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Regulating Leukotriene Synthesis:
The Role of Nuclear 5-Lipoxygenase
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Abstract Leukotrienes are lipid messengers involved in autocrine and paracrine cellular signaling. They are
synthesized from arachidonic acid by the 5-lipoxygenase pathway. Current models of this enzymatic pathway recognize
that a key step in initiating leukotriene synthesis is the calcium-mediated movement of enzymes, including 5-
lipoxygenase, to intracellular membranes. However, 5-lipoxygenase can be imported into or exported from the nucleus
before calcium activation. As a result, its subcellular localization will affect its ability to be activated by calcium, as well
as the membrane to which it binds and its interaction with other enzymes. This commentary focuses on the role of
5-lipoxygenase compartmentation in determining its regulation and, ultimately, leukotriene synthesis. J. Cell. Biochem.
96: 1203–1211, 2005. � 2005 Wiley-Liss, Inc.
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The enzyme 5-lipoxygenase (5-LO) initiates
the synthesis of leukotrienes (LTs) from arachi-
donic acid (AA). The expression of 5-LO is large-
ly restricted to certain leukocytes, including
neutrophils, eosinophils, mast cells, basophils,
monocytes, macrophages, and B-lymphocytes.
These cells will, upon stimulation, synthesize
and secrete LTs, which move short distances to
target cells, bind specific receptors, and trigger
cell-specific responses. The LTs include LTB4,
which promotes inflammation by attracting and
activating leukocytes, and the cysteinyl LTs,

LTC4, and LTD4, which cause edema and
smooth muscle contraction. It is currently
accepted that the action of 5-LO is central to
immune response, as it is responsible for the
generation of LTs, which are secreted and work
in an autocrine or paracrine fashion to drive
cellular and tissue components of innate immu-
nity. Thus, mice that lack 5-LO cannot make
LTs and have an impaired ability to clear
bacterial infection [Peters-Golden et al., 2002].

While the underproduction of LTs, as
occurs with malnutrition [Skerrett et al., 1990;
Cederholm et al., 2000] and HIV infection
[Thorsen et al., 1989; Coffey et al., 1996, 1999],
results in reduced immune defense, the over-
production of LTs contributes to a wide range
of diseases. For example, elevated LT levels
clearly contribute to some forms of asthma
[Drazen et al., 1992; Daffern et al., 1999] and
pharmaceutical intervention in LT production
or signaling reduce symptoms during asthma
exacerbations [Dockhorn et al., 2000; Garcia
Garcia et al., 2005]. The overproduction of
LTs has also been associated with allergic
diseases [Talbot et al., 1985; Taylor et al., 1989;
Rachelefsky, 1997], pulmonary fibrosis [Wilborn
et al., 1996], atherosclerosis [Spanbroek et al.,
2003; Dwyer et al., 2004], hyperlipidemia-
dependent inflammation of the arterial wall
[Zhao et al., 2004], pulmonary hypertension
[Voelkel et al., 1996], arthritis [Giffiths et al.,
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1995], and ischemia reperfusion injury [Noiri
et al., 2000]. In addition, increased 5-LO expres-
sion and presumably increased LT synthesis,
hasbeenassociatedwith lungcancer [Avis etal.,
2005], pancreatic cancer [Hennig et al., 2002],
bladder cancer [Yoshimura et al., 2003], breast
cancer [Jiang et al., 2003], colon cancer [Nielsen
et al., 2003], glioblastoma multiforme [Golubic
et al., 2003], prostate cancer [Matsuyama et al.,
2004], testicular cancer [Yoshimura et al.,
2004], and esophageal cancer [Hoque et al.,
2005]. As LTs have important roles both in
normal immune defense and in disease, a better
understanding of the LT biosynthetic pathway
will provide insight into both health and
pathogenesis.

LT SYNTHESIS: A CONCEPTUAL MODEL

As noted above, LTs are products of the
enzymatic modification of AA, which is a 20
carbon omega-6 polyunsaturated fatty acid
that is typically found in the sn-2 position of
membrane phospholipids. Phospholipases of the
class A2 (PLA2) mediate the liberation of AA
frommembrane phospholipids. An 85 kD group
IV PLA2, also known as cytosolic PLA2 (cPLA2),
appears to be essential for the release of AA
for LT production [Bonventre et al., 1997].
cPLA2 moves from the cytoplasm to cellular
membranes in a calcium-dependent fashion
[Schievella et al., 1995], leading to the release
ofAA (Fig. 1). Binding of cPLA2 tomembranes is
prolonged by phosphorylation [Das et al., 2003].

