THE UNIVERSITY OF MICHIGAN

Memorandum

PDP-8/338 EXECUTIVE SYSTEM

Daniel R. Frantz

CONCOMP: Research in Conversational Use of Computers
F. H. Westervelt, Director
ORA Projegt. 07449.:

Supported by P e

DEPARTMENT OF @EFENSE "?\p

ADVANCED RESEARCH PROJECTS AGENCY
WASHINGTQN D C "

CONTRACT NO. DA-49-083 0SA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION, ANN ARBOR

June 1967

£ngn
UM
1502

Credits
fntroduction
1. OrganiiatiOntof Storage: 'Program'" and "Data"
2. The Librarian
2.1 The Communicator »
2.1.1 Format of Commands
2.1.2 Debugging Aids
2.1.2.1 DUMP
2.1.2.2 REPLACE
2.1.2.3 GOTO
2.2 Multicore Assembler-Loader System (MALS)
2.2.1 Initialization Commands
2.2.1.1 START
2.2.1.2 LINK
2.2.2 Program Continuation Commands
2.2.2.1 LOAD
2.2.2.2 RESUME
2.2.3 Execution
2.2.4 The Loader
2.3 Service Routine Connections
2.3.1 System Service Routines
2.3.2 Interrupt Service Routines (ISR)
2.4 Executive Subroutine Caller (ESC)
3. The MALICS Assembler
3.1 ALICS Changes
3.2 Additional Pseudo-ops

TABLE OF CONTENTS

3.2.1 Data Field Reference Pseudo-ops
3.2.1.1 FLDHER
3.2.1.2 DJHER Expression
‘FIELD Expression
‘Name Reference Pseudo-ops
ENTRY NAME
SUBR NAME
me Pseudo-ops
DATNAM NAME
FBA NAME
Pseudo-ops
PEND
DEND
END

= o.
- 0 -
NN R =
.o .

N

O .
+ - ® .
= .
AN N ® NS W

o.
NN DN NN N
O N N SO

NN WO N RTO W WY W

iii

PAGE

N

(ol N B RN e NN T, |

= = O O O WO o

17

18
18
19
20
20
20
21
21
21
22
23
23
23
24
24
24
24

PAGE

3.3 Overrides 24

3.4 Absolute Programs 25

4. The Monitor 25

4.1 Interrupt Scheduling 26

4.2 Interrupt Service Routine Format 26

4.3 Monitor Calls N 27

4.3.1 Monitor Initialization 27

4.3.2 Non-standard Interrupt 28

Service Routines

Appendix 1 Subroutine Calling Conventions 29

Appendix 2 Start-up Procedures 32

Appendix 3 Relocation Codes 33
DF:mb

iv

CREDITS

In the fall of 1966, a series of meetings of the person-
nel associated with the Terminal Room Operations Group pro-
duced ideas leading to the general arganization of the system
described in this manual. Among the contributors were J.
Allan, T. Antrim, D. Frantz, B. Herzog, J. Jackson, S. Lund-
strom, W. Seider, and R. Taylor. Subsequently, J. Jackson
designed and programmed the interrupt monitor; R. Taylor
modified and supplemented the ALICS assembler until it turn-
ed into MALICS; and the author programmed the loader/librarian

and supervised the assembly of the various parts of the system.

PDP-8/338 EXECUTIVE SYSTEM

INTRODUCTION

This manual describes the first step taken to provide
a coherent executive system for the Digital Equipment Cor-
poration's Type 338 Programmed Buffered Display (a PDP-8
computer and a display controller that drives a cathode-ray
tube). The hardware may be viewed as two different computers
operating on the same storage area, but each with a different
scheme for accessing data. In addition, the organization of
the storage area (3 "banks" of 4096 words each, and 32 'pages"
of 128 words each in each bank) makes it impossible to treat
all data and programs in a uniform fashion. The system is
an attempt to provide a flexible method of handling these
two problems.

The executive resides in core bank zero during the load-
ing and execution of a program. Part of the executive is a
relocatable linking loader that will load a binary tape pro- -
duced by the MALICS assembler. A user's programs are put
into core banks one and two, providing him with approximately
8,000 words of working core storage. During execution, a pro-
gram may call on the Executive Subroutine Caller to aid in
calling subroutines across the core bank boundaries. Also
during execution a priority interrupt dispatcher (the '"monitor")
provides a flexible tool for input-output processing and an
effective method for computer display interaction. After
execution of a portion of his program the user may swap pro-
grams into and out of core while maintaining the integrity
of his data files. These functions and additional features
are explained in detail below.

Thorough knowledge of the PDP-8 internal organization

and some knowledge of the display controller is assumed.

-2

This information may be obtained from the PDP-8 User's Hand-

book (DEC-85) and the Programmed Buffered Display 338 Pro-
gramming Manual (DEC-08-G61B-0). The-ALICS-II Programmer's

Manual (Information Control Systems, Inc., Ann Arbor) is re-
quired reading for the section on the MALICS assembler.
This manual and the system it describes are subject to

change at any time.

