Energy Levels and Transition Probabilities in Doubly-Ionized Erbium (Er III)

Jean-François Wyart,¹ Jean Blaise,¹ William P. Bidelman² and Charles R. Cowley³

¹ Laboratoire Aimé Cotton,* Bât. 505, CNRS II, Centre universitaire, F-91405, Orsay, France

² Department of Astronomy, Case Western Reserve University, Cleveland OH 44106-7215, U.S.A.

³ Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1090, U.S.A.

Received January 15, 1997; accepted in revised form March 19, 1997

PACS Ref: 3220J, 9730

Abstract

The spectrum of Er III reported by Becher (1966) was reanalysed with the support of new predictions of energies and transition probabilities. The number of energy levels was increased from 45 to 115, including two levels of $4f^{11}7s$ and the levels ${}^{3}F_{3}$, ${}^{3}F_{2}$ and ${}^{1}G_{4}$ of the ground configuration $4f^{12}$. All 470 classified lines are reported with transition probabilities for most of them. Several of these lines had not yet been attributed to Er III in the spectrum of the star HR465.

1. Introduction

The initial steps in the analysis of doubly-ionized erbium have been summarized in 1978 in the critical compilation by Martin, Zalubas and Hagan [1] and are briefly recalled here. The main features of Er III had been published by Spector, who reported 137 lines classified by 45 levels including the lowest ones of 4f¹², 4f¹¹6p, 4f¹¹6s and 4f¹¹5d [2]. A few corrections and additions resulting from parametric studies of $4f^{11}(5d + 6s)$ [3] and of $4f^{11}6p$ [4] were taken into account in [1]. After 1978, the even levels of Er III were used in a global interpretation of the $4f^{N}(5d + 6s)$ configurations, but no extension was attempted in the classification [5]. The need for new spectroscopic data in the spectral interpretation of chemically peculiar stars is an incentive for resuming studies in doubly-ionized lanthanides. The first analysis of Dy III was achieved recently [6] and a brief summary of related problems was given in [7]. Moreover erbium is already known to contribute to more than 300 lines in the spectrum of the chemically peculiar star HR 465 [8].

The only available data for extending the analysis of Er III are in the dissertation by Becher [9] which had been kindly put at our disposal by H. M. Crosswhite when Er I and II were analysed [10]. The included linelist comprises about 3800 wavelengths from 2036 to 8725 Å which are reported with intensities in three excitations (microwave discharge, d.c. arc and mild spark). We had noticed already that, in spite of these intensity comparisons, the ionization assignments of [9] were partly erroneous in the long wavelength region. Nevertheless the wavenumber accuracy was good enough for energy level searching as it has been proved by Becher himself who first classified some of the strongest 6s–6p transitions and by van Kleef who found the ${}^{3}H_{4}$ level of $4f^{12}$.

2. New energy levels

We used the computer codes of Bordarier, Bachelier and Sinzelle [11] and those by Cowan [12] for calculating the energy levels in the Slater-Condon approach and for deriving transition probabilities from the eigenvectors in intermediate coupling. The transition probabilities were used as a guide for finding new levels. They compare fairly well with the observed intensities if the comparison runs on a limited range of wavelengths due to at least two facts. Intensity estimates are generally not corrected from plate sensitivity factors and Becher's observations span from ultraviolet to near infrared. The transition probabilities agree better with the intensity figures of Spector, but the linelist of [2] reports classified lines only which limits the comparisons.

The coupling conditions $[(4f^N \alpha S_1, L_1)J_1, nlj_2]J$ are wellobeyed in 4f¹¹6s and 4f¹¹6p and, due to selection rules, the levels cannot be found from many transitions. This is not true for 4f¹¹5d which is far from LS and from $(\alpha J_1, j_2)$ conditions, according to the results of the present theoretical studies.

Only four levels of the ground configuration 4f¹² had been reported earlier. Three new levels, ${}^{3}F_{3}$, ${}^{3}F_{2}$ and ${}^{1}G_{4}$, were found from their strongest predicted transitions with 4f¹¹5d and they classify now 24 lines in Table I. The fine structure of ³H and ³F intervals are only slightly larger in Er III than they are in 4f¹²6s² of Er I, which is a usual situation for lanthanides. A total of seven levels made it possible to derive the energy parameters of 4f¹² with limited constraints. All effective parameters α , β , γ of the linear correction for far configuration interaction $\alpha L \cdot (L+1) + 10\beta G(R7) + 12\gamma G(G2)$ were fixed as well as the ratio of electrostatic parameters E_1/E_3 . This led to predictions for the 6 missing levels. The lowest of them $({}^{1}D_{2})$ is expected near $24\,900\,\mathrm{cm}^{-1}$ and its determination should not be possible without further observations of the spectrum.

The upper even configuration $4f^{11}6p$ is accurately interpreted with the same Hamiltonian as for other $4f^{N}6p$ configurations of doubly-ionized lanthanides, configuration mixing effects being taken into account by α , β , γ , and by the correction $\alpha_{TOT}L \cdot (L+1)$ which is equivalent to a Slater-

^{*} The laboratoire Aimé Cotton is in association with Université Paris-Sud.

type parameter $F^{1}(f,p)$ [13]. The r.m.s. deviation for 35 levels (21 cm⁻¹) is worse than it was in the first study which involved 18 levels built on $4f^{11} \, {}^{4}I_{15/2, 13/2, 11/2}$ only. Nevertheless it is established now that the predicted levels of [4] were about $80 \, \text{cm}^{-1}$ too low for $4f^{11}({}^{4}I)6p$ and $250 \, \text{cm}^{-1}$ too low for $4f^{11}({}^{4}F)6p$, which illustrates the difficulties of parametric studies performed with few levels. It is remarkable that all the known levels have (J_1, j_2) first components larger than 50% and that all (J_1, j_2) multiplets given in Table II are separated in energy.

In the odd parity both the flatness of some J-j multiplets and the overlap of 4f¹¹5d and 4f¹¹6s made some difficulties in the identifications, "forbidden" 4f-6s transitions being obviously present. A few undeterminacies of J-values were removed with the support of the computed transition probabilities, the calculation of which progressed in parallel with the classification. It is seen from the total percentages of 4f¹¹6s components in the eigenfunctions of levels given in Table II, that at least four couples of 4f¹¹6s and 4f¹¹5d levels mix significantly. This explains the well-defined value of the interaction integral $R^3(4f5d,6s4f)$: $2879 \pm 297 \text{ cm}^{-1}$ reported in Table III with other parameters, the direct integral $R^2(4f5d,4f6s)$ being loosely defined and eliminated. From the coefficients of the R^3 parameter in intermediate coupling, the shifts pertaining to this interaction were evaluated. They nowhere exceed 215 cm⁻¹ which is large with regard to the r.m.s. deviation of the present study (35 cm^{-1}) but keeps 4f5d-4f6s a small interaction in comparison with others in the lanthanides (for example 5d²-5d6s or 5d6p-6s6p). In Table III, the parameters which describe far configuration mixing effects on the terms of $l^{N}l'$ (D^{3} , Y^{2} , Y^{4}) are the direct and exchange "forbidden Slater parameters" giving according to the definitions of [12] and α_{TOT} is equivalent to D^1 .

Transitions with upper levels above $79\,000\,\mathrm{cm^{-1}}$ classify weak lines and the correspondence between levels and theoretical energies become ambiguous. For this reason, the odd levels reported in Table II in the range $41\,000-50\,000\,\mathrm{cm^{-1}}$ are attributed qualitative designations only. A successful attempt was made to locate the transition array $4f^{11}({}^{4}I_{15/2})7s-4f^{11}({}^{4}I_{15/2})6p$ and the intensity pattern of the seven classified 6p-7s lines fit very well to the theoretical gAvalues. Owing to the very regular trends of the 6s-7s electron jump along the lanthanide period already used in [14], there is no need revising the ionization energy predicted by Sugar and Reader.

3. Classified lines and transition probabilities

The classified lines in Table I are reported with transition probabilities gA calculated by means of [12] in three separate studies of the arrays $4f^{11}6p-4f^{11}7s$, $4f^{12}-4f^{11}5d + 4f^{11}6s$, $4f^{11}6p-4f^{11}5d + 4f^{11}6s$. Cut-off values of gA were chosen to keep about the 1500 strongest lines in the latter array. It explains that some gA values given for 4f-5d transitions are smaller than the discarded gA values of 6s-6p transitions, the radial dipole transition integrals being (in a.u.) (4f |r| 5d) = 1.123, (6p |r| 6s) = -3.271 and (6p |r| 5d) = -2.776.

The 482 reported transitions correspond to 470 lines, but for several of the 12 doubly-classified lines, the gA value should indicate the dominant transition. The average deviation between the measured wavelengths and those derived from the energy levels is 0.004 Å. Some large discrepancies occur for very strong transitions to the ground configuration.

4. Er III in stellar spectra

The third spectrum of erbium is known to be present in the spectra of chemically peculiar stars of the upper main sequence. Aikman, Cowley and Crosswhite [16] find Er III by coincidence statistics in four of five stars with third spectra of the lanthanides. It is probably present in the fifth star as well. HR 465 at the time of its rare earth maximum is particularly well suited for line identification work because of the sharpness of the spectral lines. Moreover, Bidelman's [8] plates have unusually good coverage in the near ultraviolet.

The present analysis has resulted in some thirty modifications of the published identification list for Er III. These changes range from an indication that a previously observed laboratory line is now classified, to entirely new identifications of stellar features. The changes will be incorporated in the electronic list available from the University of Michigan (CRC's home page). They are listed in Table IV.

An open question is described below. The transition between the ground level $4f^{12} {}^{3}H_{6}$ and the third level with J = 6 in $4f^{11}$ 5d, named $({}^{4}I_{13/2}, d_{3/2})$ is predicted at 3638.977 Å. It is lacking in both laboratory linelists [2, 9] although its probability is high. The corresponding line in the $4f^{12}6s^2-4f^{11}5d5s^2$ transition array of Er I, where the $6s^2$ closed shell does not change the coupling conditions for the lowest multiplets, occurs at 6221 Å. It is the strongest Er I line observed above 5827 Å according to [15]. In the spectrum of HR 465 [8], an intense (I = 5d?) unassigned line at 3639.01 Å fits the Er III expected wavelength. For clarifying this point, and for resuming the search for Er III levels on better grounds, new laboratory observations are needed.

Acknowledgements

The authors are indebted to H. M. and H. Crosswhite who kindly provided them with the linelists needed in this study. The first authors are grateful to A. Bachelier and J. Sinzelle who enable them to perform the parametric calculations of Er III at the C.R.I. computer centre of Paris-Sud university. The revision of lanthanide spectra for plasma diagnostic purposes is part of a project supported by the Scientific and Environmental Affairs Division of the North Atlantic Treaty Organization (Grant CRG930793 acknowledged by the first authors.

