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INTRODUCTION

In a recent review of the literature on the effects of lane markings in night driving,

Rumar and Marsh (1998) refer to the concept of two complementary road guidance

functions—long-range and short-range guidance—that are employed by drivers to support

the task of steering.  Long-range guidance enables the driver to predict the path of the road

ahead and to anticipate necessary steering actions, while short-range guidance is needed for

compensatory steering actions to keep the vehicle properly positioned in the lane.  Although

this two-stage steering model is generally accepted for daytime driving, there is less

evidence that drivers use the same steering strategy during night driving.  On the contrary,

past research showed that at night drivers have to rely on a different steering strategy

because of reduced visibility of the road ahead.  Specifically, it has been argued that under

night driving conditions drivers mainly have to rely on short-range guidance, because long-

range guidance is usually unavailable.  Any efforts to support long-range guidance at night,

either through improved vehicle lighting or through improved road markings, should

therefore support drivers’ steering behavior and thus possibly improve safety during night

driving.  This report deals with the effects of post-mounted delineators—a type of road

markings—on long-range visual guidance at night by examining driver steering behavior.
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REVIEW OF RELEVANT LITERATURE

There is extensive research on increasing the visibility distance of retroreflective

markings on the road through the use of improved retroreflective materials.  In a recent

review of the relevant literature, Rumar and Marsh (1998) reported that the resulting

preview times provided by lane markings are well under a safety criterion of 5 seconds.

Therefore, they concluded that current lane markings alone are not optimal for safe night

driving.  (In comparison, a recent joint project by the European Community (COST, 1999)

indicated a desirable absolute minimum preview time for visibility of lane markings of

about 1.8 seconds.)

While lane markings assist short-range guidance, they probably have little or no

effect on long-range guidance at night.  This is the case because the visibility distances

required to provide long-range guidance cannot be achieved at night by lane markings,

especially during adverse weather conditions.  One way of extending the distances at which

visual information about the road ahead is available is through the use post-mounted

delineators (PMDs).  The limited available empirical evidence suggests that PMDs could,

indeed, be helpful for long-range guidance at night (Good and Baxter, 1985; Triggs and

Fildes, 1986).

There is considerable evidence in the literature that the steering task during daytime

driving is based on two parallel mechanisms:

• Preview of the road ahead (long-range control).

• Continuous compensatory tracking of the lane in front of the vehicle (short-

range control).

Although tracking of the lane close to the vehicle is performed by the driver

continuously, with the experienced driver picking up the necessary information mainly

peripherally through visual cues of the lane boundaries, the driver also previews the road

by frequent eye fixations near the road expansion point.

In the following, I will discuss the evidence for two types of steering.  Specifically,

I will discuss perceptual information that the driver uses as input for steering, and how the

steering response is influenced by different types of information.  Next, the main previous

findings on the effects of lane markings on the nighttime visibility of the road will be

summarized.  Finally, a possible approach to evaluating the effects of lane markings on

driver steering at night will be presented.
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Perceptual cues for steering

Analyses of driver eye-fixation patterns indicate that during daytime, driver eye

fixations are more frequent to the far field than to the road edges (e.g., Serafin, 1994).

However, Mortimer and Jorgeson (1974) showed that at night this pattern changes.

Specifically, at night drivers tend to fixate at shorter distances because of the reduced

visibility.

Eye-fixation patterns of experienced drivers at night tend to resemble those of

inexperienced drivers during the daytime.  Mourant and Rockwell (1970, 1972) found that

there is a qualitative shift with increased driving experience:

• Inexperienced drivers perform compensatory steering actions that rely

primarily on visual input close to the vehicle.

• Experienced drivers also use preview information about the road ahead to

structure their steering behavior.