1. Organization of Storage: '"Program'" and '"Data"

The 8,000 words of relocatable core are divided into
storage assigned for "Program" routines (also called sub-
routines or programs) and '"Data" routines (also called data
files or display files). Subroutines generally consist of
PDP-8 instructions (and local data) needed to solve a prob-
lem. There 1s no main program, but there is a principal
subroutine that will be called first. Data routines general-
ly act as common storage for many subroutines and quite often
include sets of instructions for display generation. Each
routine has associated with it a name (or names) that may
be referenced by other routines. For example, MATMUL may
be the name of a subroutine that performs the multiplication
of two matrices, and CUBE may be the name of the data file
that contains the display instructions for displaying the
projection of a cube on the face of the cathode-ray tube.
Other routines may refer to these names through the appro-
priate type of control linkage, either subroutine or data
linkage, respectively. The main distinction between program
and data, however, arises in the handling of very large prob-
lems. A program that requires 13,000 (decimal) instructions
obviously can't be put into core all at once. The programmer
may be able to divide the instructions into two blocks, one

of 7000 and the other of 6000 instructions. He can then load

-3-

and run the first block and when it is finished he can
"LINK," that is, wipe out the first block, load, and run
the second. Because the first block calculates data need-
ed by the second, the data should not be wiped out when
the second block is reloaded. The division into program
and data routines facilitates this procedure. All data
routines and data name definitions are saved intact during
LINKing, and all program routines and program name defi-
nitions are wiped out. The space the programs previously
occupied is then made available to other routines. When
the new "link" is loaded (i.e., a new set of subroutines
and, perhaps, additional data file definitions), connections
can be made to the data files still in core via the data-
name definitions.

Data and program routines share the available re-
locatable storage (i.e., about 8,000 words). In the cur-
rent system, program routines are allocated storage starting
at either location 10200 or 20200 (octal) and continuing
into the higher numbers; data routines are allocated storage
starting at either location 17777 or 27777 (octal) and
continuing downward. Relocation is done by pages, i.e.,
every program is loaded starting at a page boundary (a
multiple of 200 (octal)). Thus, if a program 120 locations
long is loaded at 10200, the next program starts loading
at 10400.

Routines cannot be split across core boundaries.
Routines may refer absolutely to any of page zero in banks
one and two except locations three through seven (3-7), which
are reserved for the Executive Subroutine Caller. (It should
_be noted, however, that since routines may be loaded into
different core banks, directly addressed page zero instruc-

tions of two separate routines may be in different core

-4

banks, so that the same instruction might refer to two
different locations. Thus, page zero addressing should
be used only for communications within a single program.

The assignment of program o; data type to a routine
refers only to the way routines are manipulated in the
linking process. A defining facility in the MALICS
assembler assigns the type of storage a routine will re-
ceive when loaded. This facility makes a distinction be-
tween program and data, but the distinction is not meant
to be a restriction of the use of a linkage type to its
respective type of routine, although such a division re-
flects the most common use of the linkages. Thus sub-
routine control linkage (using the ENTRY and SUBR pseudo-
ops) is provided to enable a transfer of the PDP-8 pro-
cessor to a location defined in another routine and is
usually associated with '"programs." The data or diSplay'
control linkage (using the DATNAM and FBA pseudo-ops) is
provided for transfer of the 338 display processor, which
usually takes its instructions from files that are treated
as common storage by many subroutines (i.e., a data file).
In certain, somewhat complex uses, however, both types of
linkage may be present in both types of routines so that
the routines may take advantage of both the swapping algo-
rithm and the different types of linkages.

Wafning: Care should be taken in mixing control link-
age types within a routine since unexpected results may
~occur when LINKing. Both types of linkage definitions
share a table in the librarian known as the linkagé or
‘librarian's table. The definitions are stored according
to the type of linkage (i.e., all "subroutines' together
and all '"datas' together) and not according to the type

-5-

of routine in which they occur (i.e., a data linkage de-

finition occurring in a program-type routine is stored with

other data definitions). When the program is LINKed, all

the data definitions are kept, and all the program defini-

tions as well as the programs themselves are destroyed.

Observe that this has two effects: 1) Data definitions

that were defined from program subroutines are no longer

valid since the routine is gone, i.e., the definition

exists in the table, but the routine no longer is in core;

2) some subroutine entry points are safely situated in core,

but their definitions are no longer available in the librar-

ian's table (because all program definitions were destroyed),

so that they can no longer be called through the Executive

Subroutine Caller and are thus effectively unavailable.
Currently the table can accommodate a total of 64

definitions (program and data names).

2. Librarian

The librarian is that part of the executive responsible
for keeping track of what is in core and where. It also
provides teletype communication to and from the console, thus
enabling the user to initiate loading and do limited debug-
ging.

The librarian is divided into two parts: MALS (Multicore
Assembler-Loader System), the portion that controls loading,
defines routine names, and creates linkages; and the com-
municator, which accepts and interprets the commands to

MALS and the debugging routines.

2.1 The Communicator

After the system has been loaded and started, the communi-

cator indicates its readiness to accept input by typing WHAT

_6-

NOW? (Note: messages typed by the computer are capitalized

and underlined.) Any of the commands described below may

then be given.

2.1.1 Format of Commands

Each command is typed entirely on one line (of at most
72 characters, including spaces) and is terminated by a
carriage return. When more than 72 characters are typed,
the message RETYPE is given and the line ignored. Where
more than one word is needed to specify an action (for
example, when parameters are required), the pieces of in-
formation must be separated by at least one space; addition-
al spaces are ignored. For example, DUMP 55 is a legal
command, while DUMP55 is not. Only the first three char--
acters up to the next blank (or carriage return) are ignored.
Thus DUMP 55, DUM 55, and DUMBELL 55 are equivalent commands.

