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The purpose of this report is to show that a double
humped initially unstable plasma will spontaneously approach
stability 1if the high energy hump is held fixed. The fre=-
quently used Vlasov-Poisson equations represent a self-con-
sistent system of nonlinear time-reversible equations.
Because of the latter property, however, it is obviously
unrealistic to apply those equations to problems involving

the approach to equilibrium, An irreversible kinetic equation

f

for plasmas has recently been independently derived by Balescu1

and Guernsey2’3. Guernsey carried out a double expansion

of the distribution function in terms of the strength of the
electromagnetic interaction Ume? and the parameter (Hne2/V),
where (l/V) = n is the number density of particles. The

latter parameter is a measure of the interparticle correla-
tions, By equating terms of the same order in 4ne2 while summing
over all powers of (Mne2/V) he obtained a hierarchy of equations.

In this way correlations of the particles to all orders are

taken into account at each step in the approximation with



respect to 4ne2. Guernsey treated extensively the first
order equation in Une2 and proved that it déscribes an irre-
versible approach of the distribution function to the Maxwell
distribution. In addition he showed that the Vlasov equation
is the zeroth order equation in this hierarchy. Thus, the
Vlasov equation correctly takes into account interparticle
correlations to all orders. However, neither the Guernsey
equation nor therefore the Vlasov equation include the
effects of close collisions. In fact the interaction term

in the Guernsey equation diverges as the momentum transfer
becomes large. The reason for this omission is twofold.
First, the Couloﬁb force does not hold down to arbitrarily
small distances and secondly electron-neutral collisions are
not considered since Guernsey treats a fully lonized gas.

For the purpose of investigating the effects of close colli-
sions a phenomenological term is frequently introduced into
the kinetic equation. Such an equation has recently been

by
applied to plasma oscillations by Platzman and Buchsbaum .



These authors use a velocity independent relaxation model which
is a good approximation, for example, 1in describing effects

due to momentum transfer collisions between electrons and
neutral particles. In our preliminary calculations the double
humped distribution has been applied to the theory developed

by Platzman and Buchsbaum“. Following these authors we consider

a system described by the following equations:
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with nl no and wo

constant collision frequency of electrons
of energy w°2/2m,

electronic gharge,

electronic mass,

dielectric constant in vacuo,

drift velocity of high energy electrons,
velocity spread of high energy electrons,
Boltzmann's constant,

electron temperature

<< v The state of the system is

d.

described by the double-humped distribution (4), (5), (6)

plus a superposed disturbance f' which is considered to be a

longitudinal plasma wave. It has been shown® that the kinetic

equation (1) satisfies an H-theorem.

Each time an electron collides, it is thrown out of

phase with the plasma wave, This means that a certaln amount

of ordered energy of

the wave has been converted into random



kinetic energy. The rate of energy transfer is given by the

equation
2 oy _ d 2
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Eq. (7) is not an additional assumption but merely a conse-
quence of the collisional term in Eq. (1).

It is well known that a double-humped distribgtion of
the form (4), (5), (6) may be unstable. In that case any
small perturbation will excite growing waves in a certain
frequency interval. The larger f' becomes, the faster the
temperature rises., It 1s for this reason that the system has
been assumed to be describable at all times by a distribution
function of the form (3), (4), (5), (6) . The energy needed
for this heating is supplied by maintaining fo2 constant,
Without an external source of energy the hump fo2 would diffuse6.
We express this explicitly by requiring that

f
(8) 3102 _
= 0.




Using Eq's. (4), (5), (7), and (8) one obtains
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If Eq's. (3) and (9) are substituted into Eq. (1) there results
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As the temperature rises, the secondary hump f02 becomes
gradually absorbed by the main distribution fol’ and the plasma
becomes stable, In order to calculate the temperature values
for which the system makes the transition from the unstable
to the stable regime we observe that the boundary can be
approached from the stable region, Hence it suffices to use the
linearized form of Eq. (10) as long as one is careful not to
draw any conclusions applicable to the unstable regime,
The second term on the right hand side of Eq. (10) is nonlinear.*

Hence, the linearized kinetic equation is

of
(11) af! af! eE "o _
3t t Vo - m v Vel

¥The second term on the right hand side of Eq., (10) is of the order
of s v2f'dv, which is proportional to the average kinetic energy

of the particles in the disturbance., However, the average kinetic
energy assoclated with the wave must be of the same order as the
average potential energy which is of the order EZ, ie, of the second
order in the perturbation.
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For the simultaneous solution of Equations (2) and (11) the
customary Ansatz

f'y E « exp [1(kx - wt)]
is being used.