With increasing driving experience, eye fixations tend to shift to farther away from

the vehicle.  Experienced drivers spend more time fixating the focus of expansion and use

peripheral visual information for lane keeping.  For example, Summala (1998) showed that

experienced drivers were better able to keep the car in the lane than novice drivers when

they were forced to do a simultaneous, foveal, in-vehicle task.  A likely explanation for this

finding is that because of their improved lane-keeping skills, experienced drivers can focus

their attention at a greater distance ahead of the vehicle.  This change of focus allows

drivers to better anticipate and control the steering task, and to improve hazard control and

management of potential critical driving situations.

Land and Horwood (1998) distinguished two different visual search regions during

daytime driving:

• A distant region, which requires foveal vision and is used for preview.

• A near region, which can be utilized foveally and peripherally and is used

for position-in-lane feedback.

Riemersma (1981) identified changes in heading angle and lateral position as the

main visual cues for course control during straight-road driving.  Drivers can perceive

changes of these visual cues through the information in the optical flow field.  However,

they are much less sensitive to changes in heading angle, especially under reduced

visibility, such as at night.  Therefore, drivers in such situations rely primarily on

information about changes in lateral position close to the vehicle for their steering task.
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Driver steering models

Driver steering models divide the steering control task into two components: control

of lateral position and control of heading angle.  When there is sufficient roadway preview

and good roadway visibility, experienced drivers take advantage of preview information to

structure their steering control task.  In control terms, this structure consists of an outer

loop operating on lateral position and an inner loop operating on heading angle, where the

modification in the control of the heading angle is used to control lateral position (Baxter

and Harrison, 1979; McRuer, Allen, Weir, and Klein, 1977; Smiley, Reid, and Fraser,

1980).

While these steering control models are based on the assumption that drivers act like

an error-correcting mechanism with continuous attention allocated to the steering task,

Godthelp, Milgram, and Blaauw (1984) demonstrated that drivers temporarily switch to a

fixed steering strategy when it is necessary to allocate their attention to different driving

tasks.  Godthelp et al. (1984) introduced the time-to-line-crossing (TLC) concept for this

fixed steering strategy, which can be calculated based on the lateral lane position, heading

angle, and vehicle speed.  TLC represents the time necessary for the vehicle to reach either

edge of the lane, assuming a fixed steering strategy.  If TLC falls below a driver-specific

value (e.g., a necessary minimum time to react), or if the driver leaves a field of safe travel

(Gibson and Crooks, 1938), the driver has to allocate attention to the steering task again to

compensate for lane deviations.

Donges (1978) suggests a similar steering model with the following two levels:

• A guidance level, involving the perception of the future road course and a

response to it as an anticipatory open-loop control mode.

• A stabilization level, where deviations from the path are compensated in a

closed-loop control mode.

The better the anticipatory steering, which is provided by a good preview of the

road ahead and by clear visibility conditions, the less compensatory steering the driver has

to do.  This allows the driver to allocate more attention to other driving tasks.

All these driver steering models rely on the concept of preview, and the lack of

sufficient preview is one reason that the driving task is more difficult at night.  With

decreasing preview, the perceptible heading angle diminishes, and thus the driver has to

rely primarily on the lateral position for the steering task (Baxter and Harrison, 1979).

Interestingly, a steering strategy based on control for lateral position error is also found in
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novice drivers (Smiley et al., 1980).  As learning progresses, the shift of eye fixations

farther ahead of the vehicle allows the driver to better use the heading angle as a visual cue

for the steering task, but also enables the driver to better monitor the environment.

Driver steering models reveal the dependence of steering behavior on specific visual

cues that were already identified in eye-movement studies (Hildreth, Beusmans, Boer, and

Royden, 2000).  The most critical variable for steering is preview of the road ahead,

allowing anticipatory steering.  With reduced preview, as is the case at night, the driver has

to rely on visual lateral position cues closer to the vehicle.  In such situations, the driver has

to allocate more attention to the steering task, and the attention is directed closer to the

vehicle.  According to Sayed and Lim (1999), the driver's visual attention is influenced by

two mechanisms: internal and external focusing.  The internal focusing mechanism is

proactive, orienting the driver’s head and eyes to gather relevant information for the current

task.  The external focusing mechanism is reactive, and it is based on various

characteristics (such as conspicuity) of objects in the visual field.  According to this model,

improvements of the nighttime preview distance should extend the internal focusing farther

away from the vehicle and allow better external focusing in that extended area, making the

steering task easier and thus making driving safer.

