THE UNIVERSITY OF MICHIGAN
SYSTEMS ENGINEERING LABORATORY

Department of Electrical Engineering
College of Engineering

SEL Technical Report No. 34

OPTIMUM DESIGN OF COMPUTER DRIVEN DISPLAY SYSTEMS
by

James D. Foley

March 1969

R] 7 ‘\fﬁ({"aﬂzl NP {\
Y ‘r:§~ PRICLEA)

Phoad vt

under contract with:

ROME AIR DEVELOPMENT CENTER
Research and Technology Division
Air Force Systems Command
Contract No. AF 30(602)-3953
Griffiss Air Force Base, New York

@ James David Foley 1969
All Rights Reserved

This report was also a dissertation submitted in
partial fulfillment of the requirements for the degree of
Doctor of Philosophy in The University of Michigan, 1969,

Reproduction in whole or in part is permitted for
purposes of the United States Government. Others may
quote without permission passages of up to 200 words.

This work was supported by Air Force Contract
AF30(602)-3953.

ACKNOWLEDGMENTS

Completion of the four and one-half years of graduate
studies leading up to and including this dissertation was made
possible by many people. It all started with the fine undergraduate
program in Electrical Engineering at Lehigh University, and the
inspiration provided by Dean Karakash. Then came two years of
course work here at the University of Michigan, with financial sup-
port from NSF and NASA, and more inspiration and encouragement,
this time from Dean Scott. Next was a very fruitful period of
working with computer graphics under Professor Herzog, who
brought to my attention the problems which this dissertation attempts
to solve. Now, in the Systems Engineering Laboratory, with the
direction and guidance of Professor Irani, and the financial support
of Rome Air Development Center, contract AF30(602)-3953, I
have endeavored to bring systems analysis and optimization tech-
niques to bear on the problem of designing graphics systems. During
this period the members of my doctoral committee have been most
helpful with their various constructive comments: for their con-
tinuing interest I am most grateful.

This final manuscript has been typed by Miss Linda Oakley.
Earlier drafts were typed by Miss Sharon Bauerle, Miss Joyce Doneth,

and Mrs. Joanne Aichler.

1ii

For her continuing support, encouragement, and under-
standing, the efforts represented by this dissertation are dedicated

to my wife.

James Foley

Ann Arbor, Michigan
March, 1969

iv

TO MARYLOU

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES
LIST OF SYMBOLS

ABSTRACT

Chapter

I INTRODUCTION

.1 Why Computer Graphics
2 Historical Development
3 Typical Graphics Applications
.4 Definitions
5 The Hardware System
6 Tradeoffs
7 Research Objectives

b ek ek ek ek e
e o o e o

II ATHEMATICAL MODEL OF DISPLAY SYSTEMS

M
1 Display System Model

2 Hardware Specification

3 Application Specification

4 Parameter Calculation

5 Assumptions

6 Cost

7 Analysis

2.7.1 Assignments of Interactions
2.7.2 Monotonicity of T

A
2
2.
2.
2
2
2
2

III ANALYSIS METHODS

1 Simulation

2 Markov Analysis

3 Qualitative Comparison of Simulation and
Markov Analysis

3.4 Quantitative Comparison of Simulation and

Markov Analysis

3.
3.
3.

vi

Page

xi
Xiv

xx1

Pt
NOJordhd =

16
19

22

23
28
30
37
46
52
54
o7
99

64

64
64

66

67

Chapter

v

VI

VII

TABLE OF CONTENTS (Continued)

OPTIMIZATION PROCEDURE

4,1 Problem Formulation
4.2 Optimization Algorithm

EVALUATION OF COMPUTING POWER

5.1 Displayable Information

5.2 Computing Power—Historical Approaches
5.3 Computing Power—Display Instruction Mix
5.4 Final Analysis

APPLICATION

6.1 Display System Hardware

6.1.1 Data Link
Remote Computer Core Storage
Remote Computer Bulk Storage
Remote Computer— Display
Control
6.2 Applications
.1 Text Editing
.2 Two-Dimensional Drawing
6.2.3 Three-Dimensional Drawing
6.2.4 General Network Analysis
Optimization Results
Comparison of Best and Worst Display
Systems
6.5 Interpretation of Results

6.5.1 Cost-Effectiveness

6. 5.2 Multiple Versus Single Console

Systems

. 5.3 Guidelines
. 5.4 Hardware Aids for Multiplication

and Division
6.6 Division of Processing
6.7 Summary

DO D
Pttt
B N

6. 2
6.2

(o2l e}
S w

CONCLUSION

7.1 Review of the Research
7.2 Critical Evaluation

REFERENCES

vii

78

78
81

94

95
102

105
108

116

117
118
118
121

123
130

130
133
133
138
145

175
178
179

183
184

187
187
190
192
192
193

195

Appendix

TABLE OF CONTENTS (Continued)

THE PREPROCESSOR PROGRAM, AND ITS
INPUT DATA

THE OPTIMIZATION PROGRAMS, AND
THEIR INPUT DATA

DATA FROM DISPLAY APPLICATIONS

USING IBM 2250 DISPLAY SYSTEM AND
MICHIGAN TERMINAL SYSTEM

viii

201

212

233

Table

3-1

4-1
5-1
6-1

6-2

6-4

6-5

6-6

6-7
6-8
6-9
6-10
6-11

6-12

LIST OF TABLES

Analysis Results for One User (R =1)
Analysis Results for Two Users (R =2)
Analysis Results for Three Users (R = 3)

System Parameters Used for RQA and GPSS
Analysis

Convergence of Simulation Results

Optimization Statistics

Display Instruction List

Michigan Intrastate Data Transmission Services
Remote Computer Core Storage

Remote Computer Bulk Storage

Remote Computer-Display Control Configurations

Possible Combinations of Display Controls and
Display Consoles

Typical Remote Computer-Display Controls
Selected for Use in Optimization

Text Editing Interactions

2-D Drawing Interactions

3-D Drawing Interactions
Network Analysis Interactions
Display Instruction Mix

Display Weights Qi and Q min

ix

Page
69
70

71

75
76
93
107
119
120
122

125

126

128
132

134
136
139
140

143

Table

6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26

C-1

C-2

C-3
Cc-4

C-5

Application Characteristics

Text Editing, One User

Text Editing, Two Users

Text Editing, Three Users

Two -Dimensional Drawing, One User
Two-Dimensional Drawing, Two Users
Two-Dimensional Drawing, Three Users
Three -Dimensional Drawing, One User
Three -Dimensional Drawing, Two Users
Three -Dimensional Drawing, Three Users
Network Analysis, One User

Network Analysis, Two Users

Network Analysis, Three Users

PM for the Most Cost-Effective Display Systems

Data Gathered for IBM 2250 Display Console
Used for Graphics

Data Gathered for IBM 2250 Display Console
Used as a Teletype

Data Gathered for Random Teletype Users
Data Gathered for Remote Display Terminal

Comparison of Statistics

Page

144
146
148
149
153
155
157
160
162
164
168
170
171

189

236

237
238
239

240

1-1
2-1
2-2

2-3

2-4

2-5

5-6

5-17

LIST OF FIGURES

Display System
Display System Model

Remote Computer and Queue

Remote Computer and Queue: Transfor-

mation I

Remote Computer and Queue: Transfor-

mation II

Remote Computer and Queue: Transfor-

mation III
An Identity
Service Time Distributions
Branching Distributions
Formation of the Set S
Minimization for One User (R=1)
Final Minimization
Alphanumeric Test Pattern
Weather Map Test Pattern
Graph Test Pattern
Architectural Drawing Test Pattern
Electronic Schematic Test Pattern
Balanced Display Configurations

Unbalanced Display Configuration

xi

Page
15
24

41

42

43

44
45
73
74
85
90
91
96
97
98
99
100
110

111

Figure

5-8

5-9

6-1

6-2

6-3

6-5
6-6
A-1

A-2

A-3
B-1
B-2
B-3
B-4
B-5
B-6
C-1
C-2

C-3

Selection of Remote Computer -Display
Controls

Example of Selected Remote Computer-Display

Controls
Minimum Response Times, Text Editing

Minimum Response Times, Two-Dimensional
Drawing

Minimum Response Times, Three-Dimen-
sional Drawing

Minimum Response Times, Network Analysis
Best and Worst Average Response Times
Cost-Effectiveness

Description of Display Applications

Description of Remote Computer-Display
Controls

The PREPROCESSOR Program

Main Program

Input -Output Program

Typical Input Data

Optimization Program

Program to Evaluate T with RQA
Subroutines

Summary Data for Remote Display Terminal
Think Time Distribution

Response Time Distribution

Xii

Page

113

114

151

159

166
173
176
180

203

204
209
215
216
219
221
224
229
244
245

246

Figure Page

C-4 Response Time Distribution 2417
C-5 Distribution of Total CPU Time per Response Period 2438
C-6 Distribution of Total CPU Time per Response Period 249
Cc-7 Distribution of CPU Processing Interval Times

During Response Periods 250
Cc-8 Distribution of Output Line Lengths 251
C-9 Distribution of Number of CPU Intervals per Response

Period 252

xiii

NOMENCLATURE

This list contins the symbols which are used with some

frequency in the following report.

Symbol Meaning Page
s Probability of service request type i 31
T, Time in microseconds needed by a remote

i
computer-display control to execute a

display instruction of type i 106
eiM Processing time needed by service request

type i if performed by main computer 39
OiR Processing time needed by service request

type i if performed by remote computer 39
Qi Weight applied to display test pattern of

type i 95
n(Vv) Numerical value of the binary sequence V 82
P, Probability of accessing file i 34
ti Service time for server i 37
tlT Total average processing time per inter-

action for server 1 39
t8T Total average processing time per inter-

action for server 8 39
LA Probability of executing display instruction

type i 106

Xiv

Symbol

A
ARRIVE
M

B,
i

C(X)

C'(X)

C'
max

CE

CPUCST

Meaning
Fraction of displayed information which
differs between display consoles
The vector which minimizes T(R, X, Z)
Arrival rate of user service requests
Bulk storage accesses needed by service
request type i if service performed at
main computer
Bulk storage accesses needed by service
request type i if service performed at
remote computer
Cost of remote computer-display control
i with no core memory
Total display system cost per month
Display system cost per month, exclu-
sive of main computer computation
charges
Upper limit on C'(X)
Cost-Effectiveness
Monthly cost of using main computer,
if it were used whenever display terminal
is active
Fraction of time that display terminal

attempts to use the main computer

Xv

Page

102

89

30

31

31

109

53

53

84

179

52

53

Sy mbol

MAXPAG

MSGLTH

NPPPC

NT

PACESS(.)