The characters ' (double quote) and ? (question mark)
are used for input editing. If the user makes a typing
mistake, he may erase the last typed character by typing a
double quote ("). Two double quotes (" ") erase the last
two characters, etc. Thus, both DB"UMP and DBM"'"UMP are
equivalent to DUMP. To delete a whole line and restart it,
the question mark (?) may be used. This procedure will
initiate a carriage return and line feed so that a whole
new line becomes available. As mentioned above, input of
a carriage return terminates a line and requests the ap-
propriate action to be taken.

If a command is incorrectly formed (i.e., if it occurs
out of context, is misspelled, or has incorrect parameters),
~ the communicator types WHAT?, and the user is given another
chance to enter input. During the course of a procedure
the user may be asked a question. Should he not want to

answer it, he may type in "STOP," and the communicator

-7

will revert to the original command-accepting state.

2.1.2 Debugging Aids

The commands DUMP, REPLACE, and GOTO may aid in debugging

programs. Additional commands may be added later.

2.1.2.1 Command: DUMP N1 N2

This command provides a typeout of the core locations
specified by the parameters. N1 and N2 (optional) are octal
parameters that must be in the range 0-27777. If N2 is
present it must be greater than or equal to N1 and must also
be in the same core bank as N1. Leading zeros in the address-
es need not be specified. If only N1 is given, only the
contents of location N1 will be given, with an appropriate
label. 1If both N1 and N2 are given, all locations between
and including N1 and N2 are outputted, eight words per line
with appropriate labels.

Examples:

DUMP 45

00045 XXXX

DUMP 20105 20117

20105 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

20115 XXXX XXXX XXXX

2.1.2.2 Command: REPLACE N1 N2 N3..... NI.

This command permits the teletype-user to alter the
contents of core. All the NIs must be octal numbers in the
range 0-27777. Any five-digit NI (filled out with leading
zeros if necessary) acts as an origin, and all following
four-digit (or smaller) numbers are treated as data, taken
from left to right, to be loaded into origin, original+l,...
A1l four-digit (or smaller) numbers up to the first five-

digit address are ignored.

Examples:
REPLACE 14321 15
effect: 14321 4= 0015
REPLACE 23201 21 4 13220 5204
effect: 232016~ 0021
2320240004
‘ 13220 &= 5204
REPLACE 15 4251 00077 0407 21111 12222
effect: 00077¢— 0407
Any illegal character or number in the input line stops
the processing immediately, although all valid replacements

to that point will have been made.

2.1.2.3 Command: GOTO ADDRESS DF

This command enables the user to transfer program control
while at the teletype. ADDRESS is an octal number that must
be in the range 0-27777, and DF must be 0,1, or 2. The Data
Field Register is set from DF, and control is transferred
immediately to location ADDRESS.

Examples: GOTO 10200 1

GOTO 600 2

2.2 MALS (Multicore Assembler-Loader System)

MALS is the part of the librarian that directs the
loading of the user's routines by allocating storage, de-
fining external names (i.e., subroutine and data names),
and providing the proper types of linkage. MALS is activated
through the communicator by any of the following commands:

START, LINK, RESUME, or LOAD.

2.2.1 1Initialization Commands

2.2.1.1 Command: START

The command START reinitializes the entire executive
system. It clears the library tables, defines all re-
locatable core to be available, ;nd sets all Interrupt
Service Routines (ISRs) and system routines to their
standard definitions. Processing then continues as in

RESUME.

2.2.1.2 Command: LINK

The command LINK wipes out all program definitions,
declares as available all core previously occupied by
program routines, and redefines ISRs and system routines.
All data definitions and routines are maintained intact.

Processing then continues as in RESUME.

2.2.2 Program Continuation Commands

2.2.2.1 Command: LOAD

The command LOAD directs the loader to load the tape
in the reader without further ado. When loading is finished,

control reverts to command state.

2.2.2.2 Command: RESUME

The command RESUME maintains the current state of all
tables and directs preparation for execution. It first

asks the question:

SYSTEM- -

requesting the input of the six-character at most name of

the primary subroutine, i.e., the first subroutine to be

-10-

called when the user's system of subroutines and data are
loaded. This name must obviously be of the same form as
variables defined in the assembler. It is terminated by
the first blank on the input line. Trailing blanks need
not be supplied in the case of a name of fewer than six
characters. This name is placed in the librarian's sub-
routine table.

The librarian's tables are checked to see if all
external names (subroutine and data) are defined. (Obviously,
the primary subroutine is not defined the first time through.)
If an external name is not defined, the following question

is typed out:

DO.YOU HAVE A TAPE FOR XXXXXX?

where XXXXXX 1s the name of the undefined routine. A
"YES" or "NO" answer is expected, although the user may
type "STOP," thereby returning to command mode, if he
decides not to answer.

If the answer is "NO" and the definition requested
is of program type, the librarian will make the linkage to
a special routine that intercepts calls to the nonexistent
routine and returns control to the executive system. (This
feature is to allow checkout of independent portions of
programs without having to load all subroutines needed.)
If the definition requested is of data type, there is no
safe way of linking or intercepting the faulty call, and
the user takes responsibility for continuing.

If the answer is "YES," the loader takes over.