Nighttime visibility of post-mounted delineators

Post-mounted delineators (PMDs) are normally spaced at equal distances along the

side of the road, supplementing continuous lane marking.  PMDs are designed to provide

additional visual cues about the road alignment.  Because they are mounted at a substantial

vertical elevation above the ground, their primary function is to provide better long-range

guidance at night.

In the U.S., the design guidelines call for retroreflector units that are capable of

retroreflecting light under normal conditions from a distance as far as 300 m (1,000 ft)

under high beam illumination (MUTCD, 1988, 2000).  These guidelines clearly allow

PMDs to be used to support long-range guidance.  However, it must still be demonstrated

whether drivers use these additional cues for their steering control task.  Surprisingly, only

limited research has been undertaken thus far to evaluate the effects of PMDs on the

steering control task at night.

Good and Baxter (1985) analyzed the effects of different road-marking conditions

on compensatory steering behavior (relying primarily on short-range information) and on



6

subjective ratings of the ease of forward planning (conceptually closely related to the

quality of long-range guidance).  The results showed, as expected, that there was an

improvement of the compensatory steering behavior when lane markings were present.  No

improvement in the compensatory steering behavior was found when lane markings were

supplemented with PMDs.  However, these results could have been expected because

Good and Baxter’s analysis was performed only on compensatory steering, without

including preview steering.  On the other hand, the addition of PMDs had a positive effect

on subjective ratings of the ease of forward planning.  Therefore, these results support the

assumption that PMDs are useful for long-range guidance, but have no effect on short-

range guidance.

Triggs and Fildes (1986) offered further evidence of the long-range guidance

information provided by PMDs.  In an experiment to evaluate driver performance near rural

road curves, Triggs and Fildes (1986) found that the addition of PMDs to lane markings

was beneficial by providing long-range information about the direction of curves before

entering them.  Curve-negotiation prior to the curve entrance has been identified by Donges

(1978) as an important anticipatory steering control behavior, which relies on long-range

guidance information.

Although the above reported studies showed positive effects of PMDs on long-

range guidance, Kallberg (1993) draws a pessimistic conclusion concerning PMDs.  In this

study, twenty pairs of similar rural road sections were selected in Finland.  PMDs were

installed on half of these roads.  The results showed an increase in speed and an increase in

the accident rate on roads with PMDs.  The increased speed indicates that drivers use the

PMDs as long-range guidance support.  However, the increased accident risk due to the

increased speed appears to offset any advantage of the PMDs.  Although road authorities

must take this increased accident risk seriously in their decision of whether to install PMDs

on rural roads, a closer look at Kallberg’s accident data reveals a possibility of a very

different interpretation.  Kallberg attempts to explain the increased accident rate with the

theory of selective visual degradation (e.g., Owens and Andre, 1996).  According to this

theory, the visual system consists of two parallel modes that are affected very differently by

reduced illumination at night.  The ambient mode, which is used by drivers primarily for

peripheral perception close to the vehicle, degrades much less than the focal mode, which

the driver needs in order to detect obstacles on the road.  At night, drivers feel confident

because they are still able to perform the lane-keeping task rather well.  However, the

deficiencies of focal vision become apparent only if there is an obstacle on the road, which
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the driver then detects too late.  (Late detection is considered the main driving error at night

[Rumar, 1990].)

Kallberg claims that PMDs support the ambient mode and therefore increase the

driver's comfort for lane keeping at night.  However, a different interpretation is possible.