PAGCST

Meaning Page
Maximum number of pages or files of
storage needed by display application 34
Length of messages sent over data
link, in bits 36
Number of display controls used at
display terminal 109
Cardinality of a set 88
Number of display instructions exe-
cuted by an interaction of type i 31
Average number of accesses to bulk
storage made by interactions assigned
to the main computer 39
Average number of accesses to bulk
storage made by interactions assigned
to the remote computer 39
Number of display instructions exe-
cuted by remote computer for prepro-
cessing or post processing 33
Number of types of service requests 31
Cumulative probability of accessing a
storage file. 35
Monthly cost of storing one file block

at the main computer 53

Xvi

Symbol

PD

PDRC

PEND

PM

PMAIN

PRD

PREMOT

min

Meaning
Probability that bulk storage is accessed
by the main computer following completion
of a processing interval
Probability that a storage file is accessed
by the remote computer following com-
pletion of a processing interval
Probability that processing is ended at
the remote computer when a processing
interval ends
Probability that any interaction is
assigned to the main computer
Probability that a storage file is stored at the
main computer
Given that a storage file is not in core,
the probability that it is stored on the remoté¢
computer's bulk storage media
Probability that a storage file is stored
on the remote computer's bulk storage device
Percentage of standard display test pattern
i displayable by a display control
Minimum percentage of test patterns which

must be displayable by a display control, for

that control to be considered for an application

xXvii

Page

40

46

40

38

36

46

35

95

112

Symbol

p

QR

QRN

SYSPAG

Meaning
Percentage of some special display test pattern
displayable by a display control
Percentage of test patterns displayable on
R display consoles by one display control
Percentage of test patterns displayable on
R display consoles by N display controls
Number of display consoles served by a
remote computer
A set of feasible vectors
The i-th vector in S
A set of feasible vectors
The i-th vector in S'
The set of indexes of service request assigned
to the main computer
The set of indexes of service requests assigned
to the remote computer
Number of pages or files needed by the remote
computer's core-resident executive system,
plus a display file area and working area for
each display console
Average response time of a display system

Service and queueing time of server i

xXviii

Page

101

102

109

23

84

90

88

38

38

34
54

54

TL

TMIN

TRIP

UMC

UMD

URD

I

X1

X2

Meaning
Average response time of those service
requests assigned to the main computer
Response time of service request i if it
were assigned to the main computer
Average response time of those service
requests assigned to the remote computer
Response time of service request i if
it were assigned to the remote computer
A lower bound on T
The minimum value of T
The percentage of all bits sent over the
data link which are useful information
Instruction execution rate of the main
computer
File access rate of the main computer's
bulk storage
File access rate of the remote computer's
bulk storage
A binary sequence
A four-component vector
Data link transmission rate, b.p. s.

Blocks of remote computer core storage

Xix

Page

54

o7

55

57

56

89

29

33

28

28

81

29

29

29

Symbol Meaning Page

X3 Blocks of remote computer bulk storage 29
X4 Instruction execution rate of remote
computer-display control 29
X* A binary sequence 82
X* A four-component vector 83
Z A vector describing a display application 56

XX

ABSTRACT

A rigorous analysis of computer-driven display systems is
undertaken. The type of system studied consists of a display terminal,
which can include a small computer, core memory, bulk memory, and
one or more display controls and display consoles. The display termi-
nal is in turn usually connected via data-link to a large time-shared
computing system.

To facilitate the analysis, a mathematical model of a general dis-
play system is developed. The model's parameters are derived from
characteristics of the display system's hardware and of the applica-
tion implemented on the system. The model is used to predict the
average response time which will be experienced by a user of the dis-
play system. Included in the model is an objective method of dividing
display processing between the main and terminal computers.

So that certain of the model's parameters can be specified, a
method of evaluating the computational and display capabilities of a
computer and display is developed. The evaluation criteria are also
used to eliminate some computer-display controls from consideration
for inclusion in a display system.

The response time can be calculated in one of several ways.

If there is only one display console, a closed expression is found.

With more than one console, queueing can develop. Thus either

xxi

simulation or queueing analysis can be used. Comparison of these two
techniques shows that even though the conditions needed to use a queue-
ing analysis may not exist, its results in this case are quite satisfac-
tory. Also, queueing analysis is considerably less expensive than
Simulation.

An optimization procedure is developed to find the display sys-
tem hardware which, for a given application, minimizes average res-
ponse time subject only to an upper limit on the amount of money to
be spent. The optimization is designed to analyze the display system
model as infrequently as possible, to save time,

The optimization is used to find optimum display systems for
various costs and for four different display applications: text editing,
two-dimensional drawing, three-dimensional drawing, and network
analysis. The optimum display systems are in turn used to study the
cost-effectiveness of various display systems, to determine if single
or multiple display systems are less expensive, to develop general
design guidelines, to study the necessity of hardware multiplication
and division capabilities at the remote computer, and to demonstrate

the necessity of the work reported here.

XXii

Chapter I

INTRODUCTION

The subject of the study reported here is the systems design
of highly-interactive graphical display terminals for time-shared
computer systems. The overall goal is to develop insight into how
the choice of subsystems for a display system can affect the system's
performance, and to develop methods of finding the combination of
subsystems which will be optimum for any well-defined display ap-
plication. Optimum will be defined so as to minimize a display
system's response time subject to a cost constraint.

Viewed in a slightly different way, display system design can
be thought of as presenting a problem in resource allocation. The
resource is a fixed number of dollars, which is allocated to the pur-
chase of display subsystems in a manner which minimizes the total
system's response time.

But why so much interest in dollars and response times? The
most important answers are first, that display system hardware
costs can easily exceed $100,000; therefore, unwise allocation of
so much money falls in the serious mistake category; and second,
that improper allocation of the dollars can produce a display sys-
tem whose response time will be shown to be orders-of-magnitude

worse than what can be achieved with the optimum allocation.

2

This is significant because response time must, of course, be a
prime concern in the design of any highly-interactive remote access
computer system, and is even more important when considering the
graphics terminals which often form part of such systems, because
fully capitalizing on the potential interaction rates achievable with
a graphics terminal demands good response time.

The various sections of this chapter will attempt to justify
the use of graphics terminals, present some pertinent historical
information, define terms, and give a qualitative idea of the problem

to be tackled.

1.1 Why Computer Graphics?

Dynamic interactive graphics display systems are becoming
essential components of large current-day information processing
complexes. These displays cannot only replace teletypes currently
used in time-sharing computer systems, but can also greatly expand
the sphere of computers' reach and usefulness. Thus in the future
we can anticipate increasing utilization of display systems to facil-
itate man-machine interactions.

The advantages of graphic input-output devices manifest them-
selves in two ways. Display terminals, be they used solely for alph-
numeric textual material or for more general graphic presentations,
provide an ideal match between the computer and its users. That

is, a display terminal is able to accept input from a user at slow

3
keyboard speeds, but can also accept computer output at high speeds,
and present it to the user as fast or even faster than he is able to
read it. This is in contrast to the prevailing use today of various
slow typewriter units, whose slow output speeds in many cases se-
verely limit the realization of otherwise possible man-machine in-
teraction rates. A highly desirable side effect of display terminals
is a sharp drop in the proliferation of hard copy output. Many com-
puter terminal uses, such as program preparation and browsing
through data files, do not need hard output.

The second justification of display terminals is that for many
computer users, particularly engineers, graphics is a natural means
of communications, and can bridge the broad chasm between the com-
puter and its multitude of present and future users. This chasm
exists because, until recently, computer users have been forced to
approach computers in a very stilited and unnatural fashion, dic-
tated more by the computer's input-output limitations than by the
user's problem solving requirements. Engineers, and others, are
now able to engage the computer in a graphical dialogue, oriented
toward using the computer as a design and problem solving aid in
a straightforward way.

An excellent example of this chasm bridging exists in the area
of computer aided electrical network studies, where analysis and

synthesis programs have existed for some time [29] . The problem

4
with such programs is that a potential user must make a large ini-
tial investment of time by reading a manual (which may be hard for
him to understand) and either preparing punched cards for input or
learning to use a teletype terminal. Much more appropriate and
suitable systems are now being developed, in which a circuit is
actually drawn by the user on a CRT (Cathode Ray Tube) display,
component values are specified, dependent and independent sources
are defined, and certain currents or voltages are requested to be
found [12, 13, 14, 50] . Then, in a few seconds, the desired out-
puts appear as graphs on the CRT. Given the results, the engineer
can now either accept the existing design, or modify it. This is the
analysis approach. Synthesis techniques, such as fitting a circuit
to given amplitude and phase characteristics [56], are also evolving.
But whatever the approach, it is now possible to study complicated
electrical networks in a matter of minutes, in a manner more con-
venient than with either teletype-based remote access systems or
card-based batch processing systems.

The basic advantage of display systems over teletypes is not
so much the speed increase as the convenience and ease of use for
the practicing engineers. Teletypes greatly increase the computer's
accessibility, but it is display terminals which brings the computer's
power and capabilities to engineers, on engineers' terms, in engi-

neers' language, for engineers' purposes.
b

5

Circuit analysis is just one of the many areas in which com-
puter aided design is of maximum benefit when implemented with
display terminals. Other applications are discussed in Section 1. 3.
We will not bring into our discussion graphics applications which
are primarily oriented toward film or paper plotting devices.

Now, having given some indication of the type of computer
graphics of interest here, we will turn our attention to a few his-

toric matters.

1.2 Historical Development

The first large-scale application of display equip-

ment was the SAGE (Semiautomatic Ground Environment)

air -defense system, initiated in the fifties. In this

system, operators used light guns and function keys

to instruct the computer, and monitored the results

on display screens |[31].

The development work for this was performed, at least in part,
by Mr. Jay Forrester and his associates in M.I. T. 's Whirlwind-I
Computer Group, where CRT's were used for man-machine com-
munications as early as 1950 [2]. This early involvement of M.I. T.
in computer graphics has proven to be very significant: the school
and its associated laboratories continue to pace developments in
computer graphics, particularly with respect to new hardware, but

also in software. In fact, the second significant graphics contribu-

tion from M.I.T., following the pioneering work of the early fifties,

6
was the introduction in early 1963 of a comprehensive software pack-
age allowing easy, engineering-oriented man-machine interaction.
This software, called Sketchpad[54], was developed by Dr. Ivan Suther-
land on Lincoln Lab's TX-2 computer, and marked the beginning of
serious efforts to develop sophisticated applications software for
graphics work. Manufacturers also began developing the types of
display hardware required by these emerging applications.

Coming close on the heels of Sketchpad, the announcement of
General Motors Research Laboratories' DAC-I (Design Augmented
by Computers) System [23] helped give graphics work respectability
and acceptance in industry. Both the academic and industrial worlds
have continued to develop and use computer graphics since these
early experiments.

A great boon to graphics work has been the emergence of large
time -shared computer systems, such as project MAC [8], the Mul-
tics System [7], SDC's Q32 System [48], and the Michigan Terminal
System [57]. Their impact has been to permit relatively economical
on-line graphics work. Before time-sharing systems were avail-
able, on-line graphics required a powerful dedicated computer; an
expensive proposition indeed! Current graphics systems, along
with a large time-sharing computer, use either a small cheap dedi-

cated computer, or none at all.

1.3 Typical Graphics Applications

The common bond linking the many diverse graphics appli-
cations of interest here is that they all embrace a highly interac-
tive graphics-oriented dialogue between a graphics console and its
user. This is in marked contrast to uses in which the graphics
equipment acts primarily as an output device, or as a sophisticated
teletypewriter -like device.

A typical currently implemented application, with widespread
industrial usefulness, has been described by Prince [45]. It is
a system for creating tapes for numerically controlled machine
tools. A designer first draws on his CRT display a standard en-
gineering drawing of a part, and then specifies the path, depth of
cut, tool type, feed rate, etc. for the various cuts needed to shape
the desired part from a solid piece of metal. The required control
tape is then automatically generated. This system eliminates the
tedious task of numerical control programming, and has the added
advantage of immediate visual confirmation of the cutting tools'
paths.

Another interesting application is in the electronics industry,
speeding the design of artwork for precision masks used in manu-
facturing integrated circuits [36, 39, 52]. An engineer can lay
out on the CRT the various active and passive circuit components

required, specify their characteristics, and indicate the desired

8
component interconnections. The computer then calculates the
exact pattern dimensions required at each masking level for the
resistors, capacitors, diodes, and transistors, sets up inter-
connection routings, and produces the required masks as output
on a film plotter. The engineer can at any time intervene to modi-
fy the computed results, thus allowing the interjection of human
judgment at any point in the design process; a highly desirable
feature.

Other current uses include textile design [42], biomedical
research [46], and mathematical computations and curve plotting
[63].

Of significant importance to the implementation of new graphics
applications is the recent development of graphics programming
systems imbedded in compiler-level languages such as FORTRAN
[4, 28, 32, 58]. These systems provide both programming ease
and some degree of hardware configuration independence, so that,
coupled with increasing hardware availability, we can reasonably
anticipate a much more rapid growth of display applications than
has been seen in the past. One of the potential stumbling blocks in
this progress, however, is the problem of inept display system
hardware selection, which can result in systems not suited to their

application costing too much and performing poorly.

