


PRELIMINARY DESIGN OF A LINKED LIST COMPUTER

Caxton C. Foster

I. Introduction

Several symbol manipulating languages have already been written in both
interpreter and compiler forms. Among these are IPL-V, COMIT, and LISP; each
with many attractive features. IPL-V, in particular, is concerned with the

use of a linked-list structure.

A. Nature of a List Structure

As an example of a "list_structure," consider the following:

Things to do today:

Shopping
Clean house
Pack for trip
Pay bills

Wash clothes

Each of these may or may not require an explanatory '"sub-list." On a
separate page I might have written:

Shopping:
Groceries
Meat
Gas station
Present for Aunt Jane
Dry cleaning

The note to buy a present for my Aunt may be sufficient in itself, but
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it is likely that I will have noted down on yet another page:
Groceries:
Fruit
Vegetables
Potatoes
Onions
Ice Cream

Soap for washing machine

The number of lists 1s usually not specifiable in advance, nor is the
number of items on & given list. Furthermore, one may wish to add items
as they are thought of or to delete them after they are accomplished. Note
also that the order of the entries may be important, for I must go shopping
before I wash the clothes, since one of the items to be purchased at the

grocery is soap for the washing machine.

B. Linked-Lists

As Newel, Simon, and Shaw have pointed out, the decision to allot
a fixed number of storage locations to each list is both wasteful and restrictive.
It is wasteful in that many of the lists will not use up their allotment, and
restrictive because some lists will require "special treatment" if they exceed
the allotment. This "special treatment" might consist of a " jump" to a new
location, at which the list is continued. Newel, Simon, and Shaw's solution
to this problem is to make the exception the rule, and in each memory cell
write an entry on the list and where to find the next entry. This address
of the "successor" is called the "link." In the cell, which is named in the
link of the first entry, will be found the second entry and a link to the

third entry. This, in effect, reduces the allotment to one, thus eliminating
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the waste of unused but allotted cells.

In addition, the use of linked lists facilitates insertion and deletion
of entries. Suppose one wishes to insert an item between the second and
third entries on a list. The process is simple. Obtain an unused cell in
memory. Write the address of this cell in the link portion of the second
entry. Write the desired addition to the list in this new cell and as its
link, write the address where the third entry is to be found, (the "old"

link of the second entry; see Fig. 1).

C. Hardware Implementation of a Linked-List

The fact that perhaps one-third of each word is used up "merely"
to specify a successor may appear somewhat profligate. There should be,
it would seem, some less expensive method of performing this linking function
in hardware. If a cell does not specify its successor, then the successor
must be specified by some ordering of the information in the memory. For
example, the next entry will be found in the cell with an address one greater
than that of the present cell. To perform this ordering, either the cells
containing the data must be moved about physically (difficult, if the cores
are wired into planes), or else the data must be transferred to new cells when
a change in a list is made. One way to accomplish this might be to make the
entire memory a pushdown stack that could be '"pushed" at any point, in order
to open up a gap for the insertion of an entry. Ignoring for the moment the
problem of keeping track of where one's data has been moved to (after several
insertions and deletions), we may still note that a pushdown stack or bi-
directional shift register probably requires three cores per bit. Thus,
n bits of information require 3n cores for storage in a pushdown stack, as

opposed to n + log, (memory size) cores for a linked-list. Numerous other
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schemes exist for organizing a list structure, but the linked-list method

appears to be among the best and will be employed in this paper.

D. Advantages of Linked-Lists

There are three major factors which make linked-lists valuable:

1. The lack of rigid boundaries to lists enable them to grow
as required; some short, some long, without advance
specification of limits. This is flexibility.

2. The ease with which items can be added to or removed from
lists. This is modifiability.

3. The ability to define procedures in terms of themselves.
This is recursiveness.

It should not be assumed that these properties are peculiar to linked-
lists. There are many other ways that memories could be organized that would
produce these behaviors, but they are all easy to achieve with linked-lists.

There is an hypothesis current in linguistics for which credit is given
to Benjamin Lee Whorf, to the effect that, "Language modifies culture,"
that is, those concepts for which there is a name or ready handle will be
easier to use than those it takes a paragraph to specify each time they
are referred to. The concepts that are easy to use will be the ones that are
used. This is usually called the "Whorfian Hypothesis" and, while of great
intuitive appeal, is almost impossible to operationalize.

Whether Whorf is right or wrong, it will be clear to anyone who has
programmed that higher order languages greatly facilitate the writing of
programs. As Shaw et al (1958) have said, "The feasibility of synthesizing
complex processes hinges on the feasibility of writing programs of the com-
plexity needed to specify these processes for a computer. Hence, a limit
is imposed by the limit of complexity that the human programmer can handle.

The measure of this complexity is not absolute, for it depends on the pro-



-5=

gramming language he uses." This paper, then, will be concerned with a

Language for Linked-Lists and a computer designed so that the basic

statements of Triple-L are machine operations of high speed.

II. Design of a Linked-List Computer {LLC)

A.

Specifications

After the preceding discussion, we are in & position to write down

some of the things an LLC must be able to do "gracefully."

B.

ll

An IIC must handle the linking process swiftly and without
any intervention by the programmer. He should, of course,
be permitted to look at the link of a cell when he so
desires; but under normal conditions, linking should be
automatic. Thus, adding to the head or tail ends of a list
or removal from either, the change or deletion of an entry
or the insertion of an addition at a specified place on a
list should be rapid and simple.

There should be several rapid access cells of a pushdown
nature between which data may be shuffled at a high rate
for sorting or other processing.

