pure diffusion of gas into the liquid
were occurring. The amount of gas absorbed for this latter case (i.e., no
ultrasonics) is given by the equation

i - APapw WJ 4Dppt 2)

a HMw T

W = number of moles of gas absorbed at time t

t = time

26



absorption cell cross-sectional area

partial pressure of absorbing gas above the liquid
Henry's Taw constant

density of the liquid

molecular weight of the liquid

DAB= diffusion coefficient of dissolved gas in the liquid
P, = mass density of the fluid

A
Pa
H
P
"

Thus, results are plotted as the number of moles absorbed versus the square
root of time. It must be pointed out that there is as yet no firm theoretical
basis for plotting the data labeled "with ultrasonics” in this way. This
method, however, does serve as a convenient basis for comparative purposes.

With reference to the data shown in Figure 2 for CO2 absorption into
water, the run labeled "without ultrasonics" was carried out at a pressure
of 72.3 cm Hg (CO2 partial pressure of 69.6 cm Hg) and temperature of 81°F
with the cell filled with fluid to a depth of 22.4 cm above the transducer.
The run labeled "with ultrasonics" was carried out at a pressure of 75.35
cm Hg (CO2 partial pressure of 73.6 cm Hg) and temperature of 67°F with
the cell filled with water to a height of 9.43 cm. The plate voitage and
current of the ultrasonic generator during this run were 0.52 volts and
260 milliamps, respectively.

In the COz—g]ycero1 runs shown in Figure 2. the run labeled "without
ultrasonics" was carried out at 74.9 cm Hg pressure and 73°F temperature
with a liquid height of 9.7 cm, while the run labeled "with ultrasonics"
was carried out at 115 c¢m Hg and 75°F with a 1iquid height of 9.72 cm.

The generator plate voltage and current in this run were .80 volts and
300 milliamps, respectively.
At this time, these results can only be regarded as preliminary.

There are inherent experimental difficulties in the operation of any

27



unsteady state system; this is especially true for gas-liquid systems. As
seen in both figures, extrapolation of data "with ultrasonics" to zero
moles absorbed indicates that there is a response time lag which is either
operational or inherent to the system. Efforts have been made to reduce
this lag through slight modifications of the system and through improve-
ments in operating procedure, but as yet no trend can be observed of how
this time lag varies with system parameters (in particular, height of the
liquid above the transdﬁcer and system operating pressure). Nevertheless,
this time Tag can be estimated by extrapolation of the curve of C02
absorption into water "without ultrasonics", and comparison of this curve
with Equation (2) using values of diffusion coefficient and Henry's law
constant from the literature. On this basis the time scale for this run
was adjusted to the left. The dotted line in this figure is that pre-
dicted by Equation (2).

At the end of the curve for CO2 absorption into water without ultra-
sonics, an abrupt increase in the number of moles of gas absorbed was seen
to occur. This increase might be caused by natural convection which has
been observed by other investigators in similar gas-liquid systems in
which the density of the solution (solute + solvent) is greater than that
of the liquid, causing an unstable density gradient to be established in
the Tiquid. The occurrence of natural convection is governed by the Ray-
leigh number, which in inherently unsteady state systems is time dependent.
The runs made in the Tatter portion of this study used glycerol as the ab-
sorbing fluid; because of its high viscosity, natural convection effects
should therefore be less important than in the COz-water system,

Another difficulty encountered in operation of this system was due

to the slant manometer, which is very responsive to only slight upsets

28



within the system. This manometer had to be refilled frequently or re-
placed. Although care was taken to fill this manometer with clean, dis-
tilled water, after continued use dirt did accumulate at certain points
within the capillary tube of the manometer, resulting in erratic manometer
response, or manometer fluid separation. Data taken under these conditions
were very difficult to interpret.

However, a number of runs were carried out without the above diffi-
culties. An estimate of the increase in the mass transfer rate can be

made by comparing the slopes of the curves shown in Figure (1) and (2).

On the basis of this comparison, it can be seen that the increase in

mass_transfer rate with the application of ultrasonics is on the order of

800% for both liquid systems. While no firm conclusions have yet been

drawn as to what the cause of this enhancement is, these data were obtained
without the effects of cavitation and atomization, and therefore -the
mechanism causing these increases is most 1ikely convective streaming.

It appears, therefore, that surface renewal concepts might be particularly
appropriate for modeling this phenomena mathematically.

Preliminary Visual Studies of Streaming

Qualitative visual observations of acoustically induced convection
were made at three frequencies, 20, 175, and 800 kHz in various geo-
metrical configurations. Power to the transducers was furnished by a
500-1 Macrosonics Broadband Generator, capable of delivering a 500 w;
input over the frequency range of 10 to 1000 kHz. Glycerol was used as
the fluid; because of its low vapor pressure (.0025 mm Hg) and its high
viscosity (1440 cp) at 25°C, cavitation effects should be small. The

" fluid movement was followed by the use of tracer particles of either
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alumina or cigarette ashes. In some cases, the observed convection patterns
were photographed with a motion picture camera.

High Frequency Studies. Two geometrical systems were used with 800

kHz insonation. In the first, a geometry identical to that used in the
gas absorption studies was employed. A cylinder 9" Tong and 1-7/8" in
diameter was filled to a depth of about 4-1/2" with glycerol. Insonation
was accomplished by fastening an 800 kHz transducer to the bottom of the
cylinder such that the vibrating diaphragm of the transducer was in direct
contact with the fluid. The diameter of this diaphragm was 1.45", and
therefore the sound beam did not fill the tube. When the Tiquid was
insonated, intense streaming currents were observed throughout the 1liquid.
These currents appeared to be circular, symmetrically located about the
axis of the cylinder, and ordered - that is, tracer particles within the
fluid appeared to move along well-defined paths, which they repeated

after a certain period of time. The most intense streaming appeared along
the axis of the cylinder; velocities here were estimated to be on the order
of 10 cm/sec. The magnitude of these currents increased with an increase
in the power supplied to the transducer. There was no evidence that
cavitation was present during insonation in this experiment. A sketch of

the observed streaming patterns appears below.
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Figure 4. Approximate Fluid Patterns in 800 kHz Cell
30



In the second study at 800 kHz, a cylinder whose diameter was about
5-1/2" was filled to a depth of about 1" with glycerol. An 800 kHz trans-
ducer identical to that used in the study described above was fastened to
the bottom of the cell about 2" from the axis of symmetry of the cylinder.
Enough power was supplied to the fluid to produce streaming, but not
enough to make the interface unstable. The induced fluid motion brought
about by insonation was recorded on standard motion picture film at a
speed of 18 fps. Streaming speeds near the transducer were estimated to
be 2 cm/sec, about 5 times smaller than that observed in the first 800 kHz
study. Fluid motion was most prominent near the transducer, and there were
pockets of stagnation in areas away from the transducer. Again, no
cavitation phenomena were observed. A sketch of the patterns observed

appears below.
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Figure 5. Streaming Patterns in a 5-1/2" Diameter Cell at 800 kHz

31



Low Frequency Study. Observations at 20 kHz were performed in three

different geometries. In the first about 50 ml of glycerol were added to
a 150 ml beaker, and the tip of a sonic gun transducer was immersed

about 1/2 cm from the fluid air interface. Insonation was applied and the
streaming pattern from the side appeared as if two vortex rings had formed
between the bottom of the beaker and the tiﬁ of the transducer. Photo-
graphs were taken of the streaming patterns from the side, but because of
extensive dispersion of the particles, an estimate of the streaming

velocity could not be obtained.

-Inteyfuge
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Figure 7. Streaming Patterns at 20 kHz in a Beaker

In the second Tow frequency experiment, the box used for the 175 kHz
study was filled to a depth of 3/4" and insonated indirectly by placing
the tip of the transducer gun perpendicular to the bottom of the stain-
less steel bottom of the box. Moving pictures of the ultrasonically in-
duced fluid motion were taken from both the side and the top yiew of the
box. A sketch of the streaming motion is shown in the following figure.