What we need is a more disciplined approach than has been
used in the past for matching display applications to the appropriate
hardware. With this closing thought in mind, we will turn our at-
tention to the evolution of present day graphics hardware, by first
giving some definitions in Section 1.4, and continuing in Section 1.5

with some specific hardware details.

1.4 nginition_s_

Before proceeding further, it is necessary that we pause and
clearly define certain essential terms so as to avoid later confusion.
Particular attention should be given the differences between display
terminal, display control, display console, and display.

Display Console

A display console is that piece of equipment which presents
graphical information to a human. Current technology utilizes a
CRT for this purpose. The console may also include a light pen,
printer, function keys, a keyboard, or other similar devices.

A display console presents a display on its cathode ray tube.
The display consists of lines (vectors), points, and characters
(alphanumerics) forming some meaningful picture, such as a

mechanical drawing or a circuit diagram.

10

Display Control

A display control (sometimes called a display generator) is
the interface between a display console and an information pro-
cessing system. As such, it performs several functions, the most
important of which is to accept display commands and produce the
appropriate voltages (currents) to drive the CRT's deflection plates
(yokes). Sophisticated display controls perform other functions,
such as sub-routining, conditional skips, jumps, light pen tracking,
and matrix multiplication.

Display Terminal

A display terminal consists of display consoles and whatever
computer system hardware has as its prime function the support
of those consoles. A display terminal's hardware may include up
to one computer, bulk storage devices, a data link interface, and
I/0 devices, and has a minimum of one display console and one
display control.

Display terminals are often connected to a large time -shared
computer facility not dedicated primarily to use by the terminal.
This facility provides back-up computing and storage support to
whatever hardware is directly associated with the terminal.

Remote Display Terminal

A display terminal physically separated from the back-up, or

main computer facility is remote from that facility: hence the name.

11
For our purposes, a terminal will be considered to be remote when-
ever the data link between the back-up computer and the terminal
is more expensive than if the terminal were adjacent to the back-
up computer.

Remote Computer

A remote (or peripheral or satellite) computer is a compu-
ter which is part of a remote display terminal.

Refresh Rate

Refresh rate is the number of times per second that an image
is traced on a volatile (non-storage) display surface. In order that
the display maintain a steady intensity, a minimum refresh rate
must be maintained. This minimum rate depends upon the decay
rate of whatever physical phenomenon produces visible light. For
CRT displays, this phenomenon is the secondary emission by phos-
phor bombarded with high energy electrons. Minimum CRT refresh
rates vary from 10 to 60, depending upon the type of phosphor uti-
lized.

Flicker Free

A flicker free display is one which is being regenerated at a
rate greater than or equal to the minimum refresh rate, so that to

the human eye the intensity of the display remains constant over time.

12

1.5 The Hardware System

DAC-1 and Sketchpad, the two early interactive graphical
computer aided design systems, were both connected to somewhat
unorthodox (at the time) computer systems. In the case of DAC-1,
an IBM 7094 with two independent 32k core banks was used. One
core held the batch processing job; the other, the graphics super-
visor and applications programs. When display servicing was
needed, control was given to the graphics supervisor which, when
finished, reverted control back to the batch supervisor. Thus
extensive swapping to a disk or drum is eliminated, and the CPU
can be productive much of the time.

Sketchpad is implemented on Lincoln Lab's vintage 1956
experimental TX-2 computer, which has 68k of core memory and
64 index registers. Memory reference instructions can be double
indexed, allowing a multiprogramming capability to be implemented
with relative ease, in a manner similar to current third generation
practices. This of course means, as in the case of DAC-1, that
the CPU, when not required by the graphics programs, can be
involved in other productive data processing. As mentioned ear-
lier, this is virtually an economic necessity when big computers
are involved.

The DAC-1 system helped to introduce the idea of a display

buffer memory, because a second function of the 7094's added

13
core bank was to hold the instructions which actually drive the
CRT display, thus eliminating any decrease in the instruction
execution rate for the batch jobs. With the TX-2, both CPU in-
structions and display instructions are taken from the same core
memory, so that competition for core cycles does arise, thereby
slowing the CPU execution rate. In TX-2, ten microseconds are
taken to transfer an instruction to the display control, which in
turn takes from 20 to 100 microseconds to execute the display in-
struction. During this execution, the TX-2 has access to its core
memory to continue its normal program. In effect, then, the dis-
play degrades the computer's performance by 9%to 33% without
a buffer memory.

Buffer memories are important for a second reason. When-
ever a CRT display console is more than several thousand feet
distant from its supporting computer, the cost of the required
high-speed data transmission facilities becomes prohibitive.

This data link is needed to refresh the CRT display rapidly enough
so as to avoid flicker. With a buffer memory at the display con-
sole site, a less expensive, lower speed data link becomes feasible.

One of the early (1964) display terminals using as a buffer
the core memory of a very small computer was Digital Equipment

Corporation's Type 240 Precision Incremental Display. Several

14
configurations exist in which the small computer used is a PDP-4
or PDP-7 [6, 9].

Following in 1965 came DEC's 338 Programmed Buffered
Display, which included a PDP-8. This was really the first pro-
duct line graphics terminal capable both of stand-alone operation
for unsophisticated work, and use as a peripheral computer and
terminal associated with a large time-shared computer for appli-
cations demanding either large amounts of bulk storage or compu-
tation. Since then many similar products have been introduced by
Information Displays Incorporated, Systems Engineering Labora-
tory and Adage.

Also available are a number of buffered and unbuffered graphic
displays, as well as even more alphanumeric displays. While
their ranks continue to swell, our attention will be confined to
buffered displays, with or without an associated small peripheral
computer.

A general display hardware configuration is shown in Figure 1-
1. The bulk storage device is included because in situations where
a slow data link is used, the storage can potentially be very desir -
able and convenient.

For many applications the remote computer is sorely needed.
John Ward, from M.I.T.'s Electronic Systems Laboratory, re-

marks [61] that

15

431NdWO0D
NIV

ANIT
viva

wo)sAg Aerdsiq

1-1 8ansig

d31NdW0D

W3LSAS
3JOvH01S
X1Ng

J10A3d

{S)I¥3TT0YLNOD

AV 1dSIid

W3LSAS
39VHOULS
X1Nng

D00 O

S370SNOD
AVidSId

16
Our experience over the past two years has

indicated that even with the specialized computing

capability of the [display] console, the associated

real-time general-purpose data processing needed

for display operation is an undue burden on the main

computer. What is actually needed is a small, in-

expensive, satellite computer interposed between the

main computer and the display console.

In matching the system in Figure 1-1 to a specific applica-
tion, many questions arise. These relate to what type of satellite
computer should be used, to the data link speed, and to the other

hardware components of the display system.

1.6 Trade-offs

There exists a large number of hardware-hardware and
hardware -software tradeoffs which can be exploited in specifying
a display system for a particular graphics application.

With respect to hardware-hardware tradeoffs, if we wish
to maintain a specified response time at the display console and
wish to decrease the data link speed, it is necessary to increase
the "power' of the remote computer/display control, or the amount
of core storage, or the amount of remote bulk storage, in order
to compensate for the extra data transmission time. The converse
also applies. Increasing remote computer power cuts computa-
tion time, while increasing core storage decreases bulk storage
accesses, either at the terminal or at the main computer, and

increasing remote bulk storage cuts down on data link usage.

17

In some cases, however, it may not be possible to completely
compensate for a lower transmission rate. This will depend both
on the decrease in transmission rate and on the relative usage of
the four system components. Specifically, a small decrease in
transmission rate for an infrequently used data link is far easier
to accommodate than a large decrease in a heavily used link.

Similar statements can be made with respect to each of the
other system resources: a decrease in any one can be compen-
sated for by increases in one or more of the other resources,
within certain limits.

There exist also certain hardware -software tradeoffs, re-
lated to the remote computer/display control. These center a-
round the implementation of certain display-oriented functions
normally performed at the remote display terminal by either the
computer or display control. These functions are discussed below.

When a position indicating device, such as a RAND tablet
[11], is used at the display console, it is often necessary to cor-
relate a position with an entity currently being displayed on the
CRT. This can be done with software, or with display control hard-
ware which continually compares the current CRT beam position
with the indicating device's position [37]. The first method can
consume much remote computer time, but costs nothing; the second
method takes neither remote computer time nor display control

time, but does take money for the extra hardware.

18

If, on the other hand, a light pen-type entity indicating de -
vice is employed, its position will frequently need to be known:
this is the familiar light pen tracking problem. Once again, the
work can be done with either special purpose hardware built into
the display control, or with a program running on the remote com-
puter. A current hardware implementation takes about 10% of
the display control's time, decreasing by a like amount the quan-
tity of flicker free material which can be displayed [53]. Soft-
ware implementations of various pen tracking algorithms do not
affect the display, but do require remote computer time to execute.

One of the most demanding display functions is the rotation
of a three dimensional object, which requires a matrix multipli-
cation operation of six scalar multiplications and 4 scalar addi-
tions for each point and line of the display. Implemented in soft-
ware, this can be very slow, and can limit the smoothness and
rate of dynamic rotation. A first step toward improvement is
adding hardware multiplication to the remote computer. A second
step is implementation, in the display control, of the actual ma-
trix multiplication. There are two current manifestations of this
second possibility. One uses binary rate multipliers, followed
by digital addition [53]. The second uses analog multipliers and

analog addition [1].

19

Hardware facilities for display subroutining allow one display
list to be used many times in the course of drawing a picture, and
therefore avoids needless duplication in core of display instructions.
This is all a direct parallel to subroutining for computer programs.

Similar display control hardware -remote computer software
tradeoffs exist with respect to problems of dashed lines, blinking
lines, transfer of control, recursive subroutining, displaying

lines, and displaying alphanumerics.

1.7 Research Objectives

With this multitude of tradeoffs between the various display
system components, an important question arises: for a given
display system application, and a given dollar cost, what combi-
nation of display subsystems will produce the best possible ser-
vice for display users? The best hardware will produce the fastest,
or minimum, average response time experienced by the display
system's users.

What is needed for use by display system designers is a
rigorous objective method for evaluating the effects upon system
cost and response time of the various tradeoffs discussed qualita-
tively in the previous section. By now the qualitative tradeoffs,
which are in fact rather obvious, are well understood. The trade-
offs need to be quantified for the sake of intelligent systems design,

because the consequences of using poor systems design are the

20
overloading of some subsystems, underutilization of other sub-
systems, and decreased productivity for the system's user.

The purpose of the work reported here is to quantify the
tradeoffs, and to create a rigorous quantitative approach to dis-
play system design. Of prime importance to the work is its con-
tinuing emphasis on optimal design. The important contributions
of this research are considered to be:

1. Development of a mathematical model for the study of

display systems and their applications.

2. Identification of those display system application char-
acteristics which should be known in order to rigorously
study the application.

3. Development of an objective approach toward dividing
display application computations between the main and
remote computers.

4. A comprehensive method to evaluate the capabilities of
remote computer -display controls.

5. An optimization scheme to find the best display system
of a given cost. This provides a means of studying
specific display systems, as well as a way to develop

item 7 below.

S

A cost-effectiveness criterion for selecting one of several
display systems which are optimum for their respective

costs.

21

7. General guidelines for display system designers.

Chapter TI

A MATHEMATICAL MODEL OF DISPLAY SYSTEMS

The central theme of the work reported here is optimum
design of display systems. In order that display systems be
studied in a rigorous manner, particularly to find optimum display
systems, a mathematical model or abstraction of how a display
system operates is needed.

To be useful, the model must reflect the varying capabil-
ities of the four hardware components which comprise a general
display system, as discussed in Chapter I; data link transmission
rate, computation rate of the remote computer and display control,
core memory included in the remote computer, and bulk storage
associated with the remote computer. The model must also be
sensitive to the varying computational, storage, and data transmis-
sion requirements of the many different applications which might
be implemented with a display system. Furthermore, any expli-
cit or implicit assumptions imbedded in the model must be tenable.

