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SUMMARY PAGE
Grant Number: HE 10549-02 Effect of Ultrasonic Waves on Biological
Mass Transport
Principal Investigator: Hugh Scott Fogler

Sponsoring Institution: Department of Chemical and Metallurgical Engineering
University of Michigan, Ann Arbor, Michigan L4810k

Period Covered: Sept. 1, 1967 - June 31, 1970
Date of Report: Sept. 1, 1970
Summary

The following reports describe the preliminary results of the effect of
ultrasonic waves on mass transfer. The mass transfer studies conducted under
NIH Grant No. HE 10549 were in two areas: (1) gas absorption and (2) membrane
transport.

The studies on gas absorption were divided into two areas: large scale
bulk streaming and our recent findings on high speed streaming in thin films.
In bulk streaming experiments, increases in the gas absorption rate of up to
8004, were observed in the ultrasonic runs over the runs in which no ultra-
sonics were applied. However, one of the most interesting and potentially
useful things we found in our study was that of the small scale streaming.
This streaming was extremely rapid and was induced in thin films which were
fractions of a centimeter in height. The fluid velocities in this film were
far greater than any previously reported streaming velocities which were
either experimentally observed or theoretically predicted. These intense
streaming currents will bring about an even greater increase in the mass trans-
fer rate than was observed in the bulk streaming experiment mentioned above.

In the membrane transport area, both theoretical and experimental inves-
tigations were also undertaken to determine the effect of ultrasonic waves on
mass transfer.

In the theoretical analysis by Fogler and Lund, first results show that

significant increases in the rate of mass transport through membrane ducts
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should be found with the application of ultrasonics. Experimental studies do
indeed reveal that ultrasonic waves do increase the rate of transport through
membranes. Steady flow experiments utilizing Amicon PM-30 and XM-100 membranes
showed increases in mass transfer rates of 3004 and LOOj respectively, when
ultrasonic waves were applied to the system.

In our studies in ultrafiltration type membrane transport, we have observed
increases of up to 1700% in the rate of transport across the membrane with the
application of ultrasonics. In all cases, standardization runs were made after
ultrasonic waves have been applied to the membrane in order to check for a
breakage or degradation of the membrane. We found no evidence of any change in
membrane properties. Consequently, we are assured that these extremely large
increases in transport rates result solely from the ultrasonic wave motion and
not from changes in the membrane properties.

With the application of ultrasonics to biological systems, one must take
care that the wave conditions are properly adjusted so as not to induce any
harmful side effects to-the tissue and body fluids by acoustic cavitation.
Since it is known that various biological fluids behave as viscoelastic liquids,
a brief and preliminary investigation was undertaken on cavitation in visco-
elastic fluids to determine whether the degrading effects of cavitation could
be accelerated or retarded in this fluid type. Preliminary results show that
the elasticity can significantly retard the collapse process and certain sit-
uations produce damped oscillatory motion of the cavity rather than the usual
damaging catastrophic collapse observed in purely viscous liquids. This sug-
gests that under proper control, the damaging effects of cavitation could be
minimized in biological fluids, and possibly bring about an additional enhance-
ment in the transport rates as a result of the stirring produced by the oscil-
latory bubble motion.

There was no cavitation present in either the membrane or gas absorption
experiments reported above, as the systems in which we observed increases in

mass transport were operated below the cavitation threshold.
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Ultrasonic Gas Absorption

This section represents a portion of the work by Mr. M. L. Cadwell and
Prof. H. S. Fogler relating to the enhancement of gas absorption in liquids.
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publication in the Chemical Engineering Progress Symposium Series. This work
was presented at the 67th National A.I.Ch.E. meeting in May.
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I. Introduction

The intent of this research was to study the influence
of ultrasonics on the absorption of a gas contacted directly
with a liquid. It was originally anticipated that ultrasonically
induced "acoustic streaming" or "microstreaming" currents would
be the primary mechanisms enhancing the mass transport process.

‘A brief derivation and review of the equations governing
acoustic streaming is presented in the first part of this phase
of this report, and solutions to the streaming equations are
presented for a few simple geometries.

Initial results on the enhancement of gas-liquid mass
transport are presented for streaming occurring in a cylindrical
tube in whidh a high frequency (800 kHZ) ultrasonic transducer
was aimed perpendicular to the liquid surface, thereby inducing
gross circular streaming patterns within the liquid.

The final phase of this investigation involved visual
observations of acoustically induced convection in various
geometrical configurations at frequencies of 800, 175, and 20 kHZ.
Emphasis in this study was on how the convective patterns estab-
lished might enhance absorption rates at the gas liquid interface.
It is believed that the results of these observations fall into
two distinct categories. At high frequency (800 kHZ) bulk

acoustic streaming occurred which was similar to that observed



by Ghabrial and Richardson (1954) and described mathematically
by Piercy and Lamb (1954), Nyborg (1964), and Eckart (1949).

At low frequency (20 kHZ), when the liquid depth between the
transducer and gas-liquid interface was much smaller than the
sonic wavelength, high intensity vortex patterns were observed.
These patterns apparently can not be explained in terms of
simplified acoustic streaming theory, since the velocities
observed were an order of magnitude greater than that predicted
from purely elementary considerations.

The Equations Governing Acoustic Streaming

The following is an abbreviated development of the
equations describing ultrasonic streaming in a fluid. Starting

with the 3 basic equations of fluid mechanics

Equation of Continuity

84+ v (pu) = 0 (1)

Equation of Motion

pU
olgy + (U-V)U] = -Vp + [%v"K]V(VE’) - uvxvxy (2)
Equation of State
Vp = C2%Vp + rv3L (3)

ot

Markham (1952) has'shown that the inclusion of the term



R%% in the above equation can adequately account for heat transfer
effectS'in.many situations.

It is assumed that the fluid is being perturbed ultra-
sonically with an angular frequency w = 27f, and that there is no
movement of the fluid by any other external forces. As usual, we

assume that the velocity, pressure and density can be represented

by
Us=Up+ U +Uz+ """ (4)
P=Py+ P, +Py +# °°° (5)
p=po + p1 +pyt+ """ ~(6)

where gi = o(¢g) 9121' Pi = o (g) Pi-l and p; = o (g) Pi-1 °
Substituting the above expressions into equations (1), (2), and
(3) and collecting terms of like orders of magnitude, noting that
Up =0 since there are no applied external forces other than
ultrasonic perturbations, one arrives at the zero, first, and

second order perturbation equations:

Zero Order

Up =0 (7)
VP, = 0 ' (8)
Vpo = 0 (9)
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First Order

301 4 py(V UL) = 0 | (10)
U, 4

903%— = =-VP; + [§M+K]V(V'§1) = UUXVxU, (11)

VP, = C2V01 + R%%l (12)

Second Order

%%l + VepaUp + poVeU; = 0 (13)
392 aU, 4
Do{gg- + (91'V)91] + 015%— = =-VP, + [§U+K}V(V'gz)
- uxVxU, (14)
VP, = C2Vp, + RV-B—%-Z- (15)

Both pressure and density may be eliminated from equation (11)
to yield
32U1

poa ; = poCZV(V’gl) + [%M+K+RDO]V
t

oU;
Verer| = HUxVxU;  (16)

ot

Multiplying equation (10) by Ui, and adding it to equation (14):

oU>
pogi— * pol (UL*VIUL + UL (VU1 } + 3 (p1U1) (17)
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= - VP, + [%}H‘KJV(V'Uz) - uVxVxuU,
Equations (16) and (17) in more simplified form provide the
basis for ultrasonic acoustic streaming. Since U, represents
the velocity due to sonic perturbations, it is sinusoidal with

respect to time; it can therefore be represented by:
U, = Ul(r)ejwt (18)

where U, (r) is a velocity vector dependent only on spacial
position. Because equations 10, 11, 12, which relate p; and P,

to U, are linear, it is seen that p; and P, also vary sinusoidally
with time. Substitution of equation (18) into (16), and dividing

by w?pe/2

2 . ' .
[39; + %g-o- [% +K+poR”V(V'[~J1) +20; = %-3% VXVxU, (19)
w

The following parameters frequently appear in the

literature on ultrasonics: k = w/C, defined as the wave number;

pw? |4 + K, Rog

poC |3 "W~ H

and B = Ywpoe/2n , recognized as the reciprocal of the acoustic

o = , defined as the attenuation coefficient;

boundary layer thickness. Substitution of these terms into

equation (20)

2 9 4
[ﬁ*%‘z[i*

Because, under most conditions a << k << B:

+ Bﬁ&”vmgl) + 20, = %7 VXVxU,

=|R
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2_ 43 |A4 K Roof 2
kz‘“%“f[a*u* u] ERVEDE
Therefore, equation (21) takes the form
-(T{—:_:)%Y_Z_ V(V'gl) + 20U, = %—2- VxVxU, (21)

The above solution can be divided into two terms,

(Eckart, 1948)

U, = U;c + UiR such that

VxUir = 0 and V23U y = - (k=-ja)?U;, (21a)

VeUic = 0 . and V2Uic = 2jB%Uic _ (21b)

Procedures suggested for solving equation (21) or
equations similar to them have been reviewed extensively (Nyborg,
1964, Rayleigh, 1945, Schlicting, 1960, and Eckart, 1948).

| Once U, is obtained, p; and P; can be obtained from
equations (7) and (8); one can then proceed to solve Equation
(19) for Uz. In practice, this is a formidable task, for the
underlined terms in equation (17) are nonlinear. A simplified
appfoach to the solution of equation (19) is to time average
each individual term over a few sonic cycles. The nonlinear
nature of the term (U;*V)U, + U, (V+U;) suggest that a solution

to U, is of the form
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Uz = Uz (r) e?3% 4+ T, (2) (22)
where gz(f) and ?g(r) are dependent only on spacial position.

Substituting the above expression into Equation (19) and

performing the necessary time averaging (indicated by an overbar)

po{(U1*V)U; + Uy (VeU)} + T (p1U1)

= VP, + [% +K)V(v-§2) - qungz (22)

From the solutions to the first order equations, it can be shown

that
%E (P1U1) = 0
and it has been shown that V(V-?z) = (V2U,) O[%%%) (Rayleigh, 1945);
thus, for most systems:
V(V°§2) << Vz?a
Therefore equation (22) becomes
po{(U1*V)UL + UL (V'U1)} = -VP, + uv?0, (23)

This equation is known as the basic streaming equation.

Several examples from the literature will be reviewed here to
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illustrate the types of solutions which can result upon appli-
cation of equations (23) and (21).

In the first example, an ultrasonic beam of radius Ry
is propagated along the axis of a very long circular cylinder
whose length is L and radius R. The solution to equation (21)

is assumed to be irrotational. Thus;

V23U, = -(k-ja)?U,

If the length of the cylinder is sufficiently long, oL >> 1,

and the first order solution is:

Ae-zuxcos(wt-kx) r < R

U, b

U, =0 Rb<r<Ro

The discontinuity in first order velocity profile arises from
the assumption that U, is irrotational. The streaming equation

becomes, for radial symmetry:

920, . 1 3U,| _ _ 3P _ poaA?
“[arz AT } ="t T2 r <Ry
32T, , 1 90,| _ _ 9P |
“["aff tr ar"} =-3z 7 Ry < T < Ro

The boundary conditions are that

62=0 at r = Rg.
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30, _ _
i 0 at r =20

and if the ends are capped so that there is no net bulk flow

across any cylindrical cross section,

R
I U, rdr = 0
0

The solution is:
A s R

and

This solution was derived by Piercy and Lamb (1954),
and represents a slight variation from that originally derived
by Eckart (1948). Nyborg (1964) presents an analogous solution
for the case of propagation of a beam of sound with Zb’ between
two parallel plates separated by a distance h. Defining Z = 0

at the edge of the lower plate, his solution is:
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Z Z
E]_Z = EOGAZ e-20tx, [(h"‘zb)z + Z(g-h) [2_3[h_b_]2 + {_h_b_] 3]

for zb/z < Z < h/2

These solutions are characterized by a bulk, non-circular
(except at the ends, x = 0 and x = %) fluid motion. A somewhat
different pattern results, however, if the first order solution
along the plane mid-way between the plates is that of a standing

wave,
U, = A coswt cos kx
and if the sound beam propagates along the entire distance

between the plates. Under these conditions, both a horizontal

and vertical velocity exists:

24 - -
v, = - S g R [e * (4 singy + 2 cospy + & "¥)
3 9 ‘
2 - -BY
V, = - 2kUyp “cos 2kx {é By(sinBy + 3cosBy +_% )
8BC

-+

3 3 3
3 B (h~-y) - 3 Bh[l - %] jl

The fluid patterns are circular, and repeat themselves at integral

kx-wavelengths. This solution was originally derived by Rayleigh.
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List of Symbols Used in Equations Governing Acoustic Streaming

A Amplitude of velocity wave
C Speed of sound

K Ditational viscosity

L Length of cylinder

P Pressure

Py Zero order pressure

P, First order pressure

P, | Second order pressure

R Radius of cylinder

R, Radius of transducer

Y Velocity vector

Uo Zero order velocity vector
U, First order velocity

U (x) First order velocity, a function of position only

Uig | Incompressible part of first order velocity

Uik Irrotational part of first order velocity

U, First order velocity in axial direction or parallel to
plates

U, Second order velocity vector

U, (x) Second order velocity vector which is a function of
~ position only

@z Streaming velocity vector, time-averaged value of U

U, Streaming velocity along axis of cylinder

V, Streaming velocity component perpendicular to flat plates
Z Coordinate perpendicular to plate

Z Thickness of sound beam propagating between flat plates

18



f Frequency

h Distance between flat plates

j Complex number, v-1

k Wave number

r Position vector

r Radial coordinate

X Coordinate along axis of cylinder
t Time

o Attenuation coefficient

B Reciprocal of acoustic boundary layer thickness
€ Perturbation parameter

P Density

0o Zero orderﬁdensity

P01 First order frequency

P2 Second order frequency

W Radial frequency

19



Experimental Gas Absorption Studies

Experimental Apparatus

The apparatus used to measure the amount of gas absorbed into the
Tiquid in the absorption cell is shown in the accompanying diagram (Figure 1),
Three vertical manometers, M4, M3, and M1, measure the pressure of tanks
1, 2, and the absorption cell itself, respectively. The pressure regula-
tor and vacuum pump allow operation of the system over a pressure range
from a few millimeters of mercury absolute to about 2 atmospheres. The
slant manometer uses water as the working fluid and measures the difference
in pressure between tanks 1 and 2. The gas used in these initial studies
was COZ’ although in later studies it is anticipated that other gases will
be used.