There must be automatic housekeeping of discarded memory
locations that become available for other uses after an
old list is erased.

Indirect addressing must be available, for often we will
not know what operand we want but only where to find it,
or even just where its address is stored.

"Off street parking" should be provided for use when two
programs alternately call on each other.

Input and output operations should be buffered and an auto-
matic interrupt for handling the I/0 buffer over-and under-
flow should be included.

All high speed registers must be addressable and part word
operations on them made simple.

Machine Organization

1.

Overview

An explanation of the design of this computer will be simpler if



reference is made to Figure 2.

There are six major sections of the machine, three of which - the core
memory, the control circuitry, and the arithmetic unit, are quite similar
in design to standard von Neuman machines.

The memory is a word organized, 45 bits per word, 32 words per plane,
1024 plane, core memory with external selection and a 3.5 psec half-cycle
(read or write) time. Reading is destructive. There is an additional 32-bit
word on each plane which contains the "occupancy bits" of the other words
and is readable with separate external selection circuitry (see AVSPA Control).

The memory is accessed under control of a 15-bit Memory Address Register
(MAR) and all transfers take place via a 45-bit distributor.

The Arithmetic Unit performs both fixed and floating point operations
with a 29-bit plus sign mantissa and a 1lL-bit plus sign exponent.

The operation of the control circuitry and the Instruction Register will
be examined in more detail in the section on instruction codes. The remaining
three major sections, being somewhat novel, will be examined in more detail

below.

2. Available Space List (AVSPA Control)

a. The problem:

One of the most frequent operations in any list modification
will be the acquisition of an unused cell for an addition to a list, or the
disposal of a cell no longer needed in a list. IPL-V has handled this problem
by linking together all the unused cells in memory on a list called the
"Available Space List." If one wishes to know the "name" of an unused cell,
something like the following steps must be carried out:

1) Read the head cell of "available space" and store its
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contents (the name of the cell we are to use) in the Memory Address Register
(MAR).

2) Read the memory under control of the MAR.

3) Store the contents of the cell just read in the head
cell of "available space." (This updates the available space list for the
next acquisition cycle.) The name of the cell acquired is in the MAR.

This requires at least one memory access time in step 2, and three access
times if the head of the available space list is not a high speed register.

Disposal of a surplus cell requires much the same sort of operations:

1) Read the head cell of available space.

2) Store this information in the surplus cell.

3) Store the name of the surplus cell in the head cell of
the available space list.

Again, we find either one or perhaps three memory accesses. In our linked-
list computer, we must consider the mechanization of the available space list
most carefully. Since the acquisition or disposal of a cell will occur with
great frequency, it is a process which should be of the highest speed possible.
If one keeps track of available space in a linked-list as IPL-V does, then,
even if the head of this list is kept in a high-speed register, the additional
memory scecess cycle required to update the list for every transfer operation
will almost halve the effective operating speed. It seems reasonable to assume
that if, by some other method of keeping track of the unused cells, we can double
the effective speed of memory with only a moderste increase in cost, we will
be well justified.

b. The proposed solubion:
To each word in memory, we shall add one additional bit,

to be called the "busy bit." Since the memory is to be conventional in every
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other way, reading is destructive and this bit will be set to "zero" whenever
the word is read out. When and if the information is returned to storage,
writing into a cell will automatically set its busy bit to "one."

Assuming a word-organized memory with 32 words per plane, it will be
convenient to read out the busy bits of all the words in a plane as a unit
to a high speed 32-bit shift register. The information read out in this step
must be re-written at once, since it would not do to mark these words as
"unbusy" indiscriminately. The AVSPA control unit will consist of a 32-bit
5-megacycle shift register, a 15-stage divide-by-two chain, and assorted
gates, sense amplifiers, and selection circuitry, as shown in Fig. 3.

Under control of the upper ten bits of the divide-by-two chain, the
busy bits of a memory plane are selected and stored in the shift register.
The selection circuitry and sense amplifiers used for this operation are not
the same as those used for normal memory access and so may be used concurrently,
provided only that one set is not trying to read from the same plane as the
other is.

Immediately, the information has been entered in the shift register,
a 5S5-megacycle clock signal begins to shift left until the first "zero" appears
in the "sensing flipflop." A count of the number of shifts is kept in the
low order bits of the divide-by-two chain. Once a "free" word has been detected
(busy bit equal to "zero"), shifting is inhibited and AVSPA control waits
for a request for a free cell. Since the upper 10 bits of the divide-by-two
chain specify the core plane containing the "free'" word and the lower 5 bits
specify a count indicating its position in the plane, the divide-by-two chain
holds the address of a "free' word.

When a request for a free cell comes along, gates are opened which permit

transfer of the information in the divide-by-two chain onto the main bus. After
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a short delay to permit the transfer to take place, shifting and counting
is re-initiated and proceeds until either another "zero" is found or until
the count reaches 32, causing a transfer into the high-order portion of the
divide-by-two chain. This transfer pulse sets a flip~-flop which, if the
memory is quiescent, initiates the selection of & new set of busy bits from
the next higher numbered core plane. If memory is busy and the 10 high order
bits of the MAR and the divide-by-two chain are the same, access is deleyed
until it is possible to read without interference. Selection of the busy
bits of a plane will, in turn, inhibit normal access to that plane for a
full read-and-write cycle.