Finally, the model, when appropriately analyzed, must
yield some measure of system performance; specifically, the sys-
tem's response time will be taken to be the most important per-

formance measure.

22

23

In the following sections a model which satisfies these
requirements will be presented, the process whereby parameters
of the model are determined will be discussed, assumptions will
be evaluated, and some preliminary analysis concerning response

time will be performed.

2.1 Display System Model

Figure 1-1 shows a typical display system with R display
consoles being serviced by a single remote computer, which in
turn is supported via a data link by a large time-shared computing
system. The model, shown in Figure 2-1, represents an abstrac-
tion of the flows of information and control which are likely to occur
in the total system. Each box in the model represents a server and
when R > 1, a possible queue of tasks waiting to use the server.
As can be seen, servers are the remote computer, its bulk storage,
the data link, the main computer, and its bulk storage. It is often
the case that several servers in the model refer to the same physi-
cal device, performing different functions.

The best way to understand the model's operation is to

follow a typical man-machine interaction as it passes through the

system. An interaction is begun when a user at one of the R dis-
play consoles requests service by introducing information into the
system. The user does this by typing on an input keyboard, de-

pressing a function button, causing the light pen (or a similar

24

PD

MAIN COMPUTER

9 |BULK STORAGE
4 and 9

I-PD

PRIORITY 3

MAIN
8 |COMPUTER

PRIORITY 4 PRIORITY

PRIORITY 2

10

3

PRIORITY 2

REMOTE
COMPUTER:
POST-
PROCESSING

WAIT FOR NEXT
REQUEST

DATA
7 LINK S
PRIORITY 3
REMOTE
6 |COMPUTER:)
PRE - [
PROCESSING
r&
A ‘r
-
PRIORITY |
PM_ _I-PM
USER|SERVICE
REQUESTS
Figure 2-1

Display System Model

1=-PRD

| REMOTE

bro] COMPUTER
- BULK

STORAGE

(8]
[+ 4
[a]
o

4REMOTE

- COMPUTER:

¢REMOTE
PROCESSING

O
o
(o)
a
1

WAIT FOR NEXT
REQUEST

25
device) to sense a point on the display, or some similar action.
The resulting service required by the user's action may be so
trivial as adding an additional alphanumeric character to the infor-
mation already in the display, or so difficult as analyzing a complex
electrical network.

Having received the input information, the remote computer's
interrupt handling software is able to determine, in a time interval
usually so short that the process is not modeled, whether the re-
quested service will be performed by the remote computer or the
main computer. The main computer will be used if it has been
programmed to do what is needed; if not, the remote computer will
have been programmed to perform the desired service.

If the main computer is to be used, a task is entered in the
queue of tasks waiting to use server 6 (when R =1, queues never
exist, so the task always begins service immediately), which is the
remote computer in a pre-processing mode of operation. This pre-
processing involves preparing a message for transmission to the
main computer, giving it all the information needed to perform its
task. The work involved may be as simple as requesting trans-
mission of a previously-prepared message, or as complicated as
creating a compact description of a display from its display file.
Having finished pre -processing, a message is queued for use of the
data link, server 7, and is eventually sent to the main computer,
after which the job queues for attention by the main computer,

server 8.

26

One of two situations will usually prevail at the main com-
puter. Either display terminal tasks are given priority over other
tasks, such as those from teletype terminals, or they are not. In
either case, the model's queue 8 contains only display tasks; how-
ever, in the priority case, the main computer's service time will
be less (possibly substantially less) than when there are no priori-
ties. That is, the fact that non-display tasks may be competing
with display tasks for use of the CPU will be treated implicitly in
the CPU's service rate, rather than explicitly by having non-display
tasks in queue 8. No matter what the priority structure (or lack of
it) may be, intervals of main computer service ensue, interspersed
with bulk storage accesses to programs and/or data.

Whenever processing ends, a message containing results is
queued for transmission to the remote computer via server 10.
Following transmission, the task queues to use the remote computer,
server 11, for post-processing. During post-processing, results
received from the main computer are interpreted and expanded into
a display file, after which the user sees his results on the display
console, and is able to generate a new service request.

Several general observations concerning the model are
appropriate. A very clear distinction is made between the two roles
played by the main computer. The first role, that of a processor,
is modeled by servers 8 and 9; the second role, that of storage for

data and programs for the remote computer, by server 4.

27

Because several servers are in fact the same physical de-
vice, a system of priorities is included in the model. They are in-
dicated in Figure 2-1. For example, if tasks are waiting to use the
remote computer in both its pre- and post-processing roles, post-
processing is given priority. This is just an extension of the read-
before-write philosophy used in scheduling the paging drum of cur-
rent time-shared computer systems [40, 57]. The goal of course,
is to keep response time down. In the case at hand reads are as-
sociated with post-processing and writes with pre-processing:
since it is the "'reads' which bring a task nearer to completion with
more certainty than a "write." Indeed, in this example, post-
processing completes a task.

Beyond this, however, remote processing (server 1) is
given top priority for use of the remote computer. This helps the
display terminal users maintain a high interaction rate while doing
the ordinary work supported by the remote computer, for which the
user expects fast responses. Interactions involving the main computer,
for which users are usually prepared to wait a bit longer, are accord-
ingly given lower priority. Priorities for use of the data link are
assigned on the same basis, that is, ''read before write" with pref-
erence given to the remote computer.

Finally, it is important to remember that each of the R
users can have only one task in the system at any time. This means

that the maximum queue length at any server is R-1 (one will be in

28

service), and that no more than R tasks can simultaneously be in the

system.

2.2 Hardware Specification

Determining parameters of the model requires certain in-

formation about the hardware system. The parameters defined below

are needed.

UMD 2

URD 2

accesses per second which can be made to the
Main computer's Disk storage system. For this
and the following definition, an access means
reading or writing 12, 000 bits. If the main
computer's filing system is such that storing or
retrieving a block of information requires more
than one physical access to the disk (such as
first accessing a line directory and then acces-
sing the line, as with the Michigan Terminal
System [57], then UMD should account for this.
Thus, UMD is the rate at which file blocks can
be read or written.

accesses per second which can be made to the
Remote computer's Disk storage system. It is
assumed that the remote computer's filing sys-
tem will be very simple, avoiding the necessity

of multiple accesses to read or write a file

29
block. Therefore URD is the access rate for a
single access.
X1 = Data link transmission rate, bits per second.
TRIP 2 Transfer Rate of Information Percentage, such
that TRIB = X1 X TRIP, where TRIB is the actual
transfer rate of information bits after accounting
for factors such as coding redundancy, error
rates, and non-information characters. TRIB

is discussed in reference 38.

np>

X2 Number of 12, 000 bit blocks of core storage avail-
able at the remote computer. A block of storage
is defined to be 12, 000 bits as a matter of con-

venience.

np

X3 Number of 12, 000 bit blocks of bulk storage

available at the remote computer.

np

X4 Instruction execution rate of remote computer -
display control. The manner in which this can
be determined is discussed in Chapter V.

The parameters X1, X2, X3, and X4 each characterize a
particular subsystem. The vector X = (X1, X2, X3, X4) specifies
the essentials of a display system.

The next section will discuss what display application char-

acteristics must be known. Then, knowing the characteristics of both

30
the hardware and the application, the model's parameters will be

determinable.

2. 3 Application Specification

Characteristics of the particular application being imple -
mented on a display system are needed to completely specify the
display system model's parameters. The following characteristics
must be known, or estimated. It should be understood that these are
average characteristics.

ARRIVE = Arrival rate of service requests from a user
during the period that the system is awaiting
commands from the user. This quantity is in
fact just the reciprocal of the user's think time.
It is clear that as the system's application
varies from simple to complex, think time,
that is, time required for the user to decide
what should be done next, will also vary. Think
time also is dependent upon the user's experi-
ence with the application and with using the
display console.

Each service request which is received from a console user
necessitates performing some computations. Depending upon what
has been requested, the computations may be very short, or they may
be long and involve many bulk storage accesses. For each different

type of service which may be desired by the console user, the 4-tuple

31

(Ni’ s BiM, BiR) must be given. Let there be NT different types

of service requests for the application under study.
Ni = Number of instructions which must be executed

to complete a service request of type i. An
instruction is not a machine-level instruction,
but is rather a higher-level type which will be
called "'display instructions'', and will be
precisely defined in Section 5. 3. Any service re-
quest can be completed by executing some se-
quence of display instructions.

Probability that a service request of type i will

be made. The summation of the ﬂi‘s is unity.

=
>

Number of accesses (or granches) to bulk
storage which will be required by a type i
service request, given that the service request
is processed at the Main computer. All of
these accesses will be to the main computer's

bulk storage.

oy}
np>

Number of accesses (or Branches) to bulk
storage which will be made by a type i service
request, given that the request is processed at
the Remote computer, with only one block of
core storage available at the remote computer

as a working area into which programs can be

32
brought to execute. These accesses can be
to bulk storage at either the main or the remote
computer.

BiM and BiR will in general not be equal. This is primarily
because the main computer has more core storage than does the basic
remote computer-display control, which as just noted has only one
block for a working area. It is therefore quite unlikely that whatever
program or data service request type i needs will be in the working
area. The main computer in contrast has a large amount of core
storage for a working area, so that many programs can be in core
(or at least in virtual memory, on a fast drum rather than on slow
disk) concurrently. It is thus likely that fewer accesses to bulk
storage will have to be made by the main computer than by the remote
computer.

It is on the basis of this information that service requests
will be assigned to either the main or remote computer. A recent
article by Williams [62] contains a general discussion of a graphics
system at SDC. It establishes just three types of interactions, which
are then assigned to either the main or remote computer depending
on the interaction's computational requirements. Section 2.7.1 pre-
sents a formalized objective method of making these assignments.
Once the assignments are made, various parameters of the model can
be calculated, as will be done in the following section. First, however,

more information is needed.

33

NPPPC 2 Number of instructions performed by the remote
computer when in either the pre- or post-pro-
cessing mode of operation (corresponding to
servers 6 and 11 in the model). The meaning
of instructions was clarified above.

UMC 4 Instruction execution rate for the main computer.
Instructions are defined in Section 5. 3. If tasks
from the display system are given preemptive
priority at the main computer, UMC is the true
rate at which display instructions can be per-
formed. If not, UMC must be degraded to
account for those periods of time when a display
task is eligible to execute but is waiting for a
non-display task to complete execution, or when
it must wait for core storage to become avail-
able. Note that the effect of competition for
the CPU by several display tasks is explicitly
modeled by use of a queue. It is only compe-
tition from tasks not originated by the display
system being modeled which must be reflected
in UMC.

Another important application characteristic which is mani-

fested in the application programming is the relative and absolute

usage of the data and program files associated with the display

34
application. Of specific interest here are all program and data files
accessed by the remote computer, regardless of whether the files
are stored at the main or remote computer. To delve further into
this matter, additional definitions are useful.

MAXPAG 2 Maximum number of file Pages, or blocks,

needed to store the above-mentioned files,
when only one file is stored in a file block.
In Section 2. 2 a block of storage was defined
as 12, 000 bits.

SYSPAG = Number of System Pages, or blocks of remote
computer core storage used on a permanent
resident basis by the executive system, the
working area from which programs are exe-
cuted, and the display file, when one display
console is used. Two blocks are added for
each additional display console to provide the

necessary program area and display file area.

np>

Probability of accessing file number i, con-
ditioned on a file access being needed by the
remote computer in a display system with
only SYSPAG blocks of remote computer core
available. Furthermore, let the MAXPAG

file blocks be numbered 1, 2, . . . , MAXPAG

35

such that p; > That is,

+ + Z PMAXPAG

the pi's form a monotonic nonincreasing se-

quence { pi} .