References

- Martin, W. C., Zalubas, R. and Hagan, L., "Atomic Energy Levels The Rare-Earth Elements", NSRDS-NBS 60 (1978).
- 2. Spector, N., J. Opt. Soc. Am. 63, 358 (1973).
- 3. Wyart, J.-F., Blaise, J. and Camus, P., Physica Scripta 9, 325 (1974).
- Wyart, J.-F., Koot, J. J. A. and van Kleef, Th. A. M., Physica C77, 159 (1974).
- 5. Wyart, J.-F. and Bauche-Arnoult, C., Physica Scripta 22, 583 (1981).
- Spector, N., Sugar, J. and Wyart, J.-F., J. Opt. Soc. Am. B14, 511 (1997).
- Wyart, J.-F. in Proceedings of "Laboratory and Astronomical High Resolution Spectra", (Edited by A. J. Sauval, R. Blomme and N. Grevesse) A.S.P.C. Conf. Series, vol. 81, pp. 182-95 (1995).

- Bidelman, W. P., Cowley, C. R. and Iler, A. L., "Wavelength Identification in the Magnetic C.P. Star HR 465", Publ. Obs. Univ. Mich., vol. XII No. 3 (1995).
- 9. Becher, J., Thesis, Johns Hopkins Univ., Baltimore 134pp (1966).
- 10. van Kleef, Th. A. M., Koot, J. J. A. and Wyart, J.-F., unpublished analysis (1975) quoted in [1].
- 11. Bordarier, Y., Bachelier, A. and Sinzelle, J., Chain of Programs AGENAC, ASSAC, DIAGAC and GRAMAC, unpublished, Orsay (1980).
- 12. Cowan, R. D., "The Theory of Atomic Structure and Spectra" (Univ. of California Press, Berkeley 1981) and computer codes.
- 13. Wyart, J.-F., J. Opt. Soc. Am. 68, 197 (1978).
- 14. Sugar, J. and Reader, J., J. Chem. Phys. 59, 2083 (1973).
- 15. Meggers, W. F., Corliss, C. H. and Scribner, B. F., "Tables of Spectral Lines Intensities", NBS Monograph 145 (1975).
- Aikman, G. C. L., Cowley, C. R. and Crosswhite, H. M., Astrophys. J. 232, 812 (1979).

Table I. Classified lines of Er III. The successive columns are: (1) the air wavelength λ_{exp} (in Å) from [9] unless indicated, (2) the intensity, (3) the vacuum wavenumber (in cm⁻¹), (4) the difference $\lambda_{exp} - \lambda_{RITZ}$, λ_{RITZ} being calculated from the levels, (5) the even energy level E° , (6) the quantum number J° , (7) the odd energy level E° and (8) the quantum number J° , (9) the labels of both levels as given in Table II (a condensed physical designation), (10) the transition probability gA (in s^{-1}), g being the statistical weight of the upper level; an eventual note is explicited at the end of the Table.

(1)	(2)	(3)	(4)	(5)	(6) (7)	(8)	(9)	(10)
6824.295	80	14649.49	0.009	18383.59	4-33033.10	4	1G-d	
6644.005	80	15047.01	-0.004	6969.80	5-22016.80	5	3H–I7d5	2.279 (5)
6488.670	48	15407.22	-0.013	10785.51	4-26192.70	5	3H–I6d3	1.041 (6)
6393.635	80	15636.23	0.037	6969.80	5-22606.12	6	3H-17d5	2.618 (5)
6302.225	41	15863.02	0.024	10785.51	4-26648.59	4	3H-15d3	
6153.460	48	16246.52	0.037	13219.80	2-29466.42	3	3F-d	
5988.439	70	16694.22	0.021	55547.30	7-38853.02	6	I7p1–	
5903.279	80	16935.04	-0.004	5081.77	4-22016.80	5	3F-17d5	1.464 (6)
5881.820	80	16996.83	0.007	12472.55	3-29469.40	4	3F–Id	1.075 (6)
5851.362	46	17085.30	0.007	10785.51	4-27870.83	5	3H-16d5	3.462 (5)
5621.564	70	17783.71	0.000	18383.59	4-36167.30	3	IGd	
5570.362	80	17947.17	0.016	18383.59	436330.81	2	1G-d	3.519 (5)
5471.313	48	182/2.07	-0.018	18383.59	4-30055.00	2	IG-d	2
5469.627	80	182/7.70	0.009	124/2.55	3-30/50.22	4	0-1C	-
5350.720	90	18083.88	0.003	10/85.51	4-29409.40	4	30-10 17-1 E445	
5280.034	42	18910.37	0.018	33347.30	/-30030.8/	5	1/p1-r4d5	2
5255.920	20	19020.87	0.028	10785.51	4-29800.48	5	211 1642	
5204.147	/0	19210.09	0.005	10/85.51	4-29993.02	5	211 1642	
5200.080	00	19222.90	0.000	19292 50	J20192.70 A 27608 12	1	1G-d	6.010 (5)
5200.230	90 47	19224.34	-0.003	65034 64	4-37008.12 5_46552.18	- -	10-u 15p1-24	0.019 (5)
5145 240	4/ 80	19302.47	-0.002	12472 55	3_31902.18	4	3F_14e1	1 201 (6)
1976 062	50	20502 63	0.008	6969 80	5_27472 46	6	3H_1643	1.201 (0)
4870.002	23 80	20560 51	0.007	12472 55	3-33033 10	4	3F_d	1 216 (6)
4826 538	41	20713.00	0.010	12472.55	3-33185.64	3	3FF4d3	1.210 (0)
4783 122	80	20901.00	0.022	6969.80	5-27870.83	5	3H-16d5	3,732 (6)*
4749 491	43	21049.00	0.034	67986 38	5-46937.23	4	I6n3-d	01/02 (0)
4746.858	43	21060.68	-0.007	10785.51	4-31846.16	3	3H-I4d5	
4735.554	80	21110.95	-0.005	5081.77	4-26192.70	5	3F16d3	9.393 (6)
4734.225	70	21116.74	-0.004	10785.51	4-31902.23	4	3H-I4s1	()
4694.172	41	21297.05	0.020	68234.37	4-46937.23	4	I4p1-d	
4672.716	41	21394.84	0.031	68332.21	5-46937.23	4	I4p1-d	
4669.915	80	21407.67	0.002	10785.51	4-32193.19	5	3H-I4s1	8.742 (5)
4669.094	80	21411.44	0.002	10785.51	4-32196.96	4	3H-d	1.029 (6)
4612.932	80	21672.11	0.000	55547.30	7-33875.19	6	I7p1–I5d5	
4589.485	47	21782.83	0.006	18383.59	4-40166.45	4	1G-F3s1	
4584.224	70	21807.83	0.023	6969.80	5-28777.74	6	3H-I6d5	8.702 (6)
4579.808	80	21828.86	0.000	10785.51	4-32614.37	5	3H–d	8.357 (5)
4540.722	80	22016.76	0.008	0.00	6-22016.80	5	3H–17d5	1.181 (6)
4539.198	39	22024.15	-0.004	18383.59	4-40407.72	3	1Gd	
4497.582	80	22227.93	0.006	61493.77	639265.81	5	17p3-	
4493.610	80	22247.58	0.002	10785.51	4-33033.10	4	3H-d	2.082 (6)
4471.890	80	22355.64	0.026	55547.30	7-33191.53	6	I/pl-d	
4463.014	80	22400.10	0.006	10/85.51	4~33185.04	3	3H-F403	6 224 (5)
4443.278	80	22499.59	0.002	0909.80	5-29409.40	4	211 1745	0.334 (3)
4422.368	80	22005.97	0.029	61402.77	6 29952 02	6	3H-1/03 17n2-	7.704 (0)
4415.580	52 90	22040.72	0.000	5091 77	0-38833.02 A_27870.83	5	3F_1645	7 373 (6)
4300.040	00 17	22783.02	0.008	61699.28	7-38853.02	6	17n3-	1.575 (0)
4373.000	70	22040.13	0.020	61699.28	7-38781 51	6	17p3-	
4362.230	80	22918.75	0.006	10785.51	4-33704.29	5	3H-d	
4356 549	80	22947.50	0.000	13219.80	2-36167.30	3	3F-d	5.371 (6)
4348.926	52	22987.72	0.006	55547.30	7-32559.55	7	I7p1-I5d5	
4341.734	80	23025.80	0.004	6969.80	5-29995.62	5	3H-15d3	4.799 (6)
4338.234	80	23044.38	0.000	6969.80	5-30014.18	6	3H-15s1	8.674 (5)
4290.113	80	23302.85	0.007	0.00	6-23302.89	7	3H-17d5	1.671 (7) ^b
4288.191	80	23313.30	-0.002	6969.80	5-30282.09	6	3H-15d3	2.381 (6)
4284.687	46	23332.36	0.006	62598.14	6-39265.81	5	I6p1-	
4266.570	80	23431.43	0.004	12472.55	3-35903.96	4	3F-F4d	1.162 (6)
4219.151	48	23694.78	-0.005	12472.55	3-36167.30	3	3F–d	
4210.203	38	23745.13	-0.002	62598.14	6-38853.02	6	16p1-	
4208.465	45	23754.94	-0.018	62607.86	7-38853.02	0	-1dol	
4203.958	38	23/80.41	0.002	0707.8U	J-JU/JU.22	4	311-4 16p1-	
417/.309 4122 447	27 20	23810.00 24244 72	0.005	02378.14 6969 20	0-30/01.31 5-31214 52	5	3H-d	2,120 (6)
7143,741	90	2-72-7-1E	0.000	0,00,00		9	~~~ ~	