Let us examine in some detail the behavior of this method of obtaining
unused cells. To begin with, there will be many requests for unused cells
during the execution of a program, so that the use of averages will be
Justified. 1If a fraction f of the memory is not occupied by program or
data (free), we expect that on the average, there will be 32f zeros in
any "busy bit word." We may expect to find one zero about every l/f bits,
so we have an average shifting time of l/5(l/f) usec if a 5 mc shift rate
is used. If the half-cycle time of the memory is 3.5 usec., then the
average elapsed time until a new empty cell is found will be T = (1/5f) +
7.0/32f usec for shifting and readirg.

Now, after obtaining a free cell, the program will most probably write
something into it and will then read and rewrite a new instruction. This
will require three half-cycles so that,if as much as 4% of the memory is
free, approximately one-half of the time AVSPA control will have found
a new cell already and be waiting for another request. The other half of
the time a new cell will not yet have been found, and, since for lack of

evidence to the contrary we may assume the free cells to be randomly dis-
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tributed throughout the memory, we effectively start the search over again
and must wait another 1 1/2 cycles or about 10 pusec. Thus, the average
AVSPA delay time for two successive discoveries will be: T =1/2 * O +
1/2 * 10 = 5 usec if 4% of the memory is idle. If one other operation
intervenes, then this time it will be cut in half to 2.5 usec. If n other
operations intervene, then the expected delay time will be T = 5/2n usec.
The worst case will arise when a list is being duplicated by a program.
But still, the mean access time for successive discoveries of unused cells
is better than would be obtained with a reguler linked-list.

It is of interest to examine the case when only one free cell remains
in the computer. On the average, AVSPA control will have to search half
of the 1024 planes before finding it. This gives an access time of:

(7 usec per word + 6.4 usec count time) x 512 = 6.88 msec. Somewhat before
this stage is reached, it will probably be of advantage to move some part
of the contents of core onto tapes or other backing store.

Using this scheme for the control of available space has the further
advantage that, when a memory cell is discarded after being read out of,
it automatically becomes available to AVSPA control without any further
processing, and there is no possibility of tying available space in a knot
by erasing the same cell twice.

To insure against endless hunting for a free cell when none is available,
let us add a flip-flop to store the output of the high order bit of the
divide-by-two chain. This flip-flop will be reset by any "zero" that is
found. If, however, a second set pulse appears before reset, this indicates
that no free cells have been found in any part of memory and a halt is

executed and a "memory overflow" light turned on.
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3. Hysteretic Pushdown Stacks

In order to avoid having two (or more) address instructions,
all programmed transfer of information uses a "common" cell. In IFL-V,
this "communication cell" is a linked-list called H-O and is in all respects
similar to any other list. The use of a genuine high-speed (1 usec) pushdown
stack, rather than a linked-list, will reduce the access time from T usec
to 1 usec for each reference to H-0, and that will be just about every
instruction.

Fig. 4 shows one possible configuration using three cores per bit
and a three-phase shift cycle that shifts right for the sequence ABC and
left for the sequence ACB; but many other arrangements are possible to
perform the same function. Shifting speeds of perhaps one usec per full
(3-stage) shift should be possible. Relative simplicity of wireing should
hold the cost down to, say, $2.00 per bit.

Studies conducted during the design of the KDF.9 computer at English
Electric indicate that for a conventional computer, & pushdown accumulator
of 16 cells should suffice for most needs. It is not immediately obvious
that this result will apply to a linked-list computer, but even if it should,
the restriction of this list, of all lists, to a maximum length would
throw an unacceptable burden on the programmer. Yet, clearly, at $2.00
per bit, we must keep the length of the pushdown stack as short as is
reasonably, since this mode of storage costs about four times as much
as nmain memory storage. The solution adopted here is to make the pushdown
stack "reasonably" long and handle overflows with other hardware.

The pushdown stack is divided into two sections that can "push" or
"pop" independently, as well as in synchrony. In addition to the 30 bits

required to store the word, an additional "occupancy" or "busy bit" is
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added to each word, making a total of 31 bits per word {see Fig. 5).

a. Drain cycle

As information is added to the stack, old information is pushed
down until the occupancy bit of the bottom word comes on. At this point,
an interrupt occurs and normal operation halts for a short time. The
symbol in the bottom cell is transferred to the I and S portions of the
distributor. At the same time, the address stored in another cell called
"0-link" is transferred to the L portion of the distributor. The address
of an unused cell is obtained from AVSPA control and is loaded into the
MAR and into "O-link."

A write operation is initiated and the lower half of the stack is pushed
down to clear out the bottommost word. If the occupancy bit of the bottom
word is still "one," the operation is repeated. 1If, at the end of a cycle,
the occupancy bit of the bottom cell is zero, the interrupt is terminated

and the regular program continues.

b. Refill cycle

As words are read out of the top of the pushdown stack in the
normal course of the program, a time will come when the words that were
stored away above will be required. At this time, the pushdown stack will
be empty and the occupancy bit of the top word will be zero. Again, an
interrupt occurs. The contents of the "O-link" register specifies the
location of the last word stored away so this address is sent to the
MAR and a read operation is started. When the read cycle is complete,
the contents of the I and S portions of the distributor are loaded into
the bottom word of the top half of the pushdown stack and that half of

the stack is popped. The L-portion of the distributor contents is transferred
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to O-link and to the MAR. If the occupancy bit of the topmost word is
still zero, another read cycle is initiated. If it is one, the interrupt

is terminated.

¢. Rationale

Since data is not available concerning the way in which
words are added to and removed from the communication cell, and since it
seems clear that, for most programs, words put into H-O will eventually
be removed, let us assume that the loading and unloading of H-O is a
random walk with symmetric probabilities. Actually, the situation will
be better than this in all likelihood because of the high proportion of
"in and out" operations which use the communication cell only for moving
things about.

