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I. INTRODUCTION

This report describes the work done under NASA Grant No. NsG-525 during
the period 1 October 1963 to 30 September 1964. As the title of the grant
indicates, the research effort was directed toward a better general under-
standing in the following areas:

A. the presence of plasma instabllities in the ionosphere and their ef-

fect on the thermal structure,

B. characteristics of probes in the ionosphere considering magnetic

field effects and plasma waves.
Some of this work relating to Part A has been reported earlier,l’g’5 and,
therefore, that material will be outlined only briefly.

The initial work in the area of plasma instabilities consisted of the
treatment of a one-dimensional Maxwellian plasma with a superposed high en-
ergy hump in the distribution function. High momentum transfer electron-
neutral collisions were included in the treatment by means of a relaxation
term in the kinetic equation. This work has shown that the temperature of
certain plasmas, which are initially unstable against growing plasma waves,
increases toward a temperature value for which the system is stableo5

In order to extend this work to ionospheric probléms it became necessary
to fermulate a realistic model of the high energy tail of the electron en-

ergy distribution in the ilonosphere, A preliminary calculation involving

only one of the many possible photoionization processes has been presented
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in the semiannual report. The complete results involving all photoionization
processes of importance are reported in Section II below,

The current collection equation of a stationary cylindrical probe in the
presence of a magnetic field, parallel to its axis, was given in the semi-
annual reportc,5 This work has been extended to the more general case of mov-
ing probes as given in Section III.

The results from thelAlouette topside sounder satellite increased the
interest for a better understanding of the excitation and detection mechanisms
of space charge waves., Besildes the fundamental interest in the possible ex-
istence of naturally occurring space charge waves, artificiallyexcited waves
could provide an excellent tool for the measurement of ambient electron den-
sities. In such a technique a relatively large volume sbout the probe would
be "sampled." therefore, if sufficiently good "coupling" cen be achieved this
approach might be especially valuable af high altitudes, where other direct
techniques of sampling much smaller effective volumes become sensitivity limited.

Theoretical work to predict the response of a cylindricsl probe to such space

charge waves has been started and is described in Section IV.



IT. PHOTOELECTRON ENERGY DISTRIBUTION IN THE LOWER F-REGION

2.1 GENERAL CONSIDERATIONS

The state of the electrons in the ionosphere differs from an equilibrium
state because of various energy and particle sources and sinks. The most
significant as well as best known of these energy sources is the electromag-
netic solar radiation. " A considerable amount of this incoming energy first
goes into the production of photoelectrons which, in turn, share their energy
with neutrals, ambient electrons, and ions, H.anson,L‘L and more recently,
Dalgarno et g£°5 have calculated the steady-state electron tempersture, con-
sidering a number of atmospheric conditions. In these calculations, solar
electromagnetic radiation was considered to be the only heat source, and only
binary collisions were included. These authors also assumed that a;l energy
given up by the photons is deposited locally. Recently, Geisler and Bowhill6
carried out detailed calculations using information from the work of Dalgarno
et §£°5 in which they also included the effect of nonlocal heating, as well
as conduction by ambient electrons. The calculations, however, do not con-
sider long range electrostatic interacticns (plasma oscillations). It has
been suggestedl that such an energy transfer mechanism may alsc be important
because energy could then be transferred by relatively high energy photoelec-
trons to ambient electrons before they lose & conslderable portion of their
energy through binary collisions with neutrals and ions.

In order to study such an effect, we have proceeded 1n two steps., First

the distribution of photoelectrons has been calculated assuming that the



photoelectrons interact with the ambient gas by binary collisions only. The
resultant electron distribution is then assumed to be the sum of a Maxwellian
distribution fy; at some temperature To plus the computed photoelectron energy
distribution f. Considering this resultant distribution as an "initial" dig-
tribution the effects of long range interactions are included in the second
step by using the self-consistent field method of Vlasov. Such a calculation
will give a new electron distribution function modifying both the temperature
of the ambient electron gas and the shape of the photoelectron distribution,
So far, the calculations involving the first step have been completed and are
reported in this section.

In the calculations 1t has been assumed that only photoelectrons con-
tribute to the non-Maxwellian shape of the energy distribution. The effect
of corpuscular radigtion is not included since little reliable data are cur-
rently available. However, the calculations can be modified to include such
an effect.,

The assumption of the independence of the two component distribution
functions should be elaborated. With ©, and f independent, f can be computed
by fixing the ambient electron distribution fp and calculating the energy
loss of the energic photoelectrons as they traverse the embient plasma. In
other words, the energy loss is computed by considering the photoelectrons
as test particles which sare effected by the ambient particles but which them-
selves do not alter the ambient distribution. The assumption of independence
fails, however, because the photoelectrons are continually interacting with

the ambilent electrons, ions, and neutrals. In fact, after a photoelectron



has suffered several collisions, it cannot be distinguished from an ambient
electron=——there is only one distribution function for all the electrons
present. However, when the initial energy of the photoelectron is much
higher than the average energy of the ambient electrons, it is possible to
distinguish photoelectron from ambient electron., Then, to the extent that
the photoelectron energy exceeds the average electron energy, the test par-
ticle assumption is valid and the two distributions f and fj; can be considered
independent. A more exact solution would be found by solving the Boltzmann
equation with a source term representing the production of photoelectrons
and a sink term representing all processes which remove electrons. In this
way, a steady-state electron distribution function would be obtained whose
general appearance would be Maxwellian near the average kinetic energy with

an increased high energy region similar to the curves in Fig. 2.5.

2.2 THE PHOTOELECTRON DISTRIBUTION FUNCTION

Let f(e) be the photoelectron energy distribution function, such that
f(e)de gives the number of photoelectrons per unit volume in the energy in-
terval e to e + de. Integrating this function over the interval E to « gives
the total number of photoelectrons per unit volume N{E) having energy greater

than E, or

N(E) = L/“” f(e)de . (2.1)

Let g(E') be the photoelectron production rate, such that q(E')dE' is

the rate at which photoelectrons are produced in the energy interval E' to

5



E'" + dE', in units of number of electrons per sec per unit volume. Upon
suffering collisions with ambients, the electrons lose energy and are spread

into the interval E to E'(E<E') in a time T(E,E') given by,

E'{
(E,E) - f 5 (2.2)

where r(E) = dE/dt is the energy loss rate. Thus the steady-state number of
photoelectrons N(E,E'), residing in the energy interval E to E' due to pro-

duction at energy E' 1is,
N(E,E') = T(E,E')q(E')dE' . (2.3)

The total number of photoelectrons having energy greater than E is
given by the integral of expression (2.3) over all production energies E'

greater than E,

N(E) = f N(E,E')dE' . (2.4)
E

Equating expressions (2.1) and (2.4) and making use of (2.2) and (2.3) it is

found that, after changing the order of integration,

JE‘OO f(e)de = ém t‘%‘%gy’ [m a(E')dE" (2.5)

Since the lower limit of integration E is arbitrary, the Integrands must

be equal, viz,



. WUB
() - 48, (2.6)

where Q(E), the accumulated production rate, is defined by,

oE) = f o(E)dE" . (2.7)
E
Thus the distribution function is the ratio of the accumulated production
rate divided by the energy loss rate, and 1its properties can be discussed
separately in terms of the two functions r(E) and Q(E).

