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I. INTRODUCTION

The purpose of this report is to review the research effort as it
has progressed in the period from 1 August 1954 to 31 December 1955 on con-
tract N6 onr 23221, Project NR 385-203. During this period a significant
change has occurred in the type of research employed on this project in the
study of underwater sound propagation.

Heretofore the main emphasis had been placed upon statistical and
theoretical analyses of certain typeé of underwater sound propagation data
and submarine contact data as collected by various naval and Navy-sponsored
activities. The analyses were made to investigate the role of certain factors
in the environment on underwater sound propagation and target detection.

As will be evident in this report there have been two major divi-
sions of the research conducted over the past year. The work has followed
closely the outline submitted in a contract renewal proposal dated in November
of 1954. The two major divisions are listed below.

a. Theoretical studies of the scattering of radiation by rough surfaces.
b. Theoretical and experimental model studies of the propagation of sound
in shallow water.

The theoretical work devoted to the rough surface effects is briefly
reviewed in section 2.0 of this report. A separation of this from the theore-
tical approach to shallow water model studies is made for the reason that the
rough surface material is not directly related to the model study. In addi-

tion, the rough surface work has in large part been accepted for publication
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in various scientific journals. No experimental effort has been expended
during this period on rough surface scattering effects by this project.

In section 3.0 of this report both the theoretical and experimental
phases of the model program are reviewed. For the most part the model pro-
gram has dealt with situations where the water depth is equal to a few radia-
tion wave lengths. Underwater sound propagation has been studied over the
concrete tank bottom using both continuous-wave and pulsed signals. Acoustical
constants of the bottom and the effects of changing frequency and water depth
have been examined.

More specifically section 3.1 contains the theoretical treatment of

the following subjects --

a. acoustic pressure as a function of range (normal mode approach) for a
harmonic source and three different bottom types,

b. effect of an exéended gource on the field pattern,

c. prediction of pulse shape as a function of range for short pulses,

d. comparison of an image theory versus normal mode theory for prediction
of pulse shape,

e. bottom reflection coefficients for specific conditions.

Section 3.2 contains a description of the model experiments and a
discussion of the results obtained. The experiments were designed primarily
to explore the characteristics of the model for water depths of the order of
magnitude of the wave length. The section is broken into subsections treating

the following subjects --
a. equipment and techniques,
b. continuous-wave experiments,

c. pulse experiments,



d. bottom characteristics ,

€. summary and conclusions.



II. A THEORETICAL INVESTIGATION OF THE REFLECTION
OF RADIATION FROM PERIODIC AND IRREGULAR SURFACES

W.C. Meecham

The results of work on this class of problems may be collected under
three main subject heads. The major part of the effort expended during the
period of time covered by this report has been devoted to the consideration
of the variational method (see below). These three topics are covered in
detail in separate reports under the titles given. Only brief summaries of

these reports are given here.

2.1. ON THE USE OF THE KIRCHHOFF APPROXIMATION FOR THE SOLUTION OF REFLECTION
PROBLEMS *

The methods of physical optics can be applied to reflection problems
under certain circumstances. As is well known these methods are based upon
the Kirchhoff approximation, which is an assumption concerning the value of
the radiation field near the reflecting surface. It is assumed in the approxi-
mation that the field near every region of the surface is essentially what it
would have been if the surface had been flat with a slope equal to that of
the irregular surface at the point in question. Using this assumption con- °
cerning the value of the field at the bounding surface in conjunction with
the Helmholtz formula it is possible to obtain an estimate of the field in-
regions removed from the reflecting surface. It is shown that this assumption

is valid if the following two restrictions hold:

i)iS..Df
dx

<L 1

il) X, >7 1
-
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M

where d§ is the maximum value of the slope of the reflecting surface)
X

k = En/K where A 1s the radiation wave length, and R, 1is the minimum
radius of curvature of the reflecting surface. Furthermore it is shown that
the results obtained by the use of the Kirchhoff approximation satisfy the

reciprocity theorem.

2.2, A FOURIER TRANSFORM METHOD FOR THE TREATMENT OF THE PROBLEM OF THE RE-
FLECTION OF RADIATICN FRCOM IRREGULAR SURFACES

A method is presented which can be used for the calculation of the
distribution of energy reflected from irregular surfaces. The formulation is
useful for the first boundary value problem and can be used in either two- or
three-dimensional problems with any given incident field. The solution is
reduced to quadrature with negligible error when the average square of the
glope of the reflecting surface is small and when the wave length of the inci-
dent radiation is not small compared with the displacement of the surface
from its average value. A numerical example is worked, the sinusoidal sur-
face, and is compared with experiment and with a method due to Rayleigh. It
is fouﬁd that the Fourier transform method is preferable to previous methods,
notably those which can be classified as physical optics (such as Rayleigh's)
since the error in the transform method is of second order in the surface
slope whereas the error in previous methods is of first order in the same:

quantity.

2.3. A VARTATIONAL METHOD FOR THE CALCULATION OF THE DISTRIBUTION OF ENERGY
REFLECTED FROM A PERIODIC SURFACE

A variational method is presented which is used to calculate the
energy appearing in the various diffracted orders set up when a plane wave is
incident upon a periodic reflecting surface. Either the first or the second

boundary condition can be so treated. A sample problem is worked showing
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that if the average absolute slope of the reflecting surface is small (seg-
ments of surface with large slope may be included) and if the displacement of
the surface is not large compared with the wave length of the incident radia-
tion, the formulation gives results correct to within a few per cent. The
calculation shows clearly the existence of Wood anomalies; these are discussed

in some detail.



ITI. AN INVESTIGATION OF THE PROPAGATION
OF SOUND FROM A POINT SOURCE IN A LIQUID LAYER
OVER CONCRETE
3.0. MODEL PROGRAM

For the purpose of gaining a better understanding of the mechanism
of sound propagation in shallow water an acoustic model program has been ini-
tiated. By this means it is desired to secure a borader knowledge of the
fundamentals of some of the simpler shallow water problems. If this can be
done both by experiment and by theory the plan is to turn to progressively
more complex situations. It is hoped that the model may serve as an analogue
computer in the investigation of phenomena too complex for adequate theore-
tical treatment.

This section of the report describes experimental and theoretical
approaches to some of the less complex problems. It contains descriptions of
the use of a concrete tank model in experiments and examples of the application
of normal mode theory to these problems.

Shallow water is defined for the purposes of this report as the
depth at which sound propagation is best treated theoretically by normal mode
theory (as opposed to a ray treatment). The effort has been confined to the
study of propagation in situations where the water depth is approximately
twice the radiation wave length. The ranges vary from a few up to 40 or 50

wave lengths.