Feller (1950) considers random walks in detail and a careful study
of optimum length for such a push-down stack should be made before any
componentry is assembled. Assuming an 8-cell stack (4 cells per half),
there will, on the average, be several operations (load or unload) before
a random walk makes & 4-unit excursion causing a "drain" of "fill" cycle
to begin. At this point, the walk may be considered to start over.

Using Feller's equation of 3.5 on page 287, we find that the expected
number of references to the communication cell after a drain or fill
operation has taken place and before it is necessary to drain or fill
again will be:

Dz = Z(a-z) = 4(8-4) = 16

for equal probability of
entering or withdrawing. These 16 operations do not include replacement

(overwriting) or copying out, but only pushdown or pop-up operations.
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Each drain of fill requires four half-cycle memory access times or
14 psec. Thus, the average access time for push or pop of a high speed.
stack will be: _

Yéa = 14/16 = .875 usec.

Such a technique might also be applied to the B-5000 or the KDf-9
with profit using, probably, a reserved section of main memory and a pointer,
rather than a linked list.

In our Linked-List Computer, we propose 19 pushdown stacks:

1 communication cell - 8 deep (30 + 1 bits)

1 instruction register link - 8 deep (15 + 1 bits)
7 working cells - 8 deep apiece (30 + 1 bits)

1 I/0 buffer - 30 deep (30 + 1 bits)

9 attics - 4 deep (30 + 1 bits)

Total nunber of bits involved here is L4158.

4, Working Cells

While most symbol transfer will occur via the communication

cell, there will be many times when high speed "working lists" will be
useful for sorting or callecting items. Furthermore, once a collection of
items has been entered on a working list, it would be desirable to be able
to treat that list directly, without having to transfer it into the communication
cell.

In the COMIT language, there is one "working space" (our CC) and
128 "shelves" (our working cells). Data can be transferred back and forth
between working space and any shelf and in addition, it is possible to
exchange the entire contents of a shelf and the working space in one machine

operation. This is accomplished by exchanging the "names", not the data.
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Since our communication cell and our working cells are all identical
except for their names, it seemed desirable to add an 8-register crossbar-
type switch which would permit "name exchange" at high speed. This is
instruction no. 117, which appears to the programmer to exchange the contents
of the two units. We provide only 7 "shelves" and not the 128 provided by

COMIT.

5. The Attics

If the operation of two programs is interlocked such that,
for example, program A finds "eligible cells" on some list, and program B
performs some operation on the cells found by A, it is convenient in IPL-V
to consider program A to be a “generator," in that it generates names for
B to manipulate. There are primitives (J-processes) defined which make
generator "set up" and "put away' simple to program.

To execute this type of function, we have included an "off-street
parking facility" called the "attic," where information pertinent to a
generator (or any program at a level higher than the current operating
program) may leave partially processed operations for later recall. There
will be an attic over each working cell, over H-0, and over the instruction
register link,l

The attics will, at least in the first design, be high speed pushdown
stacks linked into main memory but of a depth of only 4 units and not 8.

This measure of economy is indicated by the assumption that they will be

1. It is not clear, without more experience with this machine, whether
an attic over L(HI) is required. It seems as if it might be replaced by
relatively simple usage of the regular link stack, various branching in-
structions, and the "looping" instruction.
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used less often than the "regular" storage. Their design will be hysteretic
and "draid and'"fill" operations will involve only two cells at a time. Their

effective access time will be, therefore:

¥, = 3.5 x 2/2(4-2) = 1.75 usec.
In a sense,
these attics are just another group of working cells, but the nature of
the proposed design allows parallel transfer of information from the first
to the second group in one word time. When the contents of a working cell

and the contents of (0) are exchanged using alf7 instruction, the contents

of the respective Attics are also exchanged.

6. 1/0 Buffer

The operation of the I/0O buffer differs from that of the
other pushdown stacks in some ways. It may be viewed as a "tube", one
end of which is permanently attached to the I/0 selector and the other end of
which is connected, when required, to the distributor. The I/0 selector
determines which peripheral unit is being operated and in which direction
information is flowing. The I/O selector in turn is controlled by the
word at the head of the I/0 queue.
Let us suppose that we wish to output a list L-1 to tape unit 3.
Assume that the tape is sitting at the end of record mark. Using instruction

33, we add the following word to the tail of the I/0 queue (15):

P Q S

18 0 L-1
When this word reaches the head of the I/O queue, the first thing that happens
is that peripheral unit 18 (tape unit 3) is interrogated to find out if it

is busy. If it is busy, no further action takes place until it is free.
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Once this happens, q is examined. Since q = O, an output is called for and
an interrupt of normal processing begins. The S part of the I/O—queue-head
is transferred to the MAR and the I/0 buffer is connected to the distributor.
The contents of L-1 are read and the I and S portion, transferred to the
and to S(15)

I1/0 buffer, the link of L-1 is transferred to the MAR/ and another read
cycle begins. This process continues until either the I/0 buffer is full,
or else a link of zero is discovered. 1In either event, the interrupt is ter-
minated and normal programming resumes. Meanwhile, back at tape unit 3,
a start signal has been received and it is beginning to roll. When writing
speed has been achieved, the I/O buffer begins to drain its contents out
onto the tape. At an appropriate time before the last words are drained
out, S(15) is examined. If it is zero, the list was completely transferred
to the buffer already and is popped to bring up the next I/O command. If
S(15) is not zero, another interrupt is initiated and the I/O buffer refilled
as required, beginning where it left off in the cell named S(15). The
I/O buffer thus acts as a FIFO list coupling the peripheral units into
the main computer. Note that output of a list removes it from main memory
so if one wants it saved, he must make a copy.