The energy loss rate r(E) is computed from binary collisions between
energetic photoeléctrons and ambient ions, electrons, and neutrals. The
collision processes are many in number and the available cross section data
are by no means complete. To avold repetition of the calculations of Dalgarno
et §£0,5 their energy loss computations are employed without change. The
collision processes considered by Dalgarno are listed in Table I.

In Fig. 2.1 the spatial energy loss rates for electron-neutral and
electron-electron collisions are plotted separately. The altitude dependence
of the loss rates results from the altitude dependence of number density and
composition, Considering first the ry curves (electron-neutral collisions),
the dominant contribution in the 5 eV to 15 eV range is from electronic ex-
citation of 0, Oz, and N-. Below 5 eV this energy loss becomes insignificant.
In the range from about 1.5 eV to 5 eV the predominant energy loss process
is the vibrational excitation of Nz. Below 1.5 eV this process becomesg neg-

ligible compared to the electron-electron loss, given by the rg, curves. The



TABLE T

TRANSITIONS TAKEN INTO ACCOUNT IN DERIVING THE ENERGY
DISTRIBUTION OF PHOTOELECTRONS

Atomic Oxygen Transitions

Electron removed Resulting state of ot Threshold energy in eV
2p hg 13.6
2p 2p 16.9
2p 2p 18.7
2s bp 28.5
2s 2p 0.0

Molecular Oxygen Transitions

Electron removed Resulting state of 05" Threshold energy in eV

ng2p 2ng 12,1

ep )_I-KLL 16.2

2P 2y 17.0

6] 2p LI»\—W 1_802

g Lg

0y2s N ~ 28

028 2 7y ~ 4o

Molecular nitrogen transitions

Electron removed Resulting state of Ng:': Threshold energy in eV
D 1
942D CZ; 15.6
10,2 21 16,7
028 22-: 18.8
0825 dzg ~ 35



re loss curves were computed analytically by Butler and Buckingham.7
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Fig. 2.1. ©Energy loss rates vs. energy.

In Fig. 2.2 the total time rates of energy loss are given for the three
altitudes 150, 200, and 250 km. The minimum at around 5 eV is connected with
the rapid decrease in both the vibrational excitation of Ny and the electronic
excitation of 0, Oz, and Np. The maximum at around 3 eV is connected with the
high rate of energy loss in vibrational excitation of No. The increase in loss
rate below 1.5 eV i1s connected with the high probability of electron-electron

collisions. It is to be noted that the general behavior of the energy dis-



tribution curve will follow closely the inverse of the loss curve.
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Fig. 2.2. Total energy loss rates vs. energy.

The accumulated production rate Q(E), found by adding all the contribu-
tions to the production rate g at energiles greater than E, is computed from
the most recent data on photon flux8 and photoionization cross sectiomns.

The photoelectron production rate is the product of neutral particle density,
photoionization cross section, and photon flux. Photoionization of O, 0Oz, and
No is included.

The result of these computations is given in Fig. 2.3. The altitude

dependence of the accumulated production rate follows the altitude variation

10



of neutral particle density and solar transmission coefficients. Since the
photoelectron distribution function is directly proportional to the accu-
mulated production rate Q, it is observed from Fig. 2.3 that the Q curves
only slightly modify the distribution until an energy of about 15 eV where

they rapidly cut off the distribution function.
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Fig. 2.3. Accumulated production rate vs. energy.

The energy distribution function f, product of the Q curves and the 1/r
curves, is presented in Fig. 2.4. For energies above 10 eV the number of
photoelectrons decreases very rapidly due to the cut-off behavior of the Q
curves, A hump or maximum occurs at around 5 eV as a result of the simultaneous

11



decrease in vibrational and electronic excitation energy losses which "trap"
the photoelectrons in this region. The trough at around 3 eV is connected
with the peak in energy loss to vibrational excitation of N»o. As a result

of this peak, fewer electrons are allowed to remain at this energy. The dis-
tribution function increases below 3 eV to a second hump at around 1.5 eV
corresponding to the decrease in vibrational energy loss. Below this energy
the dominant electron-electron energy loss increases, causing a rapid de-

crease in the number of photoelectrons toward lower energy values.
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Fig., 2.4. Photoelectron energy distribution f(E) vs. energy E at the three
altitudes 150, 200, and 250 km.
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The total electron energy distribution function is the sum of the above
photoelectron energy distribution function and an appropriately chosen Max-

wellian distribution. Fig. 2.5 illustrates the total energy distribution for
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Fig. 2.5. Total energy distribution f + fj; vs. energy at 200 km for electron
temperatures of 1000°K, 2000°K, and 4000°K.

the three temperatures, 1000, 2000, and L000°K at an altitude of 200 km. The
character of the high-energy hump is highly dependent on the ambient electron
temperature chosen. At the two lower temperatures the hump is clearly evident.

At some temperature Jjust below 4000°K, the hump disappears, and for all higher

temperatures there is no hump at all, but merely a raised high energy tail.

15



The daytime temperature at an altitude of 200 km is about 2500°K. Hence, we
conclude that in the absence of long-range interactions the electron energy

distribution displays a hump on its high energy tail,



ITI. THEORY OF CURRENT COLLECTION BY MOVING CYLINDRICAL PROBES
IN THE PRESENCE OF A MAGNETIC FIELD

3.1 EQUATIONS OF MOTION
The work leading to the equations of current collection by a moving cylin-
dricdl probe in the presence of an axial magnetic field is outlined in this
>
section. In the general case a uniform magnetic field of intensity B is ori-
ented in a direction which makes an arbitrary angle O with the axis of the

cylindrical collector, as shown in Fig. 3.1l. Let a denote the radius of the

ool]

——4(: ::::_,_—\::::7?_‘:—_@ >

Fig. 3.1. Cylindrical probe in a magnetic field.

sheath, r. the radius of the collector, { its length (/>>r.), and & the poten-
tial at any point in the sheath with respect to the neutral plasma. If ¢ is
a function of r only, with r2 = x2 + y2, then the electric field intensity

E = -d¢/dr.

15



>
The force F experienced by a charged particle of mass m and charge g mov-
>
ing with velocity U in the sheath in the presence of an electric field E and

a magnetic field ﬁ is given by the Lorentz equation:
>
F = qlE+uxB] . (3.1)

The components of the acceleration along the x, y, and z axes, respectively,

are

“}C‘ = % [Ex'yBZ_l—iBy} 3
s q o o B
o= 2 [By-iB+B,] (3.2)
Zz = g [yBX‘kBy] b
m

where dots represent the time derivatives and By, By, By are the components
g
of B along the corresponding axes.