-8-
3.1. THEORETICAL CONSIDERATIONS

Irene Schensted

During the course of the investigation various calculations have
been made in connection with the study of the propagation of sound in a
fluid layer over a concrete bottom. It is the purpose of this part of the
report to present the results of these calculations. Specifically, they have
been carried out to determine the acoustical pressure as a function of range
for a time harmonic source using three models to represent the behavior of
the bottom: (1) a fluid (water) layer over a rigid bottom, (2) a fluid layer
over a semi-infinite fluid capable of transmitting compressional waves, and
(3) a fluid layer over a semi-infinite solid capable of transmitting both
shear and compressional waves. Comparison was made of the predictions of
these three models with the experimental results with a view to determining
the simplest model which might suffice to predict the results of the pertinent
experiments. Although the concrete bottom of the tank was finite in extent,
a series of simple calculations such as those performed in the appendix of
this report indicate that the assumption of an infinite bottom is a good
approximation to the actual case.

The calculations are based on the normal mode theory of sound pro-
pagation. The basic work in this field is given by a classical paper by
Lamb.l In section 3.1.1 below are presented the results of the normal mode
theory for the three models cited above. The formulas used are taken from
Pekeris2 and Press and Ewing,3 The reader is referred to the work of the
authors of these two references for derivations of these formulas.

Calculations are also made to determine the pulse shapes to be ex-
pected as function of range for short pulses. In this study it is found con-
venient to use the method of images to supplement the normal mode point of

view. Section 3.1.2 deals with the problem of the pulse shape to be expected
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under various conditions and exhibits the results of the pulse shape calcula-

tions.

3.1.1. Calculations Based on the Normal Mode Representation of the Solution

In this section are presented calculations based on the normal mode
representation of the solution for the following types of bottom: (1) rigig,
(2) semi-infinite fluid, and (3) a semi-infinite elastic.

The Rigid'Bottom - We shall assume a point source to be located at

a depth d from the upper surface of a liquid layer of depth H. We shall
use a cylindrical coordinate system with coordinates r, ©, and =z, with an
origin on the surface of the liquid Verticélly above the source. The positive
z axis passes through the source and is oriented normal to the top and bottom

gurfaces as shown in Fig. 1.

a r ; i

b r=0, z=d ¢r,7

Fig. 1. The Geometry of the Model

The surface z = O is to be thought of as a free surface (a sur-
face of zero excess acoustic pressure). The bottom at z = H is for the
present to be thought of as being perfectly rigid so that the =z component
of the velocity of the fluid at that plane is zero.

All quantities of physical interest in this problem may be derived
from a scalar potential function lqj which satisfies the wave equation

2
7P -5k
c t

where c 1is the phase velocity of acoustic waves in the liquid. In addi-

tion it is necessary that 90 satisfy certain boundary conditions. The
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velocity of any point in the liquid layer is related to 9} by the rela-

-
v
: LoD : :
tionship v = - {/ Q” . The excess acoustical pressure p 1is related to

by the relationship p = p _gjt”_ where p 1is the density of the liquid.
Hence since v, =0 at z =H and since p=0 at z = 0, the scalar po-
tential ’?U musﬁ satisfy the following boundary conditions:

3#}= 0 at z =20,

and

9r - o
Q z

In addition ;V must behave like a point source in the vicinity of r = O,

P z =H.

z = d. TFor a time harmonic point source of frequency gﬁ , this means that
b

as r—0 and z—>d.
In this section only a time harmonic point source of time dependence elu}t
will be considered. If one finds the response, R(w,r,z), of the medium to

such a time harmonic excitation, then the response to the more general exci-

tation f(t) will simply be
oo

R(w,r,Z)g(w)ei""tdw

-00

where g(w) 1is the Fourier transform of f(t) defined by
oo
g(w) = —= g £(t)e Wbt |

e

In section 3.1.2 the response to finite time pulses will be dis-
cussed. Accordingly for the present, set HU = ¢(r,z)ei°°t where @(r,z)

must satisfy the equation V72¢ =-kg¢ y with kg =w/c = EK/kO 5 Ao 1s the
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radiation wave length in the fluid layer. Also ¢ must satisfy the boundary
conditions

¢ =0 at z =0,

and

9 o g z =H,

z
as well as the condition that it behave like a point source near r = 0, z = d.
The solution to the problem stated above may be expressed in the

following integral form:

00
elWt g‘ Jo(kr) 2k gin Bz cos B(d-H) dk ,
0

04744

—

)
i (1)
iwt 2k sin Bd cos B(z-H)
e \Y Jo(kr) B cOB BH dk 3 .
0 d<z£H

where B

i
b
o
1
-
o
o
\YJ
b

™
i
!
l_]
=
1
b
([@X)V)
'
QY]
o
O

and

and Jy(x) is the Bessel function of the first kind. The path of integration
in Eq. (1) makes semi-circular detours about those poles of the integrand

which lie on the real axis as shown in Fig. 2.

k - plane
Poles of integrand
7 ! \
‘" v (e (:\.

N

+ 0

Fig. 2. Path of Integration for the integral, representation
of the solution of the propagation problem.
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The integrands in the above expression are, for k arbitrary, solu-
tions of the wave equation which satisfy the given boundary conditioﬁs at
z =0 and z = H. These solutions are integrated over the path indicated in
k space with the given weighting factors so as to yield the desired point
source behavior at r = 0, =z = d. This technique of integrating kernels,
which satisfy the wave e€quation and appropriate boundary conditions, so as to
yield point source gehavior is used frequently in problems of this type.

The above integral representation may be transformed to a sum of

residues by the use of Cauchy's integral theorem. The resulting expression

is: 2 |
3” _ it .('_2%_1_12 H(SQ)(knr)si“En+%)£%:|sir{En+%) Eﬁ.:{ (2)
n=0
0O« z<£H,
where kp = \L;E/CE.— (n+%)2 (n/HiE‘ (n+%) 1/H < W/e
]
k, = -1 qﬁn%) 1J8)° - w°/c® Wfe & (n3) =/

Hég) is the zeroth order Harikel function of the second kind. The above re-

presentation is usually called the normal mode form of the solution, each

term being called a mode. Asymptotically for large r ,

-ikpr + in/b

B2 (r) > g2 e |kafr>>1

LI

Hence for large r +the normal mode form is:

o 1 Wt 5 -ikpr + ix /b siA&n+%)nd/%]sinkn+i)nz/§]
30 = -2nie e 2
nk,r H
n=0

0<%z £H
For n sufficiently great it is apparent that k, will be Imaginary and
the corresponding modes will not propagate. The largest integer Npox Which

satisfies the equation (n+%) T <.HLLVc will determine the number of modes
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propagating in the medium; the cut-off frequency for the nth mode will be
By = (n+§)§ﬁ .
In Fig. 3* the amplitude of the acoustical pressure is plotted ver-

sus range for the following special case:

w/2r = 4800/sec.
c = 4800 ft/sec.
H= EXO
z =d = H/2 .

These parameters were chosen so as to correspond to the conditions under
which some of the experiments were performed in the model tank. For this
case there are only four propagating modes corresponding to n =0, n = 1,
n=2,n=3. The fifth mode corresponding to n =4 yields a value of

ki = - %% ni . Hence at a range of 10 feet the amplitude of this mode com-
pared to that of any éne of the undamped four would be of the order of

g~10.3m ’\-)."LO'lLL . The succeeding terms in the series are even smaller. It

may be shown that
z‘ 10 ﬁ%)g 2/l - (hn)?

n=4
<

!

e-lO.Bn 1 ~) e-lO.Bﬂ
1. e-lOBBn

In view of this fact one need only consider the first four modes in calculating
the pattern of the acoustical pressure for these conditions. The normal mode
series therefore constitutes a very practical approach to the problem of get-
ting numerical results for large rangés for continuous-wave sources because

of the series' rapid convergence. We shall see in section 3.1.2 that the

image series representation of the solution of this problem is not rapidly

convergent for large ranges.