The other I/0 commands shown in II-T-d function in a similar fashion.

The computer is designed to accept up to 3 I/O buffers and queues:
15, 16, and 17. With more than one I/0 unit, "queue discipline" (the order
of operations) becomes more complicated and it will be possible to in-
advertently attempt to output a list before it is input. It will be the
programmer 's responsibility to keep track, perhaps on a list somewhere, of

what is where.
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T. Word Format

Because they had to fit it inside an existing computer,
the authors of IPL-V were limited as to the word format they could choose.
We, however, are free to choose as we see fit. There are three sections
to a word in Triple-L: the instruction, the symbol, and the link to the next
word . If there are 32K words in main store, then the link must have 15
bits if it is to be capable of pointing to any one of them. By a similar
arguement, the symbol must also be 15 bits long. The instruction portion
of & word must allow for 2! = 128 instructions and 23 - 8 possible modes
of "indirect address." 1In addition to these 10 bits, we must store in-
formation about the kind of symbol (local, regional, etc.) the word contains
and perhaps if it has been processed or not. It seems convenient to allow
5 bits for these markers, bringing the total for the I-portion up to 15,
equal to the other two. Thus, our words will consist of three equal fields
of 15 bits each, plus one "busy bit" to denote occupancy of the memory cell.

Fig. 7 shows three possible formats.

a. Instructions

If a cell contains an instruction when its contents
are loaded into the IR, the first field will be treated in three sections:
m - marker bits
p - process to be carried out
q - "quality" of indirectness
The other two fields are treated in units as the SYMBOL to be processed
and the LINK to the next instruction.

i. Marker bits

There are five marker bits in each instruction labeled

Iy w2, m3, my, ms. They are interpreted as follows:
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m - sign - if O - word is positive
if 1 - word is negative

mo - local - if O - SYMBOL is a regional or an internal symbol
if 1 - SYMBOL is local and is the name of a sublist
of the list which contains this cell

m3 - responsible - if O - SYMBOL is to be treated merely as

an entry on this list
if 1 - SYMBOL names a cell or list whose

contents are to be erased when and
if this cell is erased.

m - processed - if O - not processed

if 1 - already processed
m5 - terminal cell - if O - not terminal

if 1 - is terminal

ii. Process code

There are 128 possible instructions. They are
divided into 16 groups of 8 instructions each and a detailed description of
each one may be found in the appendix.

iii. Quality bits

The quality bits determine how to find the effective

symbol on which the processing should be performed.

0 -- the effective symbol may be found in the S portion of the IR.
It is (S) itself.

1 -- S(IR) holds the address of where the effective symbol may be found.

2 -- S(IR) holds the name of a cell which holds the address of the
effective symbol (indirect).

3 -- S(IR) holds the location of a cell which holds the name of
another cell which holds the address of the effective symbol
(second-order indirect).

-- Use the g and s of the word stored in the cell named in S(IR).

Not assigned, may be used for moniter or compiler or programmer.

~ou
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b. Data
All numeric data is stored in floating point format,
as a 29-bit plus sign integer mantissa in the I and S portions of a word
and a 1l4-bit plus sign exponent. Genuine integers will have an exponent of
zero. Two groups of arithmetic operations are provided: Fixed point and
floating point, as well as float and unfloat instructions. Ingeter mode

operations will set the flag () on overflow.

¢. Head of list

The head cell of a list is reserved to store information
about that list. In the I-portion of the word is stored the address of the
last cell on the list - the tail. In the S-portion is stored the name of
the description list (if any) and in the L-portion the address of the

first cell.

d. I/0 commands

Words on the I/0 queue (lists 15, 16, or 17) have an
interpretation which differs from those of normal instructions. The marker
bits are ignored completely. The process bits specify which peripheral unit
is involved in the transfer and the quality bits indicate the nature of the
operation to be performed.

For an average machine installation, p might have the following

interpretations:
p
0 - console typewriter
1l - key-lights bank 1 always available
2 - key-lights bank 2 optional
3 - key-lights bank 3 optional
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4 - key-lights bank 4 optional
5 - key-lights bank 5 optional
6 - on line printer

T - card reader-punch

8-15 - up to 8 disc-units
16-31 - up to 16 tape units

32-127 - not assigned or remote keyboards or more tape or discs.

The actual configuration will, of course, depend on the desired applications
and finances.
The quality bits have the following meaning:
q
0 - output list S
1 - input list to S
2 - scan forward for S
- scan backward (tape) for S
- rewind tape
proceed to end of record

- select disc track S

~ OO U & W
]

- select disc sector S

III. Machine Language Operations

From the user's point of view, the most important aspect of a computer
is its command code, be this hard or soft-ware implemented. The repetoire of
available operations and the speed at which they are carried out will determine
the usefulness of the machine.

From a compiler writer's or a machine designer's point of view, the machine
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language or hardware commands are all important. The problem is not one of
what comrands are necessary and sufficient; "subtract the contents of x from
the accumulator and store the result in x", together with a branch on negative
accumulator, can play the Sheffer-strokes of the computing world. The problem
is to design an ‘efficient’ set of commands that, without excessive cost,
can perform most of the operations one is likely to need, and at high speed.
In general, the larger the hardware repetoire, the happier the compiler
writer. But, we don't want to go overboard. "Branch if the contents of the
accumulator is exactly 21" might be s very convenient instruction at times,
but the relative merits of installing the required hardware compared with
the cost of writing "subtract a cell holding 21, Branch on zero" seems to be
all on one side.