]
PACESS() = Z D & probability of accessing file blocks
i=1

1 , j, given that a file access is

' 2, 4 o
needed. Then if a display system has X3
blocks of bulk storage at the remote computer
and X2 blocks of core storage, it is logical
that the X2-SYSPAG file blocks with the high-
est relative useage, that is, the highest pi's,
be kept in core, the X3 next most frequently
used file blocks be kept in remote bulk storage,
and the least frequently used blocks be kept

at the remote computer. This simply mini-
mizes average file access time by placing
frequently used files in a fast storage device
and less frequently used files in slower storage

devices. With this said, more definitions are

possible.

np

PCORE = PACESS(X2 - SYSPAG) = Probability that a
needed file is in core.

PREMOT = PACESS (X2 + X3 - SYSPAG) - PCORE 4 Prob-
ability that a needed file is in bulk storage

at the remote computer.

36

PMAIN =1 - PCORE - PREMOT 2 Probability that a needed
file is in bulk storage at the main computer.

MSGLTH 2 Message length, in bits, sent over the data link,
corresponding in the model to servers 3, 5, 7,
and 10.

Summarizing, the following application parameters are to

be estimated.

ARRIVE, the arrival rate of user service requests.

NT, the number of types of service requests.

For i=l, . . ., NT;

Ni’ the number of instructions needed to complete service

type i.

7., the probability of service type i.

kS

BiM, the number of bulk storage accesses needed by ser-

vice type i if performed at the main computer.

BiR, the equivalent of BiM for service at the remote
computer.

NPPPC, the number of instructions needed for pre- or
post-processing.

UMC, the main computer's instruction execution rate.
MAXPAG, the maximum number of storage blocks needed
by the remote computer.

For i=l, . . . , MAXPAG;

P the probability of accessing file i.

MSGLTH, the length of messages sent over the data link.

37

At this point it must be very evident that the foregoing
parameterized application characterizations may, in fact, be very
difficult to estimate. This is true. However, what is equally true
is that the better an application and the programming and computa-
tional requirements of that application are understood, the easier will
the estimating process be, and the better will the parameter estimates
be, and the better will the response time estimate be. This model
does not give something for nothing. It does not give an estimate of
response time for an ill-defined application implemented on an ill-
defined hardware display system. On the other hand, the model will
hopefully give an accurate estimate of the system response time for
a well-defined application.

Having clarified this, attention is turned to the next section,

in which the model's parameters are actually found.

2.4 Parameter Calculation

Having described the display system hardware and appli-
cations, the model's parameters can now be computed. These para-
meters consist of the branching probabilities seen in Figure 2-1, the
arrival rate of service requests as well as the average service time
for each of the 11 servers. These service times will be designated as
ti’ i=1, 2, . .. 11,

Certain of the parameters are given explicitly. Thus the
arrival rate of service requests, ARRIVE, is known, and t2 = 1/URD,

andt, =t

4 =tg = 1/UMD.

38
The time taken by the data link to send a message is just the
message length, in bits, divided by the effective transmission rate,
in bits per second. This rate is just (X1)(TRIP/100), so that

t,=t.=t MSGLTH/ ((X1)(TRIP/100)). 2.1)

3= %= = Yo"
The pre- and post-processing time is the number of instructions to
be executed, divided by the remote computer's instruction execution

rate, so

te=ty = S - 2.2)

The remaining parameters are all dependent upon the
division of processing between the main and remote computers. For
now it is sufficient to assume some arbitrary division of tasks between
the two computers. An optimum division will be discussed in Section
2.7.1.

Now suppose that the set SR contains the indices of those
tasks, or service requests, which are assigned to the remote computer;
and SM, those assigned to the main computer. The properties of SM
and ST are that SM n s® = 4, the null set, and sSM U s = 8, the
set of integers 1, 2, . . ., NT. In words, a task has as its processing
unit either the remote or main computer, but not both (exclusive of
the pre- and post-processing work), and a task always requires some
processing.

Then PM, the probability of using the main computer (the

probability that a service request causes a task to use the main com-

puter), is given by

39

PM =), T, iesM

The above properties of SM and SR imply that

1-PM=1- 7, i€S

From Ni’ the processing time per interaction for service

MmN R N
request type i is easily seen to be ®i = UMC and 61 = <z for
T

the main or remote computers, respectively. Defining tlT and t8
to be the total computation time per interaction provided by server

1 (remote computer), given that it is used, and by server 8 (main

computer), given that it is used, respectively, it follows that

. . N.
T i R_y i i . R
YslTeM O clTPmoxg o i€S,and (2.3)

il
T v ' M . M
tg ~}JP—M- 0., ies". 2.4)

Division by 1- PM in the former and PM in the latter case is needed
to form normalized probabilities. In a similar manner, NR and NM,
the average number of bulk storage accesses per interaction made
by the remote computer, given that it is used, and by the main com-
puter, given that it is used, respectively, are
R v 7y R R
N :Z/T:m Bl , 1€8 , and

i
M v M . M
N —Z/—I"DM Bl’ ie S,

Having found these intermediate results, the remaining

model parameters are determinable. Because there are NM bulk

40

M .
storage accesses at the main computer, there are N + 1 processing
intervals, the first NM of which end with bulk storage accesses, and
the last of which end not with another bulk storage access, but with

the sending of data back to the display terminal. Then

T
t
t8 :——13—1—— , and the probability of accessing bulk storage is given
N +1
NM
by PD =— M . This ratio can be thought of as successful attempts
N+

divided by total attempts, where a success is interpreted as a storage

access.

The only parameters remaining to be defined are PRDC,

PRD, and t These are most easily found by considering Figures

1"
2-2 through 2-6. The rectangle in each figure represents the remote
computer, and the expression within each rectangle is the average

time used by a task passing through the remote computer. Figure

2-2 shows that the remote computer (server 1 in the model) can com-

plete a job in a time of g2 direct parallel to the above discus-
1+N

sion concerning t8' The probability that a processing interval com-

pletes all needed processing is

PEND = L

1+ NR
If processing is not done, a file access is made either to core with
probability PCORE, or to the remote computer's bulk storage with
probability PREMOT, or to the main computer's bulk storage with

probability PMAIN.

41

PMAIN
PREMOT
A
PCORE
A
Y |-PEND
t,T
b = >
[+ N |
PEND-=
QUEUE REMOTE I+NACESS
COMPUTER Y
Figure 2-2

Remote Computer and Queue

42

PMAIN(I-PEND)

PREMOT(1-PEND)

PCORE (I-PEND)

A
Y
t, T
>—
|+ NR PEND
QUEUE REMOTE
COMPUTER 4
Figure 2-3

Remote Computer and Queue: Transformation I

43

PMAIN

PREMOT+MAIN
A
PMAIN
PREMOT +PMAIN a
< o A
o
2 PEND
v o D
m
pd
o
t, T I-PCORE (I-PEND)
S N— = > >
{+ N
QUEUE REMOTE
COMPUTER Y
PEND
D

D=PCORE (I-PEND)
PMAIN + PREMOTE =1 -PCORE

Figure 2-4

Remote Computer and Queue: Transformation II

44

PMAIN
PMAIN+PREMOT

A

PREMOTE
PMAIN PREMOTE

~

4
| -PEND/D
DU+NT)
QUEUE REMOTE PEND/D
COMPUTER v

PDRC=1- PEND/D
PRD = PREMOTE/(PMAIN + PREMOTE)
D=1-PCORE (I-PEND)

Figure 2-5

Remote Computer and Queue: Transformation III

45

d-|

Aymjusp] uy

9-g 9In31g

7d

46
Figure 2-3 represents a merging of the two branching
nodes from Figure 2-2 while Figure 2-4 is just a rearrangement of
Figure 2-3. Using the identity shown in Figure 2-6 allows the trans-
formation from Figure 2-4 to 2-5, which now is in direct corres-

pondence with the model, so that if D =1 - PCORE(1 - PEND), then

PRDC =1 - PEND/D, (2. 6)

PRD = PREMOT/(PREMOT + PMAIN) 2.17)
£,

- .

so that all the parameters are completely specified.

2.5 Assumptions

Various assumptions have explicitly and implicitly been
made during the development of this model. Indeed, further assump-
tions will be necessary when the model is actually analyzed. At this
point, however, only the former variety of assumptions will be dis-
cussed. The first of these is that the model requires that all remote
computer pre- processing be finished before any information is sent
to the main computer. This need not be the case; in a real system,
information might be sent as it is extracted from the display file,
and the main computer might begin processing received information
while the remote computer is still processing as well. Other exam-
ples are easily seen. As a result, the response time as predicted
by the model will be worse than might realistically be obtained from
a system whose programmers make intelligent software design deci-

sions to take advantage of any possible concurrent operations.

47

This is not as serious as it may seem to be, as a certain
amount of concurrency is implicitly imbedded in the model. The most
conspicuous example is that of sending or receiving data link messages.
The actual transmission would be requested by an application program,
but the word-by-word I/O operations would be handled either on an
interrupt basis by the executive system, or possibly by a hardware
block-transfer facility, while other application programs could be
executing.

Another assumption is that all actions associated with a
particular service request must be completed before the user can ask
for further action. A plausible counterexample is an application in
which a user requests that a display be prepared for later offline
plotting on a hard copy output device. In most cases there would be
no logical reason that the ensuing computations not be performed in
a low priority hackground mode of operation while the display console
user proceeds with his graphical work. This assumption can be over-
come by not including such cases in the estimates of computational
requirements used to find the model's parameters.

The basic structure of the model makes remote disk ac-
cesses in the pre- and post- processing operations impossible, while
there is certainly nothing inherent in display applications to preclude
the desirability of such actions. By eliminating the possibility of
such accesses, the model will tend to underestimate the modeled sys-

tem's response time if the system actually makes the accesses.

48

The model also allows only one level of bulk storage at
the remote computer, specifically head-per-track disks or drums.
This limitation is based on two premises. The first is that other
reasonably priced bulk storage media which might be used at the
remote computer (magnetic tape, for instance) are not as cost-effective
as disks or drums, unless very large amounts (more than 800 or 1000
blocks) of on-line bulk storage are needed. The second is that if a
large amount of on-line bulk storage is needed, there should still be
included a disk or drum for storing the more frequently used files, to
help maintain a reasonable response time.

It has been explicitly stated that the estimated parameters
forming the application specification are averages. To be more spe-
cific and more rigorous, suppose that a display application were actu-
ally implemented on a display system, and that the operation of the
hardware were closely monitored. Now, if after a very long period
of operation, the monitored information were analyzed, and the empir-
ical probability distribution for each of the application parameters were
found, the mean of each of the empirical distributions would be used
as the corresponding application parameter. In the case of P, which
is the probability of accessing storage file i, and s which is the pro-
bability that a service request is of type i is made, the probability dis-
tribution formed is just a count of the accesses and service requests,
divided by the total number of accesses and service requests, respec-

tively.

49

Using information gathered over a very long time span
would insure that the mean of the empirical distribution would bhe
very close to the true mean. That is, what is being sought in this
way is the long term mean of a statistical process. The process is
presumed to be stationary, although in practice this may not be so.
For instance, a user's think time may in part depend on what portion
of an application he is currently using. In an electrical network ap-
plication, drawing a simple RLC circuit would probably require less
think time per interaction than specifying a forcing function and the
output(s) to be plotted. Similarly, differences can exist in the utili-
zation of the remote computer and its memory devices during the
different stages of an application. This is why the mean must be
found from data taken over a long time span, so that all effects of
this sort are taken into full account. This ensures that the means of
the various empirical distributions will not be biased towards any
particular phase of an application.

Now obtaining data in the above manner is impossible until
after a display system is installed and programmed, which is much
too late to be of use in determining what type of display system to
install and program. Accordingly, a further assumption being made
is that the system designer is able to estimate all of the application
parameters, using as an aid the above description of how the para-

meters would be found if it were feasible to do so.