Tanks 1 and 2 can be isolated from each other by closing valves
VS1 and V10; in addition, if valves V16 and V13 are open, tank 2 is con-
nected directly to the absorption cell, and thus serves as a source of gas
for the cell. The number of moles of gas absorbed during a run can then
be calculated from the change in height of the slant manometer. Assuming,
therefore, that (1) the pressure in tank 1, tank 2, and the absorption
cell 1£7£§£“game, (2) the pressure in tank 1 is always uniform, (3) the
pressure in tank 2 is also uniform, and equal to that in the absorption
cell at any time, (4) the system operates isothermally, and (5) the den-
sity of the manometer fluid is much greater than that of the gas, the fol-
lowing equation gives a relationship between amount of gas absorbed, n.s

and change in height of the slant manometer in terms of system properties:

. il (1)

sina P A (v] ) mgV] ( _,\I;_\)( )
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where:

n = amount of gas absorbed in cell

h = change in slant manometer height

Po = initial system pressure

a = angle slant manometer makes with horizontal
Am = slant manometer cross sectional area

V] = volume of tank 1

V2 = volume of tank 2

Py = density of manometer fluid

g = acceleration of gravity

R = gas constant

T = absolute temperature

For the system shown in the accompanying diagram (Figure 1), V] = 600 cm

V, = 8,200 e

, A= 0.785x10" e, p = 1.0 g/en’, and sina = 0.1. Be-
cause the manometer is designed so that h is always less than 100 cm,
V1/V2, Amh/ZV], and Amh/2v2 are all less than unity. Substituting the
above numerical values into Equation (1) and taking P0 = 2 atm. and

T = 298°K, Equation (1) becomes approximately

h = 3.79x10° n,

It is seen that the system is quite sensitive to very small amounts of
gas absorbed.

The absorption cell used in this study was cylindrical, 12" long and
1-7/8" inside diameter, and was constructed of 3/8" thick transparent plexi-
glass. The cell was designed so that a Macrosonics 800 kHz transducer
could be bolted to the cell bottom. Thus, ultrasonic energy propagated
upward along the axis of the absorption cell; however, the diameter of
the radiating diaphragm of the transducer is 1.45", and therefore the ultra-

sonic beam did not fill the tube entirely. An O-ring seal was placed

22
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between the transducer and bottom of the cell to prevent leaks. Three
openings were placed near the top of the cell. One of these openings
was connected to manometer M1 to measure the pressure in the cell, another
to the gas absorption measuring apparatus, and the third to a line leading
to the vacuum pump.

Ultrasonic power to drive the transducer was supplied by a Macro-
sonics 500-2 Ultrasonic Broad Band generator whose maximum output is
500 watts.
Procedure

At the start of a run, the absorption cell was filled with Tiquid
to approximately the desired height and inserted into the system. (If
the fluid was distilled water, it had been boiled for approximately 1 hour
before insertion into the system to drive off any dissolved CO2 vapor.)
The cell was then evacuated for 1 hour to draw off any gases that might
have dissolved in the fluid as a result of exposing the fluid to air
during its transfer into the absorption cell. The height of the liquid
above the transducer was then measured with a cathetometer. Once the
cell was inserted into the system, gas was fed from the cylinder through
the humidifier into tanks 1 and 2. Humidification of the gas was essential
when using water as the absorption fluid to minimize evaporation effects.
At this time valves V3, V4, V5, V6, V7, V8, V9, VST, V16, and V10 were
open, while valves V12, V13, V14, and V15 were closed. When the system
reached desired operating pressure, valves V4 and V3 were closed, and
the system was al]owed to stand until pressure equilibrium was attained.
While this was occurring, the ultrasonic generator was adjusted to give

the desired output to the transducer. Measurements of the room temperature
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and pressure differences in all manometers were taken when equilibrium was

attained. The actual absorption run was initiated by opening valve V13

to allow gas to enter the absorption cell. When the pressure in the

absorption cell was equal to that in tank 1, valves V10 and then VS1 were

were closed, thereby isolating tank 2 from tank 1, which was connected to

the absorption cell. The timerwas started when valve VS1 was closed.

The change in slant manometer height was recorded as a function of time.
Measured values of h were corrected for system leaks by operating

the system without the absorption cell and following the change in manometer

height under conditions nearly identical to that in which the actual absorp-

tion run was performed.

Preliminary Results

Some results, which might be considered represéntative of the best
data taken thus fér, are shown in Figures (2) and (3). Most of the data
taken with ultrasonics 1ie between the two curves depicted in these accom-
panying figures. Two systems were studied: 002 absorption into water and
CO2 absorption into glycerol. The number of moles of gas absorbed was
calculated according to the procedure described above and then corrected
to 25°C and 1 atmosphere pressure. A1l data obtained was compared to
the amount of gas dissolved if only pure diffusion of gas into the liquid
were occurring. The amount of gas absorbed for this latter case (i.e., no

ultrasonics) is given by the equation

i I\PapW 4DABt (2)
a HMw i

Wa = number of moles of gas absorbed at time t

t = time

26



absorption cell cross-sectional area

partial pressure of absorbing gas above the liquid
Henry's Taw constant

density of the liquid

molecular weight of the liquid

DAB= diffusion coefficient of dissolved gas in the liquid
p,. = mass density of the fluid

- =
]

SZ"U

=

Thus, results are plotted as the number of moles absorbed versus the square
root of time. It must be pointed out that there is as yet no firm theoretical
basis for plotting the data labeled "with ultrasonics" in this way. This
method, however, does serve as a convenient basis for comparative purposes.

With reference to the data shown in Figure 2 for CO2 absorption into
water, the run labeled "without ultrasonics" was carried out at a pressure
of 72.3 cm Hg (CO2 partial pressure of 69.6 cm Hg) and temperature of 81°F
with the cell filled with fluid to a depth of 22.4 cm above the transducer.
The run labeled "with ultrasonics" was carried out at a pressure of 75.35
cm Hg (CO2 partial pressure of 73.6 cm Hg) and temperature of 67°F with
the cell filled with water to a height of 9.43 cm. The plate voltage and
current of the ultrasonic generator during this run were 0.52 volts and
260 milliamps, respectively.

In the COz-g1ycer01 runs shown in Figure 2. the run labeled "without
ultrasonics" was carried out at 74.9 cm Hg pressure and 73°F temperature
with a Tiquid height of 9.7 cm, while the run labeled "with ultrasonics"
was carried out at 115 cm Hg and 75°F with a liquid height of 9.72 cm.

The generator plate voltage and current in this run were .80 volts and
300 milliamps, respectively.
At this time, these results can only be regarded as preliminary.

There are inherent experimental difficulties in the operation of any
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unsteady state system; this is especially true for gas-liquid systems. As
seen in both figures, extrapolation of data "with ultrasonics" to zero
moles absorbed indicates that there is a response time lag which is either
operational or inherent to the system. Efforts have been made to reduce
this lag through slight modifications of the system and through improve-
ments in operating procedure, but as yet no trend can be observed of how
this time lag varies with system parameters (in particular, height of the
liquid above the transdﬂcer and system operating pressure). Nevertheless,
this time lag can be estimated by extrapolation of the curve of CO2
absorption into water "without ultrasonics", and comparison of this curve
with Equation (2) using values of diffusion coefficient and Henry's law
constant from the literature. On this basis the time scale for this run
was adjusted to the left. The dotted 1ine in this figure is that pre-
dicted by Equation (2).

At the end of the curve for 002 absorption into water without ultra-
sonics, an abrupt increase in the number of moles of gas absorbed was seen
to occur. This increase might be caused by natural convection which has
been observed by other investigators in similar gas-liquid systems in
which the density of the solution (solute + solvent) is greater than that
of the 1iquid, causing an unstable density gradient to be established in
the Tiquid. The occurrence of natural convection is governed by the Ray-
leigh number, which in inherently unsteady state systems is time dependent.
The runs made in the latter portion of this study used glycerol as the ab-
sorbing fluid; because of its high viscosity, natural convection effects
should therefore be less important than in the C02-water system,

Another difficulty encountered in operation of this system was due

to the slant manometer, which is very responsive to only slight upsets
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within the system. This manometer had to be refilled frequently or re-
placed. Although care was taken to fill this manometer with clean, dis-
tilled water, after continued use dirt did accumulate at certain points
within the capillary tube of the manometer, resulting in erratic manometer
response, or manometer fluid separation. Data taken under these conditions
were very difficult to interpret.

However, a number of runs were carried out without the above diffi-
culties. An estimate of the increase in the mass transfer rate can be
made by comparing the slopes of the curves shown in Figure (1) and (2).

On the basis of this comparison, it can be seen that the increase in

mass_transfer rate with the application of ultrasonics is on the order of

800% for both liquid systems. While no firm conclusions have yet been

drawn as to what the cause of this enhancement is, these data were obtained
without the effects of cavitation and atomization, and therefore the
mechanism causing these increases is most 1ikely convective streaming.

It appears, therefore, that surface renewal concepts might be particularly
appropriate for modeling this phenomena mathematically.

Preliminary Visual Studies of Streaming

Qualitative visual observations of acoustically induced convection
were made at three frequencies, 20, 175, and 800 kHz in various geo-
metrical configurations. Power to the transducers was furnished by a
500-1 Macrosonics Broadband Generator, capable of delivering a 500 w;
input over the frequency range of 10 to 1000 kHz. Glycerol was used as
the fluid; because of its Tow vapor pressure (.0025 mm Hg) and its high
viscosity (1440 cp) at 25°C, cavitation effects should be small. The

fluid movement was followed by the use of tracer particles of either
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alumina or cigarette ashes. In some cases, the observed convection patterns
were photographed with a motion picture camera.

High Frequency Studies. Two geometrical systems were used with 800

kHz insonation. In the first, a geometry identical to that used in the
gas absorption studies was employed. A cylinder 9" long and 1-7/8" in
diameter was filled to a depth of about 4-1/2" with glycerol. Insonation
was accomplished by fastening an 800 kHz transducer to the bottom of the
cylinder such that the vibrating diaphragm of the transducer was in direct
contact with the fluid. The diameter of this diaphragm was 1.45", and
therefore the sound beam did not fill the tube. When the Tiquid was
insonated, intense streaming éurrents were observed throughout the Tliquid.
These currents appeared to be circular, symmetrically located about the
axis of the cylinder, and ordered - that is, tracer particles within the
fluid appeared to mobe along well-defined paths, which they repeated

after a certain period of time. The most intense streaming appeared along
the axis of the cylinder; velocities here were estimated to be on the order
of 10 cm/sec. The magnitude of these currents increased with an increase
in the power supplied to the transducer. There was no evidence that
cavitation was present during insonation in this experiment. A sketch of

the observed streaming patterns appears below.

Ce

Interface
r——

O Q Streaming Patterns
~tfffan

————
Figure 4. Approximate Fluid Patterns in 800 kHz Cell
30



In the second study at 800 kHz, a cylinder whose diameter was about
5-1/2" was filled to a depth of about 1" with glycerol. An 800 kHz trans-
ducer identical to that used in the study described above was fastened to
the bottom of the cell about 2" from the axis of symmetry of the cylinder.
Enough power was supplied to the fluid to produce streaming, but not
enough to make the interface unstable. The induced fluid motion brought
about by insonation was recorded on standard motion picture film at a
speed of 18 fps. Streaming speeds near the transducer were estimated to
be 2 cm/sec, about 5 times smaller than that observed in the first 800 kHz
study. Fluid motion was most prominent near the transducer, and there were
pockets of stagnation in areas away from the transducer. Again, no
cavitation phenomena were observed. A sketch of the patterns observed

appears below.

Interface

Streaming Patterns
Transducer

Figure 5. Streaming Patterns in a 5-1/2" Diameter Cell at 800 kHz
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Intermediate Frequency Study. A 175 kHz transducer with a radiating

diaphragm 59.5 mm in diameter was placed in a rectangular box 5" wide,

8" long, and 5" deep. The box was filled with glycerol until the top of
the transducer housing was slightly over an inch below the face of the
transducer. The transducer was placed approximately in the center of

the box. The streaming patterns formed upon insonation are sketched
below; particle speeds were greater than those in the last 800 kHz study,
and were on the order of 5 cm/sec at a point about 1 cm below the gas
liquid interface. This motion, however, was confined to that area direct-
ly above and slightly to the sides of the transducer. Streams of cavita-
tion bubbles were emitted at points of rapid fluid motion; there was also
evidence of the existence of resonating bubbles existing on the trans-

ducer surface which also might have contributed to the fluid motion.

1 Interface

Streaming Patterns-———-—»( %’ ) \
4

Transducer

Figure 6. Streaming at 175 kHz in a Rectangular Box
Moving pictures of this motion did not come out as well as expected
because of mechanical difficulties encountered in operating the camera, and

because of very rapid particle dispersion upon insonation.
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Low Frequency Study. Observations at 20 kHz were performed in three

different geometries. In the first about 50 ml of glycerol were added to
a 150 ml beaker, and the tip of a sonic gun transducer was immersed

about 1/2 cm from the fluid air interface. Insonation was applied and the
streaming pattern from the side appeared as if two vortex rings had formed
between the bottom of the beaker and the tip of the transducer. Photo-
graphs were taken of the streaming patterns from the side, but because of
extensive dispersion of the particles, an estimate of the streaming

velocity could not be obtained.

‘%//,Transducer

Interface

@ @ Streaming Patterns

Figure 7. Streaming Patterns at 20 kHz in a Beaker

In the second low frequency experiment, the box used for the 175 kHz
study was filled to a depth of 3/4" and insonated indirectly by placing
the tip of the transducer gun perpendicular to the bottom of the stain-
| less steel bottom of the box. Moving pictures of the ultrasonically in-
duced fluid motion were taken from both the side and the top yiew of the
box. A sketch of the streaming motion is shown in the following figure.