Table	I.	Continued
1 4010	1 .	Commuca

(1)	(2)	(3)	(4)	(5)	(6) (7)	(8)	(9)	(10)
4099.277	48	24387.67	-0.007	5081.77	429469.40	4	3F-Id	
4088.566	48	24451.55	-0.012	55547.30	7-31095.82	6	I7p1-I4d3	
4065.037	80	24593.08	-0.002	13219.80	2-37812.87	3	3F–d	1.611 (6)
4012.691	70	24913.89	-0.007	5081.77	4-29995.62	5	3F-15d3	9.364 (5)
4009.709	80	24932.42	0.002	6969.80	5-31902.23	4	3H-I4s1	1.061 (6)
3978.309	39	25129.20	-0.003	61699.28	7-36570.10	6	I7p3-I4d5	.,
3977.306	43	25135.54	0.005	12472.55	3-37608.12	4	3F-d	
3972.981	37	25162.90	0.010	61493.77	6-36330.81	5	I7p3-d	
3963.457	70	25223.36	0.005	6969.80	5-32193.19	5	3H-I4s1	1.067 (6)
3962.862	80	25227.15	0.002	6969.80	532196.96	4	3H-d	5.931 (6)
3962.862	80	25227.15	0.010	71779.39	5-46552.18	5	I5p3-?d	
3945.166	80	25340.30	0.003	12472.55	3-37812.87	3	3F–d	1,568 (6)
3944.563	48	25344.18	-0.002	13219.80	2-38563.97	2	3F-?d	()
3943.009	38	25354.16	0.012	65934.64	5-40580.40	4	I5p1-	
3938.717T		25381.79		10785.51	4-36167.30	3	3H-d	4.376 (6)°
3913.504	80	25545.31	0.001	10785.51	4-36330.81	5	3H-d	6.797 (6)
3898.347	70	25644.63	-0.009	6969.80	5-32614.37	5	3H-d	2.344 (6)
3889.267	54	25704.50	0.000	13219.80	2-38924.30	3	3F-d	2.115 (6)
3854,499	21	25936.36	-0.006	55547.30	7-29610.99	7	I7p1–I6d5	2
3853 585	80	25942.51	0.004	62598.14	6-36655.60	5	I6p1-d5	
3835.724	59	26063.30	0.000	6969.80	5-33033.10	4	3H-d	9.238 (5)
3831.596	45	26091.38	0.006	12472.55	3-38563.97	2	3F-?d	
3825 531	48	26132.70	0.000	5081.77	4-31214.52	5	3F-d	
3816 765	80	26192.76	-0.009	0.00	6-26192.70	5	3H-16d3	8,282 (6)
3812 552	70	26221 71	0.003	6969.80	5-33191 53	6	3H-d	0.202 (0)
3805 935	48	26267 30	-0.003	65934 64	5-39667 36	4	ISn1-F3d3	
3805.935	48	26267.30	0.005	62598 14	6-36330.81	5	Ion1-d	
3770 407	70	26451 70	0.007	12472 55	3_38924 30	3	3F_d	1 550 (6)
37751 162	70 90	26431.70	0.007	12-72.33	5~56524.50	7	211-1643	1.330 (0) 1.701 (7) ^d
3701.103	00 90	203/3.3/	0.000	6060 80	5 2270/ 20	5	3Hd	8 564 (6)
3/33.422	40	20734.30	-0.001	63509 14	5 25856 62	5	Jin-u I6plad	0.504 (0)
3/38.434	40	204/1.3/	-0.000	55547 20	0-33830.02	6	10p1~u 17p1_16d5	
3/34.508	/0	20/09.08	-0.017	33347.30	1-20/1/.14	4	211 4	2 270 (7)
3/2/.130	80	20822.07	-0.008	10/63.31	4-3/008.12	-	211 1545	5.008 (6)
3/15.000	20	20903.42	-0.004	72020 66	5 46027 22	4	JI-1303	5.508 (0)
3/04.931	38 49	20983.38	0.007	73920.00	7 28555 40	+ 0	14ps-	
3/03./03	40	20991.07	0.004	10795 51	1-20333.40	2	3H_A	
2098.901	42	27027.37	-0.001	5091 77	4-3/012.0/	5	311-u 215-14e1	
308/.443	40	2/111.42	0.000	57096 29	4-32193.19 5 A0957 10	5	JI-1-81 I6-2 94	
3084.999	40	27129.33	-0.007	74100.50	J-40637.10 A 46027.23	3	10p3-70 14p3-	
30/0.310	42	2/191.9/	-0.001	74129.19	4 40957.25		14p3~ 16p3 2d	
3038.003	J 7 42	27323.07	-0.008	56025 40	9 28555 10	2	10p3-34 17p1-16d5	
2029.203	43	27409.90	-0.005	50025.40	6 77477 47	6	211 1643	2 711 (7)*
3038.9//1	40	2/4/2.40	0.000	0.00	6 22975 10	0	5m-1005	5.711 (7)
3619.718	43	2/018.58	0.000	01493.//	0-338/3.19	0	17p3-15d5	
3592.978	39	2/824.13	-0.005	01099.28	/-338/3.19	0	1/p5-1505	6 960 (6)
3586.954	80	2/8/0.85		0.00	0-2/8/0.83	2	217-1003	0.800 (0)
3578.693	45	2/935.19	-0.003	124/2.55	3-40407.72	5	3F-u	
3501.161	80	28553.78	-0.017	18383.39	4-4093/.23	4	10-	
3501.101	80	28555.78	0.001	50025.40	8-2/4/1.01	9 5	1/p1-1005	
3492.747	48	28022.57		5081.77	4-33/04.29	5	5r-u US-1 9d	
3487.108	41	28008.80	0.008	/3221.11	6 22975 10	ر ح	HSP1-10	
3480.525	80	28723.07	-0.013	02398.14	0-338/3.19	6	10p1-15u5	
3479.377	80	28/32.30	0.013	02007.80	6 29777 74	0	211 1645	2 092 (7)5
34/3.9141		28///./4		0.00	0-28///./4	0 7	211 1642	5.062 (7) 1 437 (7)8
3469.00/1		28818.44	0.010	0.00	0-28818.44	, -	50-1505	1.437 (7)
3461.675	42	288/9.48	-0.010	01493.//	0-32014.37	5	1/p3-a	
3460.796	80	28886.82	0.000	6969.80	5-35850.02	0	211 E44	7.010 (6)
3455.125	48	28934.23	-0.008	61402 77	5-33903.90	4 7	JTI-F40	7.910 (0)
3455.125	48	28934.23	-0.001	01493.//	0-32339.33	4	17p3-13d3	
3451.179	59	28967.30	0.004	55547.30	1-200/9.9/		1/p1-1003	
3423.101	42	29204.90	-0.004	0/980.38	J-38/81.31 5. 26666 60	U E	10p3- 15n1-45	
3414.433	59 60	272/7.03	0.001	6040 90	5-36220.91	5	3H_A	1 691 (6)
3404.890	29	29301.03	- 0.005	0707.80	J-JUJJU.81 6 26626 97	כ ד	511-u ISn1_F/d5	1.071 (0)
2205 247	43	27440./9	-0.001	55517 20	0-30030.8/ 7-36103 70	, ,	17n1_1601	
3373.241	29 20	27444.47 20115 10	0.002	55047.30	8-26570 07	, 7	17p1-1031	
3333.132	38 17	27443.47 20170 21	-0.000	50023.40	5-205/7.7/	6	I/p1-1005 I4n1_	
3371.240	41 16	277/7.21	-0.002	6060 20	5-3653.02	6	3H_I445	1 566 (6)
3376 160		29610 95	0.001	0.00	6-29610.99	7	3H-1645	1.872 (6)
3367.631	80	29685 94	-0.016	6969.80	5-36655.60	5	3H-d5	2.303 (7)
3360.729	39	29746.90	-0.007	66077.65	6-36330.81	5	I5p1-d	