¥ The acoustic pressure units are arbitrary; in the present study only rela-
tive values were of interest,
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Before going on to consider the two fluid cases note that source

and receiver depth appear only in the form of the factor sih(n+%)%5 sin(n+%)%g.

For a linearly extended source one may therefore take into account source ex-

tension by integrating the factor vsin(n+%)%g

function representing source strength along the source line. Since the source

with respect to a weighing

~used in the experiment was not exactly a point source it is of interest to
carry out calculations taking into account this effect. For a uniform linear
source of length Jz and of unit total strength one would obtain the solu-

tion (kr>71):

v _2ni etWt ~depre i/ cos 6n(d—§)—cos Bn(d+§)sin B2 (%)

e
T oH T
n=0 JE ot Pnd

One may account for receiver extension in a similar way. Figure 4 exhibits

2%

the effect of source extension on the pattern. The W and H are assumed
to be the same as for "the case mentioned above but the source is considered
to be uniformly linearly extended, of 25 inches length.

The main effect here is seen to be a change in the relative ampli-
tudes of the peaks and valleys.

The Two Fluid Model - Suppose now that the bottom is capable of

transmitting compressional waves. The details of the solution are to be
found in a paper by Pekerisu2 Here it will suffice to describe the nature of
the results and the calculations based on them.

Let pp designate the density of the bottom and c¢p the phase
velocity of sound in the bottom. The geometry of the situation is as de-

picted in Fig. 5.

74

yI':O, z=d H

P1sC.

z
7 I7TTTITTT77 77777777777 V7
Fig. 5. Geometry for the Two Fluid Model.
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The conditions to be satisfied by the excess acoustic pressure are as follows:

' 2
2 _ 1 3 y
ng = _2 0L z H

vy

)

c

2
Loy 2>,
ot

2

and 3ﬂ:= O at z =0 (acoustical pressure is O at surface of liquid).
At z = H we must require that the acoustical pressure be continuous across

the interface separating the two media, and also that v, :be continuous.

Y )
plat - o) S Y _ Q¥
3 at 0z dz
z -y H_ 7z —» Hy z - H. z = Hy

where the symbol z->H. denotes =z approaches H from the domain z < H,
and the symbol z=2H; denotes 2z approaches H from the domain z > H.

In addition we have the requirement that ‘VD behave like a point
source in the vicinity of r = 0, =z = d (see section 3.1.1).

The solution to the time harmonic problem which satisfies the above

conditions has the following integral representation:

0 -
}ﬂ _ plwt 5o(kr) k sin iz |Bjcos By(H-d) + ibBpsin By(H-d)| .
Bl Bicos By H + ib Py sin By H
o - for 0¢ z 4 d
o0 ~ )
. k sin Bqd Brcos Bq(H-z) + ibB~B7 (H-2z)
*5” L it 5okr) 1 1 1 it ik
B1 Bycos By H + ib Bosin By H
- for a4 z £H,
and I~ -1B, (z-H)
P2
: J.(kr)k(sin B d) e
% P ! o 1 : dk z>H, (L)
Bcos B H + ib Bgsln B H
(0]
1
where Bl = ]koe/clg - kg k & uJ/cl,
, _
=1 YRR - w2/cq2 k > Wfey;
2, 2 2l
By = ’}[u) [en” - K k < Dfco,

-
N - woey? k > W,
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The integrands in the aﬁove integral formulas satisfy the wave
equation and the boundary conditions at 2z = 0 and z = H. The integration
over the real axis in the k plane serves to give the desired point source
behavior at r = 0, 2z = d. The path of integration over the k axis makes
semi-circular detours about the poled which occur on the real axis as was shown
in Fig. 2.

To obtain the normal mode form of the solution one must transform
these integrals to a sum of residues of poles in the complex k plane. The
integrands of the integrals in Eq. (4) are not single-valued; they have a
branch point at k = uJ/CQ° Hence one obtains upon transformation, in addi-
tion to the normal mode series, a branch line integral extending along both

sides of a branch cut extending from k = u)/cg to k = Lo/cg—ioo as shown

in Fig. 6.
U)/Cg U)/Cl
N O o\ . 5 k
A \ /
Real Roots
k - plane
y

Fig. 6. Position of the poles and the branch line for the integrands
of the integral representation of the solution when co >cj.

The following is the normal mode form of the solution which is valid in the

top layer (0 £ z £H),

2 () . .
% st ) -erd 2 By~ (k,r)BypE(sin By d)sin Byyz
= e -
B L [BlnH- (sinBp H)cosBy H-b2 (810281 ) bans H]

K 2 . :
o L Hé )(kr) k Bo(sin p1d) sin By z

2 2 .22 .2
" ) oo [?l cos Bp H+ Db 62 gin BlH]
L
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with b = 91/92 . In Eq. (5) the Bin are the roots of the following trans-

cendential equation (called the period equation),

By
b (W /Cl - w /Cg = Bl
The k  are related to the B._ by the relation: ko = «°/c> - B°
n © © P W " n T 1 in

Before going on to a further discussion of the roots of Eq. (6) we
shall present the asymptotic form of the normal mode solution valid for large

r. We have

;ﬁfa 1wt
= e

-1k e+l o/ , .
Binf(sinBypd)sin Bz

-2n i E
k, T
> B1nt- (SlnBln )cosBln - gin Bln B

cos Bln

-ikgr )
2ib e k2 sin (krlﬁd) sin (ky#z)

(k r) cos ///H k

where /X4:= 1- ci/cg RN

The above form is valid providing the parameters are such that cosQQ//Hklj

is not near zero. It is seen from this expression that since the individual

1/2

propagating modes decrease as T and the branch line contribution decreases

as r° ; that for r sufficiently large, one need only consider the normal

mode terms.

To proceed, if we make the substitution x = B1H in Eq. (6) the
period equation may be written as:

X

tan x = > 1/2

b H u)g/ci - (,oe/cg -

mf\)‘Nl\)

There are only a finite number of real roots to this equation. These real
roots correspond to the undamped or propagating modes. The real roots can

occur only when c¢, > cy and in the interval LO/CQ £k < LO/cl, For cpocy
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8"'-'
w/2mw=4800/sec
¢, =4,800 ft/sec
P /p2= .43

4}—

3r 4

c2=l3,780ft/sec

S 7,880 ft/sec

Fig. 7. Positioning of roots x, for the two fluid case for
different values of co.
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there are no real roots. The positioning of the roots of Eq. (6) is illus-
trated in Fig. 7 for a single value of W and two different values of co.