Surface velocities, measured by following tracer particles at a

distance of about 1" from the axis defined by the center of the tip of
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Transducer
SIDE VIEW ' TOP VIEW

Figure 8. Streaming Patterns in a Box at 20 kHz

the transducer, were on the order of 3 to 6 cm/sec and increased rapidly

as these particles approached the point of insonation. Also, small rapid
vortices, on the order of 3/16" in diameter, existed around this point.
There was, however, activity around the point of insonation indicating that
cavitation was present.

In the last set of observations carried out at 20 kHz, a cylindrical
tube,1 11/16"in diameter, fitted with a stainless steel bottom, was filled
to a depth of 1-3/8" with glycerol and again insonated indirectly by
placing the tip of the transducer on the stainless steel bottom. Stream-
ing patterns were symmetrical about the point of insonation, as shown in
the sketch below and in the photographs taken. The velocity along fhe axis

~of symmetry was estimated to be about 1.0 cm/sec, although this figure may
be Tow due to the extensive amount of dispersion of tracer particles. The

presence of cavitation could not be discerned from the photographs.

Interface

Streaming Patterns

Stainless Steel

Transducer Bottom

Figure 9. Streaming Patterns in a Cylinder
at 20 kHz - Moderate Liquid Depth
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The Tiquid height in the cell was then reduced to 1/2". Exceptionally
rapid mixing was observed when the fluid was insonated and streaming was
especially rapid a few millimeters from the point of insonation. A sketch

of the streaming patterns appears below.

Figure 10. Rapid Streaming Patterns at 20 kHz in a
Cylinder - Small Liquid Depth

~ An attempt was made to take moving pictures of the ensuing motion,
but because of the difficulty of simultaneously operating the camera and
turning on the sonic power, and as a result of very rapid particle disper-
sion, it was not possible to obtain a good film strip suitable for giving
and estimate of the magnitude of the streaming velocity. The pictures
that were taken, however, indicate the presence of cavitation.

When the transducer was moved off center and forced upon the stainless

steel bottom of the cell, very rapid streaming velocities were encountered,

in the pattern similar to Figure

Point of Insonation Streaming Patierns

Figure 11. Top View of Rapid Streaming at 20 kHz
in a Cylinder - Small Liquid Depth

~ This pattern may be due, however, to the "fountain" effect encountered

in ultrasonics at high intensities, i.e., interfacial instabilities.
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Discussion of Observed Patterns

These preliminary studies indicate that with the equipment available
in the Sonochemical Laboratory, low frequency insonation induces larger
convective velocities than high frequency insonation. This observation
is especially true for the case of streaming occurring in liquids whose
distance between the transducer and the gas-liquid interface is much less
than the wavelength of sound. Because of the wavelength/associated with
800 kHz insonation is only .19 cm. this observation is difficult if not
impossible to verify for high frequencies. While the studies described
here can at best be termed exploratory, some comparison and comment on
the modes of induced convection normally attributed to ultrasonic insona-
tion can be made.

Order of magnitude estimates of the streaming velocity can be made
from elementary streaming theory reviewed previously. For a traveling
wave, an order of magnitude estimate of streaming velocity is (Piercy and
Lamb, 1954)

. R (_4+5+R_"3)R2

2 2C3 3 u u b

And for a standing wave, the maximum streaming speed should be (Rayleigh,

3u 2

1
Uz * T8¢

R

The first order velocity U is equal to the product of particle dis-
S,
placement amplitude/and the frequency. If the value for s is taken as
10 microns at 20 kHz, and 0.12 microns at 400 kHz, and if it is assumed

that K/u << 1 and RpO/u << 1, for the system used in this study Piercy's
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and Lamb's (1954) analysis gives a streaming speed of 0.6 cm/sec at 20 kHz,
and 1085 cm/sec at 800 kHz; using Rayleigh's expression, u, is .002 cm/sec
for both high and Tow frequency. These theoretical estimates are at least
one to three orders of magnitude Tower than that observed at low frequency,
and, for the case of a traveling wave, two or three orders of magnitude
highér. The experimental observations do not agree at all with the the-
oretical prediction for the traveling wave case that an increase in fre;
quency results in an increase in streaming velocity.

Several investigators (Eckart, 1949, and Westervert, 1960) have advanced
the explanation that at sufficiently high ultrasonic energy level inputs,

a transition occurs from laminar to turbulent streaming. In turbulent
streaming, particle velocities and vortex sizes far exceed that predicted
by the classical equation governing acoustic streaming.

One study (Westervelt, 1960) in infinitely Tong cylinders subjected
to oscillation perpendicular to the axis of the cylinder indicates that
the transition from laminar to turbulent streaming occurs at a “"streaming
~ Reynolds number," szw/v, equal to unity, as long as the wave displacement
amplitude (s), to cylinder radius, R, is sufficiently small. For the
same system, others (Andres and Ingard, 1953) have shown theoretically
that the classical solution offered by Schlichting (1932) applies for
higher streaming Reynolds numbers.

An estimate of the streaming Reynolds number as defined by Wester-
velt can be made since it is independent of system geometry. Glycerol,
the fluid used in this study, has a viscosity of 1440 cp and density of
1.2 g/cm3 at 25°C. With a particle displacement amplitude of 20 microns
at 20 kHz, the streaming Reynolds number is about .001; at 800 kHz, with
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- a particle displacement amplitude of 0,12 microns, the streaming Reynolds
number is about 107%,

According to Westervelt, then, both low and high frequency regimes
studies here should be described by the "classical” equations of acoustic
- streaming. While this appears to be the case for high frequency studies,
it does not appear so for the low frequency cases. This analysis assumes
that the particle displacement amplitude, s, is small compared with some
(as yet undefined) length of the system. However, the cylinder radii,
Tiquid heights, and wave lengths (7.5 cm at 20 kHz, .1875 cm at 800 kHz)
are all greater than s, and hence his criteria appear to be satisfied.

These observations were performed at sonic power inputs of about
300 - 500 watts. Assuming that the energy efficiency is about 25%, the
average sonic energy intensity with respect to the cross-sectional area
is 16-26 watts/cm2.~ Since the threshold cavitation intensity for castor
0il, whose viscosity is about 630 cp at 25°C, or about 1/2 that of

2 at 20 kHz, it is conceivable that cavitation

glycerol, is 5.3 watts/cm
was present in the observations made at low frequency. This might be
especially true near the point of insonation where the sonic intensity
would be a maximum, possibly two or three times as great as the above
estimated values. On the other hand, because the viscosity of glycerol.

is several times that of water, whose cavitation threshold is 250 watts/cm2
at 800 kHz, no cavitation should be present in high frequency insonation.
This is in substantial agreement with what was observed. What role cavita-
tion plays in the observed convection process has not been aécertained at
this time.

Although agreement with‘simplified theory is poor, it appears that
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at high frequency a form of acoustic streaming similar to that observed
by others predominates as the convective mechanism; however, the very high
speeds and rapid vortices observed at low frequency, do not appear to be
explainable right now in terms of elementary streaming theory.

Recent Discoveries on Rapid Streaming in Small Liquid Depths

As mentioned previously, intense streaming vortices were observed
when the Tiquid Tevel, h, was reduced such.that h/x << 1. These rapid
streaming vortices cannot be explained in terms of previously derived
streaming solutions which, in most cases, neglect the depth of the liquid
above the transducer. In this regime, it appears that steep velocity
gradients are induced because of the Tow 1iquid level. Because of the
short distance between the transducer and the gas-1iquid interface, these
gradients induce exceptionally rapid streaming vortices which extend from
the point of insonation up to the interface; thus, this type of streaming
appears to be particularly applicable to gas-liquid mass transfer, es-
pecially when analyzed from a surface renewal viewpoint. To our knowledge,
this type of streaming has not been uncovered before, either experimentally
or theoretically. Since the efficiency of most mass transfer equipment,
and especially apparatus like the artificial Tung and kidney machines,
is increased considerably as the surface area to volume ratio is decreased,
the form of streaming described here will be studied in greater depth.
Experimental work will be pursued to define and specify the conditions
under which this unique streaming occurs. Photographic studies will be
conducted to establish the optimum streaming pattern with respect to mass
transfer. Our preliminary photographs indicate that the important

parameters in this high-speed streaming are the ratio of liquid height/sonic
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wavelength, type of fluid, ultrasonic intensity, point of insonation, and
cavitation intensity. It is also believed that these patterns can be
~ adequately explained mathematically if the appropriate approximations are

made to the streaming equations.

Literature Citations

Andres, J. M., and Ingard, U., J. Acoust. Soc. Am., 25, 928, (1953).

Eckart, C., Phys. Rev., 73, 68, (1948).
Markham, J. J., Phys. Rev., 86, 497, (1952).

Nyborg, W. L., "Acoustic Streaming," Ch. 11 in Physical Acoustics,
Yo]. %I-B, Muson, W. (ed), Academic Press, New York, N.Y.,
1964).

Piercy, J. E., and Lamb, J., Proc. Roy. Soc., A226, 43, (1954).

Rayleigh, Lord., Theory of Sound, Vol. II, Dover Press, New York,
N.Y., (1945).

Schlichting, H., Physic Z., 33, 327, (1932).

Lo



ULTRASONIC GAS ABSORPTION AND ACOUSTIC STREAMING OBSERVATIONS

M. L. Cadwell and H. S. Fogler
Division of Chemical Engineering
University of Michigan
Ann Arbor, Michigan L8104

b1



INTRODUCTION

The transport of mass across an interface has been traditionally explained
in some manifestation of the film, penetration, or surface renewal theory. In
the film theory steady state mass transport is assumed to occur across a thin
film of stagnant fluid which resides at the interface; in the penetration the-
ory, unsteady state diffusicn is assumed to occur in a region of fluid which
is located at the interface, and whose depth is much greater than the depth of
penetration of the sclute species. The surface renewal theory, originally
developed by Dankwerts (1951), is an extension of this latter theory. It also
envisions that unsteady state mass transport of the absorbing species takes
place in an element 5f fluid exposed to the interface. However, after resi-
ding at the interface for some time, the element of fluid is then swept back
into the bulk of the liquid and replaced by another (solute-free) fluid ele-
ment. These concepts have been combined, or modified and expanded through
the inclusion of fluid-mechanical effects. One of these modifications is a
"roll cell” model developed by Fortescue and Pearson (1967), who hypothesized
that circular vortices exist at an interface and extend from the interface
into the bulk of the liquid. Both diffusive and convective effects are
included explicitly in their model. Thus, the magnitude of these eddies, and
the size of the roll cells determine the rate of mass transport.

Tt has been observed in many instances that the application of sonic
and ultrasonic waves can increase the rates of mass transfer over and above

that which could be obtained by other means. Several of these studies
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(Jameson, 1964, Arkangelskii and Statinkov, 1969, and Burdakov and Nuborykov,
1963), have attributed increases in mass transport rates observed at solid
fluid boundaries to the effects of acoustic streaming. Indeed, the vorticular
acoustic stfeaming patterns developed for simple geometries in mathematical
analyses by Rayleigh (1883) and others and reviewed by Nyborg (1964) lend
thought to the idea that the enhancement in rate processes might be achieved
and/or explained in terms of some form of acoustic streaming surface renewal
pattern.

In this paper, we are reporting some visual observations in which the
essential roll cell structure described above is induced in a fluid by per-
turbing it ultrasonically. However, because of the intensity of the vortices,
the observations here are not believed to be simple manifestations of ele-
mentary acoustic streamingitheory as described and reviewed by Nyborg (1964),
and indeed the estimated speed of the eddies induced in this study are an
order of magnitude greater than any reported directly in the literature so
far. It is expected that the type of convective patterns shown here are
specifically applicable in those processes in which mechanical agitation of
the fluid cannot be achieved or is undesirable.

In addition, preliminary results of an experimental study involving
meagurement of the amount of gas absorbed into a fluid which is being per-

turbed ultrasohically are presented.

EXPERIMENTAL SYSTEMS FOR VISUAL STUDIES
Acoustically induced convective patterns are shown in this paper for

three different geometries. The first set of patterns were obtained in the
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container labeled "A" shown in Figure 1. A 31.6 mm ID glass tube was inserted
into the cell base, which was constructed of Plexiglas. This base was grooved
to accept a rubber o-ring which thus served as a seal at the juncture of the
glass tube and cell base. An 800 kHz Macrosonics type HFS-804 submersible
transducer, whose radiating diaphragm diameter was also 31.6 mm, was fastened
to the base of the cell; thus the sound wave was propagated through the liquid
along the axis of the glass tube. The upper liquid surface in the first set
of convective patterns was exposed to the atmosphere.

For the second set.of patterns, the upper interface of the fluid was
fixed by insertion of a metal rod into the 31.6 mm diameter glass tube.
Insonation was again accomplished by fastening an 800 kHz transducer to the
bottom of the containér such that the radiating diaphragm of the transducer
was in direct contact with the liquid. This system is labeled "B" in Figure
1.

The final set of convective patterns was obtained in the cylindrical
container labeled "C" in Figure 1. This cell was 27.6 mm in diameter and
filled with liquid to a depth of 0.6 to 0.8 cm. This tube was fitted with
a .009 in, thick stainless steel plate bottom. Insonation was accomplished
by physically forcing the tip of a Dukane Model 41A-10 transducer, whose res-
onant frequency is 20 kHz, to bottom of the tube as shown in Figure 1.

In the 800 kHz studies fluid motion was ascertained by observing the
paths of polyvinylchloride spheres suspended in glycerol; this suspension was

made by using 0.5 g of spheres with 1000 g of fluid. 1In the 20 kHz study,
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fluid motion was observed by followed Number 53 Venus G.C.P. extra brilliant
aluminum particles which were suspended in the liquid at an approximate con-
centration of .05 to 0.2 g per 1000 g of fluid. Power to the transducers was
furnished by a Macrosonics type 500-1 Multisons Broad Band Generator, or by a

Macrosonics Type 180 VF Multisons High Frequency Generator.

PRELIMINARY RESULTS OF THE GAS ABSORPTION STUDY

Experiments were performed in which the amount of CO2 absorbed into a
fluid subjected to ultrasonic perturbations was measured as a function of time.
These studies were carried out in a container identical to that labeled "A" in
Figure 1 except that the top of the container was sealed and modified to fit
into the apparatus shown in Figure 2. Glycerol was used as the absorbing
fluid, and the frequeﬂcy of insonation was 800 kHz.