Surface velocities, measured by following tracer particles at a

distance of about 1" from the axis defined by the center of the tip of
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Intermediate Frequency Study. A 175 kHz transducer with a radiating

diaphragm 59.5 mm in diameter was placed in a rectangular box 5" wide,

8" long, and 5" deep. The box was filled with glycerol until the top of
the transducer housing was slightly over an inch below the face of the
transducer. The transducer was placed approximately in the center of

the box. The streaming patterns formed upon-insonation are sketched
below; particle speeds were greater than those in the last 800 kHz study,
and were on the order of 5 cm/sec at a point about 1 cm below the gas
1iquid interface. This motion, however, was confined to that area direct-
ly above and slightly to the sides of the transducer. Streams of cavita-
tion bubbles were emitted at points of rapid fluid motion; there was also
evidence of the existence of resonating bubbles existing on the trans-

ducer surface which also might have contributed to the fluid motion.
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Figure 6. Streaming at 175 kHz in a Rectangular Box
Moving pictures of this motion did not come out as well as expected
because of mechanical difficulties encountered in operating the camera, and

because of very rapid particle dispersion upon insonation.
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Figure 8. Streaming Patterns in a Box at 20 kHz

the transducer, were on the order of 3 to 6 cm/sec and increased rapidly

as these particles approached the point of insonation. Also, small rapid
vortices, on the order of 3/16" in diameter, existed around this point.
There was, however, activity around the point of insonation indicating that
cavitation was present.

In the last set of observations carried out at 20 kHz, a cylindrical
tube,1 11/16"in diameter, fitted with a stainless steel bottom, was filled
to a depth of 1-3/8" with glycerol and again insonated indirectly by
placing the tip of the transducer on the stainless steel bottom. Stream-
ing patterns were symmetrical about the point of insonation, as shown in
the sketch below and in the photographs taken. The velocity along fhe axis
of symmetry was estimated to be about 1.0 cm/sec, although this figure may
be Tow due to the extensive amount of dispersion of tracer particles. The

presence of cavitation could not be discerned from the photographs.
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Figure 9. Streaming Patterns in a Cylinder
at 20 kHz - Moderate Liquid Depth
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The Tliquid height in the cell was then reduced to 1/2". Exceptionally
rapid mixing was observed when the fluid was insonated and streaming was
especially rapid a few millimeters from the point of insonation. A sketch

of the streaming patterns appears below.
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Figure 10. Rapid Streaming Patterns at 20 kHz in a
Cylinder - Small Liquid Depth

An attempt was made to take moving pictures of the ensuing motion,
but because of the difficulty of simultaneously operating the camera and
turning on the sonic power, and as a result of very rapid particle disper-
sion, it was not possible to obtain a good film strip suitable for giving
and estimate of the magnitude of the streaming velocity. The pictures
that were taken, however, indicate the presence of cavitation.

When the transducer was moved off center and forced upon the stainless
steel bottom of the cell, very rapid streaming velocities were encountered,

in the pattern similar to Figure

Pornt of Tnsonation

Figure 11. Top View of Rapid Streaming at 20 kHz
in a Cylinder - Small Liquid Depth

This pattern may be due, however, to the "fountain" effect encountered

in ultrasonics at high intensities, i.e., interfacial instabilities.
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Discussion of Observed Patterns

These preliminary studies indicate that with the equipment available
in the Sonochemical Laboratory, low frequency insonation induces larger
convective velocities than high frequency insonation. This observation
is especially true for the case of streaming occurring in liquids whose
distance between the transducer and the gas—]iqdid interface is much Tess
than the wavelength of sound. Because of the wavelengthsassociated with
800 kHz insonation is only .19 cm. this observation is difficult if not
impossible to verify for high frequencies. While the studies described
here can at best be termed exploratory, some comparison and comment on
the modes of induced convection normally attributed to ultrasonic insona-
tion can be made.

Order of magnitude estimates of the streaming velocity can be made
from elementary streaming theory reviewed previously. For a traveling
wave, an order of magnitude estimate of streaming velocity is (Piercy and
Lamb, 1954)

22

U, “w R
1 4 K 0 2
Y2 ® 3 (?*U*T) ®b

R

And for a standing wave, the maximum streaming speed should be (Rayleigh, 1945)

2
3u]

U * Toc

14

The first order velocity U is equal to the product of particle dis-
S
placement amplitude/and the frequency. If the value for s is taken as
10 microns at 20 kHz, and 0.12 microns at 400 kHz, and if it is assumed

that K/u << 1 and Rpo/u << 1, for the system used in this study Piercy's
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and Lamb's (1954) analysis gives a streaming speed of 0.6 cm/sec at 20 kHz,
and 1085 cm/sec at 800 kHz; using Rayleigh's expression, u, is .002 cm/sec
for both high and Tow frequency. These theoretical estimates are at least
one to three orders of magnitude lower than that observed at low frequency,
and, for the case of a traveling wave, two or three orders of magnitude
higher. The experimental observations do not agree at all with the the-
oretical prediction for the traveling wave case that an increase in fre;
quency results in an increase in streaming velocity.

Several investigators (Eckart, 1949, and Westervert, 1960) have advanced
the explanation that at sufficiently high ultrasonic energy level inputs,
a transition occurs from laminar to turbulent streaming. In turbulent
streaming, particle velocities and vortex sizes far exceed that predicted
by the classical equation governing acoustic streaming.

One study (Westervelt, 1960) in infinitely long cylinders subjected
to oscillation perpendicular to the axis of the cylinder indicates that
the transition from laminar to turbulent streaming occurs at a "streaming
~ Reynolds number," szw/v, equal to unity, as long as the wave displacement
amplitude (s), to cylinder radius, R, is sufficiently small. For the
same system, others (Andres and Ingard, 1953) have shown theoretically
that the classical solution offered by Schlichting (1932) applies for
higher streaming Reynolds numbers.

An estimate of the streaming Reynolds number as defined by Wester-
velt can be made since it is independent of system geometry. Glycerol,
the fluid used in this study, has a viscosity of 1440 cp and density of
1.2 g/cm3 at 25°C. With a particle displacement amplitude of 20 microns
at 20 kHz, the streaming Reynolds number is about .001; at 800 kHz, with
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a particle displacement amplitude of 0.12 microns, the streaming Reynolds

number is about 10'4.

According to Westervelt, then, both Tow and high frequency regimes
studies here should be described by the "classical” equations of acoustic
- streaming. While this appears to be the case for high frequency studies,
it does not appear so for the low frequency cases. This analysis assumes
that the particle displacement amplitude, s, is small compared with some
(as yet undefined) length of the system. However, the cylinder radii,
Tiquid heights, and wave lengths (7.5 cm at 20 kHz, .1875 cm at 800 kHz)
are all greater than s, and hence his criteria appear to be satisfied.

These observations were performed at sonic power inputs of about
300 - 500 watts. Assuming that the energy efficiency is about 25%, the
average sonic energy intensity with respect to the cross-sectional area
is 16-26 watts/cmz. Since the threshold cavitation intensity for castor
0il, whose viscosity is about 630 cp at 25°C, or about 1/2 that of

2 at 20 kHz, it is conceivable that cavitation

glycerol, is 5.3 watts/cm
was present in the observations made at low frequency. This might be
especially true near the point of insonation where the sonic intensity
would be a maximum, possibly two or three times as great as the above

estimated values. On the other hand, because the viscosity of glycerol.

is several times that of water, whose cavitation threshold is 250 watts/cm

at 800 kHz, no cavitation should be present in high frequency insonation.

2

This is in substantial agreement with what was observed. What role cavita-

tion plays in the observed convection process has not been ascertained at

this time.

Although agreement with simplified theory is poor, it appears that
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at high frequency a form of acoustic streaming similar to that observed

by others predominates as the convective mechanism; however, the very high
speeds and rapid vortices observed at low frequency, do not appear to be
explainable right now in terms of elementary streaming theory.

Recent Discoveries on Rapid Streaming in Small Liquid Depths

As mentioned previously, intense streamﬁng vortices were observed
when the Tiquid level, h, was reduced such‘that h/x << 1. These rapid
streaming vortices cannot be explained in terms of previously derived
streaming solutions which, in most cases, neglect the depth of the liquid
above the transducer. In this regime, it appears that steep velocity
gradients are jnduced because of the low liquid level. Because of the
short distance between the transducer and the gas-liquid interface, these
gradients induce exceptionally rapid streaming vortices which extend from
the point of insonation up to the interface; thus, this type of streaming
appears to be particularly applicable to gas-liquid mass transfer, es-

- pecially when analyzed from a surface renewal viewpoint. To our knowledge,
this type of streaming has not been uncovered before, either experimentally
or theoretically. Since the efficiency of most mass transfer equipment,
and especially apparatus like the artificial lung and kidney machines,

is 1increased considerably as the surface area to volume ratio is decreased,
the form of streaming described here will be studied in greater depth.
Experimental work will be pursued to define and specify the conditions
under which this unique streaming occurs. Photographic studies will be
conducted to establish the optimum streaming pattern with respect to mass
transfer. Our preliminary photographs indicate that the important

parameters in this high-speed streaming are the ratio of liquid height/sonic
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wavelength, type of fluid, ultrasonic intensity, point of insonation, and
cavitation intensity. It is also believed that these patterns can be

~ adequately explained mathematically if the appropriate approximations are
made to the streaming equations.
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Introduction

The resistance to the transfer of a solute species across a membrane
is due to the concentration boundary layers which exist on either side
of the membrane, and to the membrane itself. Membrane transport is the
principal mode of mass transfer in nearly all vital organs of the body,
but because of the extremely high ratiélgurface area for mass transfer to
volume of most of these organs, artificial duplication of these organs has
been very expensive, both in terms of operatien and investment. Artificial
machines designed so far have been of limited utility due to their large
size.