Only experience can really decide if a command structure is a good one
or not, and, unfortunately, by the time encugh expericnce has been accunulated,
the programmer is well acquainted with the tricky ways of getting around
the designer's oversights and like a tree root penetrating a crack, is
just properly shaped to fill the available space.

The command structure outlined in the appendix was arrived at in the
following way:

1. An initial list of all the operations and the J processes of
IPL-V and IPL-VI and & selected subset of the commands of COMIT was made up
since these represented the considered thought of earlier authors.

2. Those items on the list which could be replaced by a simple
concatination of two or three other entries were removed, but those whose lack
would require extensive "programming around" were retained, as well as those
operations for which a significant improvement in speed could be obtained

by suitable hardware.
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3. Operations required to make the hardware design arrived at above
more flexible were added.

4. Other operations that seemed "free' (utilized existing hardware
in a slightly different manner) were added.

5. The resultant set was discussed with Prof. Norman Scott of the
Electrical Engineering Department, and Dr. Philip Benkard of the Mental Health
Research Institute, who has had considerable experience in IPL-V. Prof.,
Scott urged me, among other things, to expand the arithmetic and logical
operations, and Dr. Benkard convinced me of the usefulness of 'generators"
in IPL-V, which resulted in the "Attics," and suggested the inclusion of
group 20 - indirect symbol movement.

Thus, the credit belongs to others and the mistakes to the author alone.
The reader will notice that several instructions and numbers are left blank.

He is urged to make suggestions regarding their useful employment.
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APPENDIX I

Command Structure

The following notation will be used:

(0) or CC - the communication cell. I + S, pushdown stack.
L-head of overflow list in core. +T-end of list.

(1)-(7) - working cells - I + S = pushdown stack. L-head of overflow
list in core. T-end of list.

(10) or IR - the instruction register. I + S control register.
L-pushdown stack. T-head of overflow list in core.

(11) - the distributor = ISL = 45 bits

I(12) - the available space register (AVSPA) - 15 bits
S(12) or COMP - the comparator - 15 bits

L(12) or MAR - the MAR - memory address register - 15 bits

(13) or - the lambda - the logical operation register.
ISLT = 60 bits.

(14) - the counter or accumulator. IS = mantissa L = exponent

(15)-(17) - I/0 buffer queue's I + S = head of queue L address of
next command. T-address of last command.

When a part word operation is indicated, the relevant section will be
designated as qt)(x), meaning the contents of the qb th part of register Xx.

qb may take on the following values:

0(x) - whole word - often omitted as (x)

the contents of the marker bits of register x. If mis-
subscripted (1-5), only the indicated bits are affected.

m(x)

P(x) - the contents of the process bits of register x
a(x) - the contents of the quality bits of register x
I(x)
S(x)

the contents of the first 15 bits of x, (I =m +p + q)

the contents of the symbol or S-portion of register x
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L(x) - the contents of the link or L-portion of register x

T(x) - the contents of the tail or T-portion of register x (for
certain high speed registers only).

s? - designates the "effective symbol."

Detailed Description of Instructions

(Lists end with a link of TT777. Any attempt to address this location will
set flag (=) and terminate instruction.)

O - Clear - set tle bits of the (1) part of high speed register n to zero.

=
1

Copy part - the bits of the q> 2 part of high speed register n,
are forced equal to the bits of the (Pl part of nj.

2 - Exchange - the left end of Cp 1(ny) is connected to the right end
of QDE(ng) and vice versa. A left shift of as many places
as there are in (D 1 is carried out.

3 - Find Eff. Symb. - clear I (11) to zeroxIf q(10) = O, copy S(10)
into S(12), and S(11). Terminate. If q(10) % O,
decrement ¢ by 1. Copy S(10) into L(12) the MAR and
Read and Rewrite. Copy S(11) into S(10). Return to *.

4 - Write in 8% - Find S (as in 3). Copy into MAR. Copy (13) into
(11). Pulse write wires.
5 - Read from S? - Find s9. Copy into MAR. Pulse read wires.
6 - Pushdown S* - Find 8%. Copy S(12) into L(12) Read. Copy
I(12) (AVSPA) into L(12) (MAR). [Note: This copy
ff will be held up until AVSPA does have a cell available. ]
Write (information into new cell).* Copy L(12) into
L(11), Copy S(12) into L(12). Set responsibility bit
(11) to zero. Write (info with new link back into old cell).
#7 - Pop up S - Find s%.Copy S(12) into L(12) . Read. If L(11)

is TTT77, clear (I + S) (11) to zero. Set m,(11)

(termination bit) to one. Rewrite. Set flag @ . Terminate.
SF If L(11) #MTcopy (11) into (13). Copy L(11) into

L(12). Read. Copy S8(12) into L(12). Write. Test

responsibility bit M (13); if zero, terminate. If one

copy S(13) into S(0). Erase list structure [execute L4° .

Symbol Movement

10 - Copy 8% into (0) - Find S%. Set responsibility bit of (11) to
zero. Copy IS(11) into (0). (___9)



11 -

*12 -

*13 -
14 -

*16 -

*17 -

Note 1(x)

20 -

%22 -
%23 -

2k -

25 -
26 -

27 -

%30 -

Copy S% onto (0) -

Move S9 into (0).
into L(12).