The system of equations given in (3.2) can be easily solved if

1}

By = B = 0. In thet case let B B and reduces the system to:
X y Z ¥

X = %[EX"S"B3 )

§ o= 2 [EpkB] (3.3)
m

z = 0

To obtain the relaticn between the angular momenta of a particle at the

sheath edge and inside the sheath, multiply the first equation in {3.3) by

16



y, the second equation by x and subtract. Note the fact that yE, - XEy = 0,

>
since E is a radial field. Thus,

d ¢ ° (l)d 2 2
— (yX-X = = = = (X=%F
3 (yx-xy) 5 o7 (x5%)
This gives us,
1) ° (D
vk - xy = - 5 (¥ByB) +er (3.4)

where o = qB/m is the cyclotron frequency, and c, is the constant of integra-
tion to be determined by the initial values of the position and the velocity
of the particle at the sheath edge. If we transform Eq. (3.4) from the
cartesian rectangular coordinate system to polar coordinates by pﬁtting

X = r cos®, y = r sin® we obtain
- r2 Q%) = =212 4 ¢,
d 2

Then employing the initial values, i.e., at r = a, a d@/dt = U, where ut 1is

the tangential velocity component of the particle at the sheath edge, we get

2 2

= = rul = - % (a2-r2) + aug (3.5)

where up is the tangential velocity component of the particle inside the
sheath,

The corresponding relation between the energy of the particle at the
sheath edge and that inside the sheath may be obtained from (3.3) by multiply-

ing the first equation by X and the second equation by y. Then on adding the

17



two equations, we get

o+ 75 = L [xEx+yEy)
m
In polar coordinates this becomes
d 2 2 2q . dr ao
— (u! +uf = —=F— = - —
dt (up+u™) m  dt at ’

where -u, = dr/dt is the radial velocity of the particle inside the sheath.
uy has been defined in such a way that it is positive for a particle travel-
ing toward the probe. Integration of the above equation with respect to t

yields

where co 1s the constant of integration to be determined from the initial

values. If at r =a, ®© =0, u, = u,, and u = u, then we get,
2 2 29 - 2 2
11T+ u = = =0 + + . .
u” toud - O +u, +oup (3.6)

In order to obtain the condition of collection we require that u} be
real and positive at the collector surface. Hence, at the collector surface

Egs. (3.5) and (3.6) become, after setting u%g >0,

u_}:} = - g e -r o+ :L u_f (5*’7)
c 2 ra re v
2 . 2 2 29V
Uie SUp * U - w (5.6)



where u%c is the tangential velocity component at the collector surface and
V = ®(r,) is the probe potential, i.e., the voltage of the collector with re-

spect to the plasma, Elimination of ul, between (2.7) and (3.8) yields

)

- =
2 2
[:é— u - 22 "Tcw <ud +uf - 29V

{ —
T 2 e | m

or

e, r2 2 2qV w2r2
P L ¢ us - =) ¢ ==L . .

Equation (3.9) defines the range of uy for which a particle with a given u,

is collected. Graphically this range can be represented by the area bounded

by the two branches of the hyperbola

e, ‘ r2 2 2qV wrs
R L L

as shown by Figs. 3.2(a) and 3.2(b) for the case qV < 0, i.e., for a particle
which is accelerated by the collector potential, The vertices p; and ps of

the hyperbola are

Dy = wa J<ﬁ2r§ _ rg 2qV
. 2 L a2-r§ m
2 2 2
wa. ‘w To ro 29V
= = - . .10
Pz 2 \ b a2-rZ m (5.10)
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{a) qv <0
(b) qvsO

(a) qV<0 (accelerating potential) with (b) qV<O (accelerating potential) with

wa d%é _ rg 2qV wa d%% - rg 2gqV
2 N a®-rS m 2 N af-r3 m
and

qV > 0 (retarding potential) with

2, 2 2
o (a”-rg)m 2
Qv < =5 ,  u2>o0
Fig. 3.2 Domain of integration for the
current Eq. (3.19) for the above cases.
It
2 2
ez . |oBE . _rE 29V | (3.11a)
2 L a®-r2 m
c
the area is shown by Fig. 3.2(a), while for
| 22 2
wa vy r. 2qV
- > £ - —=< .11b
2 q L a®-r5 m (5 )

the area is shown by Fig. 3.2(b). If gV >0, i.e., if the particle is retarded

by the collector potential, either of the following two conditions must be

20



satisfied in order for the expression under the square root in Eq. (2.9) to

be non-negative,

20, 2 2
qvg"ﬁ—ﬁS——rﬂm , ui >0 (3.12a)
2, 2 2 2, 2 2
a -re)m 2 29V a~-r
qV Z &~ ( 5 g;) , uy 2 I(i @ ( m C) . <5.12b)

In the case of condition (3.12a) the range of allowed values is again repre-
sented by the shaded area between the two hyperbolas shown in Fig. 3.2(b).

Since

M

2 2 2
- re 29V 4 Wre o Wre o 08
af-rs m b = 2 72

it follows that p; > O always. If, on the other hand, the probe potential
satisfies the inequality (3.12b), then the range of values of (uyp,ut), for
which a particle will be collected, is given by the area bounded by the con-

Jugate hyperbola shown in Fig. 3.3. Thus, under the conditions specified

|

min{uy) /

Ur
.

Fig. 3.3. Domain of integration for the current Eg. (3.19) for the case
qV > 0 (retarding potential) with

w2(a2-r2)m
qv >

- 8 m by




above, Figs. 3.2(a), 3.2(b), and 3.3 show the domains of permissible velocities
of the particles at the sheath edge which will reach the collector and con-
tribute to the total current to the probe,

At this stage it is desirable to change the variables in Egs. (3.7) and
(3.8) by setting u, = u cos®, uy =u sin6. Here © is the angle which the par-
ticle velocity at the sheath edge makes with the radius vector. This is done
because, for the case of the moving probe, the subsequent integrations to ob-
tain the corresponding current equations for d/ > 0 and gV < 0 are considerably
simplified when the variables of integration are u and 6. Thus in terms of

u and © the range defined by relation (3.9) is given by

2 2 R
sin~t |@_aT-re _Tre 42 .29V < ¢
2u a au m |
2.
<s:'m‘:{‘il=-63---+r§~+£gl w2 - 2al (3.13)
- 2U a au. m

where for uniqueness © has to be chosen such that

£ecx

g
N =

Now we will set up a general expression in the integral form which will
represent the current of either sign to the probe and then integrate it over
the domains for qV < O and gV > O (as given above) to obtain the correspond-

ing current equations.