The first step toward LT generation is
mediated by the enzyme 5-LO,which, in concert
with the 5-LO activating protein (FLAP),
catalyzes the insertion of molecular oxygen into
AA to form 5-hydroperoxyeicosatetraenoic acid
(5-HPETE) as well as its subsequent dehydra-
tion to LTA4. The intermediate 5-HPETE is
often made in significant amounts; it is rapidly
modified to 5-hydroxyeicosatetraenoic acid
(5-HETE). Like cPLA2, 5-LO moves to cellular
membranes in a calcium-dependent fashion
following cell activation [Rouzer and Samuels-
son, 1987]. ATP, in the presence of calcium,
enhances the catalytic activity of 5-LO in cell-
free assays [Ochi et al., 1983]. The membrane
association or the catalytic activity of 5-LOmay
be augmented by phosphorylation of 5-LO on
Ser271 byMAP kinase activated protein kinase
2 (MK2) [Werz et al., 2000] or MK2 and AA
[Werz et al., 2002b]. Importantly, phosphoryla-

tion of 5-LObyMK2 invitro didnot significantly
affect its activity [Werz et al., 2000, 2002b].
Phosphorylation on Ser663 by extracellular
signal-regulated kinase (ERK) enhances 5-LO
activity [Werz et al., 2002a]. The phosphoryla-
tion of 5-LO on Ser523 by protein kinase A
(PKA) inhibits LT synthesis [Luo et al., 2004a].
In addition, 5-LO activity can be suppressed by
nitric oxide [Brunn et al., 1997; Brock et al.,
2003] and glutathione peroxidases (GPx) [Werz
and Steinhilber, 1996; Straif et al., 2000].

Fig. 1. A simple model for LT synthesis. (A) Resting cell. (B) In
stimulated cells, elevation of cytoplasmic calcium causes both
cPLA2 and 5-LO to move to cellular membranes, where cPLA2

releases AA from membrane phospholipids. (C) Free AA is
delivered to 5-LO by FLAP, leading to the synthesis of LTA4,
which is further processed by LTA4 hydrolase or LTC4 synthase to
produce LTB4 or LTC4, respectively. The activity of 5-LO may be
enhanced by ATP, phosphorylation by MK2, or AA, or inhibited
by the action of GPx or by phosphorylation by PKA.
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The end product of 5-LO action, LTA4, can be
hydrolyzed by the enzyme LTA4 hydrolase to
give LTB4. Alternatively, LTA4 can be conju-
gated with glutathione by the enzyme LTC4

synthase to produce LTC4. LTC4may be further
metabolized to LTD4 and LTE4. In resting
leukocytes, 5-LO is predominantly soluble.
FLAP and LTC4 synthase are structurally
related integral membrane proteins that may
exist as monomers or form homo- or hetero-
dimers or trimers [Mandal et al., 2004]. LTA4

hydrolase is a soluble protein that appears to
remain soluble whether the cell is activated or
resting. The ratio of LTB4:LTC4 produced by a
given cell may depend on the ratio of LTA4

hydrolase:LTC4 synthase; alternatively, it has
been proposed that the ratio of LTB4:LTC4 may
be determined by the ratio of FLAP/FLAP
homomers to FLAP/LTC4 synthase heteromers
[Mandal et al., 2004].
Taken together, these findings have led to a

simple conceptual model for LT synthesis
(Fig. 1). The stimulation of leukocytes in a way
that produces a rise in intracellular calcium
concentration triggers the movement of both
cPLA2 and 5-LO from a soluble phase to intrac-
ellular membranes. cPLA2 releases AA from
membrane phospholipids and this free AA is
transferred by FLAP to 5-LO to produce LTA4,
which in turn is metabolized to LTB4 by LTA4

hydrolase or LTC4 by LTC4 synthase. As cPLA2,
FLAP, 5-LO, and LTC4 synthase all act at the
membrane surface, it seems likely that some or
all of these enzymes assemble to form a single
catalytic structure, or metabolon [Peters-
Golden and Brock, 2001].