In this figure the function

X 1
— 1/2
Hb <u>2/c§ Ry we/cg)

is plotted against x. The function tan x 1is also plotted and the points

at which the curves cross give the roots x, of the equation.

n

It suffices to compute the right hand side of Eq. (6) for a single
frequency (Wq. For if one denotes the right hand side of Hq. (6) by
f(u),x,cl,cz) then f(au%aﬂxx,cl,cg) = f(“Jo’X’C1’02)° By using this rela-
tionship, curves for different frequencies may be plotted with a minimum of
effort.

It is clear from Fig. 7 that for c, sufficiently large compared to
cy there will be as ﬁany real roots for a fluid bottom as there are for a
rigid bottom. When this happens the pressure amplitude versus range curves
for the two cases will be quite similar. Figure 8 shows a plot of pressure
versus range for a two flﬁid case. The frequency chosen was 4800 cps. The
density ratio pl/p2 was taken to be 0.43, a value which corresponds to the
ratio of the density of water to that of concrete. The velocity ¢, was
chosen to be 13,780 ft/sec, a value which corresponds to the compressional
wave velocity for a typical concrete sample. The value of c¢; was chosen to
be 4800 ft/sec. This last figure is roughly the value of the speed of sound
in water. For the case chosen the branch line integral was found at a range
of 10 ft to be much smaller in magnitude than the propagating modes. The
pattern in Fig. 8 is therefore due to the interference of the four propagating
modes. There is a marked similarity between the pattern of Fig. 8 and that
of Fig. 3 which may be attributed to the fact that the number of propagating

modes is the same for the two cases and that the values of corresponding wave

numbers are quite close.
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By comparison of Egqs. (5), (6), and (3) we see that if we let
b = 01/02 approach zero in Egs. (5) and (6) the two fluid case solution re-
duces to that of the rigid bottom. Hence the latter may be considered to be
a special case of the former.

The Solid Elastic Bottom Model - The elastic bottom model differs

from the two fluid case in that the bottom is now to be thought of as being
capable of transmitting shear waves. We shall in the following let c¢ de-
note the velocity of the compressional wave in concrete and let cg denote
the velocity of the shear wave in concrete. It is also convenient to use
the Lam& constants )\ and /// , in terms of which cc and cg may be writ-

ten as:

Cc = Po 5 Cg = fo

A+ M /7

The velocity of sound in the top fluid layer we shall denote by c¢; and the
density of the top layer by pj. Although it is stiil possible to describe
the physical situation in the upper fluid layer by means of a scalar potential,
in the bottom it is necessary to use both a scalar and a vector potential.

We shall not enter here into the details of the solution but shall record the
appropriate solution for the upper layer. The details of the derivation are

to be found in reference (3). (The geometry of the situation is depicted in

Fig. 9.)

—

H r=O, z=d

pl,cl

ST S e

Fig. 9. The Geometrical Picture for the Solid Elastic
Bottom Model.
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The integral representation of the scalar potential 90 in the

liquid layer has the form:

iwt k  Q cos By(H-d) - P sin By(H-d)
i d
ce Jo(kr)(51nﬁlz) Q(cos BlH) - P sin BqH £
O£z £d H
j Wt ko Q cos B1(H-z) - P sin B1(H-z) (7)
2e g Jo(kr) 57 oin B1d g cos By E-P sin PR dk
d£ z<£H 5

2
-WBk/By 5

where P

[

2, 2 2 2 2 2 2
Q a}}i A\ kc(k -Bs) + E/A/ Bc(k ‘Bs) - BBk ’

1l

and > 5
By = K] -k k <k (k= W/eq),
2 2
-1 :"k. - kl k > kl ]
2 .2
B, = \ K -k k &k (k= w/e,),
2 2
-i Yk - kg k>k,
2 .2
B, = K, -k k< k (k= w/c,),

=
. e 2
i K - K k Dk

Before going on to write the normal mode form of the solution which is obtained
by transforming these integrals into sums of residues of poles and branch line
integrals, we note the above expression for yv reduces to the corresponding
expression for 7%) for the two fluid case when /A/-—1> 0. Hence the elastic
bottom colution contains the solutions of the two previous problems as special
cases.

Tt is seen that the integrands of Eq. (7) have two branch points,

one at k = u)/cS and one at k = u)/cc. Hence upon transformation of the
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integrals of Eq. (7) to obtain the normal mode form of the solution, one ob-
tains in addition to the normal mode series two branch line integrals. One
of these extending from k = u)/cs to k = u)/cs—iaﬂ and the other from
k = u)/cc to k = u)/cc-ioa . The following is the asymptotic form of the

solution represented as normal modes. It is valid for large kr 2?1, and for

0%z <&H:
-ik r+in/b |
: e in in d
7]1) - oot | oy é sin Pipz sin Py
Kh 94 cos BlH—a sin p{H
Q sin B{H + P cos BH 2
k=kn
-ikcr . ll‘ o . .
e 2ipy w /cS k sin (acklz) sin (abkld) (9)
+ X -
2 2 2 , 2, 2 2
(kll") - @, cos (Otchl) (_}\.(kc(ekc - ks))]
Sikgr ° .5 2 2
e sin(ak,z)sin(a k d)i 8k (k -k )/14 /p1

+

22 21 2 2 2 2

kyr as[a' cos (0gHky)-sin (o Hkq)c! +(sinocSILIkl)(cosOtSHkl)a'c’:,k:kS
The last two terms in the above expression represent the two branch line con-
tributions. These expressions for the branch contributions are valid pro-
viding we are removed from the zeros of the denominators. The form used for
the branch line calculation is valid providing cl< Cq < Coe This is true in

the cases of greatest interest to us. The symbols Q and P are as defined

in Eg. (8). In addition we have the following definitions,

1 2,2 2
a:a‘y—a(}.k 'Bs+2/7{_5kasg] s

i 2
C =55 [ 28 k 2/4:‘,

2

& "'wks/al ’

i 2 2,2 2
a'zb:)?;l- A ko (k ﬁs+2/{{BCk Bs)z:] 5
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Q, = 1 - c%/c2 y
2,2
Qg = 1 - cl/cS ’
Tr=- 2P and
- b
we, "¢
¢t = - WBX/B
c s’ "l

The values of k, which appear in the normal mode series are the roots of
the transcendental equation Q/P - tan B1H. The real roots k, of this equa-

tion occur for ki >k, > kg > k. . The period equation may be written more

explicitly as:
B ( ok° *
1--2
Kk
B1 (2 2) /2 2 =
tan B.H = = | b [k°-k - - 1/2
b kg (kg—kg)

where k = u)/cs and k_ = (,O/cc as above. Making the substitution

x = B1H the equation above may be written as:

/2 (wP/ed - /i)

‘ X 2,2 2,2 2,2
tan x = g5 (4% [ W /cl - Ww /cS -x /H ) kE
S

o
[1 - 2(w 2/c§ - XE/HE)/K;.J

[ 22 2.2 2 2) 1/2
© fe1 =W Je, -x /B J

Figure 10 exhibits the positioning of the roots X, of the above equation for
various values of c, and cg . For cg and c, both sufficiently high
there will be as many real modes as for the rigid bottom case for the same
angular frequency (W and depth H. In some cases there wiil be one more
mode than for the rigid bottom. In such a case two closely spaced elastic

bottom modes will appear and correspond to a single rigid bottom mode. Fig-

ures 11, 12, and 15 are plots of the acoustic pressure versus range for an
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5 Modes