50

A potentially important phenomenon not fully accounted for
by the model is the reduction in "thrashing'' which occurs as the
amount of remote computer core storage increases. Thrashing occurs
to some degree or another when not enough core is available to load
a program to be executed, so that it must be loaded piece-by-piece as
needed, with the strong possibility that some pieces be loaded many
times before execution ends. Thrashing is reduced markedly by in-
creasing core storage. In the model, bulk storage accesses are re-
duced by increasing core storage because the more active files can
then be kept in core. However, there is no explicit mechanism to
account for the thrashing reduction which occurs when enough core
working area becomes available to hold in its entirety any program
which might be initiated by a user interaction. This can be accomplished
by making estimates of NiR large enough to reflect the thrashing which
can occur at the remote computer, and by adjusting PACESS(~) so that
the first few file blocks have extremely high useages. Then the addi-
tion of the first few blocks of core storage will cause a large decrease
in bulk storage accesses, as occurs when thrashing ceases to be a
problem.

Another assumption is that the main computer is not needed
when the remote computer accesses the main computer's bulk storage.
While this is not really true, the processing time needed will be small
when compared with the storage access time, and is consequently ne -

glected, thereby reducing the response time estimate.

o1

Why have these assumptions been made? Why can't the mo-
del be bigger and more sophisticated so that the assumptions aren't
needed? For several reasons: the most important is that as the
model becomes larger and more detailed, more and more must be
known about the fine details of an application to determine the model's
parameters. The model as it exists now is already quite detailed, and
is rather demanding in what must be known about the display system
application; asking for even more application parameters is most
unreasonable and unrealistic.

A second reason for limiting the model's size is limitations
of the available analysis tools, i.e., as the model acquires more de-
tail more computer time is needed for analysis. Because the model
will be analyzed many times, the time for a single analysis must be
kept within reasonable bounds. That is, a tradeoff exists between
the model's complexity and the computer time needed for its analysis.
A relatively simple model has been chosen, so that many points in
its parameter space can be examined. An excellent example of the
converse choice is work done by Nielsen [43|, which uses a highly
detailed model of the IBM 360/67 and TSS to predict user response
time and system loading. Because of the model's detail and resulting
long analysis time, only a single very haphazard optimization was
possible.

A final point is that the more detailed the model, the fewer

will be the display applications which can be represented with the

52
model. Embedding more detail in the model will necessarily begin
to bias it toward a particular class of application or computer oper -
ating system. This is undesirable. It is believed that the model con-
tains enough detail to reflect the critical differences between applica-

tions, yet not so much detail as to scare off potential users.

2.6 Cost

The total cost of the display system includes the hardware's
cost, plus the cost of whatever processing is done by the main com-
puter bulk storage used by display system files. Cost is considered in
terms of monthly rental charges, because some of the equipment must
be leased rather than purchased. Equivalent rentals for purchased
hardware are found by amortizing the purchase over 40 months, which
is a commonly accepted depreciation period among computer purchasers.

To find main computer usage costs, two quantities are here

defined.

CPUCST 2 central processing unit cost per month to the
display console user if the display system were
trying to use the main computer 100% of the
time that the display system is in use. CPUCST
will be lower for the nonpriority case than for
the priority case; in the latter, the display
system would actually use the main computer
whenever needed, while in the former, because

of competition from other jobs, a smaller

53

utilization would be attained. The exact decrease
in CPUCST caused by competition from other
jobs must be estimated or measured.

PAGCST = the page, or file block, storage cost per month

for files stored at the main computer.

Now if F is the fraction of time the display system is in use

that it actually tries to use the main computer.
CX) =
Total System Cost = Hardware Cost + (F)(CPUCST)

+ (PAGCST)(MAXPAG - X2 - X3). 2.9)
Also, C'(X) = Hardware cost + (PAGCST)(MAXPAG - X2 - X3). (2.10)
C'()_() represents those system costs which can be found without
actually analyzing the display system model. That is to say,
(F)(CPUCST) has been eliminated because F cannot be quickly deter -
mined when there is more than one display console sharing the dis-
play system.

Hardware cost is the sum of monthly charges for the data
link, remote computer core and bulk storage, and the remote com-
puter -display control (including the display consoles). It is impor-
tant to note that C' is a monotonic increasing function of X as long
as the hardware cost of adding either a core or bulk storage page to

the remote computer is greater than PAGCST. This will be the case

because of economies of scale associated with bulk storage used at

54
the main computer. C' is also nonlinear - linear relations between
computer equipment prices and their capabilities seem to be non-

existent,

2.7 Analysis

As mentioned at the beginning of this chapter, the display
system model presented here will be used to determine system re-
sponse time for user service requests. This response time is just the
average time delay from when a user's request for service is entered
into the system using one of the display console's input devices until
the service has been completed, results displayed, and the user per-
mitted to request further service.

If Ti’ i=1,2, . . ., 11 is defined as the average total time
in queue for server i, including the actual service time ti’ then it is
clear that the response time T is just a weighted sum of the Ti's.

That is, the weights will just be the average number of times per
interaction that each server is used during the completion of a user's
request. That is, if server i were used on the average twice per
interaction, its contribution to the total average response time would
simply be 2 Ti'

Average response time, as can be determined from Figure 2-2,

can be written as

T = ™@EMm) + TRA - PM). 2. 11)
where
T T,.(PD)
M 8 9
T —T6+ T7+1—PD +1—PD + T10+ T11 (2.12)

55
is the time needed when the main computer is used for processing,

and

R T, PDRC

T ={PprRC * T-PDRC

[TZ(PRD) + (T3 + T4 + T5)(1-PRD£] (2.13)

is the time needed then the remote computer is used for processing.
Equation 2. 11 simply applies the appropriate weights to the
average processing times of the main and remote computers. If the
main computer is used for processing, servers 6 7, 10 and 11 are
each used once. Therefore T6’ T7, TlO’ and T11 all have unity
multipliers in equation 2. 12, However, the main computer and its
bulk storage are used more often. The number of times the main

computer is used is given by 1 + PD + PD2 + PD3 o0 . = l—i)D .

Similarly, the number of uses of the main computer'’s bulk storage

2
is given by PD + PD +PD3+° .. =PD(1 + PD+ PD2+. ..)=
PD . -
1pD ° This accounts for the multipliers of T8 and Tg.
. . 1 PDRC
In equation 2. 13, the multipliers T-PDRC and T-PDRC

are found using the same infinite series, and applied to the remote
computer's throughput time and its bulk storage system's throughput
time, respectively. The bulk storage throughput time is in turn a

weighted sum, with the weights PRD and 1-PRD applied to T2 and T, +

3
T4 + T5, respectively, reflecting the probability of their usages.
Functionally, response time can be expressed as T(R, X, _Z_),

with R, X, and Z defined below.

56

np

number of active display consoles attached to

oy}

the remote computer. R > 1.

X = (X1,X2,X3,X4) = description of hardware used in
display system, where X1 indicates data link
transmission rate; X2, core storage used at
the remote computer; X3, bulk storage used at
the remote computer; and X4, instruction exe-
cution rate for the remote computer -display
control.

Z = (Zl’ Zgs + o oy zn) 4 description of application implemented
by the display system. It will not be necessary
to associate each z; with a particular application
parameter, nor to define n.

It is important to note that for any two integers ry and Iy

such that ry < Ty, then T(rl, X, Z)< T(r2, X, Z). This is really
a formalized statement of the obvious, i.e., increasing congestion in
the system (increasing the number of system users) also increases re-
sponse time, all else being equal. A specific and useful instance of this
occurs when ry = 1, ry > 1, for then T(1,X, Z) < T(rz,)_(, Z), or
T(1,X,Z)<T(R,X,Z). Thatis, T(1,X,Z)is a lower bound on T(R, X, Z).
We thus define

T(, X, 2)2TLR, X, 2) (2. 14)

This result will be used in a later chapter.

57
Also notice that T is nonlinear in the variables X1, X2, X3,
and X4. This will be important in formulating the display system op-
timization problem in Chapter IV. Two other results will also be

needed: they are presented in the following two sections.

2.7.1 Assignment of Interactions

An assignment algorithm which is both simple and reasonable
is used to assign interactions to either the main or remote computer
for servicing. Define TiM as the time that would be required to
process a type i interaction if it were assigned to the main computer
and TiR as the time that would be required to process the same inter-
action if it were assigned to the remote computer, when just one dis-
play console is in use. TiM and TiR are easily evaluated. Recall that
for interaction type i, Ni display instructions must be executed,
and either BiM main computer or BiR remote computer bulk storage

accesses must be made. Then, by direct analogy with equations

2.12 and 2. 13, and for R =1,

TM—t+t+t8 +t9(PD) +tiat+t
i ~ 6 7'1-PD 1-PD 10" "11
B
with PD =— , and
1+B.M
i
R g PDRC |
Ti = TPDRC * T-PDRC tz(PRD) + (t3 + t4 + t5)(1~PRD)]
B.R

.
1+ B.R
i

with PDRC =

58

An interaction of type i is assigned to the main computer if

T.M < TiR; otherwise. the interaction type is assigned to the remote

i
computer. Clearly this assignment minimizes response time for the
single user case, and consequently will be called the optimum assign-
ment. Any other assignment will result in longer response time, and
will be suboptimal by the definition being used here.

There are, naturally enough, other definitions of optimal
which might be used. Specifically, the current definition does not
consider the costs associated with servicing interactions at the main
or remote computer. In reality, assigning an interaction type to the
main computer will be more expensive than using the remote computer,
because the incremental cost of using the remote computer more is
zero, while for the main computer it is very definitely positive. This
suggests that before assigning an interaction type to the main computer,

Ror TiM+ K < TiR should be

a relationship such as TiM(1+K) < Ti
satisfied, where K is some carefully selected positive constant. But
now, of course, this introduces an additional parameter into the op-
timization : a parameter whose proper value is not at all evident. To
avoid this additional complexity, then, the main computer will be used

whenever TiM < TiR.

Thus, in fact, a design decision has been made.
It must be noted that the assignment does not take into account
the data base distribution between the main and remote computers.

For instance, it would be foolish to store data at the remote computer

if the data is used only by programs at the main computer. Therefore

59
the questions of processing assignment and data distribution should
be treated together. This has not been done here because of many
additional complexities which would arise, and because an unreason-
able amount of extra application information would be needed.

When several consoles are active the assignment found as
described above is not necessarily optimum, because TiM and TiR
evaluated for one user do not account for the queueing which can
develop with multiple users. The problem is that evaluating TiM
and TiR for service request type i with several active users is dif-
ficult from a theoretical viewpoint and impossible for practical reasons.
In the former case, the assignment of all service requests other than
i would have to be known (or assumed) so that the computations needed
by request type i would be delayed by the appropriate amount of con-
gestion, whether they were done by the main or remote computer.
Presumably, some iterative scheme could be developed using some -
thing of a trial-and-error approach to the assignments. In the latter
case, as a practical matter, the actual evaluations would be so de-
manding of computer time as to create an impossible situation. Thus,
although the assignment algorithm presented may not, in fact, produce

optimum results for the multi-user case, it is the best that can be done.