The apparatus shown in Figure 2 served as a source of absorbing gas and
was also used to measure the amount of gas absorbed by the liquid. The three
vertical manometers, M4, M3, and M2 measure the pressure (relative to the
atmosphere) of tank 1, tank 2, and the absorption cell, respectively. The
slant manometer M4, which uses water as its working fluid, measures the dif=-
ference in pressure between tanks 1 and 2.

Tanks 1 and 2 can be isolated from each other by closing valves.VSl, and
V10; in addition, if valves Vi6 and V13 are open, tank 2 is connected directly
to the absorption cell and thus serves as a source of gas for the cell. The
number of moles of gas absorbed during a run can then be calculated from the
change in height'of the slant manometer. For this system operating at a pres-

sure of 2 atm and temperature of 25°C, this change in height is approximately
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related to the number of moles of gas absorbed in the fluid by the following

equation,

_ 3
h o= 3.79 - 10°n

Some results representative of the best data taken so far are shown in
Figure 3 and compared to data taken in the absence of ultrasonic perturbations.
In both cases the measured amount of gas absorbed was corrected to 25°C and 1
atm pressure. No thecretical interpretation is implied in the manner of plot-
ting the data (i.e., in terms of the square root of time) labeled "with ultra-
sonics" as depicted in Figure 6. However, one expects that the amount of COQ
absorbed into a quiescent liquid initially of uniform solute concentration
should be proportional‘to the square root of time. An estimate of the increase
in mass transfer rate brought on by ultrasonics can be made by comparing the
slopes of the lines in this figure; on this basis, the increase in transport

rate accompanying the use of ultrasonics is on the order of 8004.

800 kHz FREE SURFACE VISUAL OBSERVATIONS

In Figure U4, observations of acoustically induced convective patterns
are shown in a liquid whose upper surface is exposed to a gas. The ratio of
transducer diaphragm diameter to tube diameter in this figure is about 1.0.
Although this ratio was 2/5 for the gas absorption run described previously,
the convective patterns shown here are qualitatively similar to those induced
in the gas absorption run. It has been observed experimentally that when the
ratio of transducer diameter to tube diameter is decreased, the ensuing surface

renewal patterns decrease in intensity, despite a slight increase in sonic
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power input per limit total cross sectional area.

800 kHz FIXED SURFACE OBSERVATIONS

The convective patterns obtained with the use of container "B" sketched
in Figure L4 are shown in Figure 5. Considerably more intense convective pat-
terns were obtained at approximately the same power input to the 800 kHz trans-
ducer when the upper surface was "fixed"” than when it was free. A rough esti-
mate of the fluid velocity can be obtained by noting the length of a streak
made by a particle on the film and the exposure time; along the axis of the
tube, this speed appears to be about 30 to 50 cm/secc It should be noted that
the wavelength at 800 kHz is only .19 cm, and therefore the distance between
the radiating diaphragm of the transducer and the upper surface of the liquid
is much greater than the wavelength. Thus, the essential "roll cell" type
streaming pattern, in which fluid moving along the centerline of the tube
impinges upon the upper surface and returns via the side of the container
shown here, is retained even though the distance between the transducer and
upper liquid surface is decreased. It might be argued that at points within
the fluid unaffected by "end effects'—i.e., those points located at distances
of the order of several ultrasonic wavelengths from either the upper liquid
surface or the transducer surface, the velocity profile is similar to that
observed by Leiberman (1952) and described mathematically by Eckart (1949).
However, the velocities of the patterns reported here are at least an order

of magnitude greater than those experimentally observed or predicted by others.
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Figure 4. Acoustic streaming at 800 kHz at a gas-liquid interface.
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Figure 5. Acoustic streaming at 800 kHz at a solid-liquid interface.
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20 kHz FREE SURFACE STREAMING

Figures 6 and 7 are photographs of 20 kHz acoustically induced free sur-
face convection taken in container "C" sketched in Figure 1. At low sonic
inputs relatively slow v§rtices exist which appear similar to those shown in
Figure L; these regular vortices exist above the cavitation threshold. As the
power input to the ftransducer is further increased, however, the gas liquid
interface becomes noticeably distorted, and the induced vortices more intense.
At a still greater power input, the interface becomes violently distorted,
and in some instances uses four or five times its quiescent height. This
phenomena is shown in Figure 6. This streaming is fundamentally different
than that shown in Figures 4 and 5 with 800 kHz sound; for in addition to the
presence of cavitation, the liquid height here is about 0.6 cm, which is much
less than the wavelength, 7.7 cm at 20 kHz.

Figure 7 reveals that intense, circular type vortices are indeed formed
at the gas-liquid interface at the side of the tube, the nature of which could
be of particular importance in mass transfer applications. The speed of these
"surface renewal"-type vortices is estimated to be on the order of 70-100
cm/seco To our knowledge these intense, unsteady state, free surface acous-

tically induced vortices have not been reported before in the literature.

SUMMARY

We have observed ultrasonically induced convective streaming patterns at
both a fixed and a free liquid surface which, if analyzed from a roll cell or
surface renewal point of view, will find particular application to mass trans-

fer processes in which conventional fluid agitation ig difficult to achieve or
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20 kHz
Transducer

Figure 6. High intensity streaming at 20 kHz at a gas-liquid interface.

20 kHz
< Transducer

Figure 7. Close-up view of high intensity streaming at 20 kHz
at a gas-liquid interface,
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undesired. For the convective patterns shown in this paper the estimated
velocities are an order of magnitude greater than what has been observed for
acoustic streaming in a liquid, or predicted through the use of elementary
acoustic streaming theory. Also, we have obéerved very rapid streaming to

occur when the height of the liquid is much less than the sonic wavelength.
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SECTION III

Effect of Ultrasonic Waves on Membrane Transport

(To be submitted for publication)
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Introduction

The resistance to the transfer of a solute species across a membrane
is due to the concentration boundary layers which exist on either side
of the membrane, and to the membrane itself. Membrane transport is the
principal mode of mass transfer in nearly all vital organs of the body,
but because of the extremely high ratio of surface area for mass transfer to
volume of most of these organs, artificial duplication of these organs has
been very expensive, both in terms of operatien and investment. Artificial
machines designed so far have been of limited utility due to their large
size.

Efforts have been made to reduce the size and inherent complexities
of dperation. The size of these machines can be reduced by reducing the
resistance to membrane transfer. In steady flow systems, the boundary
layer resistances on either side of thé membranes can be'significant]y
reduced by increasing the through-put of material, and in batch operated
systems, these resistances can be reduced by agitation. However, the
induced fluid-mechanical shear rates brought on by these increases al-
most always result in permanent damage to cells transported in vital
fluids. In addition, if the principal resistance to mass transfer is in
the membrane, increasing throughput in steady flow systems and increasing
agitation in unsteady systems are only marginally effective in increasing
the efficiency of the artificial machine.

Under proper conditions, the application of ultrasonics can signifi-
cantly reduce all three resistances to mass transfer. Ultrasonic micro-

streaming has been observed at solid-fluid interfaces; this microstreaming
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should significantly reduce the resistances to mass transfer outside the
membrane. Also, since the ultrasonic wave can be propagated into the
micropores of the membrane, this mechanism should also enhance mass trans-
port within the membrane itself. At sufficiently Tow intensity levels,
both of these reductions can be achieved with a minimum of cellular or
membrane damage. In summary, the application of ultrasonic waves to mem-
branes has shown significant increases in the mass transport rate. In
addition to enhancing transport rates in artificial membrane devices,
ultrasonics could also enhance internal cellular mass transport in the
body fluids and cells.

II. Experiments UtiTizing a Non-flow System

A. Apparatus

Two pyrex glass half cells, each of 300 ml capacity, were separated
by a membrane and clamped together with slip-on flanges. An 0-ring seal
was inserted to prevent leakage. The solutions in both cells were stirred
by the propeller type variable speed stirrers introduced into position as
shown in Figure (A). Samples were drawn at suitable intervals (1/2 or
1 minute) through sample holes, and the samples were returned after conc.

measurement to maintain a constant volume of solution in the cells for

T

- Transducer
\\Half Cells

Pipure A

1

59



each run. Since sodium chloride solutions were used, the concentration

of the solution was monitored by a Beckman conductivity bridge in con-
junction with standard conductivity cells. Ultrasonics was applied directly
-to the solution, in a direction perpendicular to the membrane, by a
transducer operated at its natural frequency of 800 kHz, and the intensity
of the ultrasonic waves was controlled indirectly by monitoring the power
output from a Macrosonic 500-1 generator.

B. }Mathematical Analysis

Pseudo-steady state mass balance for the solute in the two half cells

gives
dc, dc,
Uy g = Vo g = KA - ) (1)
where: w
Vi V, = solution volumes, constant
C], C2 = solute concentrations

A = area fqr transfer
K = overall mass transfer coefficient
Integrating Equation (1) with initial conditions of:

att=0,C =¢C

1 1 and C2 = C2 , We have:
0

0

V]C] t VyCy = V1C]0 + V2C20 = o (a constant) (2)

Eliminating C] from Equations (1) and (2), we have:

dC a - V,C
2 _ 272
Ve = KA ( e C) (3)
Equation (3) can be integrated between concentration C* at some reference
time t*, and concentration C at time t to give:

In (8 -C)=1n (B~ C¥ - wK(at) (4)
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where: VoC

. 19, * Yol
B = = » constant
V] + V2 vV, + V2
V, +V
Vv = ]V v 2 , constant
172
At =(t - t*)

Equation (4) shows that the plot of 1n (B - C) vs. time will be a straight
Tine with a slope of VK, giving the value of K, since v is known from
initial conditions.
C. Results Obtained in the Non-flow System
The purpose of these experiments was to determine the difference in
mass transfer coefficient with ultrasonics and without ultrasonics at the
same constant stirrer speed. This was necessary in order to determine
the magnitude of the effect of ultrasonics on the boundary layer and
membrane resistances. At low stirrer speeds, the boundary layer resis-
tance is expected to be predominant, whereas at high stirrer speeds the
membrane resistance to mass transfer would be controlling. We may note
that the membrane resistance will essentially be unaffected by the stirrer
speed which can only be effective in reducing the boundary layer thickness.
The results (in spite of difficulties as mentioned in Section D)
had the following trends: (1) there was an increase of 15-200% in the
overall transfer coefficient; (2) this increase was high at low stirrer
speeds and Tow at high stirrer speeds; so much so that at a stirrer speed
of over 1300 rpm the increase was less than 15%; (3) these results indicate
that ultrasonics is more effective in reducing the boundary resistance

than the membrane resistance.
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From conclusion (3) above, it is obvious that in systems using low
velocities near the membrane, resulting in a larger boundary layer resis-
tance, the application. of ultrasonics can be very effective in increasing
the mass transfer rate.

D. It must be noted that the use of the stirrers, and the occurrence of
entrained bubbles in the system, interfered somewhat with the ultrasonic
field, thereby reducing its effectiveness. Also, although efforts were
made to control the temperature during each run, isothermal operation

was difficult to achieve and maintain. Thus, the data at very high
stirring speeds or high intensity ultrasonics was difficult to reproduce.
Nevertheless, the trends outlined above are clearly discernable. It was
felt that many of these difficulties could be circumvented in switching
to a steady flow membrane transport system.

ITI. Experiments Utilizing a Continuous Flow System

A. Apparatus

The apparatus depicted in Figure 1 was used to study steady-state
mass transport across a membrane. The diffusion cell designed to handle
either co-current or counter-current flow is shown in Figure 2. The cell
was constructed in a sandwich manner of transparent plexiglass plates,
6" high, 7/8" thick, and 24" long, which are separated in the middle by
two 1/16" thick metal sheets. |

A rectangular channel, 1" high, 1/16" wide, and 18" long, was milled
in the interior portion of each plexiglass plate. At both ends the
channels were beveled to eliminate entrance effects, and holes were

drilled to accommodate both feed and discharge of material. Thus, the
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metal sheets which were placed between the two plexiglass plates separated
the high and low concentration streams.

In the middle of each metal plate, a 1" diameter hole was bored to
allow diffusion. Amicon Corp. Diaflow ultrafiltration membranes (type
XM-100 4 PM-30) were fitted and held between each plate by bolting together
the entire cell.

The bottom plexiglass plate was designed to accommodate a Macro-
sonics 800 kHz stainless steel transducer. The radiating diaphragm was
placed in a direct 1ine with the membrane. Therefore, ultrasonic waves
were propagated perpendicular to the cross-sectional area of the membrane,
and perpendicular to the direction of channel flow.

The total experimental apparatus and its arrangement are shown in
Figure 1. Two five gallon tanks located 2.5 feet above the cell were used
to provide an approximafe]y constant rate of flow for both the high and
low concentration streams. Each stream was fed from the storage tanks
through a rotameter and into the cell.

A tap was inserted in each stream between the rotameters and the cell

and connected to a mercury manometer to measure the pressure difference
between the high and Tow concentration streams. Both streams exited into
collection tanks and could be tapped for sample analysis. A Beckman type
electrical conductivity cell was used to determine the concentrations of
each stream.

The transducer was driven by a power supply from a Macrosonics 500-1
ultrasonic generator capable of delivering 0-500 watts of power. The power

delivered to the transducer was measured by a Tectronix oscilloscope. Voltage
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and current probes were attached to the line between the generator and the

transducer and fed into the oscilloscope. Thus the oscilloscope displayed
the voltage and current amplitudes and the phase angle between the
voltage and current.

B. Procedure

Before a series of runs, a 23% weight salt solution was prepared
from Merck reagent grade salt and distilled water,.and inserted into the
constant head tank. The low concentration constant head storage tank
was filled to the same liquid level with distilled water.

Flow was initiated by opening the valves on the rotameters. Steady
state was assumed to have been reached when constant flow was observed.
Samples were taken from the discharge of the diffusion cell and their
concentrations determined with the conductivity bridge. The volumetric
flow rates were hoted and the temperature was taken from the solutions in
the collection tanks.

Runs with the ultrasonics on both the high‘concentration side and the
Jow concentration side were performed. During these runs, the voltage and
current amplitudes, the wave length, and the phase angle were read off
the oscilloscope display.