Efforts have been made to reduce the size and inherent complexities
of operation. The size of these machines can be reduced by reducing the
resistance to membrane transfer. In steady flow systems, the boundary
layer resistances on either side of the membranes can be'significant1y
reduced by increasing the through-put of material, and in batch operated
systems, these resistances can be reduced by agitation. However, the
induced fluid-mechanical shear rates brought on by these increases al-
most always result in permanent damage to cells transported in vital
fluids. In addition, if the principal resistance to mass transfer is in
the membrane, increasing throughput in steady flow systems and increasing
agitation in unsteady systems are only marginally effective in increasing
the efficiency of the artificial machine.

Under proper conditions, the application of ultrasonics can signifi-
cantly reduce all three resistances to mass transfer. Ultrasonic micro-

streaming has been observed at solid-fluid interfaces; this microstreaming
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should significantly reduce the resistances to mass transfer outside the
membrane. Also, since the ultrasonic wave can be propagated into the
micropores of the membrane, this mechanism should also enhance mass trans-
port within the membrane itself. At sufficiently Tow intensity levels,
both of these reductions can be achieved with a minimum of cellular or
membrane damage. In summary, the application of ultrasonic waves to mem-
branes has shown significant increases in the mass transport rate. In
addition to enhancing transport rates in artificial membrane devices,
ultrasonics could also enhance internal cellular mass transport in the
body fluids and cells.

II. Experiments Utilizing a Non-flow System

A. Apparatus

Two pyrex glass half cells, each of 300 ml capacity, were separated
by a membrane and clamped together with slip-on flanges. An 0-ring seal
was inserted to prevent leakage. The solutions in both cells were stirred
by the propeller type variable speed stirrers introduced into position as
shown in Figure (A). Samples were drawn at suitable intervals (1/2 or
1 minute) through sample holes, and the samples were returned after conc.

measurement to maintain a constant volume of solution in the cells for
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each run. Since sodium chloride solutions were used, the concentration

of the solution was monitored by a Beckman conductivity bridge in con-
Jjunction with standard conductivity cells. Ultrasonics was applied directly
to the solution, in a direction perpendicular to the membrane, by a
transducer operated at its natural frequency of 800 kHz, and the intensity
of the ultrasonic waves was controlled indireéf]y by monitoring the power
output from a Macrosonic 500-1 generator.

B. Mathematical Analysis

Pseudo-steady state mass balance for the solute in the two half cells

gives
dc, dc,
Vit s KA(C] - Cz) (1)
where:
V], V2 = solution volumes, constant

C], C2 = solute concentrations

A

area for transfer

K = overall mass transfer coefficient

Integrating Equation (1) with initial conditions of:
att=0,C, =¢C
1 10

V,Cq + VoCy = V]C1o + V2C20 = o (a constant) (2)

and C2 = CZO, we have:

Eliminating C] from Equations (1) and (2), we have:

dc o - Vo
2 oo
V, g = KA ( v c,) (3)

t
Equation (3) can be integrated between concentration C* at some reference
time t*, and concentration C at time t to give:

In (B -C) =1n (B - C*¥) - vK(At) (4)
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where:
R b b
B = = s constant
V1 + V2 V] + V2
V. +V
Vv = ]V v 2 , constant
172
At =(t - t*)

Equation (4) shows that the plot of In (B8 - C) vs. time will be a straight
Tine with a slope of VK, giving the value of K, since v is known from
initial conditions.
C. Results Obtained in the Non-flow System
The purpose of these experiments was to determine the difference in
mass transfer coefficient with ultrasonics and without ultrasonics at the
same constant stirrer speed. This was necessary in order to determine
the magnitude of the effect of ultrasonics on the boundary layer and
membrane resistances. At lTow stirrer speeds, the boundary layer resis-
tance is expected to be predominant, whereas at high stirrer speeds the
membrane resistance to mass transfer would be controlling. We may note
that the membrane resistance will essentially be unaffected by the stirrer
speed which can only be effective in reducing the boundary layer thickness.
The resu]ts (in spite of difficulties as mentioned in Section D)
had the following trends: (1) there was an increase of 15-200% in the
overall transfer coefficient; (2) this increase was high at low stirrer
speeds and Tow at high stirrer speeds; so much so that at a stirrer speed
of over 1300 rpm the increase was less than 15%; (3) these results indicate
that ultrasonics is more effective in reducing the boundary resistance

than the membrane resistance.
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From conclusion (3) above, it is obvious that in systems using low
velocities near the membrane, resulting in a larger boundary layer resis-
tance, the application of ultrasonics can be very effective in increasing
the mass transfer rate.

D. It must be noted that the use of the stirrers, and the occurrence of
entrained bubbles in the system, interfered somewhat with the ultrasonic
field, thereby reducing its effectiveness. Also, although efforts were
made to control the temperature during each run, isothermal operation

was difficult to achieve and maintain. Thus, the data at very high
stirring speeds or high intensity ultrasonics was difficult to reproduce.
Nevertheless, the trends outlined above are clearly discernable. It was
felt that many of these difficulties could be circumvented in switching
to a steady flow membrane transport system.

ITI. Experiments Utilizing a Continuous Flow System

A. Apparatus

The apparatus depicted in Figure 1 was used to study steady-state
mass transport across a membrane. The diffusion cell designed to handle
either co-current or counter-current flow is shown in Figure 2. The cell
was constructed in a sandwich manner of transparent plexiglass plates,
6" high, 7/8" thick, and 24" long, which are separated in the middle by
two 1/16" thick metal sheets.

A rectangular channel, 1" high, 1/16" wide, and 18" long, was milled
in the interior portion of each plexiglass plate. At both ends the
channels were beveled to eliminate entrance effects, and holes were

drilled to accommodate both feed and discharge of material. Thus, the
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Figure 1. Apparatus for study of steady-state mass transport across a membrane.
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metal sheets which were placed between the two plexiglass plates separated
the high and Tow concentration streams.

In the middle of each metal plate, a 1" diameter hole was bored to
allow diffusion. Amicon Corp. Diaflow ultrafiltration membranes (type
XM-100 5PM—3O) were fitted and held between each plate by bolting together
the entire cell.

The bottom plexiglass plate was designed to accommodate a Macro-
sonics 800 kHz stainless steel transducer. The radiating diaphragm was
placed in a direct Tine with the membrane. Therefore, ultrasonic waves
were propagated perpendicular to the cross-sectional area of the membrane,
and perpendicular to the direction of channel flow.

The total experimental apparatus and its arrangement are shown in
Figure 1. Two five gallon tanks located 2.5 feet above the cell were used
to provide an approximately constant rate of flow for both the high and
Tow concentration streams. Each stream was fed from the storage tanks
through a rotameter and into the cell.

A tap was inserted in each stream between the rotameters and the cell

and connected to a mercury manometer to measure the pressure difference
between the high and Tow concentration streams. Both streams exited into
collection tanks and could be tapped for sample analysis. A Beckman type
“electrical conductivity cell was used to determine the concentrations of
each stream.

The transducer was driven by a power supply from a Macrosonics 500-1
ultrasonic generator capable of delivering 0-500 watts of power. The power

delivered to the transducer was measured by a Tectronix oscilloscope. Voltage
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and current probes were attached to the line between the generator and the

transducer and fed into the oscilloscope. Thus the oscilloscope displayed
the voltage and current amplitudes and the phase angle between the
voltage and current.

B. Procedure

Before a series of runs, a 23% weight salt solution was prepared
from Merck reagent grade salt and distilled water,.and inserted into the
constant head tank. The low concentration constant head storage tank
was filled to the same liquid level with distilled water.