=26~

Find S89. Set responsibility bit of (11) to
zero. Push down (0). Copy IS(11l) onto (0). ( — )

Find s % Copy IS(1l)

into (0). Copy L(11)

Read. Copy S(12) into L(12). Write. (MN—> )

Move S onto (0) - Same as 12 but push down (0) at *. ( Vv )

Copy (0) into 8% -

(0) into Is(11).

Find s%. Copy S(12) into L(12). Read. Copy

zero. Write. (~——s=)

Set responsibility bit of (11) to

Copy (0) onto 8¢ - Proceed as in no. 6 until %, then copy (O)
onto IS8(11). Go on with no. 6. ( )

Move (0) iato 89 - as in 14 but do not erase responsibility bit.

Then pop-up (0). ( MN— )

Move (0) onto S - As in

Then pop up (0). ( Y )

INDIRECT Symbol Movement

the cell named in cell x.

Copy S9 into 1(0) - Find 8%. Set my(11)

into (13).

Copy (0) into L(12).

I3(11). Write.

15, but do not erase responsibility bit.

to zero. Copy (11)
Read. Copy IS(13) into

Copy S% onto 1(0) - Push down 1(0), then proceed as in 20.

Move S into 1(0) - Execute 20, then pop up S%.

Move S% onto 1(0) - Pushdown 1(0), then execute 22.

copy 1(0) into 8% - as in 14 but use contents of cell named in
(0) not contents of (0).

Copy 1(0) onto S? - First pushdown S9Y,then execute 2u.

Move 1(0) into 8% -

Execute 24, then pop

up 1(0).

Move 1(0) onto S? - Pushdown 5%, then execute 26.

List Scanning

Scan list (0) for 8% - Find s9.

S(13). Read and rewrite. Copy

into L(12).

¥Read and rewrite.

Copy S(0) into L(12) (MAR) and

L(11) into L(13) and
Shift (13) left 15 places



*31

*32

*33

*34

*35

36
37

Lo

41
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Copy L(11) into L(13) and L(12). Compare S(11) with

s(12). If equal, terminate. If not equal, test termination
bit of (11). If O, return to *. If 1, copy S(13) into
L(12). Read. Copy I(13) into L(12). Read. Set L(1l1) =
TTT77. Rewrite. Set flag (o) , terminate.

Note: No. 30 leaves the address of the cell which precedes
the cell containing 89 in I(13). The address of the cell
containing s? in S$(13) and the link o the cell containing
s9 in L(13). No. 30 also cleans up private termination cells
left by an attempt to pop up the last cell of a list, if

s? is not on the list.

Address of "parent’ of 89 on
list (O) replaces (0) - Execute no. 30. Copy I(13) onto S(0).
Clear I(0) to zero.

Address of 8% on list (0) replaces (0) - Execute no. 30. Copy
S(13) onto S(0). Clear I(0) to zero.

Address of "son" of S84
on list (0) replaces (0) - Execute no. 30. Copy L(13) onto
S(0). Clear I(0) to zero.

Value of attribute

(0) of list 8% replaces (0) - Find s, Copy S(12) onto L(12).
Read and rewrite. Copy S(0) into S(12). Copy s(11)
[name of description list] into S(O). Execute no. 30.%
Copy L(13) into L(12). Read and rewrite. Copy IS(1l)
into I5(0).

Address of value of attribute

(0) of list 59 replaces (0) - As in 34 until *. Then copy L(13)
into S(0). Set I(0) to zero.

no op.

no op.

List Modification

Insert S before 1(0) - Find s%. Copy IS(11) into IS(13).
Push down cell named in (0) as in no. 6 until *%. Then
copy IS(13) into IS(11) and proceed with no. 6 from *.

Insert % after 1(0) - Find s%. Copy IS(11) into IS(13).
Copy (0) into L(12). Read. Copy L(11) into L(13).
Copy I(12) (new cell) into L(11). Write. Copy L(11)
into L(12). Copy (13) into (11). write.

[Note: if (O) contains the name of a list, no. 41 adds
S* to head of list].
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42 - no op.

43 - add s to tail of

list (0) - Find % Copy I(11) into T(13). Copy (0)
into L(12). Read. Copy ISL(1l) into ISL(13).
Copy I(11) into L(12). Read. If termination bit
of (11) is one; copy S(12) into S(11). Copy T(13)
into I(11). Set L(11) to T7777. Write. Copy
ISL(13) into (11). Move (0) to L(12). Write.
Terminate. If termination bit of (11) is zero: Copy
I(12) into L(1l). Write. Copy L(11) into L(12)
and I(13). Copy 5512) into S(11). Copy T(13)
into I(11). set L(1l) = TTTT7. Write. Copy
ISL(13) into (11). Move (0) into I(12). Write.

[Note: No. 43 assumes that the address of thetail
of a list is in the I portion of the head of the
list.]

Lk - Push aside cell (0O) - Copy (0) into L(12). Read. Copy
15(11) into IS(13). Clear I(11) to zero. Set
m(11) to "local and responsible." Copy I(12) into
S(11). write. Clear responsible bit (n) to zero.
Copy IS(11) into IS(0). Copy S(11) into L(12).
Copy I(12) into I(11) and L(11). Set S(11) to
TTTT7. Write. Copy I(1l) into L(12). Copy IS(13)
into IS(1l). Set L(11l) = 77777. Write.