Physica Scripta 56

(1)	(2)	(3)	(4)	(5)	(6) (7)	(8)	(9)	(10)
3353.106	41	29814.52	0.000	76751.75	5-46937.23	4	F4p3-	
3340.992	43	29922.62	-0.001	56025.40	8-26102.79	7	17p116s1	
3332.862	39	29995.61	0.001	0.00	6-29995.62	5	3H-15d3	
3327 014	80	30048 34	-0.003	62607.86	7-32559.55	7	I6p1-I5d5	
3325 168	45	30065.02	0.006	55547 30	7-25482.23	8	I7n1–I6d3	
2207 009	40 80	20221.07	0.000	66077 65	6-25856.62	6	17p1 1045	
2201.220	20	30221.07	-0.004	61402 77	6 21214 52	5	15p1-d 17=3 d	
3301.038	<i>3</i> 0	30279.28	-0.005	01495.//	6 20282.00	5	1/p5-u	A 505 (C)
3301.228	NS	30283.04	0.005	0.00	6-30283.09	0	3H-1503	4.395 (6)
3287.986	32	30405.00	-0.005	62598.14	632193.19	5	16p1–14s1	
3264.236	46	30626.21	0.004	68234.37	4-37608.12	4	I4p1d	
3262.948	48	30638.30	0.002	6969.80	5-37608.12	4	3H-d	4.217 (6)
3243.477	80	30822.21	-0.002	5081.77	4-35903.96	4	3F-F4d	1.020 (7)
3234.645	42	30906.37	0.003	62607.86	7-31701.46	8	I6p1I5d5	
3214.950	NS	31095.70	0.012	0.00	6-31095.82	6	3H-14d3	3.982 (6)
3175 743	NS	31479 59	0.001	61493 77	6-30014.18	6	I7p3-I5s1	(-)
2172 454	NS	31502.20	0.003	62598 14	6-31095.8	6	I6n1-I4d3	
2172 470	NC	21512.05	0.005	62570.14	7 31005 2	6	16p1 14d3	
31/2.4/0	193	31312.00	-0.002	6001.00	1-31093.2	5	25 46	2 802 (7)
3100.202	120	315/3.85	-0.002	5081.77	4-30033.00	5	35-03	2.802 (7)
3135.536	41	31883.24	-0.002	6969.80	5-38853.02	0	3H	
3117.558	48	32067.09	-0.002	68234.37	436167.30	3	14p1-d	9.151 (7)
3100.400	110	32244.48	0.007	55547.30	7-23302.89	7	I7p1–I7d5	9.556 (7)
3095.458	38	32296.02	-0.001	6969.80	5-39265.81	5	3H-	
3093.632	39	32315.08	-0.003	62598.14	6-30283.09	6	I6p1I5d3	
3092.701	59	32324.81	-0.004	62607.86	7-30283.09	6	I6p1-I5d3	
3073.537	48	32526.35	0.000	5081.77	4-37608.12	4	3F–d	1.617 (7)
3070 402	48	32559 56	- 001	0.00	6-32559 55	7	3H-15d5	1.473 (7)
2055 710	40	2271610	001	61403 77	6 200777 74	6	17n2_16d5	1.475 (7)
3055./10	40	32710.10	-0.007	01493.77	0-20777.74	7	17p3-1003	
3055.106	80	32/22.58	-0.007	50025.40	8-23302.89		1/p1-1/d5	
3038.491	39	32901.50	0.004	65934.64	5-33033.10	4	Isp1-a	
3036.640	70	32921.56	-0.002	61699.28	7–28777.74	6	17p3–16d5	7.417 (7)
3022.655	41	33073.86	0.001	56025.40	8-22951.53	8	I7p1–I7d5	
2971.227	41	33646.30	0.004	71459.21	4–37812.87	3	I5p3d	8.846 (7)
2963.186	43	33737.60	0.007	65934.64	5-32196.96	4	I5p1-d	8.181 (7)
2958.644	47	33789.40	0.002	62607.86	7-28818.44	7	I6p1–I5d3	8.194 (7)
2955.935	46	33820.36	0.003	62598.14	6-28777.74	6	I6p1–I6d5	
2920 825	NS	34226.88	-0.006	61699.28	7-27472.46	6	17p3-16d3	
2916116	41	34282.16	-0.006	67986.38	5-33704.29	5	I6n3-d	9,579 (7)
2000 163	41	34364.08	-0.006	75221 11	6-40857 10	5	H5p1-?d	
2909.103	41	24264.00	0.000	74044 47	5_40580.40	4	H5p1_	1 147 (8)
2909.103	70	24200 55	-0.001	71055 16	1 26655 60	5	Edp1_d	0 388 (7)
2900.103	38	34399.30	0.000	/1055.10	4-30033.00	3	1-4p1-0 2E	9.500 (7)
2900.662	43	34464.79	-0.009	124/2.55	3-40937.23	4	3F-	a a a a (7)
2890.527	46	34585.62	-0.003	5081.77	4-39007.30	4	3F-F303	3.983 (7)
2878.733	100	34727.31	0.000	62598.14	627870.83	5	16p1-16d5	2.197 (8)
2869.517	40	34838.84	-0.002	65934.64	5-31095.82	6	I5p1–I4d3	8.238 (7)
2849.629	48	35081.98	-0.004	61493.77	6-26411.84	6	I7p3–I6s1	1.592 (8)
2846.592	39	35119.40	-0.007	61699.28	7-26579.97	7	I7p3–I6d3	
2846.080	120	35125.72	-0.003	62598.14	6-27472.46	6	I6p1–I6d3	7.663 (8)
2845.293	120	35135.44	-0.003	62607.86	7-27472.46	6	I6p1–I6d3	3.378 (8)
2844 988	45	35139.21	-0.005	73920.66	5-38781.51	6	I4p3-	
2840.591	47	35193.60	-0.008	71050.12	5-35856.62	6	F4p1-d	2.983 (8)
2833 031	70	35787 51	-0.006	61699.28	7-26411.84	6	17n3-16s1	3,414 (8)
20222 674	10	35201.05	0.000	71450 21	4-36167 30	2	I5n3_d	2 163 (8)
2032.074	40	35291.95	-0.003	55547 20	7 20226 22	7	17p1_17e1	0.604 (8)
2830.340	100	35321.05	0.002	33347.30	7-20220.22	7	17p1-1781	7.490 (8)
2824.747	110	35390.99	-0.001	61493.77	0-20102.79	1	1/p3-1081	7.489 (8)
2816.182	43	35498.61	0.001	5081.77	4-40580.40	4	35-	1.840 (7)
2811.697	41	35555.24	0.001	71459.21	4-35903.96	4	15p3–F4d	
2808.634	46	35594.02	-0.006	76174.34	340580.40	4	F3p1-	
2808.437	47	35596.51	-0.002	61699.28	7-26102.79	7	I7p3–I6s1	1.573 (8)
2806.584	120	35620.01	-0.001	68234.37	4-32614.37	5	I4p1–d	9.538 (8)
2805.869	120	35629.08	-0.003	55547.30	7-19918.26	8	I7p1–I7d3	1.193 (9)
2804.098	90	35651.58	-0.002	65934.64	5-30283.09	6	I5p1–I5d3	6.315 (8)
2798.896	43	35717.85	-0.001	68332.21	5-32614.37	5	I4p1–d	1.502 (8)
2795.907	48	35756.02	-0.003	71050.12	5-35294.14	4	F4p1-F4s1	1.345 (9)
2795.517	46	35761.02	0.000	71055.16	4-35294.14	4	F4p1-F4s1	6.740 (8)
2795 081	41	35766 60	0.002	76174.34	3-40407.72	3	F3p1-d	4.462 (8)
2795 081	41	35766.60	0.006	10785.51	4-46552.18	5	3H-?d	
2702 204	-+1 //1	35780 /5	-0.000	67986 38	5-32196.96	4	I6n3-d	1.287 (8)
2703 000	41 42	35704 57	0.002	66077 65	6-30283 00	6	I5n1-I5d3	1 471 (8)
2172.700	+2 50	25700 15	0.003	56075 40	8_20202.02	7	[7n1_17e1	3 408 (0)
2172.339)Y 15	33/77.13	0.002	50025.40 0.00	6-20220.22	6	3H_4	<u> 620</u> (7)
2/00.000	40	33830.39	0.002	0.00	5 20014 10	0 ∠	JII-U TSn1_TSn1	-1.007 (/) 2.002 (0)
2/83.109	48	33920.43	0.001	03734.04	3-30014.18	0	1261-1281	2.003 (9)

Table I. Continued

Table	I.	Continued
	_	

(1)	(2)	(3)	(4)	(5)	(6) (7)	(8)	(9)	(10)
2782.440	38	35929.07	0.002	71785.72	6-35856.62	6	I5p3-d	
2781.669	46	35939.03	-0.001	65934.64	5-29995.62	5	I5p1–I5d3	7.705 (8)
2780.405	47	35955.37	-0.005	75221.11	6-39265.81	5	H5p1-	.,
2776.347	48	36007.93	-0.003	76174.34	3-40166.45	4	F3p1F3s1	1.346 (9)
2775.556	48	36018.18	001	62598.14	6-26579.97	7	I6p1–I6d3	4.072 (8)
2774.805	48	36027.93	-0.003	62607.86	7-26579.97	7	I6p1–I6d3	1.168 (9)
2773.785	48	36041.18	0.000	68234.37	4-32193.19	5	I4p1–I4s1	1.184 (9)
2772.073	48	36063.44	0.002	66077.65	6-30014.18	6	I5p1–I5s1	1.549 (9)
2771.361	42	36072.71	-0.006	76480.35	4-40407.72	3	F3p1-d	8.871 (8)
2770.643	41	36082.05	-0.001	66077.65	629995.62	5	I5p1I5d3	
2770.481	39	36084.16	-0.001	67986.38	5-31902.23	4	I6p3–I4s1	1.757 (8)
2768.715	48	36107.17	-0.002	56025.40	8-19918.26	8	I7p1–I7d3	7.895 (8)
2767.360	48	36124.85	-0.005	71050.12	5-34925.33	5	F4p1-F4s1	1.489 (9)
2767.106	48	36128.17	-0.001	65934.64	5-29806.48	5	I5p1-I5s1	5.432 (8)
2766.976	48	36129.87	-0.003	71055.16	4-34925.33	5	F4p1–F4s1	1.521 (9)
2766.562	48	36135.28	-0.002	68332.21	532196.96	4	14p1-d	9.003 (8)
2/66.2/3	48	36139.05	-0.002	68332.21	5-32193.19	5	14p1-14s1	1.011 (9)
2/04.442	48	36162.98	-0.001	74944.47	5-38/81.51	6	Hop1-	2.508 (9)
2/04.281	39	30105.09	-0.002	71459.21	4-35294.14	4	15p3-F4s1	2.779 (8)
2702.039	48	30180.32	-0.001	02098.14	0-20411.84	0	10p1-10s1	8.337 (8)
2/01.915	39 70	36190.07	0.004	02007.80	/-20411.84	0	10p1-10s1	2.844 (9)
2/39.220	70	30231.34	0.000	55547.50	(-19313.90	ð	1/p1-1/s1	3.387 (9)
2/30.190	/0	302/1.1/	0.000	000//.00	0-29800.48	2	15p1-15s1 E2m1 E2c1	2.090 (9)
2/32.93/	4/	30313.84	0.004	/0480.33 69324 A	4-40100.45	4	F 5p1-F 581	1.025 (8)
2/31.30/	40	36369 13	-0.003	00204.4	4-31902.23	4	14p1-1481 145n1	1.075 (9) 9 722 (9)
2746.040	-+0 /19	36405 42	-0.002	62598 14	6-26192.70	5	IISp1- I6p1-I6d3	1 084 (0)
2740.032	48	36479.95	0.002	68332.21	5-31902.73	4	Idp1-Ide1	1.00+ (9)
2743 456	40	36439.60	0.002	75221 11	6_38781 51	6	H5n1-	1.405 (9)
2743.430	46	36466 70	-0.003	66077 65	6-29610.99	7	ISp1_I6d5	3 559 (8)
2740.018	41	36485.32	-0.005	71779.39	5-35294.14	4	15p3-F4s1	5.555 (6)
2739.266	70	36495.33	0.002	62598.14	6-26102.79	7	I6p1-I6s1	2,897 (9)
2738.534	70	36505.08	-0.001	62607.86	7-26102.79	7	I6p1-I6s1	1.574 (9)
2737.334	42	36521.09	-0.001	74129.19	4-37608.12	4	I4p3-d	
2736.375	43	36533.88	0.000	71459.21	4-34925.33	5	I5p3-F4s1	
2727.287	42	36655.62	-0.001	0.00	6-36655.60	5	3Hd5	3.140 (7)
2723.288	120	36709.44	0.000	56025.40	8-19315.96	8	I7p1-I7s1	2.839 (9)
2715.628	48	36812.99	0.000	76480.35	4-39667.36	4	F3p1-F3d3	8.490 (8)
2712.601	38	36854.07	-0.001	71779.39	5-34925.33	5	I5p3-F4s1	2.164 (8)
2703.987	41	36971.46	0.009	68186.11	6-31214.52	5	I6p3-d	
2700.456	42	37019.81	0.003	68234.37	4-31214.52	5	I4p1-d	2.511 (8)
2698.359	120	37048.57	0.001	56025.40	8-18976.82	9	I7p1–I7d3	2.477 (9)
2693.334	80	37117.69	0.000	68332.21	5-31214.52	5	I4p1-d	8.708 (8)
2692.766	120	37125.52	0.008	62607.86	725482.23	8	I6p1–I6d3	2.113 (9)
2690.867	39	37151.71	0.010	77318.02	3-40166.45	4	F4p3-F3s1	
2684.747	100	37236.40	0.001	68332.21	5-31095.82	6	I4p1–I4d3	1.552 (9)
2683.100	100	37259.26	0.004	66077.65	6-28818.44	7	15p1-15d3	1.321 (9)
2682.684	43	37265.04	0.001	73920.66	5-36655.60	5	14p3-d5	6.365 (8)
2680.172	48	3/299.96	0.004	66077.65	6-28/11.14	D	15p1-16d5	4.964 (8)
2000.872	38	3/483.9/	~0.002	70/01.70	5-39205.81	2	F4p3-	4 479 (0)
2051.502	43	3775402	0.003	0/980.38	5-30283.09	0	10p3-1503	4.4/6 (8)
2047.872	20 40	37959 60	0.001	71050.12	5 22101 52	5	TSp5-u F4p1-d	9.064 (8)
2040.021	40	37869 55	0.001	71050.12	J-33191.55 4-33185.64	3	$F_{4p1} - G_{4d3}$	6 010 (8)
2037.838	80	37899.40	-0.002	55547 30	7_17647.90	7	17n1 - 17d3	1 234 (9)
2637 527	30	37903.02	0.000	68186 11	6-30283.09	6	I6p3-I5d3	1.120 (())
2637.444	48	37904.20	0.000	71779.39	5-33875.19	6	I5p3-I5d5	7.099 (8)
2637.007	48	37910.48	0.004	71785.72	6-33875.19	6	I5p3-I5d5	8,443 (8)
2633.440	39	37961.83	0.013	10785.51	4-48747.15	5	3H-?d	2.558 (7)
2633.440	39	37961.83	0.004	74129.19	4-36167.30	3	I4p3-d	3.886 (8)
2632.861	41	37970.18	0.004	76751.75	5-38781.51	6	F4p3-	- (-)
2631.439	42	37990.70	0.004	67986.38	5-29995.62	5	I6p3-I5d3	3.985 (8)
2627.018	42	38054.63	0.001	76978.95	4-38924.30	3	F4p3-d	2.191 (8)
2626.377	59	38063.91	0.007	65934.64	5-27870.83	5	I5p1–I6d5	2.776 (8)
2626.377	59	38063.91	0.009	73920.66	5-35856.62	6	I4p3d	9.813 (8)
2625.604	45	38075.11	~0.001	71779.39	533704.29	5	I5p3-d	6.791 (8)
2625.204	41	38080.91	0.000	61032.44	9-22951.53	8	17p3–17d5	1.309 (8)
2618.949	45	38171.86	0.005	68186.11	6-30014.18	6	10p3-15s1	3.664 (8)
2018.402	40 50	381/9.83 28100 82	0.005	0/980.38	5-29800.48	5 7	10p3-1381	1.47/(8) 1.677 (9)
2017.049	57 17	38336 30	0.005	61520 10	0-23302.87 8-23302.87	7	17p3-1745	
201-1.330	- 1	55250.27	0.000	01000.10	0-20002.00	1	1, p5 1/45	1.001 (0)