Flow was initiated by opening the valves on the rotameters. Steady
state was assumed to have been reached when constant flow was observed.
Samples were taken from the discharge of the diffusion cell and their
concentrations determined with the conductivity bridge. The volumetric
flow rates were noted and the temperature was taken from the solutions in
the collection tanks.

Runs with the ultrasonics on both the high‘concentration side and the
low concentration side were performed. During these runs, the voltage and
current amplitudes, the wave length, and the phase angle were read off
the oscilloscope display.

C. Mathematical Analysis

For the well developed steady state flow of two streams exchanging

solute across a permeable membrane of constant width, the diffusional flux

can be defined as

dd =k .dA.AC , (1)
where:

dJ = diffusional flux across an element of area dA of the membrane

AC = difference in bulk concentrations',(cl-cz)

k = overall mass transfer coefficient as defined by Eqn.1 .
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The mass balance for the solute transferred gives

c(_h_,_f '
Lu W o G-y
Y S N R
1 Py : A4
J_H‘dAL_ J Y
l \ —————
Cﬂﬂ V2 l"‘"i C22 2
2
dd = v]dc];* V,dC, | (2)

where:

V],V2 = flow rates on sides 1 and 2 |

dC], dC2 = differential change in bulk concentration during the flow
over the area dA, and

the sign is plus for counter current and negative for co-current.

Integration of Eqn. 2 shows that for constant V1 and V2, the plots of

Jvs. Cand J vs. AC are straight Tines;

thus, | ~ﬁ2§§
ati=0 at1=1o
dJd JO

Eliminating dJ from Eqns. 1 and 3 and integrating over the total area

(hence length) for constant k, we get

JO = mass transferred/time

| = k ATAC1n (4)
whaire

ZSC]n = log mean concentration difference

53



'Oor-o NO ULTRASONICS, AMICON XM-100 MEMBRANE
— [0 NO ULTRASONICS, AMICON PM-30 MEMBRANE
o — A 800 KHZ ULTRASONICS, AMICON XM-100 MEMBRANE
© [TV 800 KHZ ULTRASONICS, AMICON PM-30 MEMBRANE
» 50 -
x A
o — A
Ky A
E ——
(&)
X v
| v
e 20
2
-
O Q
™
W
o —
- F
E _—
» 5
2
|-
@
'_
wn
()]
g
s 2l
| RN L L L Ll
| 2 5 o] 20 50 |00

WATER FLOW RATE, cc/min

Figure 3., Mass transfer coefficient vs. water flow rates with and without
the application of ultrasonics.
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1n(AC,/AC;)

Thus, knowing JO and ECM, which can be computed by noting the
solute balance on either of the two streams, and knowing AT’ the value
of the mass transfer coefficient can be determined.

D. Results Obtained in the Continuous Flow Systems

A typical set of data taken with the constant flow membrane cell is
shown in Figure 3. In these runs, the flow rate of the stream whose
concentration was high in salt content("salt side" of the cell) was held
constant and the flow rate of the distilled water stream ("water side"
of the cell) was varied from 4 - 30 cc/min. Under these conditions,
flow on both sides of the membrane was Taminar. However, the salt side
concentration and flow rate was arranged such that the principal
resistances to mass transfer occurred in the membrane and on the water side.
ff under these conditions, the membrane resistance is also much smaller
than the water side resistance, a log-log plot of the mass transfer
coefficient vs. flow rate should be linear with a slope of 1/3. The
fact that the mass transfer coefficient for the runs taken with the PM-30
membrane is always lower than that for the XM-100 membrane at the
same conditions indicate that there was membrane resistance to mass
transfer, and therefore the Tines drawn through the data points in
Figure 3 are first approximations.For the data shown, the water side of
the cell was subjected to ultrasonics. During the runs carried out with

ultrasonic irradiation, the power input to the transducer was held constant,

with the exception of the data taken using the PM-30 membrane, for which

the power level varied due to some fluctuations in the power output of the

generator.
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It is seen from the data using the XM-100 membrane that the application
of ultrasonics increases the mass transfer coefficient between 100-300% for
all conditions in this study; for the PM-30 membrane, this increase is of
the order of 350%. The fact that the increase differed with the type of
membrane used suggests that ultrasonics not only faVorab]y affects transport
of solute from a solid surface to the bulk, but also perhaps transport
through the membrane itself. This latter result is of special
significance since there is no mechanical means of enhancing mass trans-
port through a membrane. It should also be noted that,at the power levels
used thus far in this study, no membrane destruction has been observed when

ultrasonics is employed.
Further work is anticipated with the constant flow membrane cell.

Efforts will be made to delineate further the effects ultrasonics has

on the three principal resistances to mass transfer. The recently initiated
study of the effects of ultrasonic power level applied under constant

flow conditions will be continued with some emphasis given to examination

of the properties of the membrane before and after insonation. Ultrasonic
irradiation will be applied to the side of the cell in which the least
resistance to mass transfer is encountered to ascertain whether the ultra-
sonic waves propagate through the membrane. Experiments with and without
ultrasonics will be carried out at f]ow}rates in which the primary

resistance to mass transport is in the membrane itself.
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SECTION IV

Acoustically Induced Facilitated Diffusional Transport
in Membrane Ducts

This paper has been submitted for presentation at the 68th National
A.I.Ch.E. meeting in August, 1970.
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ABSTRACT

The present work considers enhancement of mass transport

in membrane ducts by superimposing a convective transport induced
by ultrasonics on a diffusional transport. As a result of the
non-linearities in the Navier-Stokes equation, time independent
secondary flow will be produced when an acoustic wave is passed
through a medium. This secondary flow which is in the form of
vortices is commonly called acoustic streaming. Between adjacent
vortices or cells molecular diffusion is the only means of trans-
port; however, within each cell, mass transport is primarily by
convection. A frequency range of 5-800 kcps in liquids and gases
was investigated for different values of acoustic and physical
variables. 1Initial results show increases in the rate of mass
transfer of the order of 150% above the normal diffusional flux.
Ultrasonics may be applied to increase mass transfer through mem-
brane systems (i.e. dialysis) and to increase the efficiency of

very active catalytic systems.
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I. INTRODUCTION

One is most always looking for new methods of increasing
the rates of heat and mass transfer in various transport opera-
tions. In particular, we are interested in this study in the
enhancement in mass transfer through membrane type ducts. The
use of ultrasonic waves as a means to achieve this goal has been
receiving ever increasing attention in recent years. Sonic and
ultrasonic waves have been found to increase heat and mass transfer
rates by several orders of magnitude in a number of situations
(Fogler (1966), Richardson(l967a), Boucher (1959), Nyborg (1965)).
The advantageous effect of acoustic waves on various tfansport
phenomena and chemical reactions has been discussed in some detail
by Fogler (1967). |

In the present work attention will be focused on the
enhancement of mass transport in gas and liquid diffusion result-
ing from acoustic streaming. Various studies have been conducted
on the effects of acoustic- and micro-streaming on heat transfer.
The majority of these studies have emphasized streaming on the
exterior of vibrating objects such as streaming around a cylinder
or sphere.

In certain limited situations heat transfer studies have
been conducted on streaming inside ducts and tubes. Complete
reviews of acoustic streaming have been given by Nyborg (1965) and
by Richardson (1967b).

As previously mentioned, in this study we shall consider
cases in which the convective streaming transport is superimposed

on the diffusive transport in diffusion in ducts and tubes in
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membrane pores. The streaming cells induced by acoustic waves
should greatly enhance the rate mass transport through the system.
II. THEORY |

Acoustic streaming is a secondary flow which produces time
independent vortices when an acoustic wave is passed through the
medium. The formation of these vortiqgs or cells inside ducts,
tubes and pores can increase the rate of mass transfer through
the enclosures. The figure below shows a sketch of these cells

in a wide membrane duct. , }
AR A A A A Sy S AN —

Between adjacent cells molecular diffusion is the only
means of mass transport; however, within each cell transport is
primarily by convection.

Before engaging in discussion-of}the coupled transport
processes, it would be beneficial to give a brief development of
the streaming equations. Starting from the continuity and Navier-

Stokes equation

(1)

1]
o

ap ,
E + V- (pu)

aégu) + p(li*V)u + uve (pu) = -Vp + [u' + ,g_u] VVeu = uVxyxu (2)

Since there is no external force other than the sound field, the

solutions to these equations will take the form
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1 2
P-P_ = ¢P. + 2P (3)
o) 1 2
—p_ = ep, + e2p2
p=p, = €0y 05

uy and w, are time dependent velocities which directly arise from
the sinusoidal movement of the transducer surface. The streaming
velocities u, and W, consist of a time independent and a time
dependent term. In this investigation we are only interested in
the time independent part of the streaming velocities. The first
order velocities give rise to increasing momentum with time in
the system; dynamic balance is restored by viscous stresses from
the second order velocities and second order pressure gradient.