It prints:

START READER

directing the user to load a binary tape in the reader and

-11-

to start the reader when ready. The program on the tape
is then put into core. During the loading procedure, new
names may be put into the librarian's table from the pro-
gram tape by its definition of external names and requests
for linkages. After the program has been loaded (See
Loader, Section 2.2.4 for details), the librarian once
again checks its tables, and if more names are undefined,
it repeats the above process. ISRs and system service
routines need not be defined by the user if he wishes to
use the standard routines that are available (See Section
2.3).

If two user subroutine entry points are defined as
having the same name, all connections will be made to the
last defined such name, i.e., the second takes precedence.
However, if two data routines are defined with the same
name the effect will be different because of the different
type of connection that is made. In particular, before
a data name is defined the second time, all linkages are
made to the first definition of the name, and after the
second definition of the name all linkages are made to
the second definition.

When all names have been defined and all linkages
made, the librarian prints a loading map with external
names and definitions, and asks: READY TO GO?

A "NO" answer returns the user to command state; a '"YES"

answer directs the executive to commence execution.

2.2.3 Execution

The executive starts the execution of a user's pro-
gram by calling his primary subroutine. The primary sub-

routine is so designated when the user answers the question

-12-

SYSTEM-- (as noted in Section 2.2.2.2). If more than one
name has been so defined, in the last-entered name becomes
the primary subroutine. Execution begins with the display
controller off, the monitor's interrupt table empty, in-
terrupts on, the Data Field and Instruction Field registers
both set to the field of the primary subroutine, and the
accumulator zero.

If the user wishes to initialize the display, instead
of issuing the direct command (SIC=IOT 145) to the display
controller, he should cail the system service routine SICDSP
that allows the monitor to determine which interrupts from
the display are enabled. This call must be made each time
the interrupt conditions of the display are to be altered
and, in particular, before it is started the first time.

The calling sequence for SICDSP is:

CLA /needed if AC#0
TAD INCOND /get initial conditions in AC
JMS 3 /call the ESC

SUBR SICDSP /for routine SICDSP
RETURN = cemmee e e e -

where INCOND is a location containing the bit configuration

specifying the initialization (See Programmed Buffered Dis-

play 338 Programming Manual). Control returns from the

subroutine to the next instruction after the call (i.e.,
to location RETURN) with the accumulator zero (See Ap-
pendix 1 for the remaining calling conventions).

After execution is completed, control may be returned
to the executive by the normal subroutine return sequence
(See Appendix 1) from the primary subroutine, in which case

RETURN TO EXEC is typed out; or control may be returned

directly from any part of the user's program by a jump to

-13-

location 600 (octal) in core bank zero, with both the
instruction Field and Data Field registers set to zero.
In either case, the executive enters command mode im-

mediately.

2.2.4 The Loader

The loader is the section of the librarian that reads
the binary program tapes produced by the MALICS assembler
and processes the program to relocate it in core and to
link it to other subroutines and to the librarian itself.
The format of the binary tape and the relocation codes
used are given in Appendix 3.

Immediately after the loader starts executing it

types out:

LOAD TAPE, START READER.

The user should then position the binary tape so that leader
code (200 octal) is in the reader and start the reader when
ready. The loader manipulates the data according to the
various ''relocation codes" (RC); each word of the progranm
has such a code associated with it. Some of the RCs are
direct instructions on how to load the data and some are
requests for information that is known only at load time
(e.g., relocation constant, linkages, etc.).

At the end of the tape is a ''checksum," the sum of
all the characters on the tape except the checksum. This
number was computed and punched by MALICS when it produced
the tape. As it reads the tape, the loader calculates the
sum of all the characters and at the end compares its con-
puted checksum with the one punched on the tape. If they

are identical the statement

-14-

LOAD OK

is typed out, indicating that the information on the tape
was probably transferred to the machine correctly. The
machine then stops. The user should turn off the tape
reader and press the CONTINUE key; control will then
return to the librarian.

Upon detection of an error during the loading process,
a suitable message is typed out and the computer stops.
The user should turn off the reader and press the CONTINUE
key. Control i1s then returned to command mode to await
the user's decision on the next step. The error messages

and their consequences are listed below.

CHECKSUM

The checksum computed by the loader does not agree
with the checksum on the tape. The information loaded

into core is probably incorrect.

ILLEGAL RC

The relocation code of the word just read is not
one of the legal codes (See Appendix 3).

Either of these errors indicates a misreading of in-
formation on the tape.

The misreading may be of the data, i.e., an incorrect
word was loaded into core, or the misreading may have been
of instructions on how to load, i.e., the data were put
into the wrong place. Thus, a word may have been loaded
into unused core, or it may have destroyed useful informa-
tion by being loaded over parts of the user's program that
had previously been loaded correctly, or, worse yet, it
may have been loaded over the executive itself. 1In either

of the latter two cases the respective programs must be

-15-

reloaded since they are no longer trustworthy.
Unfortunately, there is no way of assessing the
damage (although the first, least harmful case is most
probable). The most reasonable error procedure is:
1. Try to reload the program, i.e., type LOAD
and continue from the beginning of the loading procedure.
2. If the tape loads properly the second time, the
probability is high that the contents of core are correct
and that nothing was seriously damaged.
3. If the error persists, reload the executive
system and then try loading the tape again. If the error
persists, the program is probably a worn or defective tape.

The other loading error messages are:

MEMORY OVERFLOW

Memory cannot accommodate the program about to be

loaded.

TABLE OVERFLOW

The librarian's table cannot accommodate the external

definitions from this tape.

To correct these errors the program must be re-

organized.