5-LO CAN BE IMPORTED INTO THE NUCLEUS

In 1993, Peters-Golden and McNish used cell
fractionation followed by immunoblotting to
demonstrate that both cPLA2 and 5-LO associ-
ate with nuclear membranes [Peters-Golden
and McNish, 1993]. In the same year, Woods
and colleaguesprovided immunoelectronmicro-
scopic evidence that 5-LO and FLAP protein
were associated with the inner membrane of
the nuclear envelope of activated leukocytes
[Woods et al., 1993]. In addition to pointing to
the nuclear envelope as the site of AA release
and metabolism to LTs, these pivotal studies
indicated that a portion of the synthetic pro-
cess occurs at the inner membrane inside the
nucleus.

Subsequent studies by our group and others
demonstrated that soluble 5-LO could be found
predominantly in the cytoplasm of some cell
types, or strongly accumulated in the nucleus of
other types of cells [Brock et al., 1994, 1995,
1999; Chen et al., 1995; Woods et al., 1995;
Healy et al., 1999]. For example, 5-LO is
cytoplasmic in peripheral blood neutrophils or
eosinophils, but predominantly intranuclear
in alveolar macrophages or cultured mast
cells. In all cell types, stimulation with calcium
ionophore to increase intracellular calcium and
activate 5-LO resulted in movement of 5-LO to
the nuclear envelope and perinuclear mem-
branes as well as LT synthesis [Brock et al.,
1995, 1998, 1999]. These results indicated that
5-LO in either the cytoplasmic or nuclear
compartment of the cell could be activated to
produce LTs.

More interestingly, the subcellular localiza-
tion of soluble 5-LO in resting leukocytes was
found to be regulated. Thus, 5-LO was found in
the cytoplasm of blood neutrophils, either
immediately after purification from peripheral
blood [Brock et al., 1997] or when evaluated in
fixed tissue by immunohistochemistry [Brock
et al., 2001]. However, 5-LO rapidly moved into
the nucleus of neutrophils following adherence
in vitro or after migration into inflammatory
sites [Brock et al., 1997, 2001]. Similarly, 5-LO
is cytoplasmic in freshly purified eosinophils
and migrates into the nucleus following adher-
ence or recruitment [Brock et al., 1999]. Also,
the subcellular distribution of 5-LO can be
regulated during differentiation: when human
cord blood mononuclear cells are differentiated
to becomemast cells over 5 days in the presence
of either interleukin-3 or interleukin-5, 5-LO is
found in the nucleus [Hsieh et al., 2001]. While
these studies demonstrated that the nuclear
import of 5-LO could be activated, evidence
that nuclear export can be regulated is limited.
Culturing alveolar macrophages in vitro over
3 days produced a shift in 5-LO from the nucleus
to the cytoplasm [Woods et al., 1995], but this
could have been due to turnover of nuclear 5-LO
protein with failure to import newly synthe-
sized 5-LO. It remains to be determined if 5-LO
has a nuclear export sequence or can be expor-
ted through some other mechanism, and whe-
ther this is a regulated process.

Examination of the primary sequence of 5-LO
revealed excellent candidates for nuclear loca-
lization sequences (NLS), including a bipartite
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NLS near the carboxyl terminus, as well as two
potential monopartite NLSs. Initial studies
found that these sites were not functional
NLSs [Chen et al., 1998], although mutation of
Arg651, within the potential bipartite pattern,
stopped nuclear import [Healy et al., 1999].
Further evaluation of this site revealed that this
arginine is conserved across all lipoxygenase
proteins and serves a critical role in maintain-
ing structural integrity [Jones et al., 2002],
suggesting that mutation of this residue pre-
vented nuclear import by causing improper
protein folding. A more complete analysis
indicated that the 5-LO protein has three
distinct NLSs [Jones et al., 2002, 2003]. Each
sequence is independently capable of directing
the nuclear accumulation of a different protein.
More interestingly, mutation of any one of the
three NLSs completely eliminated nuclear
import in a portion of cells expressing the
mutant, with reduced but still active import
occurring in other cells within the same popula-
tion of cells. These results were interpreted to
mean that each NLS could be regulated: when
one NLS was inactivated by mutation, the lack
of import in some cells indicated that the other
NLSs were ‘‘off’’ in those cells, whereas some
degree of import occurred when at least one of
the alternative NLSs was ‘‘on.’’ The presence of
three NLSs that could each be independently
activated allowed different levels of import of
5-LO, with the greatest nuclear accumulation
when all NLSs were activated [Luo et al.,
2004b]. As a result, the ratio of cytoplasmic to
nuclear 5-LO, and possible LT synthesis, could
be exquisitely controlled, presumably by extra-
cellular signals.