C. Mathematical Analysis

For the well developed steady state flow of two streams exchanging

solute across a permeable membrane of constant width, the diffusional flux

can be defined as

dd =k .dh.AC , (1)
where:

dJ = diffusional flux across an element of area dA of the membrane

AC = difference in bulk concentrations',(C]-Cz)

k = overall mass transfer coefficient as defined by Eqn.1 .'
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The mass balance for the solute transferred gives

Cn Vi @i__ Ci2

! dJ| ' ]
J[;’I’I;III lﬁ“—@—
___..._.,+dA ~ Y
C | Can 2
2| cz- 22

dd = VqdCy= V,dC, (2)

ﬁl

where:
],V flow rates on sides 1 and 2 |
dC], dC2 = differential change in bulk concentration during the flow
over the area dA, and
the sign is plus for counter current and negative for co-current.
Integration of Eqn. 2 shows that for constant V1 and V2, the plots of

Jvs. Cand J vs. AC are straight lines;

Cu
Ci2
AC C
e
C TS~
thus, 2 ACE
d(AC) - ACy-AC, | J=0 - J=Jo (3)
" 3 at £=0 Otl=lo

0

Eliminating dJ from Eqns. 1 and 3 and integrating over the total area

(hence length) for constant k, we get

JO = mass transferred/time
= k ATACM (4)
whaire
Z'Cln = 1og mean concentration difference
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Figure 3, Mass transfer coefficient vs. water flow rates with and without
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Thus, knowing JO and Z.C]n, which can be computed by noting the
solute balance on either of the two streams, and knowing AT’ the value
of the mass transfer coefficient can be determined.

D. Results Obtained in the Continuous Flow Systems

A typical set of data taken with the constant flow membrane cell is
shown in Figure 3. In these runs, the flow rate of the stream whose
concentration was high in salt content("salt side" of the cell) was held
constant and the flow rate of the distilled water stream ('water side"
of the cell) was varied from 4 - 30 cc/min. Under these conditions,
flow on both sides of the membrane was laminar. However, the salt side
concentration and flow rate was arranged such that the principal
resistances to mass transfer occurred in the membrane and on the water side.
If under these conditions, the membrane resistance is also much smaller
than the water side resistance, a log-log plot of the mass transfer
coefficient vs. flow rate should be linear with a slope of 1/3. The
fact that the mass transfer coefficient for the runs taken with the PM-30
membrane is always lower than that for the XM-100 membrane at the
same conditions indicate that there was membrane resistance to mass
transfer, and therefore the lines drawn through the data points in
Figure 3 are first approximations.For the data shown, the water side o#
the cell was subjected to ultrasonics. During the runs carried out with

ultrasonic irradiation, the power input to the transducer was held constant,

with the exception of the data taken using the PM-30 membrane, for which
the power level varied due to some fluctuations in the power output of the

generator.



It is seen from the data using the XM-100 membrane that the application
of ultrasonics increases the mass transfer coefficient between 100-300% for
all conditions in this study; for the PM-30 membrane, this increase is of
the order of 350%. The fact that the increase differed with the type of
membrane used suggests that ultrasonics not'on1y favorably affects transport
of solute from a solid surface to the bulk, but also perhaps transport
through the membrane itself. This latter result is of special
significance since there is no mechanical means of enhancing mass trans-
port through a membrane. It should also be noted that,at the power levels
used thus far in this study, no membrane destruction has been observed when

ultrasonics is employed.
Further work is anticipated with the constant flow membrane cell.

Efforts will be made to delineate further the effects ultrasonics has

on the three princiba1 resistances to mass transfer. The recently initiated
study of the effects of ultrasonic power level applied under constant

flow conditions will be continued with some emphasis given to examination

of the properties of the membrane before and after insonation. Ultrasonic
irradiation will be applied to the side of the cell in which the least
resistance to mass transfer is encountered to ascertain whether the ultra-
sonic waves propagate through the membrane. Experiments with and without
ultrasonics will be carried out at flow'rates in which the primary

resistance to mass transport is in the membrane itself.
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The effect of ultrasonic on ultrafiltration was examined. The apparatus
used is the same one that was used to study steady-state diffusion shown in
Figures 1 and 2. The only difference is that one establishes a small pressure
drop across the membrane which results in a small flow in the direction of the
pressure drop. For a fixed pressure drop, water flow rate, and salt flow rate,
the effect of ultrasonic intensity on the mass transport rate of a solute was
examined., A 17-fold increase in mass transport rate was obtained and this
occurred without the destruction of the membrane.

The procedure followed in this study are similar to those followed in
steady-state diffusion. The solute used was sodium chloride and the solution
used was about 23% by weight salt. The diffusion cell that was used is shown
in Figure 2. Countercurrent flow with distilled water was used as shown in
Figure 1. A pressure drop from the salt side to the water side was obtained
by the manipulation of the constant load tanks. The transducer is on the water
side since this is the side which offers the greatest resistance to the mass
transfer. A Beckman conductivity bridge was used to determine the concentra-
tion of salt in the water side collecting vessel. Using a quasi-steady-state
analysis one .could determine the maximum time one needs to wait to establish a
steady-state condition. This turned out to be from 5-30 min depending on flow
rates.and on that basis the system was allowed to reach steady-state before
collecting samples. The intensity of the signal to the transducer was monitored
using an oscilloscope. In the future we plan more precisely to measure the
ultrasonic field intensity throughout the membrane system. After each run with

ultrasonics an identical run was made without ultrasonics to determine if the
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membrane had undergone any decay as a result of ultrasonic irradiation. But
after every run the mass transport rate shows that the membrane was unharmed.
The rest of the detailed procedure 1s the same as that which was used for
steady-state diffusion. |

A1l the data in Figure L represent an increase in mass transport rate
with ultrafiltration using ultrasonics. In those runs the salt flow rafe, the
water flow rate, and the pressure drop all were kept the same. And the only
system variable that was changed was the ultrasonic intensity. And after each
ultrasonic run, a run without ultrasonics was made to determine if the membrane
had experienced any decay. Each time the membrane was not harmed, The most
astounding result found was the 17-fold increase in mass transport rate as a

result of ultrasonic irradiation.

T2



10,000

% INCREASE IN MASS TRANSPORT RATE

800 kHz Ultrasonic

Amicon XM-/0 Membrane

>

1000 o

/

100

/
/
i
|

|

[

l

2 4 6 8 10 12
RELATIVE ULTRASONIC INTENSITY

Figure 4, Effect of ultrasonic waves on ultrafiltration-type
membrane transport.

(b






SECTION IV

Acoustically Induced Facilitated Diffusional Transport
in Membrane Ducts

This paper has been presented at the 79th meeting of the Acoustical
Society of America. The abstract of this paper has been published in J
Acoust Soc Am 48, 104 (1970). Since the meeting, the entire text has been
~submitted for publication.
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ABSTRACT

The present work considers enhancement of mass transport in membrane ducts
by superimposing a convective transport induced by ultrasonics on a diffusional
transport. As a result of the non-linearities in the Navier-Stokes equation, a
time independent secondary flow, called acoustic streaming, can be produced when
an acoustic wave is passed through a medium. Between adjacent vortices or cells,
molecular diffusion is the only means of transport; however, within each cell,
mass transport is primarily by convection. Increases in the rate of mass trans-
fer of the order of 150% above the normal diffusional flux were found. Ultra-
sonics may be applied to increase mass transfer through membrane systems (e.g.,

dialysis) and to increase the efficiency of very active catalytic systems.
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I. INTRCODUCTION

Traditionally, there are two great challenges in industrial activity:
increasing the quality of products, and increasing the efficiency of the pro-
cessing operation., In many such operations, efficiency can be greatly increased
through the application of acoustic waves., Thé enhancement of the rates qf
transport resulting from theapplibationpofultrasonic waves through membranes
is termed ultrasonically facilitated transport.

In this study, we are interested in the enhancement in mass transfer through
membrane type ducts. The use of ultrasonic waves as a means to achieve fhis
goal has been receiving ever increasing attention in recent years., Sonic and
ultrasonic waves have been found to increase heat and mass transfer rates by
séveral orders of magnitude in a number of situations, "7 Recent studies on
water desalinization have shown enhancement in transport rates through semi-
permeable membranes.5 The advantageous effects of acoustic waves on various
transport phenomena and chemical reactions has been discussed in some detail
by Fogler.6_7

In the present work attention will be focused on the enhancement of mass
transport in gas and liquid diffusion resulting from acoustic streaming., Vari-
ous studies have been conducted on the effect of acoustically induced vortices
and microstreaming on heat transfer. The majority of these studies have em-
phasized streaming on the exterior of vibrating objects such as streaming around

a cylinder or sphere, In certain limited situations heat transfer studies have

been conducted on streaming inside ducts and tubes. However, of these studies
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which have been conducted in ducts and tubes, energy transfer was in the direc-
tion normal to the wall. In order for enhancement to occur in diffusional trans-
port in membrane pores, there must be an increase in mass transfer parallel to
the duct walls. Complete reviews of acoustic streaming have been given hy
Nyborg5 and by Richardson.8

In this study we shall consider the case in which the convective streaming
transport is superimposed on the diffusive transport in diffusion in ducts in
membrane pores. The streaming cells induced by acoustic waves should greatly

enhance the rate mass transport through the system.

IT. THEORY

Acoustic streaming is a secondary flow which produces time independent
vortices when an acoustic wave is passed through the medium. The formation of
these vortices or cells inside ducts, tubes, and pores can increase the rate
of mass transfer through these enclosures. In this study, diffusional transport
i1s in the direction of wave propagation., Figure 1 shows a schematic diagram of
these cells in a wide membrane duct. Between adjacent cells molecular diffusion
1s the only means of mass transport; however, within each cell, transport is pri-
marily by convection,

Before engaging in discussion of the coupled transport processes, it would
be beneficial to give a brief development of the streaming equations, since pre-
vious solutions to these equations do not hold in certain regions which predict
large increases in diffusional transport. Consequently, new solutions had to
be obtained for these regions. Starting from the continuity and Navier-Stokes
equation, we shall closely follow the development of Nyborg.
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L4V (V) = 0 (1)
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Since there is no external force other than the sound field, the solution to

these equations will take the form

T+ eV
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P 5 sPl € (3)
= £ +822
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->
V has x and z componenets u and w respectively. The first order components

ul and Wl are time dependent velocities which directly arise from the sinusoidal

movement of the transducer surface. The non-linear coupling of these first
order velocities gives rise to the second order flow patterns. The streaming

velocity components u2 and w,_ consist of a time independent and a time dependent

2

term, In this investigation we are only interested in the time independent part
of the streaming velocities,

Upon substitution of Equation (3) into equation (1) the first order approx-
imation of velocity becomes

-

4 >
= ¢ Vp, - RVp, + (p' +3u) VV -
¢ Vo, R Py ( 5u) | \

i

1 Lo
% A (1)
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>
and the time average of the second order velocity Vé is

(V. V)V +VV . T VP - uVRVRV (5)
o, <V} 1 T Y Yz = VR v >

It is precisely the second order velocity %2 which gives rise to the circular

streaming cells.

A. Solutions to Streaming Equations for Transportiin Membrane Ducts
The solution to Equation (L) in terms of first order velocity components

u, and W, was given by Rayleigh (1895, 1945) to be

1
u, = A cos kx [cos wh - o Pz cos (wt - pz)] (6)
W= J;AE sin (kx) (cos (wt --E) I cos (wt - Bz - E) (7)

a2

Upon taking the curl of both sides of Equation (5), one obtains
) >
Wx (V) = -V (8)
where

-Fo= o, <(§ - V) V. +V (v - v )> (9)

>
With V - V2 approximately zero, one can substitute for Vé in terms of the

stream function,

v (Fy) = e (10)
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Upon substituting Equations 6, 7 and 9 into Equation 10, one obtains

vuw SN [Bp kA2 sin 2kx] [2C + S-e-gn] (11)
2 24 o
where
C = e_BZ cos Pz
S = e—BZ sin Bz

By approximating this fourth order spatial derivative by
(12)

we obtain the solution to this equation in terms of the x and z components of

the streaming velocity given by Nyborg.5

2
_ _ oA . -2Bz ]
Uy = - g, sinékx [e ™ +28-1 +6n (1-n)] (13)
2 -2Bz
W, = - §a. cos 2kx [e t2(s +C)-3+28m (1 - n) (1 - 2n))

(1k)
When these velocity components were coupled to the diffusion transport
equations, we observed that we only obtained significant increases in mass
transfer when the product kh was large (the order of one or greater), However
the approximation made in Equation (12) is not valid for large values of (kh),

Consequently, Equation (11) was resolved to yield
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v, = A2 sin 2kx (Al cosh khn + Bl sinh khn +

Cl n cosh khn + Dl n sinh khn +

e-ﬁ e-QBz)

2 (4 cos Bz + 2 sin Bz) + % (15)

where

AL = -9/

3 (hg - 3)
2 kh - sinh kh-cosh kh

_ 2 :
¢, = % (b8 - 3)
p. = 2 (hp - 3) cosh hk
1 2
n = z/ (h/2)

The second order velocity components u2 and wg‘are obtained by differentiating

Equation (15) with respect to x and z respectively, i.e.,

W, = - (16)
>
o

U, = - :§f§ (17)

One can readily show that Equation (15) reduces to the Equation given
Nyborg for small values of kh, Now that we have the flow field defined for
large values of kh, we determine the effect of acoustic streaming on diffu-

sional mass transport,
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B. Coupling of the Streaming and Diffusional Transport Equations

If the fluid in the duct consists of a mixture of species and thelr con-
centrations are different at the two ends of the duct, mass will be transferred
through the duct partly by diffusion and partly by convection. For dilute solu-
tions, the mass transfer equation can be coupled with the acoustically induced

velocity field. The unsteady mass balance is

) - 2
Er- V«VC = DVC (18)
with boundary conditions
Cc = CO at X =0
c - Cl
Iet ¢ = S be a dimensionless concentration.
Co =G

o C
= = Z = 0 and = h
37 0 at and Z /2

The velocity, %, can be taken as the mass average velocity and D as the binary
diffusion coefficient for a dilute solution., Further, the length of the duct

I is taken as an integer multiple of n/2k. We now substitute for V to obtain

2 2
dC dC 3Cc dC ac\
—-—a (U +U)—-——a (wl+w)———-a = D e +__az2/ (19)

We now time average Equation (19) over several cycles and assume first order

interactions between velocity in concentration gradient be neglected.
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0 X dZ
where
<C> = ¢

It can be shown by a perturbation analysis this assumption is exactly valid
when there is a phase lag of 7/2 between the first order concentration and the
first order velocity. This approximation has been useful in correlating pre-

9-11

vious results and is consistent with current studies in similar systems.