2.3 Service Routine Connections

2.3.1 System Service Routines

The librarian's table contains a list of predefined
subroutine names which are available for reference by user
programs. These subroutines are resident in core and pro-

vide such services as teletype I/0 buffering and other

-16-

fairly standard operations. To call these subroutines,

the user need only request linkage to them by means of the
SUBR pseudo-op in his program. If he wishes to define a
subroutine with the same name as one of the standard routines
of this type, his definition overrides the standard one.

As additional system service routines become available,

descriptions of them will be published.

2.3.2 Interrupt Service Routines (ISR)

An ISR is a routine that processes an interrupt. It
interacts with other ISRs and the monitor in a special way.
The following subroutine names are 'reserved" to refer to

ISRs:

LPHIT DATFON
EDGFLG TTYIN
INTSTP TTYOUT
MANINT PBHIT

These names are associated with the interrupts:
lightepen hit, edge flag, internal stop, manual interrupt,
201 Data Phone, keyboard flag, teleprinter flag, and push-
button hit, respectively.

The standard routines may be used for handling
interrupts without making any special arrangements.
STARTing, MALS, or LINKing reset the handling of interrupts
to the standard routines. A user who wants to write his
own interrupt handlers must inform the monitor of these
routines by one of two methods: the first calls on the
monitor directly, during execution (See Section 4.3.2);
the second uses the appropriate '"reserved'" name in an ENTRY
statement. Upon recognizing the "reserved'" name, the li-
brarian will automafically make the necessary arrangements

with the monitor before execution starts.

-17-

A note of warning: The 1list of names is '"reserved"

in the following sense: whenever one of the names 1is
defined to the librarian as a subroutine name, it is assumed
to be a non-standard ISR and the monitor is informed of its
existence. If the routine is not an ISR, and an interrupt
of the indicated type occurs, the monitor will transfer
control to that routine—which probably won't do what the
monitor expects. In addition, a standard ISR is meant to

be called directly only by the monitor, and any other part
of a program calling on it will only create confusion.

A program ignoring either of these two facts will probably
"blow up." On the other hand, if the indicated interrupt
never occurs (e.g., if the dataphone is turned off), then

no problems result from use of the "reserved" names. It is
recommended, however, that these names be used only in their

"reserved" (i.e., ISR) sense to avoid confusion and possible

disaster.

2.4 Executive Subroutine Caller (ESC)

This feature of the system facilitates subroutine

calls across core boundaries. The standard subroutine call-

ing sequence 1s:

JMS 3
SUBR QQSV

for the subroutine QQSV. Locations 3,4,5,6, and 7 of each
core bank contain an ESC caller. From it, control is
transferred to the ESC in bank zero, which uses the iden-
tification created by the SUBR pseudo-op to transfer con-
trol to subroutine QQSV, wherever it may be. When sub-

routine QQSV is given control, the following two conditions

prevail:

-18-

1. The Data Field register is set to the field of
the calling subroutine.

2. Location QQSV contains the address (twelve bits
worth) of the location following the.,SUBR QQSV statement,
i.e., QQSV thinks it was called directly from the location
of the SUBR QQSV statement. This enables subroutines to
be written as if the ESC hadn't intervened and SUBR pseudo-
op were not necessary. (See Appendix 1 for further calling

conventions.)

3. The MALICS Assembler

MALICS (Michigan Modified ALICS) is a modification of
the ALICS-II assembler from Information Control Systems,
Inc., of Ann Arbor. ALICS was chosen because it was capa-
ble of producing the relocatable code which is deemed ne-
cessary for a flexible system; thus only minor additions
were needed to adapt it to our needs. ALICS also allows
the programmer to use literals. It has an automatic paging
feature which allows one to ignore the peculiar addressing
structure ot the PDP-8 within a core bank—i.e., it makes
the PDP-8 look like a machine with four thousand words
of directly addressable storage.

As of this writing, the version of ALICS on the system
does not have the '"convenience'" pseudo-ops AORG, BSS, and
SCI. These op codes will be added when Information Control
Systems releases the next modification level of the assem-
bler. Examples using these op codes are included for
completeness. The ALICS-II manual can be referenced with

the following emendations, changes, and notices.

3.1 ALICS Changes

It is questionable whether the automatic paging feature

-19-

can be used to much advantage except in large, prac-
tically self-contained programs and then only with a
great deal of care. The point in question is that in
an automatic paging system the assembler generates in-
direct instructions for off-page references. 1In a
multicore system the Data Field register is consulted
on TAD, AND, DCAsand ISZ indirect instructions so that
an assembler-generated indirect reference may refer to
a location in another {wrong) core bank if the IF and DF
registers are not the same. This problem might be cir-
cumvented by careful programming, but only use will
determine such a possibility. In a non-automatic paging
mode, literals must also be used with care. The pro-
grammer must allow room on every page for the literal
definitions, and must indicate to the assembler that
literals should be assigned for a page by using the
pseudo-op PAGE at the end of every page of code. He
must also write his own off-page indirect linkages.

The pseudo-ops ENT, CALL and EXT of the ALICS as-
sembler are no longer defined in MALICS. RORG has been
redefined to relocatably reorigin the program at the lo-

cation given in the address field. For example,

RORG 432
CLA

has the effect of putting the CLA into relocatable lo-
cation 432 (i.e., location 432 with respect to the begin-

ning of the program, which is based at 200 octal).