The other soluble proteins involved in LT
synthesis, cPLA2 and LTA4 hydrolase, can also
move from the cytoplasm into the nucleus.
cPLA2 has been described to accumulate in the
nucleus of sub-confluent human and bovine
endothelial cells, whereas it was cytoplasmic in
confluent cells [Sierra-Honigmann et al., 1996].
The subcellular localization of cPLA2 was not
thought to be associated with the cell cycle,
as growth arrest left the protein within the
nucleus. In this study, cPLA2 was also found to
be intranuclear in sub-confluent MDCK and
HeLa cells, although others have shown cPLA2

to be cytoplasmic in MDCK cells [Evans et al.,
2001]. LTA4 hydrolase has been found in the
nucleus of alveolar macrophage and the mast
cell-like rat basophilic leukemia cell and in the

cytoplasm of neutrophils [Brock et al., 2001].
More recently, LTA4 hydrolase was reported to
be accumulated in the nucleus of lung epithelial
cells under certain conditions but in the cyto-
plasm during other conditions, with nuclear
accumulation appearing to correlate with
higher growth rates [Brock et al., 2005]. The
molecular factors that control the subcellular
distributions of cPLA2 and LTA4 hydrolase
remain to be determined.

EFFECT OF NUCLEAR LOCALIZATION
OF 5-LO ON LT SYNTHESIS

Alveolar macrophages accumulate 5-LO
within the nucleus, whereas peripheral blood
monocytes have cytoplasmic 5-LO. Alveolar
macrophages can produce much more LTB4

than monocytes, correlating nuclear localiza-
tion of 5-LO with increased LTB4 synthesis.
Similarly, adherent neutrophils, which have
nuclear 5-LO, can synthesize much more LTB4

than non-adherent neutrophils, which have
cytoplasmic 5-LO [Brock et al., 1997]. Also,
humanmast cells primed for 5 days with IL-3 or
IL-5 accumulate 5-LO within the nucleus and
make more cysteinyl LTs when given IL-4 and
then activated with IgE cross-linking [Hsieh
et al., 2001]. In each of these examples, nuclear
localization of 5-LO before cell stimulation
correlates with increased LT generation with
subsequent cell activation. However, the differ-
ences in LT synthesis in each case could be due
to other factors than 5-LO localization. To more
clearly assess the effect of the nuclear localiza-
tion of 5-LO on LT synthesis, we created a
collection of 5-LO mutants that had different
subcellular distributions but comparable intrin-
sic (cell-free) catalytic activities. NIH 3T3 cells
over-expressing these different mutants were
stimulated with calcium ionophore plus arachi-
donic acid and the amount of synthesized LTB4

was determined and adjusted for 5-LO protein
expression. In these cells, which differed only in
the subcellular distribution of 5-LO before cell
stimulation, the amount of LTB4 produced in
response to stimulation with calcium ionophore
was proportional to the amount of 5-LO accu-
mulated in the nucleus [Luo et al., 2003]. These
results indicate that the subcellular localization
of 5-LO can be an important determinant of the
amount of LT produced upon cell stimulation,
with nuclear localization of 5-LO correlating
with increased LT synthesis. An interesting
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exception has been reported for eosinophils,
which rapidly import 5-LO into the nucleus
upon adherence to fibronectin, coincidingwith a
strong decrease in stimulated LTC4 synthesis
[Brock et al., 1999]. Whether this is a cell-
specific or matrix-specific effect, or is due to
other factors, is unknown.

THE REGULATION OF CYTOPLASMIC
VERSUS NUCLEAR 5-LO

The majority of studies into the regulation of
cellular 5-LO, as opposed to purified recombi-
nant 5-LO or 5-LO in cell lysates, have been
interpreted using some version of the simplified
conceptual model presented in Figure 1. Recog-
nizing that the subcellular distribution of 5-LO
is variable, it becomes important to consider
how signaling pathways might have distinct
effects on the activity of nuclear versus cyto-
plasmic 5-LO. Furthermore, these pathways
should be considered for their capacity to drive
nuclear import or export, as well as (or instead
of) enzymatic activity.