Physica Scripta 56

14010 1. (commuca							
(1)	(2)	(3)	(4)	(5)	(6) (7)	(8)	(9)	(10)
2606.010	42	38361.38	0.006	76174.34	3-37812.87	3		3.538 (8)
2605.130	39	38374.34	0.002	74944.47	5-36570.10	6	H5p1-I4d5	2.913 (8)
2604.916	80	38377.49	0.001	56025.40	8-17647.90	7	17p1-17d3	6.100 (8)
2603.815	39	38393.72	0.000	77318.02	3-38924.30	3	F4p3-d	3.558 (8)
2603.633	60	38396.40	-0.001	61699.28	7-23302.89	7	17p3-17d5	1.615 (9)
2601.637	41	38425.86	0.018	71459.21	4-33033.10	4	I5p3-d	2.766 (8)
2600.965	59	38435.79	-0.003	71050.12	5-32614.37	5	F4p1-d	9.048 (8)
2599.183	45	38462.13	0.003	65934.64	5-27472.46	6	I5p1–I6d3	2.499 (8)
2598.404	59	38473.67	0.001	68084.68	7-29610.99	7	16p3-16d5	8.734 (8)
2595.489	59 20	38510.87	0.007	07980.38	5-29469.40	4	16p3-1d	5.608 (8)
2592.203	39	38505.09	-0.012	/5221.11	0-30033.00	5	HODI-00 17-1 1742	2.923 (8)
2591.055	90 80	38575 12	-0.003	68186 11	6-20610.00	07	1/p1-1/d3 16p3_16d5	1.962 (9)
2591.570	46	38584.05	0.000	75221 11	6-36636.87	7	H5n1-F4d5	1.002 (9)
2590.727	80	38587.66	-0.001	61539.18	8-22951.53	8	17p3-17d5	1,452 (9)
2590.727	80	38587.66	0.013	71779.39	5-33191.53	6	I5p3-d	1.102())
2589.548	NS	38605.23	-0.002	66077.65	6-27472.46	6	I5p1I6d3	1.644 (8)
2588.985	59	38613.62	0.003	74944.47	5-36300.81	5	H5p1-d	6.474 (8)
2588.124	42	38626.48	0.003	73920.66	5~35294.14	4	I4p3-F4s1	.,
2585.384	41	38667.40	0.005	76480.35	4-37812.87	3	F3p1-d	
2580.123	41	38746.24	0.003	71779.39	5-33033.10	4	I5p3d	1.574 (8)
2580.024	80	38747.74	0.001	61699.28	7-22951.53	8	I7p3-I7d5	1.379 (9)
2579.603	59	38754.05	0.000	77318.02	3-38563.97	2	F4p3-?d	
2578.889	59	38764.79	0.012	68234.37	4-29469.40	4	l4p1–ld	2.761 (8)
2578.687	80	38767.82	0.009	68234.37	4-29466.42	3	14p1–1d	6.668 (8)
25/3.031	59	38853.04		0.00	0-38853.02	0	3H- E4al d	
2575.051	J9 19	38861.04	0.008	71050.12	J-32190.90	4	F4p1-0 F4n1-14e1	2 248 (8)
2572.441	40 47	38880 79	0.002	67699 20	$\frac{4-321}{3.1}$	7	I6p3-I5d3	1,060 (8)
2570.746	80	38887.56	-0.002	61493.77	6-22606.12	6	17p3-17d5	1.177 (9)
2565.199	80	38971.65	0.005	71531.27	7-32559.55	7	15p3-15d5	9.590 (8)
2560.668	48	39040.61	-0.006	74944.47	5-35903.96	4	H5p1-F4d	1.707 (8)
2557.227	80	39093.13	-0.006	61699.28	7-22606.12	6	17p3-17d5	7.999 (8)
2553.920	80	39143.75	-0.008	76751.75	5-37608.12	4	F4p3-d	
2553.920	80	39143.75	0.003	67699.20	8-28555.40	8	I6p3-I6d5	1.112 (9)
2552.535	39	39164.99	0.002	71779.39	5-32614.37	5	I5p3d	
2552.470	43	39165.98	0.006	76978.95	4-37812.87	3	F4p3-d	2.003 (8)
2550.008	45	39203.79	0.005	74129.19	4-34925.33	5	I4p3-F4s1	
2549.698	41	39208.57	0.005	67986.38	5-28777.74	6	16p3-16d5	1.495 (8)
2548.557	80	39220.11	0.004	/1/85./2	0-32009.00	1	15p3-15a5	1.020 (9)
2540.215	45 90	39202.23	0.001	62024 62	4-32190.90 7. 38818 <i>44</i>	47	15p5-u 16p3-15d3	5 074 (8)
2545.355	80	39200.24	0.000	65934 64	5-26648 4	4	15p1-15d3	1 024 (9)
2543.320	59	39306.89	0.003	68084.68	7-28777.76	6	I6p3-I6d5	3.831 (8)
2540.909	80	39344.17	0.000	61032.44	9-21688.27	9	I7p3-I7d5	1.105 (9)
2539.600	46	39364.45	0.002	75221.11	6-35856.62	6	H5p1-d	(*)
2539.192	48	39370.79	0.002	76978.95	4-37608.12	4	F4p3-d	2.651 (8)
2563.775	80	39408.29	0.005	68186.11	6-28777.76	6	I6p3-I6d5	8.651 (8)
2532.367	80	39476.88	0.006	61493.77	6-22016.80	5	I7p3-I7d5	1.899 (9)
2531.037	70	39497.62	0.004	66077.65	6-26579.97	7	I5p1I6d3	3.016 (8)
2529.431	70	39522.69	0.007	65934.64	5-26411.84	6	I5p1–I6s1	5.233 (8)
2529.020	80	39529.12	0.010	68084.68	7-28555.40	8	16p3-16d5	2.073 (9)
2527.243	46	39556.92	0.004	71459.21	4-31902.23	4	I5p3–I4s1	1.303 (8)
2525.613	42	39582.44	-0.004	6969.80	5-46552.18	5	3H-?d	1 6 47 (0)
2525.013	42	39582.44	0.001	71450.21	J32190.90	4	15p5-a 15p2 1445	1.047 (8)
2525.002	41	39013.04	0.001	71439.21 74044 A7	4-31040.10 535294 14	3	15p5-1405 H5n1_F4s1	3.620 (8) 1.632 (8)
2520 310	40 59	39665 73	0.004	66077.65	6-26411.84	6	15p1-16s1	2 358 (8)
2515.486	48	39741.79	0.010	65934.64	5-26192.70	5	I5p1-I6d3	2.104 (8)
2509.926	80	39829.82	-0.001	71531.27	7-31701.46	8	I5p3-I5d5	3.308 (9)
2509.563	54	39835.57	0.002	71050.12	5-31214.52	5	F4p1-d	1.934 (8)
2509.245	46	39840.63	0.001	71055.16	4-31214.52	5	F4p1-d	1.408 (8)
2508.597	80	39850.92	-0.001	61539.18	8-21688.27	9	17p3-17d5	2.581 (9)
2501.281	46	39967.48	0.003	6969.80	5-46937.23	4	3H-	
2500.824	42	39974.77	0.006	66077.65	6-26102.79	7	I5p1–I6s1	
2498.053	48	40019.11	0.002	74944.47	5-34925.33	5	H5p1-F4s1	2.937 (8)
2494.910	46	40069.53	-0.012	70724.94	0-30055.60	5	14p3-d5 E4-2 E445	2 407 (0)
2473./30	/U 70	40088.0/ 20115 51	0.000	10/24.94 67086 20	0-30030.8/ 5_37870.82	/ 5	r 4p3-r 4a3 I6p3-I645	2.407 (9) 3 383 (9)
2472.030 2489 936	/0 ⊿२	40113.31		76480 35	J-2/0/0.03 4-36330 81	5 5	F3n1-d	J.JOJ (0)
2489.606	59	40154.88	0.002	76724.94	6-36570.10	6	F4p3-I4d5	6.309 (8)
- 102.000		10104.00	0.002		0 000/0110		Po 1.00	0.000 (0)