3.2 Additional Pseudo-ops

Several new pseudo-ops have been added to the assembler

to facilitiate a program's operation in a multicore environ-

-20-

ment and to enable it to define display files readily.
These additional pseudo-ops are most easily divided into
three groups: those referring specifically to core
banks, those referring to names of subroutines and data

files, and those referring to type of routine.

3.2.1 Data Field Reference Pseudo-ops

3.2.1.1 FLDHER

In conception, this pseudo-op is equivalent to a
(CDF*) if such an instruction were allowed. That is,
it is an instruction to change the Data Field register
to the core bank in which the program currently resides.
For instance, if the program were loaded into core bank
one, FLDHER would be 6211 (CDF ONE), or if it were loaded
into bank two, FLDHER would be 6221 (CDF TWO). since the
program doesn't know where it is going, the librarian

will supply the proper code at load time.

3.2.1.2 DJHER Expression

This op-code is used especially in conjunction with
display jumps. The occurrence of DJHER defines the low-
order three bits of the word being assembled as the data
field which the program currently occupies. For example,
if DJHER appeared alone as an instruction and if the pro-
gram ended up in bank two, the word would be loaded into
storage as 0002 (octal). A display jump takes two words,
with the three low-order bits of the first word specifying
the core bank to jump to. A display jump or push jump to
a location within the same routine may be coded using DJHER,
since the jump instruction and target location will cer-

tainly be in the same core bank. For example,

-21-

ABC: - - - - - - - Jdefine name ABC internally

DJHER JUMP /Display JUMP to location 1in same
/core bank, JUMP = 2000.

ABC /low-order 12 bits of jump
/instruction

DJHER may also be used for helping to set the initial
conditions flags in the display controller. One of the
start-up instructions for the display sets the break field
(core bank) of the first display instruction to be executed.
If the current program contains the first display instruction,
the following instructions will properly initialize the break

field register:

TAD BFINST /get DF in low-order bits

RTR+CLL /rotate to high-order bits for

RTR /display IOT format

CML+RAR /set enable bit (bit zero)

LBF /=6155--1oad break field
BFINST: DJHER /get current core bank

3.2.1.3 FIELD Expression

This op-code is employed when the user wants to load
in absolute mode (i.e., no relocation). The expression in
the operand field denotes the core bank into which the
remainder of the program is to be loaded. See the section

on absolute programs for an example of use.

3.2.2 Program Name Pseudo-ops

3.2.2.1 ENTRY NAME

ENTRY defines "NAME" as a subroutine entry point to be

-22-

made available to other routines. '"NAME" must have been

previously defined. For example,

JUNK: 0]

----/first executable instruction
/of subroutine JUNK

ENTRY JUNK/define JUNK to outside world.

ENTRY produces no code in the program but just sends
information to the librarian. More than one entry to the
program may be defined. See the sections on the librarian
and monitor for the special meaning of the following sym-
bols when they are defined by ENTRY: LPHIT, EDGFLG, INTSTP,
MANINT, DATFON, TTYIN, TTYOUT, PBHIT.

3.2.2.2 SUBR NAME

SUBR is a request for linkage to another subroutine.
"NAME" must be defined by appearing in an ENTRY statement
in another subroutine. At load time the librarian will
insert an identification code into the location of the
SUBR instruction. This identification is the location in
the librarian's table (in bank zero) of a two-word block
defining the location of the variable. The normal use of
SUBR is for a subroutine call through the Executive Sub-
routine Caller. For example, to call subroutine QQSV, the

following two consecutive instructions are sufficient:

JMS 3 /call to exec sub. call
SUBR QQSV /to call routine QQSV

-23-

3.2.3 Data Name Pseudo-ops

3.2.3.1 DATNAM NAME

DATNAM defines ''NAME" as a data file definition to be
made available to other routines. '"NAME" must have been
previously defined. DATNAM produces no code but just sends
information to the librarian. More than one data name may

be defined in each file.

3.2.3.2 FBA NAME

FBA (Fifteen-Bit Address) is a request for display
linkage to another data file. '"NAME" must be defined by
appearing in a DATNAM statement in another data routine.

The occurrence of FBA causes two locations to be altered

by ‘the librarian at load time: 1) the location of the FBA

op-code, into which is inserted the low-order twelve bits

of the address of "NAME," and 2) the location immediately
preceding the FBA, whose low-order three bits are replaced
by the data field into which '"NAME" has been loaded. This
pseudo-op is intended for use in conjunction with display
JUMPs and PJUMPs, which are two-word instructions, requiring

fifteen bits of address to specify a location. For example,

JUMP /JUMP = 2000 (octal)
FBA QQSV

will create (at load time) the proper two words to transfer
display control to the data file defined by QQSV. (See

the DEC 338 Programming Manual for more information on
display instructions.) FBA may also be used to help set
the initial conditions of the display break register (as

explained in Section 3.2.1.2).

-24-

3.2.4 Routine Pseudo-ops

3.2.4.1 PEND

PEND indicates the end of an assembly and that the
routine is to be loaded and assigned storage as a 'program"

routine.

3.2.4.2

DEND indicates the end of an assembly and that the
routine is to be loaded and assigned storage as a 'data"

routine.

3.2.4.3 END

END indicates the end of an assembly. The routine is
to be loaded without assigning special storage for it and
without altering the relocation constant from that of the
last routine loaded. END is used in programs which are

overrides or which are loaded in absolute mode.