ITI, DISCUSSION

The dimensionless concentration field is plotted in Figure 2 for the case
of a frequency, f, of 20 keps, a maximum displacement of the transducer surface,
s, of 7 x lO_5 cm and a duct height, h, of 2 em. The increase in mass transfer
for this case is 96% and the plot clearly shows that the acoustic streaming
pattern strongly modifies the concentration field which would be present when
only diffusional mass transfer was occurring. Near the two ends of the duct,
large concentration gradients are present and diffusional mass transport will
be the most important means of transport at these points. In the middle of
the duct, concentration gradients are smaller and convection will be the pri-

mary means of transport.

In this analysis there are a large number of parameters one could vary to
determine their effect on the rate mass transfer. This somewhat tedious task
is most always avoided by the formation of dimensionless groups. When the

transport system involves both diffusive and convective transport, one of the
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primary dimensionless groups used in the correlation and presentation of results
is the Peclet number, In Figure 3 the increase in mass transfer is plotted
versus the Peclet number, Pe, for diffusion in gases, Figure 4 shows a similar

plot for diffusion in liquids

transport by convection P 5kh2A2

Pe = transport by diffusion ’ © T Bpec

where c is the speed of sound, k the wave number, A the first order velocity
amplitude, and D the diffusion coefficient.

It is seen that at each value of the product kh, the Peclet number has to
reach a certain magnitude before any significant increase in mass transfer can
be expected., The plot also indicates that much higher increases in mass trans-
fer can be expected, b;t this could not be investigated because of stability
problems with the numerical scheme, The present numerical technique is being
modified so as to extend our results into other regions.

The results show that by the application of ultrasonics to mass trans-
port processes, substantial increases in the rate of mass transfer can be ex-
pected. Application of ultrasonics will be very beneficial for mass transfer
through membranes when a substantial resistance to mass transfer lies in fluid
boundary layers and for solid-fluid reactions (catalytic or non-catalytic)
where the rate of mass transfer is limiting.

OQur initial investigation using the presented ultrasonic streaming equa-
tions shows increases of up to 145% in mass transfer can be expected when ultra-

sonic convective transport is superimposed on a diffusional transport.
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IV. SUMMARY

Upon the passage of an acoustic wave through a duct, one can observe the
formation of time independent vortices. This phenomena, which is commonly
called acoustic streaming, can enhance mass transport by superimposing a con-
vective transport on a diffusive transport. The differential mass transport
equation was coupled with the second order time independent streaming equations
in a rectangular membrane duct and solved by finite different techniques. A
frequency range of 5-800 keps in liquids and gases was investigated for dif-
ferent acoustic andvphysical variables. The acoustic streaming strongly modi-
fies the concentration field which would be present when only diffusional mass
transfer takes place. Regions with large concentration gradients are formed
near thg two ends of the duct, and only small concentration gradients are
present in the middle of the duct. At each frequency the Peclet number, and
thereby the first order velocity amplitude, has to reach a certain magnitude
before any significant increase in mass transfer can be expected. At high
Peclet numbers the increase in mass transfer is proportional to the logarithm
of the Peclet number. Preliminary results show that with the application of

ultrasonics increasesareup to 1507 above the normal diffusive transport.



APPENDIX

METHOD OF SOLUTION
The partial derivatives can be approximated by the following finite dif-

ference formulas:

- +C C -2C, ., +C, .
820 _ Ci,j—l gci,j i,3+1 520 _ _i-1,3 2 i,] i+l, ]
2 2 2 2
) (8X) x (7)
C.. -C C -C
X i,3+L i,j-1 o€ _ it i-1,3
X 210X oz 207
Let AX = AZ
Boundary conditions:
¢ = C at X=0andC = C. atXs=
i,1 0 an i,m+l 1® X R‘L
C.. = C .atZ=0and( ., = C ,atgz=m"n/2
2,J 1,3 n+l,J n,J /
i =1,2,3,...,m¥, and j = L, 2, 3,...,n+l

Substituting into the differential equation and rearranging yields

c. . = ¢, .+ LI (1+U, . MX/2) C
5 Q/ L[ ( 3 /2)

-y - : ° X
i, ; (L-U, . * ax/2) C,

3 . + 03 .
1,j+1 i,J yJ-1

+ (1+wi .t AX/2) Cy o

’d Ly d »d

+(1-W, . - ax/2c -
(1w e ax/2 i1, uci)j]

where Q is an accelerating factor 1 < Q < 2. The system of linear equations

‘ 12
1s solved by a Gauss-Seidel interation scheme (Carnahan, et al., 1969).
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SECTION Vv

Acoustic Cavitation in Viscoelastic Fluids

The first paper in this section by Prof. H. S. Fogler and Prof. J. D.
Goddard was presented at the 62nd National A.I.Ch.E. meeting in Washington
D. C., and has been published in the Physics of Fluids 13, 1135, 1970. The
second paper has been submitted for publication in J. Appl. Phys.
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ACOUSTIC CAVITATION IN VISCOELASTIC FLUIDS

As previously mentioned the overall objective of this research is
to utilize ultrasonic waves to accelerate kinetic and mass transport
phenomena in biological type systems. Preliminary results, both the-
oretical and experimental, have shown that substantial incréases in
mass transfer can be brought about by ultrasonics. With the applica-
tion of acoustic waves to biological systems, one must be sure that the
wave conditions are properly adjusted so as not to induce any harmful
side effects to the tissue and body fluids. In some cases, acoustic
cavitation could degrade these materiais if it is induced beyond a cer-
tain level. It is known that various biological fluids behave as visco-

elastic liquids [Trans. of the Soc. Rheology 9, Part 1, p. 448 (1965)].

Consequently, a brief and preliminary investigation was undertaken on
cavitation in viscoelastic fluids to determine whether the degrading
effects of cavitation could be accelerated or retarded in this fluid

type. As a result of the complexity of the problem, only a few limiting
cases were studied. These cases were chosen such that if they showed

the cavitation process was unaffected by the elastic effects in the liquid,
then the other situations would in all probability show the same results.
The paper which follows was presented at the 62nd Annual A.I.Ch.E. meeting

and has also been accepted for publication in the Physics of Fluids and

concerns the collapse of a spherical void in a viscoelastic fluid. These
preliminary results show that the elasticity can significantly retard the
collapse process and certain situations produce damped oscillatory motion
of the cavity rather than the usual catastrophic collapse observed in

purely viscous Tiquids. Since first results show viscoelasticity could
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quite significantly retard material and fluid degradation, we have out-
lined a program for further study in this area in our recent proposal

to NIH for continued support on this project.
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ABSTRACT

An analysis 1is given of the collapse of a spherical
cavity in a large body of an incompressible viscoelastic
liquid. Proceeding from a linear rheological model for the
liquid, one obtains a non-linear integro-differential equa-
tion for the motion of the cavity. Analytical solutions
are derived for certain limiting values of the parameters
governing collapse, and some numerical solutions are pre-
sented for various other values.

As one of the more interesting results of this work,
it is found that elasticity in the liquid can significantly
retard the céllapse of a void and produce prolonged, oscilla-
tory motion whenever the relaxation time of the fluid is
moderately large in comparison to the Rayleigh collapse time.
This is in sharp contrast to the catastrophic collapse which
will always occur for voids in purely viscous liquids. Both
numerical and approximate analytical solutions are presented
to demonstrate the damping effect of liquid viscosity on the

cavity motion.
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1. INTRODUCTION

The term cavitation usually refers to the phenomenon
of growth and collapse of flow-induced voids or vapor bubbles
in liquids. The effects resulting from cavitation are known
to produce metal erosion, luminescence, and increases in
various chemical reaction rates.

In the previous works on this subject, attention has
been restricted mainly to classical liquids. The earliest
theoretical treatment is apparently that of Lord Rayleigh
( 1 ), who considered the collapse of a spherical void in
an inviscid liquid. In later theoretical works, attempts
have been made to account for viscous effects in both the
bubble phase and in the surrounding liquid, and most of the
analyses have dealt with Newtonian (Flynn, 2 ; Plesset, 3 ;
Fogler, 4 ) or purely viscous fluids (Yang, 5 ). An
interesting question arises as to the effects that elasticity
might have on cavitation in viscoelastic liquids. In other
contexts, it has been observed that the presence of elasticity,
such as that produced by addition of small amounts of high
polymers, can drastically change the flow behavior of liquids.
Hence, one might well inquire as to the possible and, perhaps,
beneficlal effects of viscoelasticity on bubble collapse, such
as suppression or reduction in the intensity of cavitation.

An analysis of bubble growth in viscoelastic fluids
has already been given by Street ( 6 ), but, because of
the applications contemplated in his analysis, inertial

effects were neglected. It is precisely these effects,
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however, that tend to predominate in the collapse phenomena
usually associated with cavitation. This provides part of
the motivatidn for the present work, in which we shall focus
our attention primarily on the collapse of spherical voids,
(i.e., regions containing no gas) in an idealized viscoelas-
tic fluid.

We recall that previous studies have shown that col-
lapsing cavities which contain permanent gases will generally
always rebound short of actual collapse, such that the cavity
radius never actually decreases to zero. On the other hand,
a void will generally always collapse to zero radius,at least
‘in purely viscous fluids. It 1s therefore interesting to
reconsider this question of rebound versus complete collapse
for the case of a void in a viscoelastic fluid.

2. EQUATIONS OF MOTION

We wish to treat here the motion of a spherical bubble
contained in a large body of an incompressible liquid. Ini-
tially at time t = 0 the system is at rest, with a bubble
radius Ro and a uniform pressure Po' It has been previously
(Flynn, 2 ; Plesset, 3 ) shown that the equation for
the spherically symmetric motion for a bubble,in which there
is no condensation or evaporation of fluid,vcan be reduced
to ©

Py - %

R ’I.{ + (3/2){{2 2 ———— .

- (1)

N R
—~
<
~
~
[oR
]

where (V - T)r denotes the radial component of V . 1, the
-~ L

w ~
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divergence of the deviatoric or "extra" stress for the liquid
phase, and r = R(t) 1is the radial position of the bubble-

liquid interface, with P2 and Po denoting the pressure in

the liquid at r = R(t) and r = o, respectively. The dots
denote derivatives with respect to t, and p 1s the liquid
density.

Irrespective of the fluld rheology, the radial velo-
city at any radial position r in the 1liquid is required by
continuity , incompressibility, and the assumed symmetry

to be

u = =5 (2)

By the usual force balance at the bubble-liquid interface
in the cavity, the term P2 in (1) can be expressed in terms

of surface tension and the radial stresses as

- 20 (3)
Trr,g * Pg =Pt Trr, g *R

where g refers to any gas which may be present in the cavity
and 2 refers to the liquid phase.* Since neither surface
elasticity nor viscosity are considered in this analysis,
the surface tension force is given by the static surface

tension o.

¥ As in Fogler ( 4 ) we adopt here the sign convention of
Bird, Stewart, and Lightfoot for the stress tensor: The
symbol 1 (or Ty ) denotes the deviatoric stress tensor rec-
koned a¥ a compressive stress (7).
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For bubbles containing an ideal gas in a uniform
state the gas-phase stress at the bubble surface is equal
to the pressure alone; hence Trr,g = 0 (Fogler, 4 ), and
the liquid-phase interfacial pressure is given by

P, =P -7 (4)

Furthermore, the term (X . J)r which occurs in (1) can be
written in terms of three normal stresses as
9T
rr 2Tr'r _ (Tﬁé + TGQ)

(Y -Dp=75 * 5 r

s (5)

and, since the sum of these deviatoric stresses 1s by defini-
tion zero, one'can express the 4§ and © stresses in terms of

the radial stress as

oo * T 5 T Tor s (6)
which with (5) yields
9T T
_ %'pr rr
(X';f‘)r~'3—r—'+3—;—- (7)

Then, upon substituting (4) and (7) into (1), one obtains

the equation

ReR + 3 RF= £-0_20.3 I (8)

fo? the bubble radius R(t). In order to complete the descrip-
tion of motion, we must now relate the liquid-phase radial

stress Trp to the bubble motion.
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In the case of a general viscoelastic fluid exhibit-
ing long-range memory effects, the stresses will depend on
the past history of strain or rate of strain. For the simple,
radially symmetric flow field considered in Eqn. (2), the
strain consists merely of an unsteady simple extension. Hence,
we expect that for an isotropic material the instantaneous
radial stress Trr(t) can be expressed as a functional on the
past history of the radial strain rate err(t'), 05t St,
Here, as in the following analysis, t = 0 corresponds to the
beginning of the collapse process, where we assume the liquid
to be in a completely "relaxed" state of purely hydrostatic
stress.

As with other analyses involving viscoelastic fluids,
we must now postulate a relation between the strain and the
kinematic history of the motion to be considered, and, for
this purpose, we adopt the usual material coordinates. Thus,
we let r' denote the position at past time t', 0 £ t' £ ¢,
of a particle which is at position r at the present time t,

so that,with the velocity field given by Egn. (2), we have

(r')3 = 3 + R3(t') - R3(¢). (9)

Now, at any position (r,t) the radial deformation rate is

given by

. )
_ Ju _ 2RR
erp(s8) = 3m < - T3 (10

and, therefore by (9) and (10), the history of the deforma-

tion rate is determined by
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JR(t') R2(t')
r3 + R3(t') - R3(t)

e n(t',r') = - . (11)

For the present work, we shall employ a rather sim-
ple, linear viscoelastic fluid model, in which the normal
radial stress is related to the corresponding strain rate
by t

Trr(t) = -2 N(t-t') err(t')dt" (12)
0

where N(t) is a "memory" function or relaxation modulus.