Upon substitution of equation (3) into equation (1) the
fifst order approximation becomes

u; 4 |
Po 5= C Vpl - RVpl + (u' + gu)vv-ul - uVXVXul (4)

and the time average of the second order velocity u, is

po<(u11V)ul + ulV-ul> =~VP2

- uVXVXu2 (5)
It is precisely the second order velocity u, which gives rise to
the circular streaming cells.

A. Solutions to Streaming Equations for Transport in Membrane Ducts

The solution to Equation (4) in terms of first order velocity

approximation was given by Rayleigh (1895, 1945) to be

Bz

A cos kx[cos wt - e P% cos(wt - Bz)] (6)

4

B

v, = o3 sin (kx) (cos (wt - %) - e P%cos (wt - Bz - %)(7)

BV2
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Upon taking the curl of both sides of Equation (5), one obtains

nvx (V2u = -VxF (8)

2)
where

-F = po<(ul-V)ul +1¥V-ul)> (9)

With V-u2 approximately zero, one can substitute for u, in terms

of the stream function.

V2 (V3y) = UxF (10)

Upon substituting Equations 6, 7 and 9 into Equation 10, one obtains

4 2

__ 1 . __.-2n
v wz = Vi [BpokA sin 2kx] [2¢c + S-e ] (11)

4

o)

!

4, =

v wz
The solution to this equation in terms of the x and z com-

ponents of the streaming velocity
2

_ 3% . -28z _ _
U2 = o sin 2kx[e + 28-1 + 6n1(l nl)] (12)
W, = - 3kn° skx[e 2PZ + 2(s+c)-3 + 28hn, (1-n.) (1-2n,)]
2 T T gBc COS ekxle 1 1 1
(13)

B. Coupling of the Streaming and Diffusional Transport Equations

If the fluid in the duct consists of a mixture of species
and their concentrations are different at the two ends of the duct,
mass will be transferred through the duct partly by diffusion and
partly by convection. For dilute solutions, the mass transfer
equation can be coupled with the acoustical induced velocity field.

The unsteady mass balance is

o€ = _ 2
-a—t‘i'v VC = DV°C

&



with the boundary conditions

C= C0 at X =0
C = Cl at X =L
%% =0at Z =0 and 2 = h/2

The velocity, V, can be taken as the mass average velocity and D
as the binary diffusion coefficient for a dilute solution. Further,
the length of the duct L is taken as an integer multiple of m/2k.

We now substitute for V to obtain

: N2
= D(.a__g_-}- ._a_.g.
0X~ 0%

+ 0 o+, SS

3C ) 9¢
3% 17 2%z

= t+ (U

ot 1

Time averaging the equation over several cycles and neglecting terms

like o 3C1
1 xl > and <Wl 7 >

the equation simplifies to <C> = C

<U

Usg+Way = D=+ —5

Method of solution

The partial derivatives can be approximated by the following

finite difference formulas:

oc _ Gi,9-1 7 %%,5 * G gn p%c _ Ci-1,3 7 %€ ,5 * Civn g
3x° (Ax) 2 322 (A7)
ac _ Siyge1 ~ Gi,5-1 ac _ Cit1,3 ~ Ci-1,5
aX 2AX 07 2AZ
Let AX = AZ
Boundary conditions:
Ci,l = Co at X = 0 and Ci,m+l = Cl at X = L
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2,3 cl,j at 2 = 0 and Cn+l,j = Cn,j at Z = h/2 .

Q
it

i=1,2,3,....., mtl and j = 1,2,3.....,n+l

Substituting into the differential equation and rearranging yields

= -Q- i *
C, . =C, . + [(.1+Ui’j AX/2) Ci,

1,37 %5 %1 M N B

j+1

LA S AX/2)C; + (1-Wy - AX/2C; )

i+l,j - 4c; L

Ij IJ
where Q is an accelerating factor 1<Q<2. The system of linear
equations is solved by a Gauss-Seidel iteration scheme (Carnahan,

et al. 1969).

III. RESULTS

The dimensionless concentration field is plotted in Figure 1
for the case of a frequency, f, of 20 kcps, a maximum displacement
of the transducer surface, s, of 7 x 10_3 cm and a duct height, h,
of 2 cm. The increase in mass transfer for this case is 96% and
the plot clearly shows that the acoustic streaming pattern strongly
modifies the concentration field which would be present when only
diffusional ﬁass transfer was occurring. Near the two ends of the
duct, large concentration gradients are present and diffusional mass
transport will be the most important means of transport at thése
points. In the middle of the duct concentration gradients are smaller
and convection will be the primary means of transport.

In Table 1 a few representative results are given. In Figure

2 the increase in mass transfer is plotted versus the Peclet number,

. 2.2
_ transport by convection _ 3kh™A .
Pe. Pe = transport by diffusion ' P 8D ¢ » where ¢ 1s the

speed of sound, k the wave number and A the first order velocity

amplitude.
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TABLE 1

Fluid System Frequency Number of % Increase
kcps _vortex cells L

N,-0, 20 1 8.1

N,=0, 20 2 | 3.8

N2—O2 20 3 5.2

N,-0, 20 1 96.

0, in water 20 1 59.

O2 in water 100 1 145.

0, in water 800 1 59.

It is seen that at each frequency the Peclet number has to
reach a certain magnitude before any significant increase in mass
transfer can be expécted. The plot also indicates that much
higher increases in mass transfer can be expected but this could
not be investigated because of stability problems with the
numerical scheme. The present numerical technique is being modified
so as to extend our results into other regions.

The results show that by the application of ultrasonics to mass
transport processes, substantial increases in the rate of mass
transfer can be expected. Application of ultrasonics will be very
beneficial for mass transfer through membtanes when a substantial
resistance to mass transfer lies in fluid boundary layers and for
solid-fluid reactions (catalytic or non-catalytic) where the rate
of mass transfer is limiting.

Discussion
| Our initial investigation using the accepted ultrasonic streaming

equations shows increases of up to 145% in mass transfer can be
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expected when ultrasonic convective transport is superimposed
on a diffusional transport. -

In the derivation of the ultrasonic streaming equations
Nyborg made certain approximations which limit the region of
validity of the equations; the results from the initial investiga-
tion will, because of these approximations, -only be semi-
quantitative, but we would expect that the trends and the magnitude
of the mass transfer increase will be unaffected. To get accurate
results predicting the increase in mass transfer as a function of
physical properties of the fluid as well as the acoustic variables,
it will be necessary to derive more general solutions of ultra-
sonic streaming equations without making some of the very limiting
approximations made by Nyborg. This theoretical work is currently
being done. The new streaming equations will then be coupled with

the mass transport equation and solved numerically.

Iv. SUMMARY

Upon the passage of an acoustic wave through a duct, one can
observe the formation of time independent vortices. This phenomena,
which is commonly called acoustic streaming, can enhance mass
transport by superimposing a convective transport on a diffusive
transport. The differential mass transport equation was coupled
with the second order time independent streéming equations in a
rectangular membrane duct and solved by finite difference techniques.
A frequency range of 5-800 kcps in liquids and gases was investigated
for different acoustic and physical variables. The acoustic stream-

ing strongly modifies the concentration field which would be present
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when only diffusional mass transfer takes place. Regions with

large concentration gradients are formed near the two ends of

 the duct and only small concentration gradients are present in

the middle of the duct. At each frequency the Peclet number, and
thereby the first order velocity amplitude, has to reach a certain
magnitude before any significant ianease in mass transfer can

be expected. At high Peclet numbers the increase in mass transfer
is proportional to the logarithm of the Péclet number. Preliminary
results show that with the application of ultrasonics increases are

up to 150% above the normal diffusive transport.

V. BIBLIOGRAPHY

Boucher, R.M. G., "Ultrasonics in Chemical Processing," Chem. Engr.
66 (Sept. 1959).

Carnahan, B., Luther, H.A., and Wilkes, J.0., "Applied Numerical
Methods," Wiley, New York (1969).

Fogler, H.S. and Timmerhaus, K.D., "Effect of Ultrasonic Waves on
Mass Transfer Rates of Selected Fluids," AIChE 12, 90 (1966) .

