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ABSTRACT: A semiempirical hyperspherical model for the ground states of low-
temperature helium clusters is proposed. Extension of the authors’ delta function model
for the helium dimer suggests an effective hyper-radial Schrödinger equation with two
empirical parameters. The parameters are fitted so as to reproduce the ground-state
energies and RMS interatomic distances in Blume and Greene’s quantum Monte Carlo
computations for 4HeN clusters with N � 3–10. The model can be extrapolated to N 3
� to give a reasonable value for the binding energy per atom in a helium droplet.
© 2005 Wiley Periodicals, Inc. Int J Quantum Chem 106: 981–985, 2006
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Introduction

I n recent years, hyperspherical methods have
been applied extensively to a wide range of

dynamical problems for nuclear, atomic, and mo-
lecular systems involving three or more particles. In
particular, a large number of recent theoretical
studies of low-temperature clusters of helium at-
oms have been based on adiabatic hyperspherical
approximations to the Faddeev equations [1–8]. In
addition, Barletta and Kievsky [9] have carried out
variational computations using hyperspherical har-
monic functions. The present authors [10] have con-
sidered a delta function model for the trimer,
mainly to explore the analytic properties of the

Efimov and Thomas effects. Recently, the Faddeev–
Yakubovsky formalism has been applied to the tet-
ramer [11].

The most comprehensive computations to date
on helium clusters are those of Blume and Greene
[12]. These investigators applied quantum Monte
Carlo methods to hyperspherical representations of
ground and excited states of 4HeN clusters for N �
3–10. Their results, reexpressed as �/kB (in Kelvin),
are listed in Table I and shown graphically in Fig-
ure 1. Earlier, Pandharipande et al. [13] carried out
Monte Carlo computations on helium droplets con-
taining up to several hundred atoms. Their results
for the smaller clusters are in essential agreement
with those of Blume and Greene.

In the present work, we propose a semiempirical
model to reproduce Blume and Greene’s ground-
state energies, based on a hyperspherical Schröd-Correspondence to: S. M. Blinder; e-mail: sblinder@umich.edu
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inger equation with two empirical parameters. We
will also show that the N 3 � limit is consistent
with the behavior of macroscopic helium droplets.

Helium Dimer

Our approach is based on a generalization of our
model for the helium dimer [14], in which the in-
teratomic potential is approximated by a delta func-
tion on a sphere of radius r0 in the space of relative
coordinates, which we have called a “Dirac bubble
potential.” For zero orbital angular momentum, the
relative motion of a pair of helium atoms can be
represented by the Schrödinger equation (using
atomic units � � m � e � 1)

1
2� ����(r) �

2
r ��(r) �

�

r0
�(r � r0)�(r)� � ���r� (1)

with

� � �k2/2�. (2)

The reduced mass � � M/2, where M � 7296.293
atomic units (au) for the 4He atom. For r � r0, Eq. (1)
has solutions �(r) � sinh(kr)/r and �(r) � e�kr/r,
finite as r 3 0 and r 3 �, respectively. The com-
plete wave function must be continuous, but
kinked at r � r0, so that the first derivative is
discontinuous there. The second derivative will
thus contribute a term to match the delta function
in the potential energy operator. The (un-normal-
ized) solution to Eq. (1) can accordingly be written

��r� �
sinh�kr	�e�kr


r r	, r
 � �r, r0�. (3)

The boundary condition at r � r0 is satisfied by
matching the �(r � r0) contributions from the ki-
netic and potential energies. This leads to the rela-
tion

2k
1 � e�2kr0 �

�

r0
� 0 (4)

or

� � kr0
1 � coth�kr0��, (5)

which determines the ground-state energy. Accu-
rate computations by Gentry and coworkers [15],
including retardation effects, predicts a 4He2
ground-state energy of 	 � �1.176 mK. Energies in
these low-temperature species are most conve-
niently expressed in millikelvins, with the conver-
sion factor 1 hartree � 3.1577465 � 108 mK. A delta
function potential supports only a single v � 0, J �
0 bound state, which makes it an appropriate model
for the actual 4He2 dimer. Parameters � and r0 can
be adjusted for optimal fit to Gentry’s ground-state
energy and wave function, giving � � 1.07011, r0 �
13.15 bohr. A bound state for the dimer will exist
only for values of � 
 1.