Table I. Continued

Table	I.	Continued
-------	----	-----------

(1)	(2)	(3)	(4)	(5)	(6) (7)	(8)	(9)	(10)
2487.949	70	40181.63	0.001	76751.75	5- 36570.10	6	F4p3-I4d5	1.225 (9)
2485.111	70	40227.51	0.005	67699.20	8- 27471.61	9	I6p3-I6d5	3.837 (9)
2482.464	45	40270.40	-0.001	76174.34	3- 35903.96	4	F3p1-F4d	4.977 (8)
2480.645	46	40299.94	-0.003	71050.12	5- 30750.22	4	F4p1d	2.270 (8)
2480.336	59	40304.95	-0.001	71055.16	4- 30750.22	4	F4p1-d	4.996 (8)
2479.704	70	40315.22	0.004	68186.11	6- 27870.83	5	I6p3-I6d5	7.258 (8)
2476.818	43	40362.19	0.003	73395.34	3- 33033.10	4	I4p3-d	1.532 (8)
2473.215	59	40420.98	-0.002	76751.75	5- 36330.81	5	F4p3-d	5.757 (8)
2467.542	43	40513.90	0.001	67986.38	5- 27472.46	6	I6p3-I6d3	
2464.610	70	40562.11	0.000	61032.44	9- 20570.33	10	17p3-17d5	4.358 (9)
2463.740	59	40576.43	-0.002	76480.35	4- 35903.96	4	F3p1-F4d	2.886 (8))
2461.566	41	40612.26	-0.003	68084.68	7- 27472.46	6	I6p3-I6d3	
2459.391	42	40648.18	-0.002	76978.95	4- 36330.81	5	F4p3-d	2.955 (8)
2454.542	48	40728.47	-0.001	73919.99	6- 33191.53	6	I4p3-d	4.692 (8)
2454.502	48	40729.14	-0.001	73920.66	5- 33191.53	6	I4p3d	3.945 (8)
2446.815	43	40857.08	0.001	0.00	6- 40857.10	5	3H-?d	1.980 (7)
2445.433	48	40880.17	0.002	76174.34	3- 35294.14	4	F3p1-F4s1	4.770 (8)
2439.441	41	40980.58	-0.008	81837.54	4- 40857.10	5	F3p3-?d	2.729 (8)
2436.148	48	41035.97	-0.002	71050.12	5- 30014.18	6	F4p1-I5s1	
2434.680	54	41060.71	-0.003	61539.18	8-102599.84	8	17p3-177s	2.624 (9)
2432.590	59	41095.98	0.007	74129.19	4- 33033.10	4	I4p3-d	3.674 (8)
2431.513	70	41114.19	-0.001	61032.44	9- 19918.26	8	I7p3-I7d3	9.967 (8)
2431.215	40	41119.21	0.001	67699.20	8- 26579.97	7	I6p3-I6d3	
2427.260	59	41186.22	-0.001	76480.35	4- 35294.14	4	F3n1-F4s1	4,833 (8)
2426 542	70	41198.40	-0.001	73395 34	3- 32196.96	4	I4n3-d	9 143 (8)
2425.582	54	41214.71	-0.004	61699.28	7-102913.92	7	I7n3-I77s	2,708 (9)
2423.878	59	41243.67	-0.002	71050.12	5- 29806.48	5	F4n1-15s1	4,019 (8)
2423 588	70	41248.62	0.004	71055.16	4- 29806.48	5	F4n1-I5s1	1 216 (9)
2422 471	80	41210.02	-0.005	61493 77	6- 20226.22	7	I7n3-I7s1	5 228 (9)
2420 242	70	41305 64	-0.001	7391999	6- 32614 37	5	I4n3d	1 925 (9)
2420.242 2420 204T	70 R1	41505.04	0.001	73920.66	5_ 32614.37	5	Isp3-d	1.725 (9)
2420.2041	80	41317 88	0.005	61530.18	S= 32014.37 8= 20226.22	7	15p5-u 17p3_17c1	3 471 (9)
2419.010	70	41312.00	0.005	67086 38	5- 26648 59	4	17p3-1781 16p3-15d3	5.591 (9)
2416.333	10	41337.80	-0.001	61530.18	9-102013 02	7	10p3-13u3 17p3-177e	1 704 (9)
2410.202	42	413/4.70	0.002	77219.02	2_ 25002.06	1	$F4n^{2}-F4d$	2.051 (9)
2413.711	40	41413.33	0.000	61/02 77	5-102012.02	7	1793-1740 1793 1776	3.031 (8) 2.542 (9)
2412.002	70	41420.12	0.002	91927 5A	0-102913.92 A_ 40407.72	2	F3p3_d	2.545 (9)
2412.995	70	41723.71	0.000	81837.34	6_ 30265.81	5	H5p3-u	
2411.377	70	4145761	0.000	76751 75	5_ 35203.81	4	F4n3_F4s1	2 1 58 (0)
2411.505	41	41463 43	0.000	71459.21	4- 29995 62	5	I5n3_I5d3	2.150 ())
2410.630	45	41470 32	0.005	5081 77	4 46552 18	5	3F-2d	
2410.050	75	41473.04	0.005	61699.28	7- 20226.22	7	17n3_17s1	5 4 1 5 (9)
2410.472	70	41493.08	0.002	73305 34	3_ 31902 23	, 4	I4p3_I4s1	2 578 (9)
2409.500	41	41496 23	0.002	71779 39	5- 30283.09	6	I5p3-I5d3	2.576 (5)
2409.125	50	41502.76	-0.008	71785 72	6_ 30283.09	6	15p3-15d3	4 8 77 (8)
2400.740	70	41502.70	-0.003	71531.27	7_ 30014.18	6	15p3_15e1	6 8 3 9 (9)
2405 717	70	41555.01	0.003	76480 35	A_ 34075 33	5	F3p1_F4e1	2314(8)
2403.717	10	41555.01	-0.001	61032 44	9_102500 8/	2	17p3_177e	4 965 (9)
2404.996	70	41507.42	-0.001	67086 38	5- 26/11 85	6	I/p3-I//8 I6p3_I6e1	4 807 (0)
2403.360	70	41588 78	-0.001	71055 16	J- 20411.05 A- 20466 12	2	F4n1_Id	7 (7) 7 (7/ (2)
2403.703	75	41506.78	-0.002	67699.20	9- 25400.42	7	16p3_16c1	2.024 (8) 8 960 (9)
2403.320	15	41590.45	0.002	6010611	6 26570.07	, ,	10p3~1081	3,609 (9)
2400.071	70	41652 75	-0.001	71/50 21	0- 20379.97 A- 20806.48	5	10p3-10u5 15p3-15e1	3 287 (0)
2300.071	50	41671.03	-0.001	81837 5 <i>4</i>	4- 4016645	4	F3n3_F3e1	5.207 (5)
2333.010	50	41071.03	0.003	62024 62	7 - 2641184	6	I 5p5-1 581	2 9 1 2 (9)
2370.715	70	41072.87	-0.002	76078 05	A 25204 14	4	E4p2 E4c1	2.912 (9)
2396.220	70	41004.73	0.001	61032 44	4- JJ274.14 0- 10215.06	•	17-2-17-1	0.268 (0)
2370.404	16	41710.40	0.000	72020.66	5 22106.06	0	1/p3-1/81	9.208 (9)
2395.980	70	41725.70	-0.003	73010.00	5 = 32190.90 6 = 32103.10	5	I4p3-I4e1	1 732 (9)
2323.013	70	71/20.10	0.001	/ 3717.77 71770 20	- J2193.19 5_ 20014 10	л С	1703-1481 1502_1601	+,/34(7) 1/01/0
2393.009	70	41703.20	0.001	71795 77	5 = 30014.18	6	15p3-15s1	3.986 (0)
2393.630	70	41774 27	-0.013	68186 11	6_ 26411 84	6	15p5-1581 16n3_16e1	<u> </u>
2393.003	70 ∡∩	41777 20	0.000 0.000	6060 80	5_ <u>4</u> 8747 15	5	3H_94	(2) (2)
2392.708	45	41780 92	0.005	61699.28	7- 19918 26	8	[7n3-17d3	
2392 546	46	41783 76	0.000	71779 39	5- 29995 62	5	I5n3-I5d3	6.385 (8)
2391.970	70	41793.81	-0.007	67986 38	5- 26192.70	5	I6n3-I6d3	3.063 (8)
2391.637	70	41799.63	-0.001	76724.94	6- 34925.33	5	F4p3-F4s1	6.584 (9)
2390.109	70	41826.34	0.005	76751.75	5- 34925.33	5	F4p3-F4s1	2.421 (9)
2388.191	59	41859.95	0.000	80712.97	6- 38853.02	6	H5p3-	(-)
2385.254	43	41911.48	-0.006	74944.47	5- 33033.10	4	H5p1-d	
2384.755	38	41920.25	0.002	71531.27	7- 29610.99	7	15p3-16d5	