2. 7.2 Monotonicity of T

To demonstrate the desired monotonic nonincreasing pro-

perty of T with respect to each component of X, it will be necessary

60

to show that the partial derivatives of T, %;% . i=1,2,3,4, are less
i

than or equal to zero for positive Xi'

Turning first to X1, the data link transmission rate, it is
MSGLTH

known from Section 2. 4, equation 2. 1, that t3=t5=t7=t10= XT)(TRID/100)

Furthermore T3 is related to t3 in such a way that a decrease in t3
causes a decrease in T Now ft—B = - MSGLTH
3 ’ oX1 XT)XI)(TRIP/100
aT3
SO =7 is also negative. The same is true for t5, t7, and tlU‘

Using equations 2. 11, 2. 12, and 2. 13,

oT Ty, 9Ty PRDC 0Tg Ty)

xr = Mgy + —x1)+ A-PM)ppRe J(-PRD) g+ ax1

(2. 15)

Now each of the four derivatives in equation 2. 15 is negative, so
oT . .
X1 is negative.
Continuing with X2, the size of the remote computer's core
storage, the derivative of T is again found using equations 2. 11, 2. 12,

and 2. 13. 1t is

oT _ R o
=3 = (I-PM)N"(Ty - T3 - T, - T5) x5~ PACESS

(X2 + X3 - SYSPAG) (2. 186)
The derivative of PACESS (+) is positive, because increasing X2 in-
creases PACESS (-). Thus, in order that 2. 16 be nonpositive, the
inequality T2 f T3 + T4 + T5 must be satisfied. This is nothing more

than requiring that the remote computer's bulk storage, including

61

queueing delays, be faster than the sum of data link transmission
times and access to the main computer's bulk storage, including
queueing delays. If this were not the case, there would be no justifi-
cation for remote bulk storage, because using the main computer's
bulk storage would be faster. There is, in fact, no difficulty satis-
fying the inequality, because the movable head disk pack storage
units used at the main computer are considerably slower than the
head-per-track disks which would be used at the remote computer.
Thus, equation 2. 16 is nonpositive, and T is monotonic nondecreasing with
with respect to X2.

Turning now to X3, which is the size of the remote computer's

bulk storage, equations 2. 11, 2, 12, and 2. 13 yield

oT PDRC JdPRD

ax3 - (I-PM) y5ppe (T - T3 - Ty - Tg) 5x3— (2.17)
OPRD

Now %3 18 positive, because increasing the amount of bulk storage

inc reases the probability of its use, which is what PRD happens to be.
But, as required in the preceding paragraph, T2 f T3 + T4 + T5, SO
that Ty - Ty - T, - Ty is nonpositive. Therefore, 2. 17 is also non-
positive, so T is monotonic nonincreasing with respect to X3.

Finally, turning attention to X4, first recall the two equations

. _NPPPC

ty = ——— 2. 8)

62

Using equation 2. 3 with 2. 8 yields

7. N.
t, = 1 — L iest 2. 18)
D(1+N™) (1-PM)(X4)
Differentiating,
ot 7. N,
8X11 . E— iesh 2. 19)

p1+NE) T (1-pMm)x4)f

Just as T3 decreased when t3 decreased, so too with ’I‘1 and

ot aT
tl. Therefore, since %4 is negative, so is “XE Also, differenti-
ating 2. 4.2
ot
t M xeppc 2. 20)
0X4 0X4 X 4)2

As was the case with T1 and tl’ so with T6 and t6’ and T11 and t11'
oT aT11

Thus, -a—}(T and EBXT

are negative.

Now, again using equations 2. 11, 2. 12, and 2. 13,

ITg aT11) 1-pm Ty

X4 ' x4 't 1-PDRC X4

oT

X4 (2.21)

= PM (

Each of the derivatives on the right of equation 2. 21 is negative; there-
fore % is negative and T is monotonic nonincreasing with respect
to X4.

The conclusion to be drawn from all this is that, since equa-

tions 2. 15, 2. 16, 2. 17, and 2. 21 are all nonpositive, T is monotonic

nonincreasing with respect to each component of X = (X1, X2, X3, X4).

63

This means that whenever additional hardware is added to a display

system, the system's response time will not increase.

Chapter III

ANALYSIS METHODS

In the preceding chapter a mathematical model of a display
system was presented. The model attempted to abstract and solidify
the essential salient characteristics of display system operation. The
model in and of itself is not particularly useful, however, unless some
helpful and pertinent results can be derived from it. In Section 2.7
a closed-form solution for average response time with no queueing was
developed. In this chapter two ways to find the average response time
when queueing develops so that there is competition for the use of

system resources will be discussed and compared.

3. 1 Simulation

A simulation of a system or an organism is the operation
of a model or simulator which is a representation of the sys-
tem or organism. The model is amenable to manipulations
which would be impossible, too expensive or impractical to
perform on the entity it portrays. The operation of the model
can be studied and, from it, properties concerning the be -
havior of the actual system or its subsystem can be inferred.
[49 p. 909]

With this broad definition as a base, the definition of simula-
tion can be further narrowed to the field of computer -based Monte
Carlo analysis [10, Sec. 5.4]. A model, manifested as a computer
program, is designed to act like a real system. The probabilistic, or
stochastic, nature of the real system is reflected by use in the model
of a random number generator. By conducting many trials, or simu-

lations, statistics can be gathered concerning operation of the system.

64

65
Clearly a common question which must arise in simulation concerns
the number of trials needed to give reliable results. If enough trials
are performed, Bernoulli's law of large numbers can be invoked to
guarantee that the simulation results are convergent to values truly
representing characteristics of the model.

The computer program needed to simulate a real system can
be prepared in two ways. An assembler or compiler language can be
used to write a program tailored to the particular system at hand.
This can be time consuming, and can result in an inflexible program
in which subsequent system modifications are difficult to represent.
However, the program can be tailored to the system being simulated,
and thus should take less computer time for execution than a program
prepared by other means.

The second way to prepare a simulation program is by
writing it in a simulation language. Such a language can resemble
either assembly or compiler code. A variety of general purpose
simulation languages are reviewed in a reference [55].

While these languages are not necessarily easy to learn,
once mastered they are easy to use, and can readily be made to re-
flect changes in the real system. This flexibility is obtained at the
expense of greater computer time requirements than for special pro-

grams written to simulate a specific system.

66

3.2 Markov Analysis

Markovian analysis techniques, of which queueing theory is
an important portion, are based on a well-developed mathematical
framework. Of specific interest here is the mathematical entity called
a continuous parameter Markov chain, which is described by Parzen
[44].

In order that Markovian analysis be applied to the display
system model, several restrictions must be applied. First, all
service time distributions (for the computer, data link, etc.) must be
derivable from the simple negative exponential distribution. This
then includes the hyper-exponential distribution. Second, the various
branches in the flow of a job through the model must be strictly ran-
dom (probabilistic), made without regard to where the job has been,
or how many times the job has made the branch previously.

If these restrictions are satisfied (how well they are or are
not met is discussed later), the system's response time can be found
using Markov analysis. This is accomplished by using the Recursive
Queue Analyzer (RQA), a computer algorithm developed and imple -

mented by the Systems Engineering Laboratory. [59, 60]

3.3 Qualitative Comparison of Simulation and Markov Analysis

Both simulation and Markov Analysis have good and bad
features. Simulation and simulation languages can be very general,
in terms of the allowable structure of a system, the service time

distributions which can be specified, and the types of branches which

67

can be modeled. As mentioned in the previous section, Markov
analysis is very restrictive of the permissible branches and service
time distributions which can be modeled.

Offsetting these restrictions, however, is the short computing
time needed by RQA to analyze a queueing system. Specifically,
when compared to GPSS (General Purpose Simulation System), the
simulation language available at The University of Michigan, RQA
needs between only 6 and 18% as much computer time to analyze the
same system. The time factor is very important when conducting
parameterized studies or performing an optimization (as will be done
in this case), because the system model is analyzed not once, but
many times.

In addition, Markov analysis need not be concerned with the
period and correlation coefficients of random number generation
techniques, as is simulation [47, pp. 109-111]. Indeed, simulation
results can fail to converge to the correct point as a consequence of
an inappropriate random number generator, whereas Markov analysis
and its embodiment in RQA are theoretically guaranteed to converge
uniquely under certain non-restrictive conditions [60, pp. 6-7], and
these results will be correct whenever the modeled system does in

fact satisfy the assumptions presented in the previous section.

3. 4 Quantitative Comparison of Simulation and Markov Analysis

What if a system is analyzed with RQA even though the neces-

sary assumptions are not satisfied? Are the results still usable, or

68
must simulation be employed? Certainly the computational efficiency
of RQA is an excellent motivation for attempting to extend its useful-
ness in the manner suggested by the preceding two questions.

How is the appropriateness of RQA analysis for non-Markovian
systems investigated? There are unfortunately no useful theoretical
tools available: the alternative, but less satisfactory course of empiri-
cal investigation must be taken. This course is less satisfactory be-
cause no general statements can be made concerning when RQA can
and cannot appropriately be used. Only statements about specific
instances can be made. Thus it is necessary to analyze the display
system model with RQA and GPSS for a set of typical parameter values,
and carefully study the results.

Tables 3-1, 3-2, and 3-3 present the results of many such
RQA and GPSS analyses. For each analysis the long term average
service rates and branching probabilities are the same; the corresponding
probability distributions, however, are not the same. That is, the dis-
play system model has been analyzed several times with GPSS. Each
analysis has used different service time distributions and branching
distributions; only their averages have remained unchanged. In most
cases the distributions do not satisfy the restrictions needed for a
Markov analysis with RQA. Despite this, the averages for the various
distributions have been used for a Markov analysis of the same model,
but with the required negative exponential service time distributions

and probabilistic branches.

play

Number of Dis
Consoles

69

Type of Analysis
Server Distribution
Branch Type

Response Time, msec.

GPSS Deterministic Probabilistic 878

GPSS Deterministic Deterministic 854

GPSS Uniform Probabilistic = 884

GPSS Uniform Deterministic 885

GPSS Exponential Probabilistic 857

GPSS Exponential Deterministic 854

RQA Exponential Probabilistic 892

Calculated from TL(R, X, Y) 892
Table 3-1

Analysis Results for One User (R=1)

Percentage Deviation
from RQA Analysis

|
L
(o8

]
o
w

Number of Display

Consoles

[A)

Type of Analysis

GPSS
GPSS
GPSS
GPSS
GPSS
GPSS

RQA

70

=)

o

;'::

3

=t

E 3

= >

a B

H S

o =]

3 s

% M
Deterministic Probabilistic
Deterministic Deterministic
Uniform Probabilistic
Uniform Deterministic
Exponential Probabilistic
Exponential Deterministic
Exponential Probabilistic

Table 3-2

Analysis Results for Two Users (R

Response Time, msec.

996
1001
1019
1019
1028
1034

1035

=2)

Percentage Deviation
from RQA Analysis

|
w
©

t
«
NN

-1.6
-1.6
-0. 7
-0, 1

0.0

w Number of Display

w

Consoles

Type of Analysis

GPSS
GPSS
GPSS
GPSS
GPSS
GPSS
GPSS
GPSS

RQA

71

o

=

5

£

& ©

@ 5

&) S

S <

0 =

= z

% M
Deterministic Probabilistic
Deterministic Deterministic
Uniform Probabilistic
Uniform Deterministic
Exponential Probabilistic
Exponential Deterministic
Hyperexponential Probabilistic
Hyperexponential Deterministic
Exponential Probabilistic

Table 3-3

Response Time, msec.

P
[y
w
[ee]

1147
1179
1187
1229
1223
1264
1288

1212

Analysis Results for Three Users (R = 3)

Percentage Deviation
= from RQA Analysis

+1.
+0,
+4,

+6.

w

72

Figure 3-1 illustrates the four types of service time distri-
butions used, and Figure 3-2 illustrates the two distributions used
for branching processes. The branches following completion of a
remote computer and main computer processing intervals are the
only branches to which the deterministic distribution was applied.
Also given in Figures 3-1 and 3-2 are the means (m) and standard
deviations (o) for each distribution. Note that o varies from 0
(deterministic) to 2m (hyper-exponential) for the various service
time distributions, thus covering a wide range of variability.

The important results are in the column headed '"Percentage
Deviation from RQA Analysis' of the three tables. Here can be seen
that for exactly the same system, with exponential servers and prob-
abilistic branches, the difference between RQA and GPSS analysis
varies from -3.9%to +1.4%. This is essentially an error built into
the analyses techniques by factors such as RQA's convergence error
[60, pp. 7-8] and GPSS's linear interpolation and truncation vis-a-vis
continuous functions [27, p.28]. Very little of the GPSS error can be
attributed to an insufficient number of samples: Table 3-5 shows
that after 10, 000 interactions with the display system had been simu-
lated, various statistics obtained from the simulation converged nicely.