On combining (11) and (12) we have

t
: 2
N(t-t') R(t') R°(t') dt"
T..= U ’ (13)
rr r3 4+ R3(t1) - R3(¢)
0
and the integral in equation (8) becomes
Y t o
“rro.. 4 N(t-t') R(t') R°(t')dt'dr
v r(r3 + R3(t1) - R3(1))
R oYR
t
1 : t 2 1 1 !
- - N(t-t') R(t % R™(t )1§(R(t )/R(t))dt (14)
R7(t') - R7(t)
o}

Under these restrictions the complete equation governing
the collapse of a cavity is the non-linear integro-differ-

ential equation:

.o . P)‘-P
R.R,,.iRZ_—._{?____Q._@.
2 o Rp

t

J12 {0 N(e-t') R(£') RE(£1)1n(R(t')/R(£))dt"
° R3(tr) - R3(t)
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For the purpose of the analysis to follow we shall
adopt an elementary form of the relaxation modulus N, con-
sisting of linearly viscous or "Newtonian" contribution and
"Maxwellian" contribution, as follows:

N(E) = p 6 (6) + Ge ™/, (16)

where § denotes the delta function, p a constant viscosity,
A a relaxation time, and GO an elastic modulus.

In terms of dimensionless variables, (15) becomes

." 3 2 . _ 8 o _ 2 _ M@
b e i P NWew Relp

(t*-t,) w w In(y A2
EL § [exp( > 1 1 dtl (17)
W - W

with y(0) = 1 and p(0) = 0, where

N, = 2 (& Deb ber

De = T (A Deborah number ),
Got

NEL =0 (An elastic number),

2

PR

Np, = HEZ (A Reynolds number),
pR3

Nye = __% (A Weber number),
t "o

and ¢ = R/R_, t¥ = B/tys ¥y = w(ty).

O’

Also, t_ = R
O

. is a characteristic ("Rayleigh") collapse

time, wilth PO being the initial pressure. In this manner
one can readily identify the relevant physical parameters

characterizing the collapse process.

In view of the number of parameters, even in this
relatively simple model, one is practically forced to consider
Some special limiting cases Where certain effects may be assumed

¥ Reiner ( 8 ), Metzner et al. (9 )
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to predominate. Thus, we focus our attention first and fore-
vmost on fluids with long relaxation times, corresponding to
NDe+ o, Here, as in the remainder of the analysis, we shall
consider only voids, such that Pg = 0 in (17).

3. COLLAPSE CRITERIA AT LARGE DEBORAH NUMBERS

3.1 Large Reynolds Number

To begin with, we treat the case where both the Deborah
and Reynolds numbers are large, In this limit, NDe+ LR

NRe* o, the fluid behaves essentially as a purely elastic
material, and one obtains in effect a "conservative" dynamical
process characterized by an energy integral. Considering
first the case where surface tension is negligible, Nwe+ o,

and reverting to dimensional variables, one has for the equa-

tion of motion,

. P
3 52 o) G
R‘R +5R = - —-= 8
e P P (18)
where R 5 1
G =120 R U G in 5 4¢
0 R.3 _ g3 3 o s -1 :

1

On multiplying equation (18) by 2R2 p dR and integrat-
ing, we obtain R

223 _ 2 3 3
p R°R* = S P (R - R°) - 2 GR® dR . (19)

One will immediately recognize that this equation

is an energy integral, with the left-hand side representing

108



the total kinetic energy of the liquid, which 1s expressed
as the difference between the stored elastic energy and the
work done by the ambient pressure. Rebound short of collapse
is therefore possible and will occur at a "rebound" radius R,

which is the root of the equation
R

2 3 3 2 -
§PO(RO—R)-2S GR® dR = 0, (20)

Ro

~ corresponding to zero kinetic energy in (19). With the sub-
stitution into (18)

y = 1l/s, z = (R/RO)3

3

the integral in (20) can be written as

R 3 Z X
. 8R> G
= 2 4R = - 20 1n
H= 2 GR® dR » 5 g S (Toy)y dy dx, (21)
1 1

R
o

which, after changing the order of integratlon, can be ex-

pressed as the infinite series

8R3 @ n
- 0 0 § (1-2) z 2
H = -—-—9-5—— (l-Z) ——r:é—— - -2- (ln l/Z) . (22)
n=1
Thus (20) becomes
P = n
o _ 4 (1-2) (1n (1/z))2
R D e = (23)
0 =y 0

which provides the criterion for rebound, giving the rebound

radius R = R = Rozl/3 as a function of P_/G_.
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In the "marginal" case, that is, rebound at R = 0,

we have

p = 2 |
_9.=£E Lo 2m 51932 (24)
Go 3 rl2 9

from (23), and therefore the condition for collapse without
L]

rebound is

o, 2r (25)
GO 9

P
0 2m
2 < _ (26)

In the latter case, equation (23) provides us with a
plot of rebound radius R*/RO versus the ratio of initial
pressure to elastic modulus, Po/Go’ which is displayed as
the lower curve in Figure 1.

If we consider the case of a finite Weber number, where
surface tension is included in the equation of motion, the
criterion for collapse is no longer independent of the initial
bubble radius. By an analysis similar to that above, one

can show that the condition now becomes

—2 ?.g_, (27)

instead of (2%). From this relation one sees that surface

tension effects will tend to be important only in small bubbles.
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We should like next to determine the importance of
viscous retardation on the collapse process, corresponding
to a finite Reynolds number in (17). Whenever Np, and Np,
are finite, the system is no longer conservative and, hence,
does not in general admit an energy integral like (19). We
are thus forced to treat (17) with numerical techniques,
as will be discussed below. First, however, it is worth-
while to note that for infinite Deborah numbers a cavity is
characterized by a certain "equilibrium" radius Req’ as de-
termined by the static balance between pressure, surface
tension, and elastic forces. One can easily derive an expres-
sion for this radius, and, considering the case of negligible
surface tension Nwe = o, one finds from (20) that the

condition of static equilibrium is

0o

P n
(_}9=§_Z.€L:gl_+§<1nz)2 , (28)
© n=1
1/3

with Req = Roz

corresponding plot of Req/RO versus PO/GO. This curve 1is

The upper curve in Figure 1 gives the

of course independent of the Reynolds number, since it refers
to a static situation.

For the purposes of obtainihg the numerical solu-‘
tions, a finite-difference technique was employed to treat
eqn. (17). 1In particular, a modified Milne "four-point pre-
dictor" formula was used, and the numerical solutions thus
obtained were compared for accuracy with existing numerical
solutions for bubble collapse in ordinary liquids(Flynn, 2 ,

Fogler 4 ). 1In all cases, the solutions were the same.
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3.2 Finite Reynolds Number - Viscous Damping

Figure 2 gives a plot of cavity radius versus time

for infinite N and N The cavity 1is seen to oscillate

De We®
about an equilibrium radius subject to viscous damping which

increases with N e_l. Under these circumstances, one would

R
expect to observe "critical" damping below some threshold
value, NReC’ say, which we shall refer to here as the "criti-
cal" number.

To obtain an estimate of this number, we shall make
use of the techniques of linear stability theory. Thus,
letting we represent the dimensionless equilibrium radius

and ¢’ a small perturbation about this radius, we have
b= vl w <<y (29)
e ? e '

Then substituting Equation (29) into the equation of motion
(17) and neglecting terms of the second order in W’, we ob-
tain the corresponding linearized equation for a collapsing

void, which in the case of infinite Weber numbers becomes

. )
bt - 1+ 12 oy, + 5 W!1-0 (30)

NRewe e

Since 12 G(we) = 1 by Equation (18), the preceding equation

becomes 3
. In(y)
et % : 3 v = o, (31)
N (p )2 Fo | (0e)T( = wg)
Re'"e
or, simply, ‘
v/ o’ o =0, (32)
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where b and c¢ are constants. 1In the usual way, it can be

seen that the oscillation of the cavity will be critically

damped whenever b2 = lc. With the appropriate walues of

these constants from Equation (31), this criterion becomes
3

PO 1 - Ve

Re ReC Go Wg ln(l/wg)

which on rearrangement and making use of the definition in
(17) becomes 3
1 - we

N N =
v In(1/2)

Re "EL
c

(34)

Since the equilibrium radius corresponding to we
is determined by PO/GO, we may express the critical Reynolds
number as given by Equation (34) in terms of PO/GO or, alter-
natively, in terms of we' In the latter case one obtains
a plot of the critical Reynolds number as a function of the
equilibrium radius as shown in Figure 3.

A physical interpretation can be given to the shape
of the curve in the following way. Near we = 1 where the
elastic force is, relatively speaking, not very large, a
greater viscous force is required to damp oscillations as
the cavity approaches its equilibrium radius. However, when
Ve 1s only slightly less than unity (e.gu Yo = .7 as 1in
Figure 2), the elastic force, which increases rapidly in
a non-linear way, exerts a greater degree of retardation
on the motion, and consequently a smaller viscous force is

necessary for critical damping.
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Owing to the method of derivation, the present expres-
sion for the criticalvReynolds number, at which cavities
move from their initial radius to their equilibrium radius
on a critically damped path, can be regarded as strictly
valid only for cavities in which we is close to unity. For
cavities with equilibrium radii close to zero, the depafture
from equilibrium w' at the initial statey = 1 is effectively
much greater than the equilibrium ratio we’ and hence the
above linearization technique cannot provide an adequate
description of the cavity motion from y = 1 to ¢y = we.
One notes, however, that for an equilibrium radius ratio
of .74, the critical Reynolds number obtained from Figure
3 is 1.25, and from Figure 2 it is observed that for this
value of the Reynolds number the cavity does indeed approach
equilibrium in a critically damped way. Thus, the lineariza-
tion is evidently valid in this range.

In general, one might also use Figure 3 to determine
the Reynolds number at which critical damping occurs when
the equilibrium radius is shifted from some value we to a
second value,‘$e, say, by a change in the total pressure.

N
In this case, one would use we in Figure 3 to find NRe
' c

This prediction of the damped shift would be valid irrespéc—
.tive of the magnitude of $e’ provided only thatlwe - $e‘ << we.
For large but finite Deborah numbers, Figure 4 shows
the numerically computed motion of the cavity. One observes
complete collapse for PO/Go = 100, with a collapse time very
nearly equal to the Rayleigh collapse time for an inviscid,

non-elastic liquid. Furthermore, it is evident that for the

11k



case Ny, = 1000 shown there, the motion on the first few cycles
is effectively the same as for NDe = o, Also, it can be observed
that the Reynolds number has a significant effect on the initial
motion only when it 1is numerically on the order of magnitude
of ten or less. Because of the greater energy dissipation
at the lower Reynolds numbers, it appears that the rebound
radius decreases with the increasing Reynolds numbers.
4, COLLAPSE AT SMALL DEBORAH NUMBERS

While it is evident that for any finite Deborah num-
ber a void must eventually collapse to zero radius, it is
nonetheless of interest to investigate how collapse is de-
layed by the elasticity of the fluid. In particular, we may
consider the first cycle of motion, as in Figure 5. For a
given PO/GO, the rébound radius on the first cycle decreases
with decreasing Deborah number as shown there. If the fluid
is'inviscid"(NRe = o) the "critical" Deborah number at which
the cavity collapses completely on the first cycle is .51
for a PO/GO ratio of 1.43, whereas for a finite Reynolds
ﬁumber the cavity no longer collapses on the first cycle

at N = .51, but instead rebounds as shown in the figure.

De
For various cases, the numerical solutions were

carried out for several cycles of the motion, and some of

the results are shown in Figure 6. One observes in this

figure that for a Deborah number of 2/3, the cavity collapses

in approximately three major cycles. One also notes that

the maximum radius reached after each rebound decreases in

an almost linear fashion for the first few oscillations

when Np = 1. The "modulation" within the later cycles

115



and the exact radius values in final stages of collapse are
uncertain at this time, since numerical integration difficulties
were encountered at long times. (The longest time shown
rebresents some thirty to forty minutes of IBM 360 computation
time for a single run).

5. CONCLUSIONS

The results of the preceeding analysis indicate that
elastic effects may well have a strong influence on cavita-
tion in viscoelastic liquids. We should certainly expect
such effects to occur at high Deborah numbers A/tc, where
the relaxation time A of the fluid is long compared to the
classical Rayleigh collapse time tc.

In particular, for the Maxwellian liquid considered
here, the presentwanalysis shows that in the limit of large
Deborah numbers, A/tc +> o, é spherical void may either col-
lapse or undergo oscillations about an equilibrium radius,
depending on whether the ratio of ambient pressure to the
elastic modulus of the fluid exceeds a definite, critical
value. The presence of viscosity in the fluid tends to damp
the oscillations, and a critical-damping phenomenon occurs
for Reynolds numbers below a certain value.

Even for finite and moderate Deborah numbers, )\/tc
= 0 (1), the ultimate collapse of a void is delayed for
several cycles of expansion and contraction.

Although we have not considered in detail the pos-
sible effects of gases or vapours in the collapsing cavity,

we should not expect such effects to greatly alter the role
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of liquid elasticity in the collapse process. In fact, one.
might reasonably anticipate that the combined effects of
volume elasticity in the gas and shape elasticity in the
liquid would reinforce one another in such a way as to re-
tard or completely suppress the collapse of bubbles.
From the results of previous studles of gas-filled bubbles
in Newtonian fluids, we might also expect that, in many in-
stances, the effects of liquid elasticity would be important
at a much earlier stage in the collapse process. In such
cases, the build-up of the liquid-phase momentum, which
gives rise to catastrophic collapse, would be greatly sup-
pressed.

In addition to any experimental work which may be
suggested by the p}esent study, it would also be of some
interest to investigate theoretically the hydrodynamic sta-
bility of the spherically-symmetric motion of cavities col-
lapsing in viscoelastic liquids. While one might be tempted
to employ a somewhat more refined rheological model for the
liquid, this would probably lead to rather difficult analy-
tical and computational problems, without necessarily pro-
viding much additional insight on the physics of the col-

lapse phenomenon.
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1

e . radial strain rate, Sec”

G0 an elastic modulus, dyne/cm2
G defined by Egn. 18

H defined by Eqn. 21

NDe a Deborah Number

Ner, an Elastic Number

NRe a Reynolds Number

NWe a Weber Number

N(t) memory function, gm/cm/se02

n integer

P pressure, dyne/cm2
"R radius of the cavity wall, cm.
Ry cavity radius at some previous time, cm.
R0 initial cavity radius, cm..

r radial cooidinate, cm.

u velocity, cm/sec.

t time, sec.

tc modified collapse time, sec.