Physica Scripta 56

Table	Т	Continua	ג
I auto	Τ.	Commue	u

(1)	(2)	(3)	(4)	(5)	(6) (7)	(8)	(9)	(10)
2384.755	38	41920.25	0.007	68332.21	5- 26411.84	6	I4p1–I6s1	1.526 (8)
2384.114	59	41931.51	-0.003	80712.97	6- 38781.51	6	H5p3-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
2384.072	59	41932.25	-0.001	74129.19	4- 32196.96	4	I4p3-d	3.891 (8)
2383.855	70	41936.07	-0.004	74129.19	4- 32193.19	5	I4p3–I4s1	1.694 (9)
2381.756	59	41973.02	-0.006	71779.39	5- 29806.48	5	I5p3-I5s1	3.257 (9)
2381.402	59	41979.26	-0.001	71785.72	6- 29806.48	5	I5p3–I5s1	2.150 (9)
2381.250	59	41981.94	-0.003	68084.68	7- 26102.79	7	I6p3–I6s1	4.994 (9)
2380.804	48	41989.81	0.000	71459.21	4- 29469.40	4	I5p3–Id	3.813 (8)
2380.628	46	41992.92	-0.007	71459.21	4- 29466.42	3	I5p3–Id	3.374 (8)
2379.179	59	42018.49	-0.003	73920.66	5- 31902.23	4	I4p3–I4s1	1.637 (9)
2378.872	59	42023.91	-0.002	77318.02	3- 35294.14	4	F4p3-F4s1	2.589 (9)
2377.186	59	42053.72	-0.006	76978.95	4- 34925.33	5	F4p3-F4s1	1.349 (9)
2377.077	59	42055.64	-0.001	61032.44	9- 18976.82	9	17p3-17d3	6.033 (8)
2375.511	59	42083.36	-0.002	68186.11	6- 26102.79	7	16p3–16s1	1.373 (9)
2370.336	59	42175.23	-0.028	71785.72	6- 29610.99	7	15p3-16d5	2.192 (8)
2367.988	54	42217.05	-0.005	67699.20	8- 25482.23	8	16p3-16d3	5 0 0 C (D)
2367.641	59	42223.24	-0.001	61539.18	8- 19315.96	8	1/p3-1/s1	5.926 (9)
2367.433	59	42226.95	0.001	/4129.19	4- 31902.23	4	14p3-14s1	2.941 (9)
2359.332	59	423/1.93	0.000	02398.14	0- 20226.22	7	10p1-1/S1	1.49/(9)
2358.793	59 50	42381.00	0.002	02007.80	7 - 20220.22	,	10p1-1/S1	0.505 (8)
2358.699	59	42383.30	0.001	01099.28	/- 19315.90	8	1/p3-1/s1	1.529 (9)
2348.778	45	42562.31	0.003	01039.18	8- 189/0.82	9 5	1/p3-1/d3	1.075 (8)
2348.256	45	42571.75	-0.001	81837.54	4- 39203.81	2	Fopo-	2 100 (9)
2344.217	41	42645.10	0.001	/3393.34	3- 30/30.22	4	14ps-a 15-2 1522	2.199 (8)
2340.495	40	42/12.92	-0.005	71551.27	/ 20010.44 5 20102.10	5	15p5-15u5	2 270 (8)
2338.394	29	42/51.28	0.000	71521 07	3 - 32193.19	5	15p2-16d5	5.219 (8)
2338.270	41	42733.37	-0.002	73010 00	6_ 31095.82	6	I4p3-I4d3	1 734 (8)
2334.417	4/	42024.12	-0.003	73920.66	5- 31095.82	6	I4p3-I4d3	2 485 (8)
2334.370	40	42024.00	-0.001	81837 54	4- 38924 30	3	F3n3-	2.405 (0)
2329.300	-0 50	42913.29	-0.007	74129 19	4 31214 52	5	I4p3-d	3,086 (8)
2329.405	48	42967 33	-0.003	71785 72	6-2881844	7	15p3-15d3	2.355 (8)
2325 480	38	42988.68	0.001	76174.34	3- 33185.64	3	F3p1-F4d3	1 .000 (0)
2324 775	46	43001.71	-0.003	71779.39	5- 28777.74	6	I5p3-I6d5	1.572 (8)
2324.115	41	43008.01	-0.002	71785.72	6- 28777.74	6	I5p3-I6d5	
2323.359	43	43027.91	0.001	75221.11	6- 32193.19	5	H5p1-I4s1	
2322.589	59	43042.19	0.003	74944.47	5- 31902.23	4	H5p1-I4s1	2.391 (8)
2309.194	59	43291.84	0.003	62607.86	7- 19315.96	8	16p1-17s1	2.306 (8)
2296.380	70	43533.39	0.001	76724.94	6- 33191.53	6	F4p3-d	4.423 (8)
2290.894	40	43637.62	-0.003	73920.66	5- 30283.09	6	I4p3-I5d3	
2289.438	45	43665.37	0.000	5081.77	4- 48747.15	5	3F-?d	
2277.654	65	43891.26	0.001	61539.18	8- 17647.90	7	I7p3-I7d3	7.468 (8)
2276.433	59	43914.80	0.005	71785.72	6- 27870.83	5	I5p3-I6d5	1.858 (8)
2275.904	48	43925.02	0.001	73920.66	5- 29995.62	5	I4p3–I5d3	1.782 (8)
2275.704	46	43928.88	0.002	73395.34	3- 29466.42	3	I4p3–Id	1.587 (8)
2269.376	59	44051.35	0.001	61699.28	7- 17647.90	7	I7p3-I7d3	2.149 (8)
2268.994	43	44058.78	0.001	71531.27	7- 27472.46	6	I5p3-I6d3	
2265.210	45	44132.37	0.000	77318.02	3- 33185.64	3	F4p3-F4d3	1.763 (8)
2262.040	47	44194.20	0.003	74944.47	5- 30750.22	4	H5p1d	
2255.967	46	44313.17	0.005	71785.72	6- 27472.46	6	15p3-16d3	
2252.463	43	44382.09	0.004	80712.97	6- 36330.81	5	H5p3-d	
2248.962	45	44451.19	0.004	73920.66	5- 29469.40	4	14p3-1d	
2245.615	46	44517.43	0.003	01493.77	0- 10976.28	0	1/p3-1/03 E4-2 14-1	
2244.898	45	44531.65	0.005	/0/24.94	0- 32193.19	⊃ ∡	r4p3-1481	2 170 (0)
2235.292	59	44722.99	0.000	01099.28	/- 107/0.28	0	1/po-1/as	5.1/0 (0)
2232.360	48	44781.73	0.003	08084.08	7 23302.89	/ 4	10p3-1/03	3 117 (0)
2198.158	41	454/8.43	0.000	00004.00 69196 11	1- 22000.12	U K	10p3-17d5	5.117 (6)
2193.202	39 . 20	455/9,95	0.002	62607 86	0- 22000.12 7 16076.28	6	I6p1-I7d3	
2190.780	3 7 41	42021.28 16160 10	0.000	62186 11	6_ 22016 RD	5	I6n3-17d5	
2103.207	41 12	40107.10	_0.000	56025 40	8-102913.92	7	I7p1-I77s	3,933 (9)
2124.614	45	47052.50	0.001	55547.30	7-102599.84	8	17p1–177s	4.566 (9)

Notes: Lines noted NS in the second column (Intensity) are taken from Ref. [2].
² Possibly blend with an Er II line.
⁴ Wavelength from Ref. [2], the deviation with Ref. [9] is too large.
^b Revised wavelength from H. Crosswhite.
^c Theoretical wavelength, masked by a strong Er II line.
^d Given as Er II in Ref. [9] and absent in Ref. [2].
^e Theoretical wavelength, far from 3473.870 (Ref. [9]).
^g Theoretical wavelength, far from 3469.127 (Ref. [9]).

Table II. Energy levels of Er III with main components of their eigenfunctions and gth Landé factors. Leading components smaller than 33% are omitted.

Configuration 4f ¹²											
-		Energy	1st Comp.	2nd Co	Label in						
LS-Term	J	(cm^{-1})	%		%	gth	Note	Table I			
³ H	6	0.00	99.2	¹ I	0.8	1.165	а	3H			
зн	5	6969.80	100.0		0.0	1.033	a	3H			
зн	4	10785.51	61.5	³ G	27.0	1.139	b	3H			
³ F	4	5081.77	62.7	¹ G	28.7	0.945	a	3F			
³ F	3	12472.55	100.0		0.0	1.083	Ν	3F			
зF	2	13219.80	79.9	1D	18.6	0.732	Ν	3F			
¹ G	4	18383.59	59.8	³ H	29.9	0.966	Ν	1G			

		Energy	1st Comp.			
Multiplet	J	(cm^{-1})	%	gth	Note	
${}^{4}I_{15/2}p_{1/2}$	7	55547.30	96	1.243	a	I7p1
	8	56025.40	98	1.164	a	I7p1
${}^{4}I_{15/2}p_{3/2}$	9	61032.44	98	1.219	a	I7p3
	6	61493.77	72	1.170	а	I7p3
	8	61539.18	98	1.207	a	I7p3
	7	61699.28	84	1.167	а	I7p3
${}^{4}I_{13/2}p_{1/2}$	6	62598.14	74	1.146	a	I6p1
	7	62607.86	86	1.086	а	I6p1
${}^{4}I_{11/2}p_{1/2}$	5	65934.64	79	1.026	a	I5p1
	6	66077.65	82	0.964	a	I5p1
${}^{4}I_{13/2}p_{3/2}$	8	67699.20	99	1.148	c	I6p3
	5	67986.38	9 0	1.047	а	I6p3
	7	68084.68	99	1.130	а	I6p3
	6	68186.11	95	1.088	a	I6p3
⁴ I _{9/2} p _{1/2}	4	68234.37	50	0.937	Ν	I4p1
	5	68332.21	54	0.876	Ν	I4p1
⁴ F _{9/2} p _{1/2}	5	71050.12	54	1.100	N	F4p1
	4	71055.16	50	1.128	N	F4p1
${}^{4}I_{11/2}p_{3/2}$	4	71459.21	61	0.932	N	I5p3
	7	71531.27	83	1.061	N	15p3
	5	71779.39	72	0.983	а	I5p3
	6	71785.72	81	1.036	а	I5p3
⁴ I _{9/2} p _{3/2}	3	73395.34	66	0.651	Ν	I4p3
	6	73919.99	52	1.011	Ν	I4p3
	5	73920.66	38	1.032	N	I4p3
_	4	74129.19	56	0.867	N	I4p3
${}^{2}\mathrm{H}_{11/2}\mathrm{p}_{1/2}$	5	74944.47	40	1.122	N	H5p1
	6	75221.11	52	1.091	Ν	H5p1
⁴ F _{7/2} p _{1/2}	3	76174.34	82	1.239	Ν	F3p1
	4	76480.35	85	1.161	N	F3p1
⁴ F _{9/2} p _{3/2}	6	76724.94	61	1.183	Ν	F4p3
	5	76751.75	53	1.143	Ν	F4p3
	4	76978.95	60	1.153	N	F4p3
_	3	77318.02	56	1.178	N	F4p3
${}^{2}\mathrm{H}_{11/2}\mathrm{p}_{3/2}$	6	80712.97	53	1.153	Ν	H5p3
⁴ F _{7/2} p _{3/2}	4	81837.54	54	1.178	Ν	F3p3

Configuration $4f^{11}5d + 4f^{11}6s$

Multiplet	J	Energy (cm ⁻¹)	First Comp. %	4f ¹¹ 6s %	gth	Note	Label in Table I
⁴ I _{15/2} d _{3/2}	6	16976.28	91	0.0	1.301	a	I7d3
10/2 3/2	7	17647.90	78	0.2	1.262	a	17d3
	9	18976.82	95	0.0	1.137	a	17d3
	8	19918.26	92	0.1	1.179	а	I7d3
$4I_{15/2}S_{1/2}$	8	19315.96	97	99.9	1.246	a	I7s1
10/2 1/2	7	20226.22	96	99.3	1.148	a	I7s1
⁴ I _{15/2} d _{5/2}	10	20470.33	96	0.0	1.197	a	I7d5
	9	21688.27	96	0.0	1.191	а	17d5
	5	22016.80	51	0.0	1.211	a	I7d5
	6	22606.24	52	0.1	1.205	a	17d5
	8	22951.53	90	0.1	1.178	a	I7d5
	7	23302.89	65	0.3	1.145	a	I7d5
${}^{4}I_{13/2} d_{3/2}$	8	25482.23	91	0.0	1.053	c	I6d3