Fogler, H.S., "Applications and Research in Sonochemical
Engineering," Sound and Vibration 1, No. 8, 18 (1967) .

Nyborg, W.L. in Physical Acoustic Vol. II B, pp 265-33l.
W.P. Mason, ed., Academic Press, New York (1965).

Richardson, P.D., "Heat Transfer from a Circular Cylinder by
Acoustic Streaming," J. Fluid Mechanics 30, 337 (1967a)

Richardson, P.D., "Effects of Sound and Vibration on Heat Transfer,"
Appl. Mech. Rev. 20, No. 3, 201 (1967b) .







SECTION V

Acoustic Cavitation
in Viscoelastic Fluids

This paper by Prof. H. S. Fogler and Prof. J. D. Goddard was pre-
sented at the 62nd National A.I.Ch.E. meeting in Washington, D. C., and
has been accepted for publication in the Physics of Fluids.







ACOUSTIC CAVITATION IN VISCOELASTIC FLUIDS

As previously mentioned the overall objective of this research is
to utilize ultrasonic waves to accelerate kinetic and mass transport
phenomena in biological type systems. Preliminary results, both the-
oretical and experimental, have shown that substantial increéses in
mass transfer can be brought about by u]trasenics. With the applica-
tion of acoustic waves to biological systems, one must be sure that the
wave conditions are properly adjusted so as not to induce any harmful
side effects to the tissue and body fluids. In some cases, acoustic
cavitation could degrade these materials if it is induced beyond a cer-
tain level. It is known that various biological fluids behave as visco-

elastic 1iquids [Trans. of the Soc. Rheology 9, Part 1, p. 448 (1965)].

Consequently, a brief and preliminary investigation was undertaken on
cavitation in viscoelastic fluids to determine whether the degrading
effects of cavitation could be accelerated or retarded in this fluid

type. As a result of the complexity of the problem, only a few Timiting
cases were studied. These cases were chosen such that if they showed

the cavitation process was unaffected by the elastic effects in the liquid,
then the other situations would in all probability show the same results.
The paper which follows was presented at the 62nd Annual A.I.Ch.E. meeting

and has also been accepted for publication in the Physics of Fluids and

concerns the collapse of a spherical void in a viscoelastic fluid. These
preliminary results show that the elasticity can significantly retard the
collapse process and certain situations produce damped oscillatory motion
of the cavity rather than the usual catastrophic collapse observed in

purely viscous liquids. Since first results show viscoelasticity could

™



-2-
quite significantly retard material and fluid degradation, we have out-
Tined a program for further study in this area in our recent proposal

to NIH for continued support on this project.
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ABSTRACT

An analysis 1is given of the collapse of a spherical
cavity in a large body of an incompressible viscoelastic
liquid. Proceeding from a linear rheological model for the
liquid, one obtains a non-linear integro-differential equa-
tion for the motion of the cavity. Analytical solutions
are derived for certain limiting values of the parameters
governing collapse, and some numerical solutions are pre-
sented for various other values.

As one of the more interesting results of this work,
it is found that elasticity in the liquid can significantly
retard the collapse of a void and produce prolonged, oscilla-
tory motion whenever the relaxation time of the fluid 1is
moderately large in comparison to the Rayleigh collapse time.
This is in sharp contrast to the catastrophic collapse which
will always occur for voids in purely viscous liquids. Both
numerical and approximate analytical solutions are presented
to demonstrate the damping effect of liquid viscosity on the

cavity motion.
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1. INTRODUCTION

The term cavitation usually refers to the phenomenon
of growth and collapse of flow-induced voids or vapor bubbles
in liquids. The effects resulting from cavitation are known
to produce metal erosion, luminescence, and increases in

£l

various chemical reaction rates.

In the previous works on this subject, attention has
been restricted mainly to classical liquids. The earliest
theoretical treatment is apparently that of Lord Rayleigh
( 1 ), who considered the collapse of a spherical void in
an inviscid liquid. In later theoretical works, attempts
have been made to account for viscous effects in both the
bubble phase and in the surrounding liquild, and most of the
analyses have dealt with Newtonian (Flynn, 2 ; Plesset, 3 ;
Fogler, 4 ) or purely viscous fluids (Yang, 5 ). An
interesting question arises as to the effects that elasticity
might have on cavitation in viscoelastic liquids. 1In other
contexts, it has been observed that the presence of elasticity,
such as that produced by addition of small amounts of high
polymers, can drastically change the flow behavior of liquids.
Hence, one might well inquire as to the possible and, perhaps,
beneficial effects of viscoelasticity on bubble collapse, such
as suppression or reduction in the intensity of cavitation.

An analysis of bubble growth in viscoelastic fluids
has already been given by Street ( 6 ), but, because of
the épplications contemplated in his analysis, inertial

effects were neglected. It is precisely these effects,
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however, that tend to predominate in the collapse phenomena
usually associated with cavitation. This provides part of
the motivatidn for the present work, in which we shall focus
our attention primarily on the collapse of spherical voids,
regions containing no gas) in an idealized viscoelas-

(i.e.,

o

tic fluid.

We recall that previous studies have shown that col-
lapsing cavities which contain permanent gases will generally
always rebound short of actual collapse, such that the cavity
radius never actually decreases to zero. On the other hand,
a void will generally always collapse to zero radius,at least
.in purely viscous fluids. It is therefore interesting to
reconsider this question of rebound versus complete collapse
for the case of a void in a viscoelastic fluid.

2. EQUATIONS OF MOTION

We wish to treat here the motion of a spherical bubble
contained in a large body of an incompressible liquid. Ini-
tially at time t = 0 the system is at rest, with a bubble
radius RO and a uniform pressure PO. It has been previously
(Flynn, 2 ; Plesset, 3 ') shown that the equation for
the spherically symmetric motion for a bubble,in which there

is no condensation or evaporation of fluid,'can be reduced

to ‘ @

R-R + (3/2)R° = %0 _ s\ o ar (1)

where (V . t1)_ denotes the radial component of V . 1, the
s r M ~

w
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divergence of the deviatoric or "extra" stress for the liquid
phase, and r = R(t) is the radial position of the bubble-

liquid interface, with Pz and PO denoting the pressure in

the liquid at r = R(t) and r = », respectively. The dots
denote derivatives with respect to t, and p is the liquid
density.

Irrespective of the fluild rheology, the radial velo-
city at any radial position r in the liquid is required by
continuity , incompressibility, and the assumed symmetry

to be

u = —= (2)

By the usual force balance at the bubble-liquid interface
in the cavity, the term P2 in (1) can be expressed in terms

of surface tension and the radial stresses as

- 20 (3)
Trr,g + Pg PR + Trr,z + R

where g refers to any gas which may be present in the cavity
and % refers to the liquid phase.* Since neither surface
elasticity nor viscosity are considered in this analysis,
the surface tension force is given by the static surface

tension o.

* As in Fogler ( 4 ) we adopt here the sign convention of
Bird, Stewart, and Lightfoot for the stress tensor: The
symbol T (or 1 denotes the deviatoric stress tensor rec-

“koned as a comp%e551ve stress (7).
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For bubbles containing an ideal gas in a uniform
state the gas-phase stress at the bubble surface is equal

to the pressure alone; hence Top g = 0 (Fogler, 4 ), and
]

the liquid-phase interfacial pressure is given by

P:P_?—q-—"[ i (u)

Furthermore, the term (z + 1)_ which occurs in (1) can be

u)I’

written in terms of three normal stresses as

T
21 (T, + Tan)
_ rr rr [uf 00
E)r ==3r T 7 ° r 3 (5)

(y -
and, since the sum of these deviatoric stresses is by defini-
tion zero, one can express the g and © stresses in terms of

the radial stress as

+ T, = -1 (6)

Too [l rr o

which with (5) yields

T T

(Ve * 3T ()

Then, upon substituting (4) and (7) into (1), one obtains

the equation o

R'R + 3 R°= &£ 0_20.J rr (8)

f67 the bubble radius R(t). In order to complete the descrip-
tion of motion, we must now relate the liquid-phase radial

stress TPP to the bubble motion.
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In the case of a general viscoelastic fluid exhibit-
ing long-range memory effects, the stresses will depend on
the past history of strain or rate of strain. Eor the simple,
radially symmetric flow field considered in Eqn. (2), the
strain consists merely of an unsteady simple extension. Hence,
we expect that for an isotropic material the instantaneous
radial stress Trr(t) can be expressed as a functional on the
past history of the radial strain rate err(t'), 0S5t S t,
Here, as iﬁ the following analysis, t = 0 corresponds to the
beginning of the collapse process, where we assume the liquid
to be in a completely "relaxed" state of purely hydrostatic
stress.