If PMDs support long-range guidance, this support could enable the driver to direct

attention farther away from the vehicle and thus reduce the accident risk for objects on the

road.  The accident data cited by Kallberg (1993) even show some evidence that this might

have been the case, because pedestrian and bicycle data show a decrease in the accident rate

with PMDs.  However, because these accident types are rare, they have only a minor

influence on the overall accident rate.  If, on the other hand, Kallberg's claim about a

support of the ambient mode due to PMDs is true, there should be a decrease in single-

vehicle accidents.  However, this claim is not supported by his accident data, which show

an increase in single-vehicle accidents.

Consistent with Kallberg’s findings, Steyvers and De Waard (2000) also found that

driving speed increased on roads with lane markings compared to control roads.  Steyvers

and De Waard (2000) explained this increased speed in terms of behavioral adaptation,

which is always a concern when introducing extra safety measures in driving.  According

to Wilde's risk-homeostasis theory (one version of behavioral adaptation), drivers tend to

compensate for traffic safety improvements by faster or less cautious driving to maintain a

constant level of risk.  The possibility of risk homeostasis has created considerable

controversy (see e.g., Ranney, 1994).

In a recent literature review, COST (2000) concluded that increased visibility of

lane markings has a net positive effect on preview times, despite increased speed.

Specifically, COST (2000) concluded that although drivers consumed some of the benefits

of more visible lane markings by driving faster, they did not increase their speed enough to

eliminate all benefits of the increased visibility.

Information from drivers’ steering movements

One way of gaining better insight into the possible effect of PMDs on long-range

guidance is through an analysis of drivers’ steering behavior.  Analyses of the steering

behavior in the frequency domain suggest that two frequency bands characterize driving

steering behavior (McLean and Hoffmann, 1971):
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• A peak in the frequency band between 0.1 to 0.2 Hz corresponds to

preview steering.

• A peak in the frequency band between 0.3 to 0.6 Hz corresponds to

compensatory steering.

Blaauw (1984) analyzed steering data by calculating the proportion of the steering

energy in the higher frequency band (0.3 to 0.6 Hz).  The results of these analyses suggest

that there is a shift to higher frequencies as a result of higher task-demands for lateral

control (e.g., with narrow lanes, at high speeds, and with restricted preview).

Analogously, McLean and Hoffmann (1973) demonstrated that the proportion of

compensatory steering increased with reduced preview during daytime driving.

These studies suggest that the analysis of drivers' steering output could be used to

make inferences concerning the visual input drivers use for steering actions at night.

Specifically, it is predicted that steering data based on a strategy that has to rely only on

lane markings should result in more steering activity in the higher frequency band, as

compared to steering data based on a strategy that can use long-range guidance provided by

additional PMDs.

To test this possibility, an exploratory study was performed to obtain insight about

the feasibility of this approach.  The data were collected on a straight road section only.

There were two reasons for this restriction:

• A peak around 0.1 Hz could be masked by steering control movements

necessary to follow a curve (McLean and Hoffmann, 1971).

• Curve steering behavior relies mainly on a compensatory steering strategy

based on short-range guidance (Donges, 1978).

It should also be kept in mind that the proportions in the higher-frequency band

represent control effort rather than an absolute measure of steering accuracy (Macdonald

and Hoffmann, 1980).

Finally, it is difficult to directly compare nighttime and daytime steering data.  A

richer visual environment on rural roads during the daytime might lead to a switch of

attention from the steering task to other driving tasks (e.g., looking for something in the

environment).  Such an attention switch would lead to a very low steering effort and could

not be compared to a situation where the driver's attention is exclusively on the steering

task (Macdonald and Hoffmann, 1980).
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EXPLORATORY FIELD STUDY

Method

Task.  The subject’s task was to drive on a rural road at night in an instrumented

test vehicle with low-beam headlights on.  The UMTRI Driver Interface Research Vehicle

was used as the test vehicle, allowing the recording of steering data and speed (Katz,

Green, and Fleming, 1995).  Subjects were told that driving data would be collected during

the test drive.