[Note: No. 4L creates a new, describable local list
and puts its name in (O) and into the cell named in
(0). The former contents of the cell named in (O)
become the first (and only) entry on the new list. ]

45 - Erase list structure S® - Find s%. Clear counter (1%) to zero.
Copy S(12) into L(12) *. Read. If S(11) 5= TTT77 copy S(11)
onto (0). Augment (14) by one; then (or otherwise)**.
Test L(11). If = 77777 or L(11) = O, decrement (1L)
by one. If (14) negative, terminate. If (14) > o0,
Copy S(0) into L(12), return to *. If L(11) 5 77777
or 0, copy L(11) into L(12). Read. Tert responsibility
bit of (11). 1If equal to zero, return to %%. If
equal to one, copy S(11) onto (0). Augment (1k4)
by one. Return to *%.

[Note: No. 45 will erase & list and then all the lists
mentioned (including the description list) for which there

is responsibility. Any kind of list structure (re-entrant,
knotted, threaded, tree, or branching) may be erased

without worry wusing no. 45, since the test on L(1l) at

** for zero prevents trying to erase an already erased cell.]

46 - Assign (0)' as value
of attribute (0) of list 8% - execute no. 35 (find address of value),
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then move (0) into S(12), then execute no. 16, 1, 5(12).
(Move (O) into cell named in S(12).

47 - Add (0)' as additional
value of attribute (O)
of list s? - execute no. 34 (get name of value). Test if local
symbol. If yes, execute nc. 41. If no, execute no. Lk
(create a list) and then no. 4l.

Fixed Point Arithmetic

40 - Add 1(s%) - add contents of cell 8% to contents of IS(1k).

42 - Subtract 1(S%) - subtract contents of cell S from contents of
IS(1h).

43 - Low multiply b£ 1(s%) - low order product of conteants of
cell S% and (14).

44 - Integer divide by 1(S?) - contents of IS(14) are divided by
contents of cell s%. Only integer part retained.

45 - Copy counter into S% - contents of IS(14) are stored in 15(5%).
L(s?) is not disturbed.

46 - Fractional divide by 1(8%) - I5(14) divided by contents of s9.
Remainder to IS(1k4).

47 - Set flag ) if exponent zero - If L(14)# 0, set flag ®
if L(14) = 0, set flag

Floating Point Arithmetic
%)

50 - Floating add 1(S

51 - Floating subtract 1(S%)

52 - Floating multiply by 1(s%)

53 - Float l(Sq) - coutents of cell s9 copied into IS(14) and right
shift of IS(1k) with count in L(14) until rightmost
bit of IS(14) is a one.

54 - Floating divide by 1(5%)

55 - Ground 1(s%) - contents of cell s copied into ISL(14). Shift
IS(14) and count until L(14) is zero.



56
57

60
61
62
63
6l
65
66

67.

70
T1
T2
13
T
[P
76
[
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no op.

no op.

Branch and Test

Branch to S? (do not save L(10))

Execute 52 (save L(10) for return)

no op.

Branch to S if sense switch q is set

Branch to S if qth part of (11) equals S(12)

Execute S if I/0 buffer queue g is busy

Repeat execute S? (0) times - Find s?. Copy S(12) into L(12).
Read. Copy S(11) into S(13). Copy L(11) onto L(10),
Copy I(12) into S(11). Write. Copy S(11) into L(12).
Copy IS(0) into IS(1l). Copy S(13) into L(1l). Write.

Continue at S if not finished - Exchange S(10) with L(12). Read.
Copy S(11) into IS(14) decrement by one. If counter not
zero, copy IS(1l4) into S(11). Write. Terminate.
If counter is zero, copy L(11) into 5(11), copy I(10)
into I(11), Copy S(10) into L(12). Move L(10) into
[Note: 1If no. 57 is in the head of a threaded list
S(in cell s), then a 56, 0, 8 will cause the list S
of instructions to be repeated (0) times. Since the
loop count is kept on a push down list named in S(S),
these instructions may be nested as desiredl

Branch to s if flag @ . Do not save L.

Execute S if flag © , do save L.

Set flag to S

Complement flag.

Preserve flag and set to S.

Pop up flag.

If counter > O, Branch to S.

If counter = O, branch to S.
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101
102
103
104
105
106

107

110
111
112
113
11k
115
116

117

120
121

122
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Test and Set Marker

Execute S if my(0) =1 data
Execute S if my(0) = 1  local
Execute S if m3(0) =1 responsible

1l processed

1]

Execute S if my (0)

Execute § if m5(0) 1 terminal

Set m(0) to O whenever S;-S. has ones

5
Set m(0) to 1 whenever 8, -85 has ones

Mark list structure s% processed.

Stack Control

Transfer q symbols from (0) to stack S

Distribute q symbols from (0) to q stacks starting up from S
Distribute g symbols from (0) to g stacks starting down from S
Collect q symbols, one from each of q stacks starting up from S
Transfer g symbols from stack S to (O)

Pushdown q stacks starting up from S

Pop-up q stacks starting up from S

Exchange names of stack (0) and stack S

Logical Operations

AND (0) and ¢(5%) to (0)
OR

EXOR
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124
125
126

127

130
131

132

Complement

Blend - insert bits of C(S%) into (0) wherever lambda has ones
Cyclic shift left (end around) of (0) S places
Left shift of (0) S places

Right shift of (0) 3 places

Miscellaneous Operations

Count available space in counter (takes about 10 msec).
Push-up stacks into Attics.

Pull down Attics into stacks.
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fig 5a
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ATTIC

PUSH DOWN STACK

fig. 6
ATTIC CONSTRUCTION
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