3.3 OVERRIDES

Rather than completely reassembling a long program
when only a few corrections are needed, a user may choose
to write a symbolic override correcting only the faulty
instructions in the program. This override or correction
should be assembled in relocatable mode and be terminated
by the END pseudo-op rather than PEND or DEND. The re-
sulting binary (object) tape should then be loaded immedi-
ately after the program it is correcting. For example,
if only location 140 (relative to the first location of the
program, which is a relocatable 200 octaQ is in error and

the correction is to be a TAD ABC (where ABC is a relocatable

-25.-

55), the following would create a binary tape with the

desired information:

RORG 55 /define ABC as relocatable 55

ABC: -- ;

RORG 140 /reorigin with respect to the
/beginning of a relocatable
/program

TAD ABC /this instruction goes into re-

/locatable location 140

END /end of override.

3.4 Absolute Programs

Currently, there is no way safely to integrate absolute
and relocatable programs. The user must take all responsi-
bility for storage allocation if he choses to use any absolute
coding. However, all of the librarian's other features are
available to such programs, i.e., subroutine and data file
definition and linking, and subroutine calling through the
Executive Subroutine Caller.

To load in absolute mode two pseudo-ops must appear,
one to specify the core bank of loading and the other to
specify the address within the bank. For example, the
instructions to direct the loader to start loading a pro-

gram at location 24100 (octal) are

FIELD 2
AORG 4100

4, MONITOR

The monitor is .an interrupt dispatcher that identifies
the cause for an interrupt and transfers control to an

Interrupt Service Routine (ISR) which will do the required

-26-

processing.

4.1 Interrupt Scheduling

In the case of overlapping interrupts, the monitor
will stack the requests for service (one level deep for
each type of request) and then schedule the ISR's according
to priority assignable by the writer of the ISR's.

A standard ISR is one which resides in core bank zero
and whose entry point address appears in octal location
170+n where n is the interrupt number (defined below). If
several interrupts are assigned the same priority, they
are scheduled for service on a first-come, first-served
basis. The priority of an interrupt service may be altered
at any time by any program. However, only subsequent re-
quests for that service (i.e., occurrences of the associated

interrupt) will be scheduled with the new priority.

4.2 Interrupt Service Routine Format

An ISR is called by the monitor upon detection of the
associated interrupt. It is entered with the instruction
and data field registers set to the core bank the routine
occupies. | '

The ISR must first save all registers external to
itself which it will use (e.g., the atcumulator, the
multiplier-quotient register, the index registers, and
the instruction and data field registers). It then per-
forms all necessary data transmissions to or from the PDP-8,
resets the flag that caused the interrupt, and reenables
interrupts as soon as possible. It may also transmit
information to the user's program about the state of the

input/output procedure. When it is finished, it must

-27-

restore all registers and make a special exit to the
monitor to location 200 (octal) in core bank zero.
An ISR with the name SERV must be written in the

following format:

SERV: PRIOR /entry point, contents=priority #

_____ /first executable instruction

CIF /required 1f not in bank zero

JMP#* K200 /k200 contains 200 octal. This
/is the standard return to the
/monitor.

The monitor can be initialized to schedule all inter-
rupts for service by the system-supplied standard ISR's. A
user may replace any of the standard routines with his own.
The librarian provides an automatic mechanism for this re-
placement (See Section 2.3.2), although the user may choose

to initiate this action himself during execution (see below).

4.3 Monitor Calls

During execution, the user may call on the monitor
through the system service routines to effect the following
functions: monitor initialization, notification of non-
standard ISR's, and display initialization. For the format

of the call for display initialization see Section 2.2.3.

4.3.1 Monitor Initialization

Subroutine INTMON initializes the monitor so that
all interrupts are serviced by the standard ISR's. All
unprocessed interrupts are deleted from the monitor task
queue and the display is stopped. The calling sequence 1is

through the Executive Subroutine Caller:

-28-

JMS 3
SUBR INTMON

4.3,2 Non-Standard ISR's

If a user wishes to use his own interrupt handlers,
he may inform the monitor of their existence and location
during execution by calling system service routine OWNISR

through the ESC. The format of the call is:

JMS 3
SUBR OWNISR
SERV

DF

NUMBER

Where bits 6-8 of DF contain the data field of the entry
to the ISR (the remaining bits are ignored); SERV is the
twelve-bit address of the entry point; NUMBER identifies
the interrupts to be serviced according to the following
list:

Light pen

Edge flag
Internal stop
Manual interrupt
201 dataphone
Keyboard
Teleprinter
Pushbutton hit

NOoONUT A W= O

APPENDIX 1

Subroutine Calling Conventions

In general, a subroutine will not be in the same
core bank as the program that called it. The following
conventions have been adopted to help standardize com-
munications between subroutines that may not be in the
same bank.

Conventions

Upon entry, the subroutine may assume that:

1. The Instruction Field Register (IF) is equal to the
core bank which the subroutine occupies.

2. The Data Field Register (DF) is equal to the core
bank occupied by the calling program.

Upon return, the subroutine should:

3. Set the DF to the core bank of the calling routine.
Calling Programs

The Executive Subroutine Caller (ESC) aids the call-

ing program in meeting the first two requirements. For
example, the following two instructions (given in assembly
language) will produce the code for the ESC that will enable
it to set the DF to the calling bank, set the IF to the bank
of the subroutine, and transfer control to the subroutine

as if it had been called without the ESC.