Experimental conditions.  Two different road-marking conditions were tested:

lane markings, and lane markings plus PMDs.  The lane markings were on the outer edges

of the roadway.  They were 10-cm wide, continuous, and painted white.  (The roadway

also contained standard, yellow, 10-cm wide center lines.)

Twenty PMDs were placed at the right side of the road, 0.6 m to the right of the

roadway edge, spaced at 60 m from each other.  The PMDs were equipped with two 7.6-

cm-wide retroreflective bands made of encapsulated lens sheeting, separated by 5.7 cm.

The bands were mounted on 91-cm-high round posts, with the top of the higher band

86 cm above the ground.

Ambient conditions.  Each experimental session commenced at least one hour

after sunset.  At the test site, there was no street lighting and no other traffic was present

during data collection.

Experimental setup.  The study was conducted on a two-lane rural roadway

north of Ann Arbor (in Northfield Township).  The total length of the test route was

2.4 km.  Data were collected on a straight section of road.  Although the road was not

completely level, the preview distance provided by the PMDs that were not obscured by the

roadway exceeded 5 second at all times.  The data of primary interest consists of about 35

seconds of steering data, sampled at 30 Hz, beginning when the test vehicle passed the

second PMD.  (A total of 1024 data points were analyzed per subject).  After the subjects

passed the data collection section, they drove 8 km back to the beginning of the test route

by using connecting roads (not the test route in reverse).  The last five PMDs were past the

point on the road at which the data sampling was complete, so that the driver would have a

long preview throughout the data sample (a minimum of about 300 m, within the guidelines

of MUTCD, 1988, 2000).
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Data analysis.  To analyze the driver's steering behavior in the frequency domain

during the 35-second test section, spectral density functions were computed for each

subject by using a direct Fast-Fourier Transform (FFT).  Spectral resolution was 0.03 Hz.

The spectra were studied in detail by analyzing the proportion of activity in two specific

frequency bands (Band I and Band II, see Table 1).  The limits of these bands were chosen

in accordance with the recommendations by Blaauw (1984).  The critical proportion was

defined as follows:

(Activity in Band II/Combined Activity in Bands I and II) x 100

Under normal driving conditions with no extra tasks, this calculated steering proportion can

be interpreted as steering effort, with higher values representing higher steering effort

(Blaauw, 1984).

Table 1
The limits of the two frequency bands for the analysis

of the driver's steering control movements.

Band Frequency (Hz)

Band I 0 - 0.3

Band II 0.3 - 0.6

Subjects.  Four male licensed drivers participated.  They ranged in age from 35 to

53 years old, with a mean of 42.

Design.  The subjects were tested individually in sessions lasting about 75

minutes each.  The subjects drove the test vehicle 11 km to the test site to get acquainted

with the experimental car.  At the test site, they drove the test road section three times, the

first two times with PMDs.  After the subjects completed the second trial, the PMDs were

removed.  Because this was an exploratory study, the order of the two treatment conditions

(lane markings vs. lane markings with PMDs) was not counterbalanced.  However, pilot

tests showed that there was an order effect, mostly evident in comparing the first and

second run through the route.  Therefore, the condition with PMDs was driven twice by

each subject.
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Procedure.  Two experimenters ran the experiment.  One experimenter was seated

in the back of the test vehicle to control the data recording.  The other experimenter waited

at the end of the test road to monitor oncoming traffic.  If the road was clear, he informed

the first experimenter via radio that the test run could be started.

The subject was instructed to drive as normally as possible and not to exceed the

posted speed limit of 72 km/h (45 mph).  The subject was instructed to use only low-beam

headlamps during the experiment.  There was no additional explanation with regard to lane

markings or PMDs.