¢s=12,300ft/sec

5 Modes
cg=10,050 ft/sec

Cg= 7,070 ft/sec

/ cg=6,000ft/sec 3 Modes
= | | | |
w4 w2 3w/4 /r 5n/4 3n2 wi/4 ow'4 S5w/2 \ \n/4 /3x Bn/4
X— 2 Modes

w/217=4800/sec
P /p2= 43
¢,=4800ft/sec

CC=‘\/; Cs

49

Fig. 10. Positioning of roots x,. for the elastic bottom

. n
period equation.
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elastic solid bottom. Figures 12 and 13 were plotted for values of C1s Cgy
and c, which might be typical of a water layer over a concrete bottom. The
frequency chosen and the depth to wave length-in-water ratio was the same as
for Fig. 3. For the values of cg and c, used in calculating the pressure
pattern for these graphs there were found to be fewer modes than for the
corresponding rigid bottom case. This was due to the relatively low speeds
used for the shear wave velocity. The pattern computed is quite unlike that
of Fig. 3 which exhibits the rigid bottom results for the corresponding
case, i.e. for the same frequency and depth-to-wave length ratio. In Fig. 13
acoustic pressure versus range was plotted using sufficiently high bottom
speeds so that five propagating modes appeared, two of which corresponded to
a single rigid bottom mode. At these speeds the pattern is similar to the
rigid bottom pattern plotted in Fig. 3. It should be emphasized that the high

bottom speeds used in calculating the pressure pattern for this graph are not

those commonly associated with concrete.

Summary and Conclusion to Section 3.1.1.

The normal mode forms of the solution for a point source liquid
layer over 1) a rigid bottom, 2) a fluid bottom, and 3) an elastic solid
bottom have been presented and the results of calculations based on these
models have been shown. All three models for ranges large compared to the
wave length yield a scalar potential of the form:

-1knr

i e
’sp’:‘f elbOtZ @, (wW;H,cy) T—k;—\? sin B,d sin B,z (9a)
O¢<z<H

where o, 1is an amplitude factor. For the three models «,. are different

n

functions of the physical parameters which describe the problem. The roots
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kn for the three models are determined by the three period equations
1) Rigid bottom --

tan x. = O8O

7,
2,2 .2
where X = H AW /cl-kn = BnH .
2) Two fluid --
tan x. = EE =
nHD| K - g
n c

3) Elastic solid bottom --

The real roots k, for the three cases occur for the following ranges of the

parameters (assuming cq & Cg &Cp)

1) w/Cl vk, .

2) Ww/eg 2k > We,

3) W/ey> k > Wwfeg > Wle, .
These last conditions correspond to the fact that the non-propagating modes
correspond to radiation moving at angles greater than the critical angles
associated with the bottom. The fluid and elastic bottom cases are character-
ized by having in addition to the normal modes, branch line integral contri-
butions which, however, vanish at large distances as l/r2 (compared with
l/rl/2 for the propagating modes).

Asymptotic formulas for the branch line integrals have been pre-

sented in Section 3.1.1; from these the magnitude of the branch line contri-

bution may be determined at large ranges.



-33.
3.,1.2. The Propagation of Pulses

In the preceding section the normal mode form of the solution was
presented for a time harmonic pulse. We shall now briefly discuss distrubances
with other types of time dependence.

An Approximate Method Using Normal Modes - First consider an approxi-

mate treatment of the response to a pulse which may be represented by a

Fourier transform, g(>) , which peaks at the frequency W, . Let us ex-
Wt

press the original excitation of the medium as e f(t) where f(t) 1is

the envelope of the pulse.

The response Rn(L,O) of a mode to this excitation function may be

written, (see Eq. (92)):

Dot
i(wWt-kyr)
1 e . .
R(W) =W o (w) ——— [g(u,))smﬁnzsmsnd dw (10)
W m AL )/knr
o a2
when kr >>1. Assuming ozn(u)), ’\} kn] , and B, slowly varying functions
of w) over the range LOO - -%—— LWL wyt —%—Q we have:
A
W ——t
1 07T i(wt-kyr)
R (w) Ya (wWs) sin B szsin B.ad e (w)dw
n nlWo n0o * Pn0 i;2n7 g
ow
Wo" 2

Expanding k, about k,5 we have to a first approximation:

dk
kp(w) ¥ kg + (W - Wo) 35 , (10a)

w=wy

=]

where ko = k (Wg) and B,o = By(Wq)

Lw.
Hence wWot "L
1w gt-lyor) n(WolsinBpozeing,od
Ry(w) ¥ e T
knot oW
s
dk
i [(w-uo 6= (- wpy) ———nl r]
e 7 e L



Since Do
WoT—2~ » - dky
1 / Hw -wo) (b= 37517)
-if"’gn glw) e dw =
D
wo= dk,
iWg == dk
d'w o ._—I.}
e T( - dw I‘) )
UJ:"u)O
we see, dkn
LWot - koot + Wy 705 | F) ak_
Ry(w) = 2 y(Wo) (s1nB,02) (sinB od)T(t - 5| T)
kror
L
w= L«C)O
(11)

The result may be expected to hold when (see Eq. (10a)),

d2k
P
AW

(Aw)f reel

“

(JO““WQ
From Eg. (11) it is seen that one can think of the response for each mode as
being the original excitation function £(t) reproduced in shape and travel-

ling through the medium with the group velocity

L dw
vV group = 3 :(;kn>
EPR k=k
n

d 0
UJLU:=u)o

Due to the fact that the different modes have different group velo-
cities the original pulse will be elongated and distorted. The group velo-
cities associated with the various mocdes may be computed if one knows the
period equation. We have for the three models discussed in Section 3.1.1 the
following group velocity formulas obtained by implicit differentiation of

the period equations,



_55_
1) Rigid Bottom

v v = c?
gp

where Vg is the group velocity and v

2) Two Fluid

D is the phase velocity;

where o =H - 5 P X=

and
2 2,2
Pen = Jkn - W /eg 5

3) Elastic Solid Bottom

a+ ¥+ 8 + € +7
v v =
group phase Y EL E 20
I - T N
1 C% % Vph Vph
2
ok,” 2 ,
where Xn(l - K 2) u-Xnk
go— e
cn
2k2
8Xn -'—é' 8
kg XyOBgn
€= > ’ 7(= L ’
bH k
bE B, K. 8
[z =2 o[22
Pen = kn - kg s Ben T -k

By the use of velocities computed from these formulas one may calculate the
spreading of the initial pulse. Actually at ranges of interest here the re-
sults will be only qualitatively correct as we shall see from computation
based on the image series form of the solution. Using the above formulas for

the group velocities, calculations have been made to show the spreading of
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Pulse length Pulse length
Range 2 millisec ‘ 3 millisec

P

1 | J__L‘L___ Hssl

1
.-_I}I
]

12 5) _

T

13\ —

T:L]
-
i

17\ _

S

L,
=

| IRk
20X — i d | | 1o [__
0 | 2 3 4 5 0 | 2 3‘ 4 S

Time, milliseconds

Fig. 14. Calculated pulse shapes using a normal mode first
order approximation for a rigid bottom.
w = 9600/2n redians/sec, A = 0.5 £t, H = 2\ .
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the pulse for the case of a rigid bottom. It was assumed that the pulse had

a square envelope. The results are exhibited in Fig. 1k, At each range the
fastest mode arrives first and then in succession the other modes arrive to
interfere with it. The arrival time for each mode was computed using the
appropriate group velocity. One can see that if the pulse length is short
enough, the first mode may cut off before the arrival of the slow modes., In
order to obtain the continuous wave result the pulse length must be long
enough 80 that at the ranges of interest there is g region of the received
pulée in which all of the important modes interfere. For the parameters
chosen there are at most four modes propagated. The cut-on or cut-off of
the successive modes are indicated by changes in the pulse amplitude.