Hyperspherical Model for Trimer

Generalizing the delta function model to the
4He3 trimer, we will assume that the three particles
interact through pairwise potentials of the same
form

FIGURE 1. Ground-state energies of 4HeN clusters,
from quantum Monte Carlo computations of Blume and
Greene [12].

TABLE I ______________________________________
Parameters for helium clusters.

N � �N/K rrms/bohr RN/bohr �N

3 0.1255 20.52 24.64 4.871
4 0.5568 15.93 26.44 9.260
5 1.296 14.64 28.79 14.14
6 2.309 14.20 31.49 19.53
7 3.565 14.03 34.20 25.34
8 5.019 14.07 37.18 31.67
9 6.677 14.15 39.95 38.33

10 8.495 14.19 40.08 43.44
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V�rij� � �
�

Mr0
��rij � r0�. (6)

For compactness of notation, we abbreviate the
three interatomic separations using

r1 � r23, r2 � r31, r3 � r12. (7)

The three-particle kinetic energy operator, ex-
pressed in terms of the relative interatomic coordi-
nates, is given by

T �
1
M ��


2


r1
2 �

2
r1





r1
�

r3
2 � r1

2 � r2
2

4r1r2


2


r1
r2

�
r2

2 � r3
2 � r1

2

4r1r3


2


r1
r3
� � cyclic permutations. (8)

For r1, r2, r3 � r0, the Schrödinger equation is
separable in hyperspherical coordinates R, �1, �1.
The hyperradius is defined by

R � �2
3 �r1

2 � r2
2 � r3

2�, (9)

while

�1 � � � arcsin�r1/R�, 0 
 � 
 �/2, (10)

and �1 � � is the angle between the Jacobi vectors
r3 � r2 and r1 � (r3 � r2)/2. (Alternative choices of
the angular variables are the analogous sets �2, �2
or �3, �3.) For equilateral triangular configurations
of the trimer, we have �1 � �2 � �3 � �/4. If, in
addition, r1 � r2 � r3 � r0, then R � �2 r0 � R3.

The ground state of the helium trimer has a
rotational angular momentum of zero. There is, of
course, no nuclear angular momentum since the
helium atoms are spin-zero bosons. It is assumed,
in addition, that each atom pair is in an S-state, like
diatomic helium. Moreover, the “orbit” of the third
atom about each diatomic fragment is assumed to
be spherically symmetrical. The wave function is
thus independent of the angle between the Jacobi
vectors with a separable form in two hyperspheri-
cal coordinates:

��R, �� � f�R�����. (11)

The Schrödinger separates to two ordinary differ-
ential equations:

f��R� �
5
R f��R� �

�2

R2 f�R� � k2f�R� (12)

with

� � �k2/M (13)

and

����� � 4 cot�2������� � �2����� � 0. (14)

The operator �2 represents the “grand angular mo-
mentum.” For bosons, appropriate boundary con-
ditions at � � 0 and �/2, imply GAM eigenvalues
given by

�2 � ��� � 4�, � � 0, 2, 4. . . (15)

Integration of the wave function over the domain of
R and � involves the differential element R5sin2�
cos2� dRd �.

Solutions to Eq. (12) for � � 0 are R�2I2(kR) and
R�2K2(kR), where I and K are hyperbolic Bessel
functions. The potential energy operator

V � �
�

r0

��r1 � r0� � ��r2 � r0� � ��r3 � r0�� (16)

spoils the exact separability of the Schrödinger
equation. We will consider an effective Hamilto-
nian in which V is averaged over the hyperspheri-
cal angle � to give an equation involving only the
hyperradius. This is somewhat analogous to the
central-field approximation for atomic orbitals in
self-consistent field (SCF) theory. The simplest ma-
neuver is to set � � �/4, which corresponds to
equilateral triangular configurations of the trimer.
This gives

�

r0
��r1 � r0� �

�

r0
�� R

�2
�

R3

�2� �
2�

R3
��R � R3�.