As with other analyses involving viscoelastic fluids,
we must now postulate a relation between the strain and the
kihematic history of the motion to be considered, and, for
this purpose, we adopt the usual material coordinates. Thus,
we let r' denote the position at past time t', 0 £ t' = ¢,
of a particle which is at position r at the present time t,
so that,with the velocity field given by Egn. (2), we have

(r)3 =23+ B3y - RI1). (9)
Now, at any position (r,t) the radial deformation rate is
given by ‘
ou 2iRR2

err(r,t) = 5}- = - r3 N ‘ (10)

and, therefore by (9) and (10), the history of the deforma-

tion rate 1s determined by
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2R(t') Ro(t') , (1)

(t',r') = -
r3 + R3(t') - R3(t)

e
rr

For the present work, we shall employ a rather sim-
ple, linear viscoelastic fluid model, in which the normal
radial stress is related to the corresponding strain rate
by t .

= - -t ! 1 1
Trr(t) 2 N(t-t') err(t )dt | (12)

0
where N(t) is a "memory" function or relaxation modulus.

On combining (11) and (12) we have
t

. 2
N(t-t') R(t') RT(t') dat!
= ’ (13)
rr r3 + R3(t') - RI(t)

=]
|
=

and the integral in equation (8) becomes

0 t ©
Trro,. 4 N(t-t') R(t') R(t')dt'dr
3 r(rd + R3(t1) - R3(t))
R o¥R

N(t-t') R(t') R(t')1n(R(t')/R(t))dt"
3 3 (14)
R(t') - R7(t)

0
Under these restrictions the complete equation governing

the collapse of a cavity is the non-linear integro-differ-

ential equation:

P -P
32 _ g 0 20
R*R + 3R = ,5_5___ - R
t
S22 N(t-t') R(£") RE(£')In(R(¢')/R(E))dE'  (15)
P R3(¢r) - R3(¢)
O



For the purpose of the analysis to follow we shall
adopt an elementary form of the relaxation modulus N, con-
sisting of linearly viscous or "Newtonian" contribution and

"Maxwellian" contribution, as follows:
N(t) = u & (t) + Goe't” , (16)

where § denotes the delta function, p a constant viscosity,
A a relaxation time, and GO an elastic modulus.

In terms of dimensionless variables, (15) becomes

312 _ g 0 2 Mi
Vet 5V = - -
2 P NWew NRew

0
t# Cg
12N (E*-t,) \ [ V¥ In(¥,/¥)
- EL5 [exp<_ 1 ) i——at, A
Re d De Lo

with ¢(0) = 1 and @(O) = 0, where

A %
NDe =I5 (A Deborah number ),
Gotc
Npp, = . (An elastic number),
2
e
Npe = ﬁ?’ (A Reynolds number),
c
N PR
We = *_% (A Weber number), .
tc o '
and Y = R/R,, t* = e/t ¥y = w(ty).
Also, t, = Ro"%_ is a characteristic ("Rayleigh") collapse
o)

time, with Po being the initial pressure. In this manner
one can readily identify the relevant physical parameters

characterizing the collapse process.

In view of the number of parameters, even in this
relatively simple model, one is practically forced to consider
some special limiting cases Where certaln effects may be assumed

?

* Reiner ( 8 ), Metzner et al. (9 )
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to predominate. Thus, we focus our attention first and fore-
‘most on fluids with long relaxation times, corresponding to
NDe+ ©, Here, as in the remainder of the analysis, we shall
consider only voids,such that Pg = 0 in (17).

3. COLLAPSE CRITERIA AT LARGE DEBORAH NUMBERS

3.1 Large Reynolds Number

To begin with, we treat the case where both the Deborah

and Reynolds numbers are large. In this limit, NDe* ©
NRe* o, the fluid behaves essentially as a purely elastic
material, and one obtains in effect a "conservative" dynamical
process characterized by an energy integral. Considering
first the case where surface tension is negligible, Nwe+ ®,

and reverting to dimensional variables, one has for the equa-

tion of motion,

.. 3 12 o q
‘R + R = - — - = 18
R 5 5 5 (18)
where R 5 1
-1 R;” 1n (Rl/R) dR; ol . In s i
0 3 3 3 70 s -1 :
Rl - R

3
R, (329
R

On multiplying equation (18) by oR? o dR and integrat-

ing, we obtain R

o R°R3 = 2 PO(RO3 - R -2 GR® 4R . (19)

w

One will immediately recognize that this equation

is an energy integral, with the left-hand side representing
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the total kinetic energy of the liquid, which is expressed
as the difference between the stored elastic energy and the
work done by the ambient pressure. Rebound short of collapse
is therefore possible and will occur at a "rebound" radius R,

which is the root of the equation

R
2 3 3 2 -
3 Po(Ry® - R7) -2 S GR® dR = 0, (20)
R
(@)

. corresponding to zero kinetic energy in (19). With the sub-
stitution into (18)
y = 1/s, 2z = (R/Ro)3

3

the integral in (20) can be written as
z X
8R3 o
2 _ 0O 0 1n
GR" dR = —5 S; f; (T=7)y dy dx, (21)
1 1

which, after changing the order of integration, can be ex-

R

fu o
1}
n

R
¢

pressed as the infinite series

8R> ¢ = n
H = —8‘5“0' (1-z) E (—:—gl- - -g- (1n 1/2)° (22)
n=1
Thus (20) becomes
P o n |
o _ 4 (1-2) (1n (1/z))2
G;‘?Z“‘n‘e—""z 2 (I-z) |° (23)
n=1

which provides the criterion for rebound, giving the rebound

radius R = R* = Rozl/3 as a function of PO/GO.
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In the "marginal" case, that is, rebound at R = 0,

we have

P = 2 |
o it 1 2m

o _ 2 E — = £ = 2,1932 ... (24)
Go 3 ne 9

n=1

from (23), and therefore the condition for collapse without
& Bl

rebound is

P 2
> =5 (25)

“l
o (o
\O

whereas, for rebound short of collapse, R¥ > 0, we must have

o 21 (26)

In the latter case, equation (23) provides us with a
plot of rebound radius R*/RO versus the ratio of initial
pressure to elastic modulus, PO/GO, which is displayed as
the lower curve in Figure 1.

If we consider the case of a finite Weber number, where
surface tension 1s included in the equation of motion, the
criterion for collapse is no longer independent of the initial
bubble radius. By an analysis similar to that above, one

can show that the condition now becomes

— 0 , 2 (27)

instead of (2%). From this relation one sees that surface

tension effects will tend to be important only in small bubbles.
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We should like next to determine the importance of
viscous retardation on the collapse process, corresponding
to a finite Reynolds number in (17). Whenever Npo and Np
are finite, the system is no longer conservative and, hence,
does not in general admit an energy integral like (19). We
are thus forced to treat (17) with numerical techniques,
as will be discussed below. First, waever, it is worth-
while to note that for infinite Deborah numbers a cavity is
characterized by a certain "equilibrium" radius Req’ as de-
termined by the static balance between pressure, surface
tension, and elastic forces. One can easily derive an expres-
sion for this radius, and, considering the case of negligible
surface tension NWe = o, one finds from (20) that the

condition of static equilibrium is

0o

P - n
59 = %. ‘:E: Lli%l— + % (1n z)° ) (28)

° n=1

with Req = Rozl/3. The upper curve in Figure 1 gives the
corresponding plot of Req/Ro versus PO/GO. This curve is

of course independent of the Reynolds number, since it refers
to a static situation.

For the purposes of obtaining the numerical solu-
tions, a finite-difference technique was employed to treat
eqn. (17). In particular, a modified Milne "four-point pre-
dictor" formula was used, and the numerical solutions thus
obtained were compared for accuracy with existing numerical

solutions for bubble collapse in ordinary liquids(Flynn, 2 |,

Fogler 4 ). In all cases, the solutions were the same.
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3.2 Finite Reynolds Number - Viscous Damping

Figure 2 gives a plot of cavity radius versus time
for infinite NDe and NWe' The cavity 1is seen to oscillate
about an equilibrium radius subject to viscous damping which
increases with NRe-l‘ Under these circumstances, one would
expect to observe "critical" damping below some threshold

value, NRe , say, which we shall refer to here as the "criti-
c
cal’™ number.