3.2 GENERAL EXPRESSION FOR THE CURRENT
The plasma is assumed to have a Maxwellian velocity distribution at the
gsheath edge. If the probe is stationary, this distribution is given by

22



N 1 2 2 2
F(uro,uto,uZo) = B3 €Xp [: o2 (uro+uto+uzo{] ) (3.1k)

where N 1s the number density of the particles under consideration and c is
their most probable velocity, l.e., ¢ = JE%E?E} where k is Boltzmann's con-
stant, T i1s the temperature of the medium, and m is the mass of the particle.
Urgs Utgs and Uz, are the components of the particle velocity in a frame of
reference fixed in space. When the probe is moving, let uy, ut, and uy de-
note the components of the particle velocity in a probe-fixed coordinate sys-

tem with z-axis along the probe axis. Then,

uro = Up = W 81n¢ cosf
ug = ug - W sind sinf
Uz, = Ug - W cosé ’

- >
where W is the probe velocity, ¢ is the angle between W and the axis of the
-
cylinder, and B 1s the angle between the projection of W on the plane per-
pendicular to the z-axis and the radius vector 7. In terms of the new co-

ordinates (3.14) becomes

{(u,-w sing cosp)® + (uy-W sing sing)®

Om]l—'

N
flup,ug,u,) = ~57E3 OXP |-

N

+ (uy,-W cosé)zi} . (3.15)

The number of particles crossing an infinitesimal strip of area fadp
of the sheath surface per unit time is
updN = faupf(uy,ut,uy)dupdurdu,df (3.16)

where [ 1s the length of the cylinder. On multiplying this expression with

23



the charge g of the particle and integrating over the desired limits, the

following equation for the current to the probe is obtained:

I = _ggéiguqu pr/q Ur exp [} £§~{(ur—w sin¢ cosB)_
T ¢ B u Ut (‘UZ ¢
+ (ug-W sing sinﬁ)z + (u,-W cosé)gﬂ dupdutdugydp . (3.17)

In both cases of current collection (qV < 0 and qV > 0) the limits of B
and u, are 0 < B < 2x and -w < Uy < o (since [>>a), respectively. The in-
tegration of (3.17) with respect to these two variables and rearrangement of

the terms yields,

2
-K
I = 2Nqlac™2e f f Uy exp [— }-5 (u?+u%)} I <§£ VU.§+ut§>du.rdut ,
. e c
Llr Ll-t

(3.18)
where k = (W sing)/c and Io(x) is the modified Bessel function of order zero,
Integration of (3.18) is greatly simplified by setting u, = u cose,

ut = u sino, Thus

- 12/ a2
a_ iﬁ et k/WuZCos@ e /e IO<%R Nau a0, (3.19)
o } c
e

where J‘='J§E7§5; Ng2nfr, i1s the random current to the probe. Equation (3.19)
is the general expression for the current collected by a moving cylindrical
probe of length / and radius r, surrounded by a sheath of radius a. The

area of integration is determined by the different cases of interest (i.e.,

accelerated current, retarded current, etc.), as discussed in the preceding

section,
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%.% ACCELERATED CURRENT (qV < 0)

We have already seen that when the particles are accelerated by the col-
lector potential, the domain of integration is given by Eq. (3.13) with qV < O
and is represented graphically by Figs. 3.2(a) and %.2(b) in association with
the inequalities (3.1la) and (3.11b), respectively. Let us, first, consider

the situation where the inequality (3.1la) holds, i.e.,

2.2 2 '
Q§<<J03rc _ re 29V (3.11a)

2 i a2-r2 m

Upon dividing both sides of (3.1la) by c'=~2kT/m and letting w/EC = g,

2qV/me2 = qV/kT = V, and 2 = rZ/(a2-r3), relation (3.lla) becomes
oa <~ org-T V& . (3.20)

In order to integrate (3.19), the shaded region in Fig. %.2(a) is divided

into three regions Ry, Rs, and Rg as shown in Fig. 3.4(a).

Fig. 3.4(a). Domain of integration for the case shown in Fig. 3.2(a) indi-
cating the three subregions into which the domain has been deccmposed for
purposes of integration.

Let us consider the integral
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g =ﬂGcos@dude,
R

2 /a2
where G = u2e™" /e Io( % 9 and R = RyURZUR3. Thus

YL

|Py| pn/2 P pr/2 © O
f f G cos@ du de +f f G cos® du de -I-f G cosB du de

il

o} - /2 ‘Pl, @=91 P2 @l
where

-1 r—(b a2-r2 T 2qV

el = Sin — ———-g- - .—Q.. u2 - — a.nd
2u a _/ au m
-1 " a2-rg re | 2 2qV
62 = sin - + u - T
L2u a au m

and p; and ps are given by (3.10)., After integrating with respect to 6 we get,

P1| _ P2 ©
2 G du +f G(1-sing,)du +f ¢( sin8z-sind,) du

o |1 Do

D1 %=1 1%= o0
G du +f G du. - G sin@,du +f G(sin62-sing,)du

o] o) IPJ_I b2

Uz
I

Taking each integral separately and integrating one obtains
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where y(a,x)
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o)
(v,x) = f e v lay |

X

This last integration has been carried out in detail in an earlier paperolo
Substitution of the results A, B, -C+D, into Eq. (3.14) yields the ex-

pression for the accelerated current for the case ga < \/—czrgu'rEVO,

[ee]
: 2 2 2 2
Je -k2|a Z k20 3 p} 3 D or e
I = & Z_ L + 2 £L + 2 22} . 2L +]. 22
a1 \/_ﬂe Yo (n!)2 T BT TS B T=a 7n~l, c2
n=0

I'd
V] V]

k 0
) 0 n
D1 } -Vo > K < 2
- n+l Hls, + e < [ (1] - - V
7( 7 02) © n",(-VO)n/a{ 2’ ¢ 0
n

=0

4
—
BN\

+ g-, 2«2— - ;} In(2k \/-—VO)-] s (3.21)

C ]

where

ol'd
-

= oo -voo ro-ToV,

o) b

= ga + GEPEC_TZVO

Qig

and Jg = \/kT/Emrc'Nanmerc is the random current to the probe of the accelerated
particles of charge qg.
Equation (3.21) reduces to the following form when k = 0, which occurs

either when the probe is stationary (w = 0) or when @ = 0°

I, = gﬁL[E—L—{erf(chri-TzVO -ga) + erf(y cygri-“rgvo +oa) }
k=0 rC
+ e~ Vo{erfc(Vo2az-(1+72) Vo -ore)
+ erfe(v o2a2+( 1+72) V, +ore) }] ’ (3.22)
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where p,/c = oa 02r§-;§v; has been replaced by -p,/c since the limit of in-

tegration is |p;|, and pi/c < 0. Equation (3.22) has been reported earlier,”
Several other cases of interest which arise by setting o = 0 (i.e.,

B = 0) in Egs. (3.21) and (3.22) have been discussed in full detail earlier, 10

When the inequality (3.11b) holds, i.e., if
oa >NPr2-rBy_ (3.23)

then the domain of integration of (3.19) is represented graphically by Fig.
3.2(b). As before, the region is divided into two regions R, and Ro as shown

in Fig. 3.4(Db).

" '/{”’“ull‘“\\“m\ ‘}{i

I

Fig. 3.4(b). Domain of integration for the cases shown in Fig. 3.2(b) in-
dicating the two subregions into which the domain has been decomposed for
purposes of integration.