As can be seen from the first three tables, the deviations for
all cases are quite small, the worst being 6. 3% It is thus very
reasonable to conclude that for this model, and for parameter values

of the order used in the model and given in Table 3-4, it is appropriate

73

1.0

0.0! —»
m T

m T

0.0} 1 »

. 1 >
0.0 m T

(d) Hyperexponential Distribution

t = Service Time

Figure 3-1

Service Time Distributions

74

|.OfF
P[n<N] o
0.0 o :»N
|.Or
S O ol
p
P[ns N] P
|..
.
0.0 bN

p= Probability of Not Accessing Bulk Storage

n= Number of Accesses to Bulk Storage
Before Service Complete

Figure 3-2

Branching Distributions

75

t. = 150 msec.

1
t2 = 300 msec.
t3 = 100 msec.
t4 = 90 msec.
t5 = 100 msec.
t6 = 50 msec.
t7 = 100 msec.
t8 = 400 msec.
t9 = 90 msec.
th: 100 msec.

t11= 50 msec.

PM =.5
PDRC = .9
PRD = .5
PD = .5
Table 3-4

System Parameters Used for RQA and GPSS Analysis

76

9 ‘g IdAI9S
I0] J039B] UOLIBZI[II()

*09sw ‘g JI9AJSS J0]
sw], ndySnoay], 1e10.L

*09swt ‘1 IBAIIS JI0]
ow1], ndysnoay], 18101

*d9sw ‘ouwl], asuodsay

Suo1}ORIU]
poye[nuig Jo JaquinN

39

69

160

796

1000

38

70

161

776

2000

38

68

163

784

4000

38

67

163

786

6000

38

66

163

786

8000

788 163 66 39

10000

Table 3-5

Convergence of Simulation Results

7
to substitute a short inexpensive RQA analysis for a longer, more
expensive GPSS analysis, even though the model being analyzed may
not always satisfy the conditions for RQA analysis. Similar conclusions
for another mathematical model are reported in a reference [20].
These differences in average response time are small because of the
relatively low level of congestion and queueing in the model, even
with three users (Table 3-3). With little queueing, the response
time just is not sensitive to changes in second order statistics of the
service time and branching distributions. If there were more queueing,
the differences in response times would be larger, so that use of
RQA might not then be justified unless it were known that the various
distributions satisfied the Markov requirements. However, in the

work which follows, it is possible to use only RQA for analysis.

Chapter IV

OPTIMIZATION PROCEDURE

The goal of this chapter will be to develop an optimizatbn
procedure which, together with the previously introduced display
system model, can determine which one of many display systems
is best for a particular application. The model, when analyzed
with the Recursive Queue Analyzer (RQA) as discussed in Chapter
III, gives a prediction of response time for a specific display sys-
tem. The optimization procedure, by judicious use of RQA, will
find optimum display systems. An optimum display system is one
which minimizes response time, subject cnly to a dollar cost con-
straint. In Section 4. 1 the exact nature of the optimization is exam-

ined, while Section 4. 2 presents the actual optimization algorithm.

4.1 Problem Formulation

The optimization problem being confronted here is one in
four dimensions, corresponding to the four subsystems of a display
system, namely the data link, the remote computer's bulk storage,
its core storage, and the remote computer-display control. Asso-
ciated with each of these subsystems is a variable. These are de-
noted X1, X2, X3, and X4, as defined in Section 2. 2, and are collec-
tively designated as X = (X1, X2, X3, X4). Four functions of X have
been defined. They are C'(X) (equation 2. 10), the monthly hardware

and main computer storage costs for a display system; C(X) (equation

78

79

2. 9), the total monthly costs of a display system; TL(R, X, Z)
(equation 2. 14), the lower bound on system response time; and
T(R, X, Z). (equation 2. 11), the system's actual response time.
Also, R is the number of active display consoles attached to a
remote computer, X is a vector describing the system's hardware,
and Z is a vector describing the system's application. In Section
2.6, C'()E) was shown to be monotonic nondecreasing with respect
to each component of X under very mild restrictions. T(R, X, Z)
was demonstrated in Section 2. 7. 2 to be monotonic nonincreasing,
also under reasonable restrictions.

Thus the situation is such that decreasing response time
increases cost, and vice-versa. This is clearly the basis for an
optimization. The manner in which the optimization is approached
must be very strongly influenced by the amount of computer time
needed to calculate a display system's response time. That is, when
more than one display console is serviced by a remote computer, the
Recursive Queue Analyzer (RQA) must be used to find response time.
While RQA is faster than GPSS, as discussed in Section 2. 3, it is
still time consuming. A single analysis of the display system model
can take as much as 30 seconds of CPU time and cost $3. 00. 1t is
therefore necessary to devise an optimization algorithm which mini-

mizes the number of response time evaluations, without compromising

in any way the final solution's accuracy.

80

While seeking out a convenient way to handle the optimiza-
tion, it is necessary to determine if it should be performed in the
domain of discrete or continuous variables. A bit of thought re-
veals several very persuasive arguments favoring discrete varia-
bles. First, the optimization is meant to deal with real currently
available subsystems. There is not available a continuous spectrum
of data link speeds, memory sizes, or computing powers. Rather,
only very specific capacities can be procured, and this will be just
as true in the future as it is now. A second consideration is the
nonlinearity (Sections 2.6 and 2. 7) of the functions being dealt with.
If they were linear, the problem could be solved using continuous
variables and linear programming, and then rounding up or down
elements of the solution in various combinations to find an optimum.
But because of the nonlinearities there is absolutely no guarantee
that this method, used here, would yield an optimum solution. Thus
it seems best to approach the discrete optimization head-on.

This can be done in one of three ways. The first is to
minimize cost while imposing a constraint on response time, the
second is to minimize response while constraining cost, and the
third is to minimize some function of both cost and response time.
Of these three, only the second can be considered as satisfactory
because it permits an implementation which minimizes the number

of times RQA must be used, if the cost of C'(X) rather than C(X)

81
as a cost constraint is satisfactory. This must be accepted, be-
cause determining C()_() first requires use of RQA, which is not
realistic to do, as C()_() would be evaluated quite often, and using
RQA just once takes from 10 to 30 seconds of CPU time. In any

event this issue is not of particular importance, because experience

indicates that the difference between C(X) and C'(X) is quite small.

4.2 Optimization Algorithm

With this background material in mind, an appropriate op-
timization algorithm will be presented, the first part of which is
an adaptation of work done by Lawler and Bell [41|. Recalling that
X = (X1, X2, X3, X4), let each Xi be bounded such that 0< Xi<_XimaX,
where Ximax is, in turn, exactly one less than a power of two. It
is not necessary that all Ximax be equal. This bound is quite reason-
able because in practice there are only a finite number of each sub-
system available.
Now let X be the binary vector formed by concatenating the
binary representation of the Xi's, including leading zeros, if any.
If Ximax =15 for all i, and X = (5, 12, 9, 15), then X=(0, 1, G, 1,
1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1), Eliminating the commas, this
is written X = (0101110010011111). Four definitions are now made.
Definition 1: Given X and Y, any four component vectors

such that 0<_Xi§Ximax , and also given X and Y, formed

from X and Y as prescribed above. If each bit of X is less

82
than or equal to each bit of Y, then X<Y. This defines

a '"'vector partial ordering'" of X and Y.

Example: (1011011) < (1111011), and (0111011) £ (1011011)

Definition 2: If V = (Vl’ Vogr + v v s vn) is a binary vector,

2n-1+ 2n—2+ ..

then the numerical value of V, n(V), is £

+v20.
n

AP

Example: If V = (1011001), n(V) =64+ 0+ 16+ 8+ 0+ 0

+ 1 =89.

Definition 3: If the numerical value of X is less than or

equal to the numerical value of Y, n(X) <n(Y). This

defines a "'numerical ordering' of X and Y.

Example: n(111001) <n(111100), and n(1100101) ¥ n(0111010).

Note: X <Y ==>n(X) <n(Y).

Definition 4: If Y is such that n(X) < n(Y) but X£ Y, and
there exists no other vector, say Y', for which n(Y') < n(Y)
and X<Y', then Y will be called X*. That is, X* is the first
vector numerically larger than X which is not also larger

in the vector partial ordering sense.

Example: If X = (0101100), X* = (0110000). If X = (0101011),

X* = (0101100).
This X* can be readily computed by taking the bit-by -bit

logical 'or' of X with X-1, and then adding 1, with the exception

83
that if X = (00. . . 0), X*=(00. . . 1). Addition and subtraction
on the vector X is handled by performing the operation on n(X), and
converting back to a vector.

Lemma 1: By definition 4, X* is the first vector numerically

larger than X which is not also larger in the vector partial

ordering sense. Therefore X* - 1 is larger than X in the
vector partial ordering sense.

Just as X is derived from X, there is also an }_g* from
which X* derives. The same is true for X* - 1. Having said this,
the following theorem, adapted from reference 28, can now be
stated and used.

Theorem 1: If X = (X1, X2, X3, X4) and X*-1 = (X1', X2',

X3',X4') then Xi< Xi' for i=1,2,3, 4,

Proof: By Lemma 1, it is known that X<X*-1 in the vector

partial ordering, and therefore that each bit of X is less

than or equal to the corresponding bit of X*-1. Now each

Xi and Xi' is represented in binary form as a sequence of

corresponding bits in X and X*-1, respectively. Let these

sequences be denoted as u, and vi, respectively. Then
each bit of u is less than or equal to the corresponding

bit of Vi SO that n(ui) < n(vi) But Xi = n(ui) and Xi’=n(vi),

so that Xi< Xi', for i=1,2,3, 4.

84

Associated with Theorem 1 is

Corollary 1: C'(X) < C'(X*-1), and T(R, X, Z)> T(R, X*-1, 2).

Proof: C'(X) and T(R, X, Z) are monotonic nondecreasing
and nonincreasing, respectively, with respect to each
component of X. From Theorem 1 it is known that each
component of X is less than or equal to the corresponding

component of X*- 1,

This corollary is useful in the algorithm of Figure 4-1.
With C'max an upper limit on C'(X), the purpose of this algorithm,

which is just a portion of the entire optimization, is to find a set

S of vectors, such that if C'(X*-1) < C'max’ then X*-1 € S; if not,
but C'(X) < C'ma.x’ then X € 8. Thus, every vector in S is feasible
(that is, for Ye S, C'(Y) < C'max)’ but not every feasible vector
isin S. For instance, if X= (011000000000) and X*-1=(011111111111)
and X*-1 is feasible, none of the hundreds of vectors (all of which
are feasible) in the vector partial ordering between X and X*-1 will
be in S; only X*-1 itself will be. This can be done because T(R,
(011111111111), g) is known to be no greater than the response
time obtained from display systems represented by any of these
intermediate vectors, and it will, in fact, usually by less.

Thus it is seen that the algorithm in Figure 4. 1 depends
for its success on the number of vectors falling between X and X*-1

when X*-1 is feasible. The more intermediate vectors there are,

85

Figure 4-1

Formation of the Set S

J;I

C'(X*-1N>C'1ax

86

X=(000000...0)

A

PUT XINTO S

C'(X) < C'max
\'4
X = X®-| X=X*-|
Jr \74
! @ T X+

Figure 4-1

87

the smaller will S be. However, if X*-1 is not feasible, the interval
between X and X*-1 must be reduced to smaller intervals and
searched. The definition of X* used here gives a reasonable

balance between successfully eliminating large intervals of vectors
and efficiently conducting a finer search over intervals which cannot
be eliminated.

There is another definition of X* which would be equally
suitable here, and which might provide an even more effi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>