Results and Discussion

The main results are presented in Figures 1 and 2.  Figure 1 shows the steering

effort for all four subjects under the different driving conditions, while Figure 2 shows the

average speed.

As expected, the subjects showed reduced steering effort during the second trial,

which can be attributed to learning.  After removing the PMDs, the steering effort did not

decrease further for three subjects (Subjects 1, 2, and 3).  On the contrary, there appears to

be an increase in steering effort for these three subjects.  This increase in steering effort can

be attributed to the decreased preview available when only the lane markings were present

(McLean and Hoffmann, 1973).  These trends are consistent with the hypothesis that

PMDs can be used as long-range guidance to assist steering.

While the data of three subjects showed that a frequency analysis of the steering

behavior could be promising in identifying the use of long-range guidance at night, the data

of Subject 4 do not support this hypothesis.  Contrary to the expectation, Subject 4 showed

a decrease in steering effort even during the third trial, during which only the lane markings

were present.  Discussion with Subject 4 after the data analysis suggested a possible

explanation for his discrepant steering behavior.  Subject 4 was very concerned about

possible encounters with deer during the experiment, as he had already stated during the

experiment.  With more experience because of the repeated exposure to the experimental

route, the subject may have switched some of his attention away from the relatively easy

steering task and devoted attention to the road environment and possible deer crossing.

Switching attention from the steering task to other driving tasks has been identified with

reduced steering effort (Macdonald and Hoffmann, 1980).  This could explain the subject's

very low steering effort during the third trial.
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Figure 1.  Steering performance in each of the three consecutive driving conditions.

Figure 2.  Average speed in each of the three consecutive driving conditions.
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The average speed driven on this road section further supports this assumption (see

Figure 2).  After the expected speed increase from the first to the second trial, the first two

subjects did not exhibit further speed increase from the second to the third trial, and the

increase in the speed for the third subject was only minor.  This is consistent with the

notion that the driving task became more difficult for these three subjects after the PMDs

were removed.  The average speed data of Subject 4 show a somewhat different pattern.

Subject 4 increased his average speed even between the second and third trial, indicating

that he felt more comfortable about the road section as the experiment progressed, possibly

allowing him to switch attention away from the steering task.

The results of this exploratory study suggest that steering output is a promising

method for studying long-range guidance provided by post-mounted delineators.

However, using repeated trials on the same road sections is problematic because an effect

of experience cannot be ruled out.  Therefore, different, but comparable road sections

should be used in future studies to test the influence of different road marking

configurations on steering behavior.
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CONCLUSIONS AND IMPLICATIONS

There is some empirical evidence from prior research that PMDs are used by drivers

to support long-range guidance at night (Good and Baxter, 1985; Triggs and Fildes, 1986;

Kallberg, 1993).  The results of this exploratory study, using frequency analysis of

steering behavior, also support that claim.  The present findings are consistent with

information-processing and visual-search models.  PMDs provide long-range guidance

cues, and at the same time can enlarge the driver's field of attention farther away from the

vehicle.  Such an attentional shift might be especially helpful on dark rural roads, where

visual search is often not top-down (i.e., not guided by drivers’ expectations) but rather

bottom-up (i.e., guided by conspicuous stimuli).

In order to be usable for long-range guidance, PMDs should be visible at a preview

time of at least 5 seconds (about 140 m at 100 km/h) under low-beam illumination.  PMDs

should be used in combination with lane markings, which provide suitable short-range

guidance.

The issue of spacing between PMDs was not addressed in this study, but is of

theoretical and practical interest.  Very close spacing of PMDs in curves is likely to be

unnecessary, because drivers mainly rely on short-range guidance from lane markings for

their lateral control task in curves (Donges, 1978).

In summary, analyzing steering data in the frequency domain could prove valuable

in obtaining information about the use of PMDs for long-range guidance.  However, more

extensive data are needed to explore this promising possibility.
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