Thus,
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R

{QV\G cos® du de 4~d[7‘G cose du de
1

Ko

pe /2 © NBo
= J[ JF G cos6 du dée +u/‘ Jf G cos® du de

Pa el P @1

%= o
J/\‘ ¢(1-sine;)du +‘v/w G(sin6s-sinG,) du
P 1%

All the integrations have been performed above. The final result given below
then represents the accelerated current under the condition of inequality

given in (3.23)

— 2
T _ Ja K% |E pR=ial 7n+_3_ P§-7n+,5_£.1_2&;( ntl,
g2 [, r, /,(n1)?® 27 ¢? 2’ ¢ Tza
n=o0
co
2 . n 2 2
P1 -V, K 3 P2 5 Pi
- :}/GI+1, ZE) + e OZW%@ +=2—, ZE - V(>+F n +"2-, Z“" - Voj X
n=o

For k = 0 it can be easily shown that Eq. (3.2L4) reduces to Eq. (3.22). The
negative sign in front of the function y(n+3/2, p5/c®) in Eq. (3.24) is taken
care of because the argument of the first error function in Eq. (3.22) is
-pl/c, as has been pointed out above, while the corresponding error function
obtained by setting ¥ = 0 in Eq. (3.24) has the argument p,/c. Since, however,
erf(-p,/c) = -erf(p,/c), the correct sign in front of the error function is

automatically assured. Therefore, if k = O, Eq. (3.22) is the expression for
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the accelerated current for both cases p; > 0 and p; < O.

3,4 RETARDED CURRENT (qV > 0).

If the particles entering the sheath are repellied by the collector poten=
tial, Eas. (3.9) or (3.13) define the domain for integrating (3.19) in asso-
ciation with the ranges of V given by the inequalities (%.12a) and (3.12b).
Iet us consider each case separately.

If Vo < 02r2/72, the domain of integration of (3.19) is represented by
the dashed region enclosed between the two branches of the hyperbola shown
in Fig. 3.2(b). However, this is the same domain as in the case of the cur-
rent I, . Thus the solution is of the same form as Eq. (3.24). Denoting by

I,, the retarded current for the case Vo < o®r2/12, we have, therefore,

T (26 NV |, (3.25)

where Jp = 27kT/m Ng,.fr, is the random current to the probe of the retarded
particles of charge q, and where the modified Bessel function In(z) is de-
fined by

I(z) = 17%9,(iz) .

For k = 0, Eq. (3.25) reduces to the following form:
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= gl{%m{erfbjgzrg-TZVb—oa)+erf0J02r§—T2Vb +ga) )

R=0 2 rc

i1

+ e Vo(erfe(Wo2aZ-(1+1°) V, -or,)+erfe(No®a®-(1+1°) Vy +ore) }|

(3.26)

which is of the same form as Ed. (5,22) for the accelérated current.

It is evident from Egs. (3.25) and (3.26) that in the presence of a
magnetic field and V, < o2r§/T2 the current to the probe due to the retarded
particles involves the parameter a/r, which would not be the case in the
absence of the magnetic field or when Vo > 0®r2/12, as shown below,

If vy > czri/Ta, the domain of integration of Eq. (3.19) is shown in
Fig. 3.%. To integrate (3.19), we first need to find the minimum value of u.

This may be done as follows:

The minimum value of u occurs when ©; = 05, l.e., where

(. Lo 2 ———")
o, = sinl Q_G%f_ﬁg S Te e o 2aV
2u\_ a au m |
1w (B2-r3 Te | 5V |
= sin™t|=— C )+ =L [u2 - == 1| = 65
2u\_ a au \ m

This gives uyiy =*J2qV?mo Ir Irg denotes the retarded current for the con-

dition Vg > ¢®rg/t2, then we write
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N oo O2 o2, o ,

w2 s ;
T =§—§—££erdu d@ucos@eu/c1’&2&3i
e : : O\"" ¢

29V 61

I _ 2
= TEC Kfuu qV IO(EK %)du . (3.27)

Equation (3.27) is clearly independent of ¢ and a/r,. From this we con-
clude that the retarded current to the probe is unaffected by the presence of
the magnetic field whenever V, is larger than or equal to ¢®rZ/v®, The in-

tegral in Eg. (3.27) has been evaluated by Kanal.™C The result is

Vomr? (2n+1) 1/2
Ip, = Jp 0 Z(n')ZQEHV:n/E In(ekvy ) . (3.28)

For values of Vg = o°r5/t", Egs. (3.25) and (3.28) reduce to the follow-

ing form:

Ir = Jr exp<
For k = 0, Eq. (3.29) becomes:

2 2
= .8 tc
II,2 o = Jp exp< T2> . (3.30)

Equations (3.29) and (3.30) represent the current of the retarded

) L ) - oo

particles at the point of transition, i.e., when Vg, = o"ra/1°.
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3.5 DISCUSSION

All the equations we have derived are based on the assumption that the
particles have a Maxwellian velocity distribution at the sheath edge and that
the mean free path of the particles is sufficiently large to ensure a col=-
lisionless sheath. We have ignored the effect of the magnetic field on this
distributionf Then in conjunction with & given sheath model (of Langmuir
type) the current equations were derived for accelerating and retarding probe
potentials. Thus for the accelerating potential we obtained Eq. (3.21),
valid through the domain prescribed by the inequality (3.20), and Eq. (3.2L)
valid for the corresponding inequality given by (3.23). For k = O both Egs.
(3.21) and (3.24) yield Eqg. (3.22). For tkhe retarding potential, Eq. (3.25)
was obtained under the condition that Vj < Gzri/"rz° For k = 0, this equation
reduced to Eq., (3.26). For Vo > 15/7°, we concluded that the magnetic
field had no effect on the current as exhibited by Eq. (3%.28). For
Vg = 02r§/T2 both Egs. (3.25) and (3.28) reduced to Eg. (3.29) which, then,
was specialized for k = 0 to obtain Eg. (3.30).

In plotting the current characteristics one is usually faced with the
problem of defining the sheath dimensions explicitly in relation to the probe
potentials. In a plasma without a magnetic field one need consider the
sheath dimensions only insofar as the accelerated current is concerned.

This, however, is not the case when the magnetic fileld is present, since
then, the retarded current for V, < o2r§/72, also exhibits dependence on
the sheath dimension as is clear from Eq. (3.25). Thus for a meaningful plot

of the current characteristics it is imperative to seek a proper relation be=
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tween V, and a/rc for both modes of current collection. The degree of
accuracy of such a relation is of critical importance in avoiding the
spurious behavior of the current characteristics in the acceleration
region, as has been discussed in detall in the semiannual report.,5 One
must obviously solve the sheath problem to obtain the above mentioned equa-
tion in order to be able to affix any physical meaning to the equations so
far derived. On account of the absence of such a relation no volt-ampere

characteristics can be included in this report.
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IV. THEORY OF THE PLASMA WAVE PROBE

4,1 GENERAL EXPRESSION FOR THE AC RESPONSE

Work has been started on the derivation of the expression for the re-
sponse of a probe to a plasma wave. The two cases of a low frequency wave
and a high frequency wave will be treated separately. In this connection
the low frequency range is defined as w << tr_l, where t, is the time of re-
flection of an electron from the negative probe; and conversely the high
frequency is the range where w >> tr_l. So far the low frequency case has
been solved. Work on the high frequency case will be carried out in the
future.