To obtain an estimate of this number, we shall make
use of the techniques of linear stability theory. Thus,
letting we represent the dimensionless equilibrium radius

and w"a small perturbation about this radius, we have
b=t v <<y (29)
e ’ e '

Then substituting Equation (29) into the equation of motion
(17) and neglecting terms of the second order in W’, we ob-
tain the corresponding linearized equation for a collapsing

void, which in the case of infinite Weber numbers becomes

r u" 3G ’,
V¥ - 1+ N—L—Req}e + 12 [6() + 5| v1=0 (30)

e

Since 12 G(we) = 1 by Equation (18), the preceding equation

becomes 3
.. ‘p b | In(¥e) ’
4 + __L‘L__a - .P__._O. (lp )2(1 _ 11}3) v N 0, (31)
NRe(we) o e e
or, simply, A
v+ op” 4 el =0, (32)
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where b and c¢ are constants. In the usual way, it can be
seen that the oscillation of the cavity will be critically
damped whenever b2 = lc. With the appropriate wvalues of
these constants from Equation (31), this criterion becomes
3
PO 1 - Ve

2 o
N = N = (33)
Re Re_ G, wg 1n(1/\p2)» s

which on rearrangement and making use of the definition in

(17) becomes 3
1 -9

N, N_. = £ (34)
oo B 92 md)

Since the equilibrium radius corresponding to Ve
is determined by PO/GO, we may express the critical Reynolds
number as given by Equation (34) in terms of PO/Go or, alter-
natively, in terms of we' In the latter case one obtains
a plot of the critical Reynolds number as a function of the
equilibrium radius as shown in Figure 3.

A physical interpretation can be given to the shape
of the curve in the following way. Near Yo = 1 where the
elastic force 1is, relatively speaking, not very large, a
greater viscous force is required to damp oscillations as
~the cavity approaches its equilibrium radius. However, when
we is only slightly less than unity (e.gu Yo = .7 as in
Figure 2), the elastic force, which increases rapidly in
a non-linear way, exerts a greater degree of retardation
on the motion, and consequently a smaller viscous force is

necessary for critical damping.
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Owing to the method of derivation, the present expres-
sion for the critical-Reynolds number, at which cavities
move from their initial radius to their equilibrium radius
on a critically damped path, can be regarded as strictly
valid only for cavities in which we is close to unity. For
cavities with equilibrium radii close to zero, the departure
from equilibrium ¢, at the initial statey = 1 is effectively
much greater than the equilibrium ratio we’ and hence the
above linearization technique cannot provide an adequate
description of the cavity motion from ¢ =1 to ¢ = we.
One notes, however, that for an equilibrium radius ratio
of .74, the critical Reynolds number obtained from Figure
3 is 1.25, and from Figure 2 it is observed that for this
value of the Reynolds number the cavity does indeed approach
equilibrium in a critically damped way. Thus, the lineariza-
tion is evidently valid in this range.

In general, one might also use Figure 3 to determine
the Reynolds number at which critical damping occurs when
the equilibrium radius is shifted from some value we to a
second value, ﬁé, say, by a change in the total pressure.
In this case, one would use $e in Figure 3 to find NRec'
This prediction of the damped shift would be valid irrespéc-
tive of the magnitude of ¥, provided only that|y, - $e| < Y.

Fof large but finite Deborah numbers, Figure I shows
the numerically computed motion of the cavity. One observes
complete collapse for PO/Go = 100, with a collapse time very
neérly equal to the Rayleigh collapse time for an inviscid,

non-elastic liquid. Furthermore, it is evident that for the
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case NDe = 1000 shown there, the motion on the first few cycles
is effectively the same as for NDe = o, Also, it can be observed
that the Reynolds number has a significant effect on the initial
motion only when it is numerically on the order of magnitude
of ten or less. DBecause of the greater energy dissipation
at the lower Reynolds numbers, it appears that the rebound
radius decreases with the increasing Réynolds numbers.
4. COLLAPSE AT SMALL DEBORAH NUMBERS

While it is evident that for any finite Deborah num-
ber a void must eventually collapse to zero radius, it is
nonetheless of interest to investigate how collapse is de-
layed by the elasticity of the fluid. 1In particular, we may
consider the first cycle of motion, as in Figure 5. For a

given PO/G the rebound radius on the first cycle decreases

o?

with decreasing Deborah number as shown there. If the fluid

is'inviscid"(NRe = o) the "critical" Deborah number at which

the cavity collapses completely on the first cycle is .51

for a PO/Go ratio of 1.43, whereas for a finite Reynolds

ﬁumber the cavity no longer collapses on the first cycle

at NDe = .51, but instead rebounds as shown in the figure.
For various cases, the numerical solutions were

'carried out for several cycles of the motion, and some of

the results are shown in Figure 6. One observes in this

figure that for a Deborah number of 2/3, the cavity collapses

in approximately three major cycles. One also notes that

the maximum radius reached after each rebound decreases in

én élmost linear fashion for the first few oscillations

when NDe = 1. The "modulation" within the later cycles
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and the exact radius values in final stages of collapse are
uncertain at this time, since numerical integration difficulties
were encountered at long times. (The longest time shown
represents some thirty to forty minutes of IBM 360 computation
time for a single run).

5. CONCLUSIONS

The results of the preceeding analysis indicate that
elastic effects may well have a strong influence on cavita-
tion in viscoelastic liquids. We should certainly expect
such effects to occur at high Deborah numbers X/tc, where
the relaxation time A of the fluid is long compared to the
classical Rayleigh collapse time tc.

In particular, for the Maxwellian liquid considered
here, the present analysis shows that in the limit of large
Deborah numbers, )\/tC > o é spherical void may either col-
lapse or undergo oscillations about an equilibrium radius,
depending on whether the ratio of ambient pressure to the
elastic modulus of the fluid exceeds a definite, critical
value. The presence of viscosity in the fluid tends to damp
the oscillations, and a critical-damping phenomenon occurs
for Reynolds numbers below a certain value.

Even for finite and moderate Deborah numbers, >\/tC
= 0 (1), the ultimate collapse of a void is delayed for
several cycles of expansion and contraction.

Although we have not considered in detail the pos-
sible effects of gases or vapours in the collapsing cavity,

we should not expect such effects to greatly alter the role
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of liquid elasticity in the collapse process. In fact, one
might reasonably anticipate that the combined effects of
volume elasticity in the gas and shape elasticity in the
liquid would reinforce one another in such a way as to re-
tard or completely suppress the collapse of bubbles.
From the results of previous studies of gas-filled bubbles
in Newtonian fluids, we might also exiect that, in many in-
stances, the effects of liquid elasticity would be important
at a much earlier stage in the collapse process. In such
cases, the build-up of the liquid-phase momentum, which
gives rise to catastrophic collapse, would be greatly sup-
pressed.

In addition to any experimental work which may be
suggested by the present study, it would also be of some
interest to investigate theoretically the hydrodynamic sta-
bility of the spherically-symmetric motion of cavities col-
lapsing in viscoelastic liquids. While one might be tempted
to employ a somewhat more refined rheological model for the
liquid, this would probably lead to rather difficult analy-
tical and computational problems, without necessarily pro-
viding much additional insight on the physics of the col-

lapse phenomenon.
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1

e, radial strain rate, Sec”

GO an elastic modulus, dyne/cm2
G defined by Egn. 18

H defined by Egn. 21

Npe a Deborah Number

NEL an Elastic Number

NRe a Reynolds Number

NWe a Weber Number

N(t) memory function, gm/cm/sec2

n integer

P pressure, dyne/cm2
"R radius of the cavity wall, cm.
Ry cavity radius at some previous time, cm.
R0 initial cavity radius, cm.

r radial coordinate, cm.

u velocity, cm/sec.

t time, sec.

tc modified collapse time, sec.

X dummy variable

z (R/R)>

Subscrigts

c critical

g gas

L liquid

e equilibrium radius

1 refers to a previous time

Greek Symbols

yo dimemsionless cavity radius R/R0
2
Tii normal stress, dyne/cm
g surface tension, dyne/cm
_ 97



§ (1)

liquid density, gm/cc
relaxation time, sec.
viscosity, gm/cm/sec.

delta function
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Figure 1. The initial rebound radius and equilibrium radius as a function of
PO/GO. The middle curve was computed from Eq. (17).
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Figure 3. The "critical" Reynolds number as a function of the equilibrium
radius.
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