(17)

Since the three terms in V contribute equally,

Veff�R� � �
6�

R3
��R � R3�. (18)

This suggests a representation of the effective hy-
perradial potential in the form
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Veff�R� � �
�3

R3
��R � R3� (19)

with �3 and R3 treated as semiempirical parameters.
The effective hyperspherical equation for the tri-

mer is thereby reduced to

f��R� �
5
R f��R� �

�3

R0
��R � R3� f�R� � k2f�R�. (20)

An exact solution is given by

f3�R� � R�2I2�kR	� K2�kR
� R	, R
 � �R, R3�.

(21)

This function is continuous at R � R3 but has a
discontinuous first derivative there. The resultant
“kink” implies a second derivative proportional to
�(R � R3). This can be matched with the delta
function in the potential energy operator when the
following condition is satisfied:

I2�kR3� K2�kR3� � �3
�1. (22)

The assumed trimer ground-state energy �3 �
�125.5 mK corresponds to a value of k � 0.05384.
We will describe the assignment of the parameters
R3 and �3 in the following section. The condition for
a bound state cannot be fulfilled for any other value
of � 
 0.

Larger Clusters

The quantum state of a 4HeN cluster depends on
N(N � 1)/2 interatomic displacements rij, 3N � 6
combinations of which are independent (e.g., Jacobi
coordinates). The definition of the hyperradius for
an N-particle system can be generalized to

R2 � 2 �
i�1

N

�ri � rc.m.�
2 �

2
N �

ij

N�N�1�/ 2

rij
2. (23)

The effective hyperradial Schrödinger equations
analogous to (20) are

f��R� �
�3N � 4�

R f��R� �
�2

R2 f�R�

�
�N

RN
��R � RN� f�R� � kN

2 f�R� (24)

with the energies is given by �N � �kN
2 /M. All the

ground states will be assumed to have �2 � 0.
Thus, in analogy with (21) and (22), the N-dimen-
sional hyperradial equations can be solved to give

fN�R�

� R��3N�5�/ 2I�3N�5�/ 2�kNR	� K�3N�5�/ 2�kNR
�

R	, R
 � �R, RN� (25)

subject to the conditions

I�3N�5�/ 2�kNRN� K�3N�5�/ 2�kNRN� � �N
�1. (26)

To determine the parameters �N and RN, we
make use of Blume and Greene’s computed ener-
gies �N as well as their results for the root mean
square interatomic distance rrms. The latter are also
listed in Table I. Note that for N 
 4, the values of
rrms approach the dimer parameter r0 � 13.15 bohr,
but they must subsequently increase with cluster
size. The expectation value of Eq. (23) gives the
relation between the hyperradius and the rms dis-
tance:

�R2� �
2
N �

ij

N�N�1�/ 2

�rij
2� � �N � 1�rrms

2 , (27)

where

�R2� �
�0

� R2
 fN�R��2R3N�4dR
�0

� 
 fN�R��2R3N�4dR
. (28)

Using the Monte Carlo results for rrms, we deter-
mine values of RN consistent with Eqs. (27) and (28).
Finally, Eq. (26) determines the corresponding �N.
The resulting parameters RN and �N are listed in
Table I.

Extrapolation to N 3 �

The Monte Carlo computations of Pan-
dharipande et al. [13] apply to helium droplets of
macroscopic size, represented by the limit N 3 �.
The condition (26) determining the N-particle en-
ergy can be extrapolated to N 3 � using uniform
asymptotic expansions for Bessel functions. The rel-
evant result is [16]
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I���z� K���z� 	
1

2��1 � z2 as � 3 �. (29)

This applies for � � (3N � 5)/2 � (3/2)N. Let us
define

lim
N3�

�N

N � ��, lim
N3�

RN

N1/ 2 � R�, lim
N3�

kN

N1/ 2 � k�.

(30)

Thus, we can identify in Eq. (29)

z �
2
3 k�R�, (31)

and the condition (26) reduces asymptotically to

�� � 3�1 �
4
9 k�

2 R�
2 . (32)

From this relation, along with the data in Table I,
the empirical parameters RN and �N can be approx-
imated by:

RN � �1.38532 � 13.6125�N (33)

�N � 20.0081 � 28.2578�N � 11.4514N. (34)

The limiting value of �N/N as N3 � is predicted to
be �7.13 K/atom, in almost perfect agreement with
the experimental vaporizational energy per atom,
�7.12 K/atom. For N 
 4, the parameters given by

(33) and (34) reproduce Blume and Greene’s Monte
Carlo energies to within 2–3%.
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