JMS 3 /call ESC
SUBR SNAME /in order to call '"SNAME"

locations 3,4,5,6, and 7 of each core bank contain part of
the ESC. Location 3 is the entry to the ESC, hence the

"JMS 3" instruction, a call on the ESC. "SUBR SNAME" pro-
duces code at load time that uniquely identifies subroutine
"SNAME" to the ESC. Note that the ESC makes the call on

the subroutine look as if the ESC had not intervened and

as if the "SUBR SNAME" instruction were not necessary; that
is, the subroutine thinks it was called from the location at

the "SUBR SNAME" instruction and not the "JMS 3" instruction.

-29-

-30-

This is done so that the parameter list of a subroutine
call is immediately available to the subroutine without
having to skip over the location of the '"SUBR SNAME"

instruction. For example, if the main program were in
bank one and were calling subroutine SINE from location

1543, the following would be sufficient:

11543 JMS 3 JESC call
11544 SUBR SINE /for subroutine SINE
11545 PARX /with parameter X.

11546 RETURN: - - -
if subroutine SINE were in core bank two with its entry point
at location 1200, upon entry it would notice that: the IF
is 2, the DF is 1, and the contents of location 1200 (in bank
two) are 1545, as if the subroutine has been called with a
JMS from location 11544,

Subroutines

To function properly, a subroutine must first save the
contents of the DF so that it can be restored before re-
turning (if the DF is changed during execution of the sub-
routine), and then prepare the instructions to return to the
other bank. Only after these two tasks are completed can
the subroutine pick up the parameters and do its specified

task. The format for the SINE subroutine might be:

SINE: @ /entry point
RDF /get field of calling routine
TAD CDFINS /from CDF to calling field
DCA RET /put in return sequence
RDF /get field of calling routine -
TAD CIFINS /from CIF to calling field
DCA RETP1 /put in return sequence
TAD* SINE /get parameter to subroutine
ISzZ SINE /set return from subroutine
FLDHER /change data field to this core bank

/so that internal indirects work

RET:
RETP1:

CDFINS:
CIFINS:

0
0

JMP* SINE
CDF

CIF

_’31..

/procesé&ng of SINE
/CDF to calling field
JCIF to calling field

/return

The

Appendix 2

Start-up Procedures

executive system (librarian/loader, monitor, and

system service routines) is on paper tape and should be

loaded by
zero. To
press the

librarian

the BINARY loader (Digital-8-2-U) into core bank
start, enter 00 0600 into the switch register,
LOAD ADDRESS key and then the START key. The

is then'ready to accept commands.

-32

Appendix 3

Relocation Codes

When the loader is loading a word it makes use of
information about the word gathered by the assembler. The
information is contained in four bits, called the relocation
code, for each twelve bit input word.

Each word is specified by two eight Bit characters from the
input tape. The format of these characters is:

ROR1R2R3W0W1W2W3

W W W W WWoW oW1

R R.R.R, is the four bit reloction code and W ‘W, .. is
ol 23 o 11

the 12 bit word. The relocation codes are given below.

Code 0 0000 No relocation. The input word is loaded as
it stands. ’ o

Code 1 0001 Simple relocation. The input word is added
to the relocation constant for the routine
before loading.

Code 2 0010 Request for subroutine identification Code.
The next six characters (in ASCII Code) on the
input tape make up a subroutine name (left
justified with trailing blanks) which is in
the librarian's table. The location in the
librarian's table which defines the symbol
is loaded as the input word. This code is
produced by the SUBR pseudo-op.

Code 3 0011 ENTRY definition. The input word contains
the address of the entry point of a sub-
routine. The next six characters (in ASCII
Code) on the input tape make up the sub-
routine name (left justified with trailing
blanks) to be entered in the librarian's
table.

Code 4 0100 Relocatable origin. The next location to be
loaded into is given by the input word plus
the relocation constant. This code is pro-
duced by the RORG pseudo-op.

-33-

Code 5
Code 6
Code 7
Code 8
Code 9
Code 10
Code 11
Code 12
Code 13

0101

0110

0111

1000

1001

1010

1011

1100

1101

~34«

FLDHER request. A CDF instruction ‘to
the bank in which the program is being
loaded is loaded as the input word.’

Not used.
Not used.
Leader-Trailer Code. The input word

contains the tape check sum. This code
signals the end of the input tape.

Absolute origin. The next location to
be loaded into is specified by the input
word. This code is produced by the

AORG pseudo-op.

Request for fifteen bit address of data
routine name. The next six characters
(in ASCII Code) on the input tape make
up the name of a data routine (left
justified with trailing blanks) defined
in the librarian's table. The high order
three bits of definition at the symbol
is added to the last location which was
loaded. The low order twelve bits of
the definition are loaded as the current
input word. This code is produced by
the FBA pseudo-op.

FIELD definition. The input word defines
the core bank into which the remainder of
the program will be loaded.

DJHER request. The binary representation
of the core bank into which the program
is being loaded is added to the low order
bits of the input word and then the re-
sult is loaded.

DATNAM definition. The input word con-
tains the address of the definition of
a data name. The next six characters
(in ASCII Code) on the input tape make
up the data name (left justified with
trailing banks) to be entered in the
librarian's table.

Code

14

1111

-35-

Start of a "Data'" routine. The input

word contains the length of the sub-
routine (extended to the next highest
multiple of 200 (octal)).

IIIIIIIIIIIIIIIIIII

IWLEIIEERAININ

3 9015 02826