Then one obtains the well known dispersion relationsu
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The boundary separating the stable and unstable regions

is defined by the equation

(14) y = 0.

Substituting Eq's. (4), (5), (6), (12), and (13) into Eq. (1l)

and simplifying one obtains
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where it has been assumed that w02/u2 << 1, This means that
the thermal velocity of the electrons is small compared with
the phase velocity of the plasma wave.

For fixed fo2 the quantities n,, V4qs and wy are constant.

In addition v

e and n, (and therefore mp) are considered constants.

Eq. (15) can, %herefore, be considered as the relation between
the phase velocity and the thermal velocity for which the
imaginary component of the frequency vanishes. Fig. 1 shows

a typical graph of Eq. (15). The area under the curve is the
unstable region, and the area above the curve is the stable
region, 'I‘S =m wgs/x is the temperature above which the

plasma is stable. In the case of an initially unstable plasma,

f' will grow but so will the temperature according to Eq. (7).

As soon as the temperature Tsis reached, the system relaxes



toward the distribution fo given by Eq's. (4), (5), and (6)
with wo2 = «Tg/m. Since in the neighborhood of the boundary
between the stable and unstable regions the system is adequately
described by the linearized Eq. (11), the value of Ts is
independent of the term afol/at and therefore of the dissipa-
tion mechanism of Eq. (7). However, the physical signifi-
cance of this mechanism does not lie in its influence on the
stability temperature but rather in the fact that it is responsible
for the irreversibl§ rise in temperature of the system to Ts
if its initial temperature lies below Ts‘

As an example, Eq. (15) has been applied to the results
of a plasma beam experiment recently performed by Singh and
Rowe7. Fig. 1 shows the curve of W, vs. u obtained from
Eq. (15). The experimentally measured temperature7 was 28500°K
which corresponds to a value of W of about 6.6 x 10° m/sec,
while the electron temperature corresponding to the calculated

thermal velocity W, = 7.9 X 10° m/sec is about 40000°K, The

0]

main reason for this discrepancy is that in Eq. (7) it has been



assumed that all of the plasma wave energy dissipated 1is con-
verted into internal energy, while in the experiment of Singh
and Rowe heat is being lost to the outside.

In summary the essential conclusions are as follows:
Our equations describe a system in which part of the kinetic
energy of the high energy particles is converted into the
electric energy of the plasma waves of the main plasma by
means of collective interactions. The electric energy in turn
is dissipated into random internal energy through close colli-
sions., As the plasma temperature increases, the growth parameter
y decreases until it approaches zero and stabllity is achieved.
Hence, both the collective interactions due to the long range
Coulomb force and also close collisions play a significant
role in the behavior of the plasma.

In cases where a velocity dependent collision frequency
is appropriate, the correct expression has to be substituted
into Eq. (7). The temperature will increase again. In such

a case the dispersion relation would, of course, be different
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from Eg's. (12), (13). Hence, the stability temperature depends
on the functional form of the collision frequency. But the
essential conclusions are not affected.

Finally, it is of interest to point out that the relaxa-
tion time for the heating of the main plasma up to the temperature
Ts is determined by the collision frequency of the thermal elec-
trons rather than that of the high energy electrons.
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Fig, 1 Plasma stability as a function of the thermal velocity
for a double humped distribution with the following parametersS:

= 5,0 x 1018 m—3, n, = 2,36 x 1016 m°3, v, = 3.5 x 100 m/sec,
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9 x 10° m/sec, v, = 2.08 x 108 sec™l,
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