Calcium and ATP Effects

Early studies on the source of calcium for 5-
LO activation stressed the importance of extra-
cellular calcium, rather than calcium released
from internal stores [Schatz-Munding et al.,
1991; Wong et al., 1991]. In these and similar
studies, extracellular calcium was thought to
move into the cytoplasm, where it activated 5-
LO and cPLA2, consequently leading to LT
synthesis. Freshly isolated peripheral blood
neutrophils or eosinophils would certainly fit
this model and, indeed, these were the cells
being examined. However, it becomes relevant
to now ask if this applies to cells with nuclear
5-LO. That is, will imported calcium move
through nuclear pores and stimulate nuclear
5-LO directly, and, if so, will a greater influx of
calcium be required to activate nuclear 5-LO
than cytoplasmic 5-LO? Consistent with this,
cells with nuclear 5-LO (alveolar macrophages,
elicited neutrophils) have higher activation
thresholds for LT synthesis than do cells with
cytoplasmic 5-LO (peritoneal macrophages,
peripheral blood neutrophils) [Peters-Golden
et al., 1990; Brock et al., 1997], when treated
with calcium ionophore. Once stimulated, how-
ever, cells with nuclear 5-LO made more LTs
than cells with cytoplasmic 5-LO.

Activation of phospholipase C (PLC) leads
to the release of inositol 1,4,5-trisphosphate,
which triggers the release of calcium from intra-
cellular stores. In addition, there are both cyto-
plasmic and nuclear isoforms of PLC [Manzoli
et al., 2005]; an intranuclear isoform, PLC-b1, is
activated by ERK [Xu et al., 2001]. Inositol
1,4,5-trisphospate, generated by the action of
cytoplasmic or intranuclear PLC, may increase
intranuclear calcium levels. This may lead to
activation of intranuclear 5-LO via a PLC-
dependent mechanism. Consistent with this
model, the addition of extracellular PLC can
trigger LT synthesis [Meyers and Berk, 1990]
and the inhibition of phosphoinositide genera-
tion also inhibits LT synthesis in RBL-2H3 cells
[Lin et al., 1991], cells which have predomi-
nantly intranuclear 5-LO. Interestingly, acti-
vation of cells with LTs can stimulate PLC
activity, so it’s possible that inositide meta-
bolism may serve as a positive feedback
mechanism for LT generation in cells with
predominantly nuclear 5-LO. Additional work
is needed to understand the regulation of
calcium levels within the nucleus and how this
determines 5-LO function in various types of
leukocytes.

The subcellular positioning of 5-LO may also
affect the ability of ATP to modulate the
catalytic activity of 5-LO. The availability of
ATP may be greater in the cytoplasm close to
mitochondria, suggesting that this co-factor
might be most important in cells with cytoplas-
mic 5-LO. However, ATP certainly modulates
the activity of enzymes within the nucleus (e.g.,
[Calapez et al., 2002;Wagner et al., 2004]). This
suggests that ATP should normally be available
to stimulate 5-LO activity within the nucleus. It
remains possible that under certain conditions,
nuclear ATP can become depleted in a way that
impacts on the action of nuclear 5-LO and,
consequently, LT synthesis.

MK2 and ERK Effects

MK2, which phosphorylates and activates
5-LO [Werz et al., 2000, 2002b], is activated by
p38MAPkinase. Before activation,MK2 resides
within the nucleus. Activation of p38 MAP
kinase leads to phosphorylation, activation,
and rapid export of MK2 from the nucleus
[Engel et al., 1998; Neininger et al., 2001].
Targets of MK2 can act be found in the cyto-
plasm (e.g.,HSP25/27, hnRNPA0, tristetraprolin)
or nucleus (e.g., CREB, serum response factor,
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ER81) [Roux and Blenis, 2004]. Whether MK2
can phosphorylate nuclear 5-LO with the same
efficiency as cytoplasmic 5-LO is unknown.
Also, the effect of MK2 phosphorylation of
Ser271 of 5-LO on the subcellular localization
of 5-LO is not known. Like MK2, ERKs
phosphorylate targets in both the cytoplasm
and the nucleus, as well as on membranes and
cytoskeletal elements [Roux and Blenis, 2004].
Also as for MK2, the subcellular pool of 5-LO
best targeted by ERKs and the effect of phos-
phorylation on Ser663 on 5-LO localization has
not been solved.