Tf o << tr'l

. then the phase of the wave remains essentially unchanged
during the time the electron spends inside the sheath. Therefore, steady

state conditions can be applied. We consider a Maxwellian electron distribu-

tion with a superposed longitudinal plasma wave,

£(7,7,t) = fo(v) + £1(7,7,1) (4.1)
fo(v) = %gé-e"’g (4.2)

where the velocity ¥ is expressed in units of the thermal velocity c and

N, = average electron number density
2 = 2KT ,

m
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T = electron temperature
m = electron mass

K = Boltzmann's constant.

For a plasma described by the linearized Vlasov equation the perturbation

> >
f1, proportional to expli(k.r-wt)], is given by the expressiontt

2
fl — é —HK_. e-v

ek (4.3)

where

-> >
component of v in the direction k,

Vk
ck

and A(?,t) is assumed to be proportional to expli(k.r-wt) .

The response of a cylindrical probe to a perturbation of the sbove form
for the case where the probe makes an angle of 90° with the propagation
vector E has Dbeen calculated. It is assumed that the diameter of the shesath
surrounding the cylinder is small compared with the wavelength of the plasms
wave, In that case all points on the sheath edge can be considered in phase

> >

so that the factor el ¥°T will be gpproximately uniform throughout the sheath,
The parameter A is therefore taken to be of the form Be'iam, where B is con=-
stant inside the sheath.

In addition any diffraction of the wave by the probe is neglected; that

is the wave is considered to be undisturbed by the probe.

The total current collected by the probe is then
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) 21 “ 00 Vi, ~ 00
I = acq/ﬂ dz‘./\ d@‘f dVr'f th“/ dvyvef(z, 1,8, Ve, vi,vy)
A b, .

o V1 Vi, =00
N (b.k)
where
a = sheath radius,
£ = length of the cylinder,
g = charge of the particles under consideration,
z = coordinate axis along axis of cylinder,
© = azimuth angle in the plane perpendicular to the axis
of the cylinder,
v,. = radial velocity component in the plane perpendicular
to the axis of the cylinder,
vy = tangential velocity component in the plane perpendic=-
ular to the axis of the cylinder
v, = velocity component along the z-axis.,

The limits of the v, and v. integrations are determined from conservation of

energy and angular momentum, namely

et 2

V.tl = T VT-VO 9 Vl = VO
where
v e | 2R
a2 ’
c
qV
Vv, = =
o) KT ’

V = potential of the collector with respect
to the sheath edge,

ro. = radius of collector.
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The collector potential is taken positive when the collector attracts the
electrons. The lower limit of the v, integration is O when V5, < 0 (ac-
celerating potnetial) and vy when V, > O (retarding potential). End effects
due to the finite length of the cylinder are neglected.

Substitution of Eqgs. (4.1), (4.2), and (4.3) into Eq. (4.L4) gives an

expression of the form
I = IDC + IAC B

where Ip~ is the term involving the equilibrium distribution function fj,
and Ipc represents the response of the probe to the plasma wave f;. In the
development which follows we shall be concerned only with the AC component
of the collector current. The DC component has been calculated previously

by many authors. We have then

25
IAC = Qb/\ de
o)

where Q is given by

o0 V.
tl 2
f dVT f dv’t - e_(V%J{.VE) »

Oo,Vy -V-tl

o0
o =
Q = aclBq elam\/n V7 av,

k
-0
_ acﬂBq\]—; e-—id}t ] ()'l‘aS)

k

Vi can be expressed in terms of v and Vi See Fig. 4.1, Ve = vrcos@+vt51n@°

Lo



Fig. 4.1l. Perpendicular cross section of the sheath edge showing relation of
velocity components to wave vector k.

Hence IAC becomes

an % Yty vpcosBtvesing  ~(vE+vE)
I = Qf d@f dv,. dvy vy L t_ et Tt
' - : V,.C086+V sing-n
o] 0,Vy "V, r

The above integrand can be separated into two parts as follows

VC086+vsing - 1+ |
VyCcO8e+vtsing-n Vyrcos8+vising-n

Substituting those two terms into the expression for IAC one obtains

( nl2x © Vi, 2 2
IAC = Q[Lf d@‘f dvr\/’\ dvtvr e'(Vr+Vt)
o)

0,Vy -V N
2 -\
2x 0 Vi, - e-(vr+v%) !
+ o de av,. dvy —= _ v,
' ‘ : VcO88+Vysing-n |
o 0,V Vi, ']

(L.6)

where Q is given by Eq. (L4.5). Equation (L4.6) is the general expression for
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the AC response of a probe to a plasma wave under the assumptions stated

above,

Integration of the first term is elementary.

Ja
0 0,V -y,

= <

n5/2 gg e_ o

where
erf(x)

and
erfe(x)

L,2 ACCELERATING POTENTIAL

21 ~ 00 Vi 2 o
1 -
J/\ d@u/\ dvru/\ dvyvy € (vrtve)

e

il

1 - erf(x)

B5/2 l:erf(’r Volo) + 22 e Voerse (VT (1+72) ]

a

The result is

if Vo <0
(4.7)

if Vg >0

In carrying out the integration of the second term, the case of the ac-

celerating potential (V5 < 0) will be considered first.

transformation of the variables of

Vr

1]

Vi

dvrdvt

integration
u cosd
u siné

u du dé

)

After the following



the integral becomes

2n 2
- u2cosg e™
Jo = [ d@.'(;/i‘[ uc—os—(-g%g)—_adu dé . (4.8)

Q~ is the region bounded by the two hyperbolas Vi, = andv%-Vo , as shown

by the shaded area in Fig. 4.2,

Fig. L4.2. Region of integration Q for the case of an accelerating potential
(Vg <0).

In terms of the variables u, ¢ the region of integration is given by the ex-

pr
- g <4< > f 0<uc< LRV
fr<dsh for TVToguge
where




As shown in Appendix A the @-integration gives the following result

2
T 6

el

o cos(6-4) - %

u <7

Hence, after substitution of Eq. (4.9) into Eq. (L4.8) the following result

is obtained,

M ﬁ/g 2 =Uu2
- gnf duf dé E——_—(E_S-é
S . /2 n2_u2
Jp =
W 2 -
_EnfT Odufﬂ/d,gw
o -5/2 VnZ-u®
where

b1

2
+u/‘n du\‘/“Ald u2e ™™ cos
2
ANER Y VZ-u?
0> NI (b0

. =1 T
sin
[;1+T2

] ua_'\h
ul

The regions of integration for the two above cases are shown in Figs. 4.3

and L.b,
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Y

Fig. 4.3. Region of integration for an accelerating
potential for the case n < TWN-V,.

Fig. 4.4, Region of integration for an accelerating
potential for the case 1 > TN ~V,.

The case 1 < TV -V, will be considered first. The p-integration introduces

a factor 2, Hence,

J;l = - — du .......
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The above integral is evaluated in Appendix B. The result is, according to

Eg. (B-2),

- 2 2
Jor = 2n2 e_n2/2 I}<12L>- IO<12L_> . n < T\}-VO (4.11)

This is the solution of the integral in Eg. (4.8) for the case where
'q < T \Y _VO;
If 1 > TN=V,, then J> is a sum of two integrals [see Eq. (k4,10b)].