X dummy variable

2 (R/Ry)>

Subscrigts

c critical

9 gas

L liquid

e equilibrium radius

1 refers to a previous time

Greek Symbols

P dimemsionless cavity radius R/R0
2

T35 normal stress, dyne/cm

g surface tension, dyne/cm
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p liquid density, gm/cc
A relaxation time, sec.
u viscosity, gm/cm/sec.

§(T) delta function
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Figure 1. The initial rebound radius and equilibrium radius as a function of
Po/Go' The middle curve was computed from Eq. (17).
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Figure 3. The "critical" Reynolds number as a function of the equilibrium
radius.
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OSCILLATIONS OF A GAS BUBBLE IN VISCOELASTIC LIQUIDS
SUBJECT TO ACOUSTIC AND IMPULSIVE PRESSURE VARIATIONS

H. S. Fogler and J. D. Goddard
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The University of Michigan
Ann Arbor, Michigan 48104
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ABSTRACT

Oscillations of a Gas Bubble in Viscoelastic Liquids

Subject to Acoustic and Impulsive Pressure Variations

H. S. Fogler and J. D. Goddard
Division of Chemical Engineering
The University of Michigan
Ann Arbor, Michigan 48104

An analysis is presented of the forced oscillations of a
gas-filled bubble at rest in a large body of a linear visco-
elastic fluid. Two types of forcing are considered. 1In the
first, oscillations are induced by a pressure surge on the system.
For the three-parameter fluid model employed, numerical compu-
tations show that, for a given ratio of the fluid's elastic
modulus to the pressure surge, the damping of the bhbble motion
exhibits a maximum as a function of the fluid felaxation time,
at a value of this parameter equal approximately to one-fifth
the natural period of oscillation. At very high or very low
relaxation times, the damping becomes insignificant. As the
second type of forced oscillation, we consider the motion in-
duced by the application of ultrasonic waves to the system. Here,
damping is found to depend strongly on the product of impressed

frequency and fluid relaxation time.

131



I. INTRODUCTION

Previous studies on bubble oscillation and collapse in
liquids have primarily dealt with bubble motion in Newtonian

fluidsl_3. Although there have been studies carried out on

415 ihese analyses

bubble oscillation in "non-Newtonian" liquids
have been limited to fluids belonging to the Stokesian- i.e.,
viscous, group in the rheological classification bf materialss.
It is of both practical and theoretical interest to consider
the possible reduction or suppression of acoustical or flow
induced cavitation by the presence of viscoelasticity in the
ambient liquid.

The motion of bubbles in fluids for which the stress-
strain functionality involves memory effects or dependence on
the history of»the fluid motion has only been treated in a few
limiting cases. Fogler and Goddard7 have presented an analysis
of the collapse of spherical voids in viscoelastic fluids under
the action of a "step-function" pressure surge. For the case
of a particular linear viscoelastic fluid model, it was shown,
among other things, that the presence of shear elasticity could
significantly retard the collapse of voids in liquids having
relaxation times comparable to the classical Rayleigh collapse
time. Also, some speculations were made concerning the effects
that liquid-phase elasticity might have on the motion of gas-
filled bubbles and, in a later work, Tanasawa and Yang8 have
addressed themselves to this problem. However, their analysis8

relating to bubble collapse induced by a sudden pressure surge,
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fails to reveal some important aspects of the collapse phenom-
enon, which appears to result from the inappropriate mechanical
—‘analogue they propose.

Apart from a somewhat more careful analysis of this type of
oscillation, the present work will treat another type as well.
In this latter type, we shall again consider a gas bubble
initially at rest in a large body of viscoelastic liquid; however,
the bubble motion will now be induced by the application of

acoustic pressure variations to the system.

IT. PROBLEM FORMULATION

Consider a spherical gas-filled bubble in a large body of
an incompressible liquid which initially, for all time t<0, is at

rest with a radius Ro’ a uniform pressure on the liquid system,

P, = Poe’ and with a gas pressure inside the bubble Pgo;‘the

latter is determined from the relation

P = P + = | (1)

where o represents the surface tension. We wish to analyze
motions which have been induced by two different methods: In
the first, the motion is induced by a sudden surge of pressure

on the system, i.e.

at t<o0, P = Poe

(2)

t>0, P, = P_

Whereas in the second, it results from the application of
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acoustic waves to the system. 1In this case, the pressure at a
large distance from the bubble, for any time t > 0, will be

given by

P, = P~ P, Sin ut, (3)

where Pa is the "acoustic pressure" and w is the angular fre-
quency of oscillation.

In either case, the general equation describing the spheri-
cally symmetric moticn of a bubble containing a uniform gas

phase, in which there is no condensation or evaporation of

T __.dr
rr
f = (4)
R

where Tp is the radial component of deviatoric compressive

fluid, has been showh7 to reduce to

oo 09, P ~-P
R* R + %RZ = .9_6__9P_

218
oW

2 —
B

stress in the liquid phase. As a rheological constitutive
equation, relating stress Trr(t), at a fluid particle to the
past history of the deformation rate err(t'), 02t St, we

adopt the linear viscoelastic model used in our previous work:

t

T (£) = =2 f N (t-t') err(t') at', (5)
(@)
with
N(t) = us(t) + G o t/A (6)

where, as constant parameters, u is a viscosity, Go an elastic

modulus and A a‘relaxation time for the fluid, and where 6§ (t)
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denotes the delta function.
We note, incidentally, that this fluid model is identical*

with the "linear Oldroyd model"

DTrr Derr
Ter ¥ Al Dt “ZHO Crr * AZ Dt (7)
of the form employed by Tanawasa and Yang (which follows directly

by an elementary integration of (7) together with the transfor-

mation of the three parameters:

- - = A
o
From a consideration of the liquid - phase velocity field
for spherically symmetric motion, it can be shown7 that Equations

(4), (5), and (6) combine to give the complete dynamical equation

for the bubble motion:

X t* _ .2
vy o+ = ﬁg " Rey ~ "Re «/ XP |~ e 3 3
(0] / ‘4)1 -y
0
2
2 00
- . % (8)
Wey PO

with
p(0) = 1 and ¥ (0) = 0,

* In view of this, it is difficult to appreciate the statement
in reference 8 that our previous work’ employed a "two-
parameter" model as well as the implication that Equation (7)
is more general than Equation (5).
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where
PR 2

A
De = T (A Deborah number), Re = ug (A Reynolds number)
c c
3 (10)
Gotc pRO
EL = " (An elastic number), We = T (A Weber number),
c

and ¥ = R/R_, t* = t/t , ¥; = ¥(t;).

Also, tc = Rol %~ is a characteristic ("Rayleigh") collapse time,
o)

with PO being the initial pressure.

To provide an intuitive appreciation of the system, a
mechanical analogue representing the effect of the first three
terms on the right-hand side of Equation (8) is shown in Figure 1.
These terms, representing the effects of gas compressibility,
liquid viscosity, and liquid viscoelasticity correspond to the
elements, A, B, and C, respectively, in a spring-dashpot assemblage.
One can also note that the conceptual model in Figure 1 differs
from that proposed in Reference 8, in that the element representing
the effect of gas pressure has been placed in parallel here with
the other elements rather than in series. The latter arrangement
would suggest that the bubble could collapse to zero radius as
the fluid viscosity and relaxation time both approach zero, which
of course is not possible as long as there is a non-condensable
gas inside the bubble.

As discussed in our previous work, the rather large number

of parameters, even in this relatively simple fluid model,
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requires one practically to consider some special limiting cases.
In all the calculations made in the present work, we have adopt-
ed fixed values,p = 1l cp, p =1 gm/cm3, 0 = 72 dynes/cm (corre-
sponding to the equivalent values for water). These values
correspond generally to large values of the Reynolds and Weber
numbers, defined above, and imply that the "purely viscous"

and surface tension effects, as represented by the second and
fourth terms on the right hand side of (8), are small. This is
not a severe restriction since it turns out that the parameters
u and o could easily be changed by a factor of ten to a hundred

without rendering these effects important.

ITI. OSCILLATION IN“DUCED BY A SUDDEN PRESSURE SURGE

With the initial conditions expressed mathematically in
Equation (9) and the pressure surge given by Equation (2),
Equation (8) was solved numerically for y(t*) by a slightly im-
proved version of our previous integration technique.7 Figure 2
portrays the resulting oscillations, for various values of the
ratio of the elastic modulus to incremental pressure surge,

AP = (PO - Poe)' The radius-time curves in this figure corre-
spond to fluids in which the relaxation time is much greater than
either the "natural" period of oscillation or the Rayleigh
collapse time for an ideal fluid. For this condition, i.e. large
"Deborah numbers", the amplitude of oscillation decreases with

increasing elastic modulus, Go' In addition, it is noted that

as time proceeds, a phase shift develops between the viscoelastic
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oscillation, GO > 0, and the "purely viscous" oscillation, for
which G, = 0.

The bubble motion is shown in Figure 3 for various Deborah
numbers and for the fixed value 0.46 of GO/AP. One observes in
this figure that the amplitude of oscillations for a Deborah
number of 0.4 is less than that for a Deborah number of either
0.01 or 2.0. In other words, for a given GO/AP, there appears
to be a minimum amplitude of oscillation as the Deborah number
is increased from zero.

One possible parameter for characterizing the degree of
damping for this type of oscillation is the maximum radius

reached after initial rebound of the bubble, There are

leax'
of course other, more standard, methods of specifying the damping
in oscillating systems; however, they usually involve several
cycles of bubble collapse and rebound. For the system discussed
here, the calculation of numerous cycles would require excessive
computational time with perhaps little, if any, additional
information gained. Hence, we shall use the first maximum rebound
radius as a measure of damping, and this quantity is shown as a
function of the Deborah number in Figure 4. On this basis, one
concludes, by a rough extrapolation, that damping of the bubble
motion at high Reynolds numbers would be small at Deborah numbers
greater than 3 or less than .01l.

In terms of the conceptual analogue above, one sees that
a high Deborah number corresponds effectively to an immobile

dashpot in element C, while a very low Deborah number corresponds

to a "frictionless" dashpot in C. 1In the former case, we are
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left with two springs in parallel with a "weak" dashpot B

(for high Re), while the latter case reéults in one spring in
parallel with the same dashpot, B. In this manner, it is easy
to understand thé occurrence of a minimum in damping as we vary
fluid relaxation time. As a final remark on these calculations
we note that, for all the curves in Figure 4, the minimum

"value of R occurs at a value of the Deborah number corre-

Imax
sponding roughly to a relaxation time equal to one-fifth the
natural period of oscillation. One also observes from this plot

that the minimum value of R decreases with increasing elastic

Imax
modulus.

While the elementary fluid model used here would probably
not provide an exact description of real viscoelastic liquids,
it may not be too implausible to expect that they might

exhibit a qualitative relation between damping and relaxation

effects, of the type presented here.

IV. OSCILLATIONS INDUCED BY ACOUSTIC WAVES

The application of ultrasonic waves to liquids has been
observed experimehtally to produce a number of unusual and
interesting phenomena: (1) sonoluminescence, (2) erosion, (3)
rectified diffusion, and (4) increased chemical réaction rateé.(l)
These phenomena are usually attributed‘to acoustically induced
cavitation. Hence, it is of interest to consider the effect

which fluid viscoelasticity might have on these phenomena,

through its specific effect on bubblé motion. In the present
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model for oscillation, induced by this method, the ambient
pressure is given by Equation(3). Again, a numerical solution

to the integro-differential equation of (3) is required. As in
the previous case, an extended calculétion of bubble motion
would require prodigious amounts of computation time. Conse-
quently, we have limited our calculation to the first few cycles
of oscillation.

A number of radius-time curves for bubble motion in New-
tonian fluids have already been presented by Flynnl. For
purposes of comparison,; one of Flynn's curves (Go = 0) was
recalculated by our numerical procedure and is presented in
Figure 5, along with the radius-time curves of the present work.
For large Deborah numbers one observes from this figure that the
damping of bubble'ﬁotion increases systematically with increasing
elastic modulus. In Figure 6, the radius-time curves show that
the damping of the motion also increases with increasing Deborah
number. One can note that elasticity in a fluid may or may not
have significant effects on the motion. Indeed, it appears that,
for the relatively large amplitude acoustic waves considered
here (Pa/PO > 1/3), the bubble oscillation can be significantly
damped by "elastic" response at the higher frequencies, where \w
is order unity or greater. However, the same fluid subjected
to ultrasonic waves of much lower frequency, (Aw<<l) may show

insignificant elastic damping.

V. SUMMARY

We have considered briefly here the oscillations of gas-filled

bubbles in idealized viscoelastic liquids induced by two different
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methods: (1) Single Pressure Surge, and (2) Acoustic Pressure
Waves. In the first case, it is observed that for a given ratio
of the elastic modulus to the amplitude of the pressure surge,
the damping effect on the bubble motion exhibits a maximum, as a
function of the Deborah number. In the second case, it is ob-
served that the extent of damping depends strongly on the product
of applied frequency and relaxation time for the fluid.

In conclusion, we have attempted to show in our calculations
the importance of the parametric regime to the occurrence of
significant elastic effects. It can be reasonably expected
that similar care would have to be exercised in any further
calculations, based on other viscoelastic fluid models, or in

any experimental explorations of such effects in real fluids.
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Figure

Figure

Figure

Figure

FIGURE CAPTIONS

Mechanical analogue of the (A) gas pressure, (B)
viscous, and (C) viscoelastic effects in a gas-

filled, oscillating bubble. The mass represents
the effect of fluid inertia.

Dimensionless radius-time curves for various
values of the ratio of elastic modulus to the
amplitude of the pressure surge.

Effect of the Deborah number (fluid relaxation time/
Rayleigh collapse time) on bubble motion.

Maximum value of the first rebound radius as a
function of the Deborah number for various values
of GO/AP.

Effect of elastic modulus on bubble motion induced
by acoustic pressure waves.

Effect of Deborah number on bubble motion induced
by acoustic pressure waves.
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