PKA and GPXs

The catalytic subunit of PKA, while most
commonly recognized as phosphorylating tar-
gets in the cytoplasm, can also move into the
nucleus and act there. Whether PKA more
efficiently or more quickly phosphorylates and
inactivates 5-LO when it is localized within the
cytoplasm, or inactivates nuclear 5-LO as well
as cytoplasmic 5-LO, remains to be determined.
In addition, PKA can be sequestered in different
subcellular sites byAkinase anchoring proteins
(AKAPs), with substrates as well as other
kinases or phosphatases assembling as a unit.
It is not known if phosphorylation of 5-LO by
PKA requires interaction at an AKAP.

The GPxs, which suppress 5-LO activity,
appear to be predominantly cytoplasmic. As
a result, their activity may at least partially
explain why more LTs are made by cells with
nuclear, rather than cytoplasmic, 5-LO. Factors
that regulate the function of the GPxs, then,
may be most effective in modulating LT synth-
esis in cells with predominantly cytoplasmic
5-LO.

AA Availability to Nuclear 5-LO

Perhaps one of the most perplexing issues
regarding the effect of subcellular localization
on 5-LO action relates to its ability to access its
substrate, AA. The currentmodel for AA release
by cPLA2 positions this event near the cyto-
plasm, at the Golgi, endoplasmic reticulum,
and outer membrane of the nuclear envelope
[Evans et al., 2001]. Calcium-triggered mem-
brane association of 5-LO from the cytoplasm
should place 5-LO and free AA together at
the same site; 5-LO from the nucleoplasm, on
the other hand, should move to the inner mem-
brane of the nuclear envelope and be separated
from the site of AA release by at least the lumen

of the nuclear envelope. Thiswould suggest that
more AA might be metabolized by cytoplasmic
5-LO than nuclear 5-LO. However, the opposite
appears to be the most common case. One
possible explanation is that liberated AA may
be rapidly carried into the nucleus, through the
nuclear pore, by fatty acid-binding proteins
[Huang et al., 2002]. Also, exogenous AA is
known to rapidly accumulate at the nucleus
[Neufeld et al., 1985; Capriotti et al., 1988]. It
seemspossible that in leukocytes the trafficking
of freeAA, fromeither endogenous or exogenous
sources, is at least in part regulated by fatty
acid-binding proteins, with short term target-
ing into the nucleus. This, then, may represent
an important point of regulation of LT synth-
esis, by controlling the interaction of 5-LO
and AA.

SUMMARY

It is becoming clear that there are numerous
complex mechanisms for regulating 5-LO activ-
ity. It is well established that calcium causes
membrane association and activates 5-LO, and
that ATP augments the calcium effect on
activity. Recent data have demonstrated that
5-LO can be phosphorylated by MK-2 in vitro
and by PKA in vitro and in cells. Phosphoryla-
tion by MK-2 in vitro has no effect on 5-LO
activity, whereas phosphorylation by PKA sig-
nificantly reduces 5-LO activity. Also, the
subcellular positioning of 5-LO appears to be a
dynamic process; a variety of factors can alter
the ratio of cytoplasmic to nuclear 5-LO.
Finally, the subcellular localization of 5-LO
before cell stimulation can significantly affect
LT production. In most cases, localization of
5-LO within the nucleus, as opposed to the
cytoplasm, will predict a significant increase in
LT synthesis upon cell stimulation.

Amore complete model regarding the regula-
tion of 5-LO is given inFigure 2.When5-LO is in
the cytoplasm, it may be acted upon by MK2,
PKA, GPx, or ERK; the same kinases may
phosphorylate 5-LO within the nucleus, but
GPx does not appear to enter the nucleus.
Following cell stimulation, 5-LO in the cyto-
plasm will move to the endoplasmic reticulum
and extranuclearmembranes, potentially form-
ing a multi-protein complex to generate LTs.
Positioning of 5-LO within the nucleus, on the
other hand, leads to membrane association of
5-LO with the inner membrane of the nuclear
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envelope. This may maximize its interaction
with FLAP–FLAP homodimers and minimize
its ability to interact with other proteins, like
cPLA2 and LTC4 synthase.
In summary, studies on the regulation of 5-

LO have revealed that it is intriguingly com-
plex. The abundance of ways to modulate 5-LO
localization and activity suggest that this is
both an interesting and important step in the
regulation of LT synthesis. A more complete
understanding of the regulation of 5-LO should
provide important clues into mechanisms of
dysregulation that contribute to several dis-
eases, including asthma, atherosclerosis, and
fibrosis.
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