After performing the integration with respect to é this becomes

- TN =V u2e'112 . 1 e >
Joo = = Lrx du + ‘ du u j—=L g~u
J JiZ-2 T+ “/170 n2-u2

The solution of the first of these two integrals is obtained by setting
a =0, b=1T+V=Vy, and ¢ = O in Ed. (B-1) of Appendix B while the solution
of the second is obtained by setting a = TN-Vy, b =1n, ¢ = =V, Hence,

Joo becomes

|
1
=
A
5
=

E (5
- 1 \ 2. 3 5 T e~Vo \" 2/1,1
Jgg = Z/ '}/6 + =, =7V +
m! =0 2’ Y i ey b
m=0o

]j . (b,12)
3

That part of the above sum containing the function 7@1 + 5 ngm‘fg can be
. A

carried out by making use of Eq. (B-3), according to which
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—- = yln + = -V =
2 2oy Lo nl (nE-VR)" 2> Vo)

- Lniro_z -T2 Il”zf__‘b\ n__lfg\}] C (13)
/ A

\A 2

Eq. (4.12) may therefore be rewritten in the following way,

" - -AJL T 3 - e TG
2n 2 S N14® 2\/71 A

) m=0o
1 ;o3 2 j) 2¢ 2 ‘@2+be2[“ ’hg'Vf>
+ 2, -Vg(T24+1)) b + — - I
Egm 7 g TVelm)) s (T -Vo)e (5
2 S
S 1 Il_.élgﬂ N> TNy . (kb

Upon substitution of Eas. (L4.7), (4.11), and (4.14) into Eq. (L4.6) the ac-

celerated current finally becomes

H
(e}

-
acqu@euiwt%?/E{erf(Tm N

k

ég£§g$£5 e-lm?JﬂB/g[érf(T~Jj§g) + §Q emvoerchJiﬁg(il;éj)}+nJ;2
. i B

‘ (k:15)
where Jo, and Jos are given by BEas. (L4.11) and (4.14) respectively.

4,3 RETARDING POTENTIAL

In the case of a retarding potential (Vb > 0) the lower limit of in-
tegration with respect to vy in Eq. (4.6) is vy = Jﬁg} The first integral
appearing in Eg. (L4.6) has been solved for the case of Vg5 > 0. The solution

W7

e"voerfc(v~Vb(11;§5?]+ﬂJ§%} n < 7=V,

N> V-V



is given in Eq. (4.7). It is

21 o Vi, _
JI = &/\ de}/\ dvr\/ﬂ ldvtvr e (v§+v%) = n5/2 e Vo (4.16)
NV, ®

(o] -V.tl

The second integral appearing in Eq. (4.6) is

ucos(6-4) -1’

25 _u2
Ia = f de[[du ad uZcosp e (4.17)
(o] Q+

where the variables of integration have again been transformed to polar co-
+
ordinates and where the region of integration 0 is given by the area bounded

by the hyperbola th = T \/vzr-Vo' as shown in Fig. 4.5. The integration

v )

 ///,’ '

%

Fig. 4.5. Region of integration for retarding potential (VO > 0).

with respect to © has already been carried out in the section on the ac-
celerating potential. The result is given by Eq. (4.9). 1In the integra-
tion over u and ¢ the two cases n <\/% and 7 >\R]ghave to be distinguished.
The integral in Eq. (4.17) is non-vanishing only over the region of inter-
section of the circle of radius n with the area Q+, shown in Fig's. L4.6

and 4.7 for the two cases n <NV, and 1 >V V.

L8



-

Fig. 4.7. Reglon of integration

Fig. L.6. Region of integration
for the case 71 >V V,.

for the case 1 <V V.

The region of intersection is shown shaded. It is seen that J; vanishes

when n <~Vy. The rest of the treatment will therefore be devoted to the

case 1 >NVy. In that case Eq. (4.17) can be written in the form

n ?51 ~u2
: - aan du ad uZe”T cosp , (L.18)
\[V-O "ﬂgl wn2_u2

where as before

e

After the gﬁ-integration this becomes

1 2
+ 112 -
Jo = = lgx T_fueuuzvgdu .
'\/l+T2‘.IVO \NTw

The above integral has been evaluated in Appendix B. Putting a =+vVg,

b =mn, c = -V, in Bq. (B-1) we obtain
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v,  x
- ¢ T
+ Te 'O NV

J =) = - 21 ——— ——
J1+r2 Jﬁg-Vb

-
n=o

According to Eq. (L4.13) this is equal to

—

+ =T “nZ+v,/2 HE—V\, _ /hgmv |
Jp = (q2-v)e™ o Ty (51 K\ 2 Ol; : (k.19)
.»'/ B )

J1+72 |

-

Hence, the retarded current is given by the following expression

| rociBar® o~ Vo -iwt

| » n <'JVb
.l_ R
Tpe =9 (4.20)
: Lo N —
% é_,c.ﬁ_:_B,g_ e_l(l)'t !T(2 Te e"'VO ..{ﬂn\/'ﬂ JZ’]! n >\[VO

|

+
where Jo is given by Eq. (4.19).

L.4 DISCUSSION

Equations (4.15) and (L4.20) are the expressions for the accelerated and
retarded AC currents, respectively. Both of these currents are proportional
-i&ta

to e We conclude therefore that the current collected by the probe con-

sists of the usual DC component plus a superposed AC component which oscillates
with the frequency of the plasma wave. A detailed analysis of the amplitude
of the AC response ag a function of probe potential must await further cal-
culations, especially the summing of the expression Jos given by Eq. (k4.1L).
This work is being carried out at the present time. In addition the important
question of whether or not the amplitude of the response is large enough for
detection will be investigated.

O0f particular interest 1s the limiting value of the response as the ratio

rc/a goes to zero., This limit depends, of course, on the value of the
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potential V,. In lonospheric applications, however, the probe radius will

in general be small as compared with the Debye length., If the probe is at
its equilibrium potential (i.e., if it is not driven), the sheath thickness
is of the order of the Debye length Ay Therefore, if rC/AD << 1, it follows
that rc/a << 1, As the probe is driven more negative than its equilibrium
pctential, the sheath radius increases and hence ro/a decreases further,

Taking the 1imit as rc/a + O one obtains for the AC current the following

expressions

Lim IAﬁ = j‘ J:vo +e” OerPc~JLV

-
£ 50

- &
¥ ATB/Q fe 2(n 2 Vb >;<;In* (n® % o 7(% ¥ %’ mvé)

[, Bre U wias ——
z chiBQﬂ e Voe it n <y
+ i |
am I’L\.C = (Lr 7)(/ 1)
g : " -
— ! T -m"+Vg/ 2
- -

Lll\/ﬂ : 2 .“lo(n : o/!f con >N

The limit of the accelerated current for the case 1 < rc/a -V, has not been

computed since the phasge velocity of the plasma wave always exceeds the

51



electron thermal velocity (i.e., 1 > 1), while &c/a)Jtﬁgc<< 1 has been assumed
in taking the above limit,

Another limiting value of interest is the one as a/rC + 1., This limit
occurs, when the probe potentisl approaches the plasma potential, and gives

rise to the following expressions,

_ 2 . 2 [ 2 2 1
Lim 1L, = 22ABAr o-lotbly s en/2 I](B—-)-IO(L
AC X 2 2

—— 1
rC ” et - 1
n < TV, (4.15")
2 - ’c
rgcﬁBqn e Vbe lwst " <~f§g
Lim Iy, =4
a ~
—_— ]
2 . < g 2 '
‘e Eﬁfgi— e”lutlrc e_JO+an Vr(n2-v,) e Y2
2 . 2
[I,(“ ;](?—IOC] év")] .o > (4.20")

By varying the probe potential the experimenter can control whether the probe
operates in the region where a/re + « or a/r, + 1.