Image Series Solution -- An image series representation of the solu-

tion lends itself more readily to the integration of the finite time pulse at
moderate ranges.
For the case of the rigid bottom the image series may be obtained

directly as follows:

M H Fluid layer

Fig. 15. Location of images for a fluid layer bounded on the

upper side by a free surface and on the lower by a rigid surface.
We consider a source at a depth d in a fluid layer of depth H bounded on
the one side by a free surface and on the other by a rigid surface. Then

the boundary conditions to be satisfied by the scalar potential yV are



3—%/—=o at z =H,
% »

?D =0 at =z

Consider the point source solution to the Helmholtz equation,

0 .

~1kRo
3L) =8~ with k= wW/c and where Ry 1s distance of the field point
R
0
(r,z) from the source i.e., Ry = Mo (z-d)2 . In order to satisfy the

boundary conditions at z = 0 and =z = H we start with two images of the
gsource, one in the upper surface and ocne in the lower surface. Labelling

the fields corresponding to these images by ‘?Ul and }U 1

SR 1/
e%p = - =g where Ry = (;2 + (z+d)é>
1 1
-1kR \
-1 1/2
- & where R ; = (rg + (z-2H+d)2)
-1 R -

By continuing this process of imaging one arrives at the following series
which satisfies the wave equation and all the boundary conditions of the

problem and is therefore an exact solution to the problem:

N
o iWfe) @%( zm2uﬂmd)2> 2 o )( 24 z+2nH+d)2)l/ 2
;p _ eﬂﬂt Z (_l>n e e /
5 5 1/2 5 A 1/2
—— r~ + (z-2nH-4) <; + (z+2nH+d) )
(12)

For the special case of z=d=H/2 we obtain the following form,

e-iw/c (1‘2+(2nH)2>l/2

it n
’% = e (-1) l '2 ° (13)
2=a=H/2 ( : (an)g) !

——_ r +

n 2o
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Image vector

— — —— Normal mode vector

Range=16 )\
Frequency = 4800 cps
H=2ft

Z=d=H/2

Fig. 16, Summation of

the image and normal mods serials.
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The image series is especially easy to use for non-periodic time

excitations. Corresponding to a source excitation of the form f(t) we have:

ZP - == (-1)" Po- Arr(eemd S (e yroe(enEa)/c
- <r2 + (Z—EnH-d)Q)l/e <r2+ (Z-E‘I-‘}Pfd)e)l/2

ne =02

Each term of the image series represents rays which have undergone
a definite number of reflections from the top and bottom surfaces of the
liquid layer. The image series includes all such rays. It is evident that
for large ranges it converges slowly.

Figure 16 shows the relative rates of convergence of the image and
normal mode series for the case c = 4800 ft/sec, (O= 4800 on/sec, H = 2 ft,
and d =z = H/2, a case which we have alreasy considered using normal mode
theory. The vectors drawn in heavy lines are the image contributions. The
four dotted line vectoés represent the four propagating normal modes. Thus
even at the moderate range considered it 1s necessary to sum many more than
four terms of the image series in order to get a good approximation to the
sum of the image series. With increasing range the work involved in the sum-
mation of the image series increases rapidly.

Each normal mode represents the contribution of many images. This.
situation may be seen from the fact that the normal mode contribution of a

mode to the field amplitude decreases as ,T?T whereas each image contribution
decreases as % . In particular a normal mode may be thought of as repre-
senting the sum of groups of images which interfere constructively at the
field point. Consider the case of a source and receiver at mid-depth where
one may neglect the images ( marked x in Figure 17 .) since these always
cancel for z=d=H/2° Cne sees that the difference in phase of two rays

arriving from images proceeding at an angle © will upon arrival at the
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field point be ULr E;E%E_E - 1 . The condition for constructive interference
is:
H cos &
bt = -n =20, n=0,1, 2,
or 2n+l
cos Oy = T[H N,
and

2 .\
sin 0, = (c/w) <?32/02 ] 1251%1- né) & =3%; k,

(2H)
here k, are the roots of the period equation for the rigid bottom. Thus a
normal mode represents a group of constructively interfering rays from the

images which rays travel at the angles ©, &iven by the above relationship.

‘Fig. 17. Constructive interference of images to form modes for

a rigid bottom.

The image series, although inconvenient for computational purposes
when the range is very great is, however, ideally suited to the integration
of finite time pulses for moderate ranges. If‘one has the patience, one may
achieve the exact integration of the time pulse for the rigid bottom case.-
This has been carried out for a pulse with a rectangular envelope and the
results are displayed in Fig. 18. A comparison is made in the figure with

the treatment of the finite pulse by the approximate method using normal modes
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Time —= 'omtlm 'Zm t3m
' (a) Initial pulse length = | millisec
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Time = tm tm tm

Fig. 18.

'Sm

(b) Initial pulse length = 4 millisec

A comparison of the integration of the time pulse by

the image series and the approximate normal mode method .
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described above. Although the normal mode treatment gives one an idea of
the distortion of the original pulse i1t does not suffice to give the detailed
picture which is obtained by summation of the image series. Here the dis-
continuities in pulse shape are due to the arrival of successive rays corre-
sponding to different numbers of reflections from the top and bottom surfaces.
As successive rays arrive one obtains successive approximations (see Fig. 16)
to the amplitude of the scalar potential.
2

Pekeris= has derived an analogous ray series solution for the case

L

of two fluids. Honda and Nakamura™ deal with a corresponding series for the
elastic solid bottom. For these two cases the plane wave reflection coeffi-
cient for the bottom appears in the ray series expressions. One finds that
terms corresponding to multiple reflections from the bottom are multiplied
by the corresponding powers of the reflection. In Fig. 19 is plotted the re-
flection coefficient as"a function of angle of incidence for a plane wave
incident upon an elastic bottom for values of c, and cg typical of con-
crete. This plot can be used in connection with the work cited to obtain

the approximate image representation of the field for two fluid and fluid

over elastic solid problems.