Table II. C	ontinued
-------------	----------

Configuration $4f^{11}5d + 4f^{11}6s$								
		Energy	First	4f ¹¹ 6s			Label in	
Multiplet	J	(cm^{-1})	Comp. %	%	gth	Note	Table I	
⁴ I	7	26102.79	97	97.6	1.167	a	16d3	
⁴ I. 2/2 daya	5	26192.70	44	0.3	1.140	a	16d3	
⁴ I. 2/2 S. 10	6	26411.84	97	99.3	1.049	a	I6s1	
$^{4}I_{1,2,2}d_{2,2}$	7	26579.97	74	2.2	1.055	ш я	16d3	
$^{4}I_{1,1/2}d_{1/2}$	4	26648.59	45	0.0	1.071	Ň	15d3	
$^{4}I_{1,3/2} d_{5/2}$	9	27471.61	98	0.0	1.131	N	16d5	
$^{4}I_{12} d_{2/2} d_{2/2}$	6	27472.46	56	0.5	1.077	a	16d3	
$^{4}I_{13/2} d_{5/2}$	5	27870.83	50	0.3	1.165	a	16d5	
$^{4}I_{12/2} d_{5/2}$	8	28555.40	97	0.0	1.130	c	I6d5	
⁴ I _{13/2} d _{5/2}	6	28777.74	60	3.2	1.080	a	16d5	
${}^{4}I_{11/2} d_{3/2}$	7	28818.44	51	0.1	1.020	a	I5d3	
${}^{4}I_{11/2} d_{3/2}$	3	29466.42	34	0.0	0.829	Ν	Id	
4f ¹¹ 5d	4	29469.40		0.1	1.051	N	Id	
⁴ I _{13/2} d _{5/2}	7	29610.99	66	0.1	1.068	đ	I6d5	
${}^{4}I_{11/2}s_{1/2}$	5	29806.48	71	82.9	0.920	а	I5s1	
${}^{4}I_{11/2} d_{3/2}$	5	29995.62	36	16.8	0.977	Ν	I5d3	
${}^{4}I_{11/2}s_{1/2}$	6	30014.18	75	94.7	1.068	e	I5s1	
${}^{4}I_{11/2} d_{3/2}$	6	30283.09	39	1.1	0.949	e	I5d3	
${}^{4}F_{9/2}d_{3/2}$	4	30750.22	37	0.2	1.144	Ν	d	
${}^{4}I_{9/2}d_{3/2}$	6	31095.82	50	0.9	0.870	e	I4d3	
4f ¹¹ 5d	5	31214.52		1.3	1.047	Ν	d	
${}^{4}I_{11/2}d_{5/2}$	8	31701.46	81	0.0	1.052	Ν	15d5	
⁴ I _{9/2} d _{5/2}	3	31846.16	45	0.0	0.808	Ν	I4d5	
${}^{4}I_{9/2}s_{1/2}$	4	31902.23	44	82.2	0.824	Ν	I4s1	
${}^{4}I_{9/2}s_{1/2}$	5	32193.19		55.3	1.037	Ν	I4s1	
4f ¹¹ 5d	4	32196.96		16.5	0.940	Ν	d	
${}^{4}I_{11/2}d_{5/2}$	7	32559.55	67	0.1	1.067	Ν	I5d5	
4f ¹¹ 5d	5	32614.37		41.9	1.010	Ν	d	
4f ¹¹ 5d	4	33033.10		1.2	0.947	Ν	d	
${}^{4}F_{9/2}d_{3/2}$	3	33185.64	48	0.1	1.209	Ν	F4d3	
4f ¹¹ 5d	6	33191.53		0.0	1.150	Ν	d	
4f ¹¹ 5d	5	33704.29		1.5	0.976	Ν	d	
${}^{4}I_{11/2} d_{5/2}$	6	33875.19	57	0.3	1.055	e	15d5	
${}^{4}\mathrm{F}_{9/2}\mathrm{s}_{1/2}$	5	34925.33	56	99.0	1.196	Ν	F4s1	
${}^{4}\mathrm{F}_{9/2}\mathrm{s}_{1/2}$	4	35294.14	60	91.6	1.103	Ν	F4s1	
4f ¹¹ 5d	6	35856.62		0.2	1.080	Ν	d	
4F _{9/2} d	4	35903.96		6.7	1.161	Ν	F4d	
4f ¹¹ 5d	3	36167.30		0.4	0.928	Ν	d	
4f ¹¹ 5d	5	36330.81		0.8	1.103	N	d	
${}^{4}I_{9/2} d_{5/2}$	6	36570.10	50	0.1	1.039	Ν	I4d5	
4F _{9/2} d _{5/2}	7	36636.87	45	0.0	1.133	Ν	F4d5	
4f ¹¹ 5d	5	36655.60		1.5	1.006	Ν	d5	
⁴ I _{9/2} d _{5/2}	4	37608.12	40	0.8	0.891	Ν	d	
4f ¹¹ 5d	3	37812.87		0.2	1.188	N	d	
4f ¹¹ 5d	2	38563.97				Ν	?d	
?4f115d	6	38781.51		32.1	1.191	N		
?4f ¹¹ 6s	6	38853.02		67.0	1.179	N		
4f ¹¹ 5d	3	38924.30		0.1	1.187	N	d	
4f ¹¹ 5d	5	39265.81		35.1	1.082	N		
${}^{4}\mathrm{F}_{7/2}\mathrm{d}_{3/2}$	4	39667.36	39	9.9	1.134	Ν	F3d3	
F _{7/2} S _{1/2}	4	40166.45	73	79.8	1.257	N	F3s1	
4f**5d	3	40407.72		28.7	1.022	N	ď	
4f115d	4	40580.40				N		
4f ¹¹ 5d	5	40857.10			1.198	N	d?	
4f115d	5	46552.18				N	d?	
4f ¹¹ 5d	4	46937.23				N	10	
4f115d	5	48747.15				Ν	d?	
4f ¹¹ 7s	~	100 000 0 1						
$-I_{15/2} 7s_{1/2}$	8	102599.84				N	177s	
$-I_{15/2} 7s_{1/2}$	7	102913.92				N	177s	

Notes:

Notes: a Level first reported in [2]. b Level first reported in [1]. c Level first reported in [3]. d Level first reported in [2], the J-value is revised. e Level present in the list of classified lines of [2]. N New energy level.

Table III. Fitted energy parameters, and their standard errors (cm^{-1}) in Er III. The constrained parameters are indicated by an "f", for "fixed value" and an "r" for "held in a constant ratio with the parameter above".

Table IV.	Lines	of Er	Ш	newly	identified	in	the	spectrum	of
the star H.	R 465								•

Parameter	Value	Standard error
Configuration 4f ¹²		
E	9458.7	10
$\tilde{E_1}$	6147.1	r
E ₂	30.87	0.17
E ₂	617.4	1.7
-3 Čec	2245.0	46
×41 α	20	 f
- 8	20 200f	•
μ N	- 55	¢
/ Number of levels	- 55	· -
Number of free new		
Number of free pars	ameters	4
.m.s. deviation		22
Configuration 4f ¹¹ 6	p	
E ₀	80408.3	39.3
E ₁	6512.1	12.3
E ₂	30.18	
E,	667.2	1.2
$F^{2}(f,p)$	5872	141
$G^2(\mathbf{f},\mathbf{p})$	1811	35
G ⁴ (f, p)	1542	91
	2394 5	37
•4 <u>f</u> r	3672.9	5.7
6p v f ¹¹ m	5072.8	0.5
ει μ εί1	7.5	0.7
c 1 g f 1 1	20	
. 6 11	185	
11	- 55	25
Number of levels		35
Number of free para	imeters	9
.m.s. deviation		22
Configuration 4f ¹¹ 5	$d + 4f^{11}6s$	
Eo	38122.0	106
Г(6s-5d)	2836.1	125
E,	6493.8	32
E,	29.56	0.60
52	659.0	1.1
$r^{2}(f.d)$	20070	243
$F^4(f,d)$	14602	344
$G^{1}(\mathbf{f},\mathbf{d})$	7707	194
$7^{3}(fd)$	8134	361
5 ⁵ (f,d)	5623	286
$G^{3}(f_{\alpha})$	2122	200
J (1,8)	2125	95
94f	2386.0	4.4
54	1087.3	7.9
тот	6.3	0.7
D ³ (f,d)	1626	f
$X^2(\mathbf{f},\mathbf{d})$	2660	233
K⁴(f,d)	2360	465
¢ f ¹¹	20	f
8 f ¹¹	185	f
• f ¹¹	55	f
R ² (rd,fs)	0	f
₹³(fd,sf)	2878	297
Number of levels in	the fit	64
Number of free para	meters	17
.m.s deviation		35

λ _{star} (Å)	Intensity in star	λ_{1ab} (Å)	Spectrum	Other spectrum
3262.97	0-1	0.95	Er III	TbII
3376.15	2	0.16	Er III	Nd
3377.43	2	0.37	Er III	Zr II
3404.85	3d?	0.90	Er III	Zr II
3455.06	2	0.12	Er III+	
3460.78	1d?	0.80	Er III	Pd I
3473.91	4	[0.91]	Er III	Ho II, Mn II
3492.75	1-2	0.75	Er III	
3501.14	1–	0.16	Er III	
3639.01	5d?	[0.98]	Er III	See note in Table I
3687.46	3	0.43	Er III	Fe I
3698.98	1-2?	0.90	Er III+	
3739.41	3-4	0.42	Er III	
3812.54	3	0.55	Er III	
3825.54	1-	0.53	Er III	
3898.40	1	0.35	Er III +	
3913.48	5	0.50	Er III	Ti II
3945.17	4–5	0.17	Er III	
3963.42	2?	0.46	Er III+	
3977.34	3d?	0.31	Er III	
4065.03	3-4 d to r	0.04	Er III	Ho II
4123.47	3	0.45	Er III	
4204.01	2d	3.96	Er III	Fe I, Nd
4356.58	3d?	0.54	Er III+	
4361.99	4	2.01	Er III	Sm II
4443.35	4d?	0.28	Er III	Dy III
4463.00	5	0.01	Er III	NdII
4493.57	3-4	0.61	Er III+	
4579.81	1	0.81	Er III	
4669.11	m	0.09	Er III	