The investigation is continuing with a view toward obtaining a better
understanding of the general behavior of the plasma wave probe in all fre-

quency regions so that it can be used for meaningful ionospheric measurements.
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V. DISCUSSION

The study of the electron distribution as described in Section IT shows
that, considering only solar electromagnetic radiation as energy input and
binary collisions as electron energy loss mechanism, a high energy hump in
the energy distribution results. Drummond et g&.,Q have studied the question
of stability of certain isotropic velocity distributions assuming & hump in
the energy distribution. This work has shown that if the ambilent electron
temperature is low enough, the presence of such a hump may give rise to grow-
ing plasma waves., Such an instability would modify both the ambient elec-
tron distribution (i.e., the temperature) and the high energy hump in such
a way as to quench the instability.

The investigation of the stability conditions for spherical plasma
waves has been continued and is near completion. The result of this work
will be described in a future report.

The electron energy distribution calculated in Section IT is also being
used to study the importance of the contribution of electron impact excita-
tion to the total 63000 R red line emission in the a.tmosphere\,‘]"2 The ex-
istence of a hump in the energy distribution may also be important in ob-
taining theoretical estimates of space craft equilibrium potential. Cal-
culations to establish the significance of this hump on the equilibrium
potential are being carried out.

It has been pointed out at the end of Section III that in order to ob-

tain a meaningful voltage-current relation it is necessary to have an equation
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which relates the sheath dimension to the probe potential. Approximate rela-
tions of this type have been derived for the case of no magnetic field; how-
ever the use of such a relation causes spurious results as was shown in the
semiannusl report.5 For this reason a study of the sheath problem in the
presence of a magnetic field has been started. A brief account of two methods
thus employed is as follows:

Taking the cylindrical collector as an example (although the analysis
holds equally well for spherical geometry), the first method15 relies on the
fact that in the absence of collisions the total currents carried by each
kind of particles across two coaxial cylinders of arbitrary radii are equal.
This enables one to determine the velocity distribution of the particles in-
side the sheath in terms of that in the undisturbed zone. Then, on obtain-
ing the region of permissible velocities inside the sheath by means of Eags.
(3.5) and (3.6), the equation for the density of the particles may be de-
rived by integrating the distribution function over that region of phase
space, This method has the advantage of mathematical simplicity.

The other method for obtaining the density distribution functionlh re-
lies on the fact that in the absence of collisions the general solution of
Boltzmann's equation can be obtained by the method of characteristics. The
general solution is an arbitrary function of the energy and angular momentum,
and the precise function is then exactly determined by the boundary condi-
tions.

After the density distribution function is evaluated by means of one of

these methods, Polsson's equation serves to yield the potential distribution

5k



inside-the sheath. Both of these methods have been profitably employed in
13,1k

the case of zero magnetic field. Work is in progress at this time to
incorporate the effect of the magnetic field on the sheath structure.

The work described in Section IV ig Just the first step in what is ex-
pected to be a detailed study of the interaction between a probe and lon-
gitudinal plasma waves. At the present time the equations derived in Sec-
tion IV are being analyzed further. The next step planned in this study is

the investigation of the response of a probe to waves whose period is com-

parable or small compared to the time an electron spends inside the sheath.
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APPENDIX A
Consider the integral

f\gﬂ
(a)

de
o
qg < 1.

cos(6-9) -q

25
] f aal
\O

cosO=9q

only in the principal value sense.

In that case the integrand has a pole, and the integral has meaning
between the limits O and .

It is sufficlent to evaluate the integral
Then
R ao“’e ' T
Lim / o / o
A cosd=q oloﬂ_zcosoz«-q
=1
where Oy = cos "q
J1-¢2 tan o€ -g+1
. L 2 1 1l=q
= Lim ——=— log ——— = ] 0g T
€0 Vi-g? J1-¢@ tan 9%:-5— +q-1 Vi- 4=
JI-¢Z tan Qoe -q+1
1 1l-a 2
+ = log T log n
N 1-g® a- N1-gZ N1-g2 tan 9%«3 +q-1
0
ix

; then do = dz/iz.

The integral is then
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1no

%ﬂ dz
i\c z2-2qz+1

where C is the unit circle. The roots of the denominater are at
z, = q-vg@-1 and 25 = g +vg3-1

Since g > 1, the two roots are real and z, lies inside the unit circle,

Hence, using Cauchy's theorem we obtain

2 .¢W dz _ 2n
. o = - A .
I+ z=-2qz+l ﬁié'l
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APPENDIX B

We consider an integral of the following form:

b 2, 5
Hl=fduuuce'u a<b b < q
; 'r]2-u_2 —
5 :
Putting u® = x-c, u du = 1/2 dx, one obtains
2
c b +c
H, = g— dx 2X - e X
af+c n=-xte

n
where the factorial function (o), is defined by (&), = ¢ (Q+k-1),

k=1
oo /1IN
c = .
1l e (2/1’1 1 2 .2 3 .2
= = - n + =, bS+cj=yln + =, a~ic B-1
D) r———-—n2+c L n! <n2+c)n|}’< 57 7 5 » (B-1)
®oml -t
where y(a,x) is the incomplete gamma function defined by y(a,x) -—-f t7 e dt,

O

Of special interest is the case a =c¢c =0, b =1,
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Let u® = %, u du = (;%/2)ds. Then

A1

2 /2 . 2

B = - ‘/ ds E— 75"
2 IO '\/l=-S

let s = cosge, ds = -2 sin® cos6 d@. Then

K/E > 5
Ho = nzk/ﬂ d6 cos2g ™M €087
o
“ n/2 /2 —L
= -gi e‘nz/g‘—/‘ ae e_(rlz/g) 0052@ + e_n2/2 f 36 cos 2@ eg_(nz/g) COSQGJ g
© o)

let 26 = o, 46 = 1/2 da. Then

2 2 19 2 T 2
-n=/2 ~afn=/2 a -0n~/2 ozL
Ho = U e " / \/ﬁ do e { / ) cos + /“ do cosQ e f / ) cos

2 e O J
2 /{(n_)@} , (5-2)

where In(z) ig the modified Bessel function of the first kind of index n de-

fined by Ip(z) = 1™%9,(1z) and Jn(z) is the Bessel function of the first kind

of index n,
This result can be used to sum an infinite series of incomplete Camma

functions, Setting & =c = o0, b =1 in Eg. (B-1), equating with Hy, and
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using Eq. (B-2) one obtains

z(e , QH 2, ) e ng/{ﬂx Gl-—>—yr11(ﬂ->:| . (B-3)

n=0
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