I

0L

"PITOS OT3SET®
B pue PINTS ® Usemjeq eorraequr eurTd oyg uodn g eTSUB UB 3B JUSPIOUT
soaem sueTd J0J ‘Y ‘queTorT IS0 HOT3YoeTIeL spnyITdwe PeqeInoTB) 6T °ITd

6 ‘3ON3AIONI 40 319NV

wm om
09 Wole Ob oOE 002 0Ol o0
g _ | [ N | ©
— N.
——e] v-
¢ M
295/} 008'p ="o
29s/43 0L0°L =52
29s/4 082'21="2
pR— m.
—1i8
\ o

d IN319144300 NOILO3143Y



APPENDIX
THE EFFECT OF THE FINITE THICKNESS OF THE
CONCRETE ON THE PROPAGATION OF SOUND
IN' THE FLUID IAYER

A plane wave treatment allows one to quickly estimate the effect
of the finite thickness of the bottom layer upon the propagation of sound in
the top fluid layer. The normal mode problem for many plane layers has been
solved by many investigators but the results are quite cumbersome to apply.

2

Pekeris= for example treats the three-layer problem.

p

10 Py

Fig. 20. Plane wave incident upon a fluid layer; c, = 12,800 ft/sec,

¢y = 4,800 ft/sec, pl/p2 = 0.43, and L = 6 inches.
One may, hoWever, get an estimate of the effect of bottom thickness by sup-
posing the incident field to consist of a plane wave. One calculates the
plane wave reflection coefficient for those incident angles O, which corre-
spond to the propagating modes for the case obtained by allowing L —> o0&
and observes the magnitude of the reflection coefficient for the case of a
finite second layer (L <0®), If this is close to unity one concludes that
théugh the modes may be shifted due to difference in phasing, their attenua-

tion will be small,

5.
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The plane wave reflection coefficients for the situation depicted
in Fig. 20 when the middle layer is a fluid, are shown in Table I.” The
physical constants are those pertinent to the model experiment described in
this report.
TABLE I

Amplitude Reflection Coefficients for Various
Angles of Incidence

0 A,

8l° 99
68° 99
51° .98
29° 9T

One can see from this table that for a bottom characterized by a
velocity co in the neighborhood of that of concrete, the solution for the
six inch bottom should be much the same as far as infinite layer since little

energy is transmitted into the underlying regions.

* Constants used: c; = 4800 ft/sec.; cp = 13,000 ft/sec.; pl/pg =0.43
L =0.5ft.
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%.2. EXPERIMENTAL INVESTIGATION OF THE PROPAGATION OF SOUND

IN A SHALLOW WATER MODEL

J.E, Lesch and J.R. Frederick

A description of the several procedures used in the experimental
pursuit of information concerning the propagation of sound in shallow water
as modelled in large concrete tanks is given in this section.

The primary purpose of the experimental investigation thus far has
been to explore the characteristics of the model. Before introducing addi-
tional complicating factors it appeared desirable to examine the simplest
system available, and to investigate the extent to which the following factors
might affect subsequent experiments:

1. elastic properties of the bottom
2. acoustic properties of the model
3. repeatability of the experiments.

In the preliminary phases of the model study programs reported here,
two aspects have been particularly emphasized. One was that of comparing
the results of experiments in the tank with those calculated theoretically
on the basis of various simplifying hypotheses with the hope of finding the
simplest mathematical model which would be useful. Secondly the effect of

slight changes of the variables on the sound field has been examined.

5.2.1. Equipment and Techniques

The principal features of the apparatus and experimental procedures
are described here. There is essentially nothing unique about either the
equipment or techniques employed in the experiment. Possible exceptions are
the use of tape recorded pulses for a signal source and one or two methods

of treating the data.
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A block diagram of the equipment is shown in Fig. 21. The variables
associated with the tank in this experiment are water depth, projector and
hydrophone depths, proJjector-hydrophone separation, sound freguency and
orientation of the range with respect to the sidewalls. The effect of other
parameters such as surface roughness and differsnt bottom types will be exam-
ined in the future.

Both continuous-wgve and pulsed signals are used. Except for the
generation of the outgoing signal and the method of recording the received
signal level, the same equipment is used for both techniques.

The pulses used in the experiments were first recorded on a magnetic
tape using a high quality gating circuit designed and built by another research
group at the University of Michigan. This device gates a c-w voltage to pro-
vide a pulse that cuts on and off at the axis crossing of the wave; the num-
ber of cycles in a pulsé as well as the pulse repetition rate are readily
controlled. A continuous loop carrying one or more of these recorded pulses
is used as a source of signalg. Pulse lengths of from one to fourteen milli-
seconds are available at repetition rates of from one to ten per second.

Most of the measurements have been made using a Bell Telephone Lab-
oratories Type 1K projector and a Bell Telephone Laboratories Model %A hydro-
phone. Both of these units have been obtained from the U.S.N. Underwater
Sound Reference Laboratory. Some of the first experiments were performed
using cylindrical barium titanate elements as projectors and hydrophones.

The former were about 1-1/2 inch in diameter and the latter l/h inch in dia-
meter.

Two tanks have been used. The dimensions of Tank 1 are 90 x 40 x 3.7
feet. Tank 2 shown in Fig. 22 is 95 x 53 x 3 feet deep. Gates in the tanks
are provided for easy access of tractors or other vehicles used in handling

various bottom materials. A wave-making machine is available which can produce



AMPEX
MODEL 401-A
RECORDER

HEWLETT
PACKARD

SYNCHRONIZING
SIGNAL TO
OSCILLOSCOPE

KNIGHT
AMPLIFIER

MODEL 200CD
OSCILLATOR

MODEL
90-320

BTL TYPE
IK PROJECTOR

BTL 3A HYDROPHONE|

& PREAMPLIFIER

BALLANTINE
DECADE HIGH PASS DUMONT
AMPLIFIER TYPE 304-H
MODEL 220-A R-C FILTER 0SCILLOSCOPE
BALLANTINE
ELEGTRONIG
VOLTMETER
MODEL 300
FIGURE 21.

BLOCK DIAGRAM OF APPARATUS



-51-

593 JO pus JBJ 9U3 1B ST jusuwdinbe OTUOIIO8TS SYf,

*YTBMIBO 93 03 QUSD
-e(pB PojUNOW ¥oeI] 9YJ JUIPTI LASTT0JI} oU3z woxJ pepusdsns st suoydoaply oyl °Juel

*2g 914

*2 juez Jo ydexSojouyg




-52-
waves of controlled frequency and amplitude. Pldne wave fronts 20 feet or

more in width can be produced.

3.2.2. Continuous-Wave Experiments

LKcps -- The first c-w experiments were performed to determine the
extent to which the tanks approximate an ideal situation, i.e. rigid bottom
and no wall effects. It was decided to measure the pressure amplitude vari:-
tion of the received signal as a function of range for a condition which could
be treated without unreasonable difficulty using normal mode theory. The ratio
of water depth to radiation wave length (H/x) was fixed at a value of 2.
Projector depth d and receiver depth h were held constant and equal to
A. Under the presumed ideal conditions four normal modes should be propagated.

The field has been measured in both tanks under these conditions
employing the 1K projéctor and the 3A hydrophone as the receiver. Ranges
employed were in general no greater than 30N. A represen£ative plot of the
measured field is given in Fig. 23 and is compared with the theoretical field
as calculated in section %.1.1 for a rigid bottom condition. Since the theory
becomes rather difficult at ranges less than 10N or so, no calculations have
been made in that region. An adJjustment has been made in the mean level of
the calculated curve to bring it to a level comparable with the experimental
curve.

Several features of the experimental data should be noted.

1. In the range employed the plot compares most favorably with the rigid
bottom calculation (as compared with the calculations of section 3.1.1
for the fluid and elastic bottoms).

2. The measured field shows an additional amplitude peak at the range of

25.5 feet (as compared with the rigid bottom calculation).
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3. "Fine structure" in the amplitude increases with range with an indi-
cation that constructive interferences are occurring at range inter-
vals of k/2. (Some data not shown here indicate still further deter-
ioration of the pressure field at greater ranges.)

With regard to statements 1 and 2 above it should be recalled that
the calculated fields for rigid and fluid bottoms are not far different. A
significant point is that both the rigid and fluid bottom calculations result
in a field with four propagating modes. The elastic bottom calculation of
Fig. 13 is based on certain assumed values of the compressional and shear
wave velocities in the bottom, and at the frequency employed shows five
propagating modes. Two of these correspond to the fourth rigid bottom mode.
Although such a calculation has not yet been made, it is anticipated that a
new calculation using the recently measured velocities of the bottom propagated
waves will show closer'agreement between the measured field and the elastic
bottom calculation.

The above—mentibned fine structure on the experimental curve is
barely noticeable at the shorter ranges and becomes increasingly prominent at
the larger ranges. The peaks appear at intervals of 0.5 - 0.75 feet. Since
the standard datum interval is 0.25 feet and A\ R20.6 feet, one deduces that
the observed fine structure is caused by constructive interference at range
intervals of K/Q.

If one examines amplitude versus range plots of data at values of
h other than A but under otherwise identical experimental conditions, one
finds additional fine structure with a similar spacing of peaks. Between
7 feet (the shortest range of observation) and a range of about 25 feet the
interference peak-to-trough amplitude difference is often up to one-half the
total signal amplitude. Between the ranges of 25 and L0 feet the apparent

X/Q spaced interference peaks are significantly reduced both in number and
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in relative amplitude. As the range is increased from about 40O to 55 feet
(the largest range of observation) the interference tends to build up again.

The structure just described is superimposed on the apparent modal
amplitude variations whose depth dependence is shown in section 3.1.1.

In attempting to offer a plausible explanation for the presence of
this anomalous interference pattern, one can quickly eliminate the possibili-
ties of side-wall and projector end-wall reflections. It is obvious that
with the side walls located 26.5 feet away any interference by reflections
from these wallg would result in interference maxima at range intervals of
gomewhat greater magnitude and increasing spacing as the traverse range in-
creased. On the other hand the projector end-wall reflection will be added
to the direct path signal with a phase difference that remains constant as
the traverse range is increased. Corner reflections as possible explanations
can be ruled out by siﬁilar considerations.

There remain two feasible sources of interference -- the hydrophone
end~wall reflection and modes of a higher order. As the traverse range is
increased by an increment X in moving the hydrophone toward the hydrophone
end wall, the path length of the end-wall reflection is decreased by the
same Iincrement. It can be seen then that interference peaks with the observed
spacing would arise from such variations in path lengths. Furthermore the
amplitude of the interference would increase as the transverse range in-
creasas. Amplitude-wisge the problem is more difficult and will be discussed
in section 3.2.%3. It will suffice here to say that the amplitude of the end-
wall reflection observed in pulse experiments does not appear to be suffi-
clently large to provide the pattern discussed above. It may be, however,
that with a coutinuous-wave signal the standing wave produced by this re-

flection builds up to sufficient amplitude.
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That the interference is caused by the re-radiation of bottom-
propagated energy has been considered highly improbable. There exists no
evidence for bottom waves with wave lengths of the value necessary to pro-
vide the observed spacing of the interference peaks. Rather it is more
likely that one or more modes of order number greater than four are con-
tributing significantly to the sound field. In both the rigid bottom and
fluid bottom calculation of the sound field for the conditions H/2=h=da;,
four normal modes were propagating. Higher order modes appeared highly
damped. It is possible that one or more of the latter modes is not as
highly damped in the ranges used in the experiment as was presumed. Such
a mechanism has the advantage of explaining also the apparent decrease in
amplitude of interferences with range in the measurements at other than
mid-depth. Computations and measurements are in progress to attempt to
determine the effects'on the sound field of various degrees of attenuation
of these higher order modes and to examine their depth dependence. It has
been shown, as will be discussed in a later section, that the pulse signals
lose little energy pef bottom reflection. This fact enhances the possibility
that the higher order modes may not be as highly attenuated as was first
believed.

Frequencies below E Keps -- In order to gain added knowledge of

the acoustic properties of the bottom of the tanks a number of experiments
have been carried out to measure the frequencies at which the various normal
modes "cut-on" or being to propagate. It was intended to make a comparison
of the measured cut-on frequencies with those calculated assuming each of

the various bottom conditions.
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As shown in the preceding theoretical sections for a constant
water depth and bottom condition there is a critical frequency for every
normal mode below which a given mode will be attenuated. The nature and de-
gree of dependence of these frequencies upon the depths of the layers of the
bottom media and upon certain of the physical constants of these media have
been calculated and observed heretofore with considerable agreement in some
of the less complex situations.

In a specified, constant experimental situation one might expect
to be able to observe the onset (rapid decrease of attenuation) of at least
a few of the modes of lower order number by observing the change in ampli-
tude of the field with range as the frequency is increased. From theoretical
considerations one would anticipate a linear relation between the logarithm
of the amplitude and th§ range after accounting for cylindrical spreading
for frequencies below cut-on of the zeroth order mode. When this mode is
fully propagating the curve should remain straight, and upon being cor-
rected for cylindrical spreading should approach a constant average ampli-
tude as a function of range (barring other sources of attenuation). Such
change represents the increase of energy propagated by the now non-damped
zeroth order mode.

Cut-on of the first order mode should give a regular periodicity to
the amplitude of the field at a higher mean amplitude level. The advent of
each of the higher order modes results in a more complex amplitude variation
at still higher mean levels. The values of the mean amplitudes with various
numbers of modes propagating, the periodicities, and the frequencies at
which these changes occur are related to the layer depths and physical con-
stants of the media involved as discussed in earlier sections.

In Table II are the calculated cut-on frequencies of the various

orders (n) of modes for each of three postulated bottom types. Values of
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the physical constants used are the best presently available for the materials
in the concrete tank. Values of cj, b, and H are undoubtedly reliable.
The values given for c. and cg are those derived by methods discussed
in section 3.2.3 of this report concerning one-millisecond pulse experiments.
The formulae for cut-on frequencies may be derived directly from the period

equations developed in section 3.1.2. These formulae are given below.

£, = wp/en
For rigid bottom:
cy(2n+l)xn
W, = ———Eif———

For fluid bottom:

(2n+l)r
w oH
For elastic bottom:
Cs 1 Cc
W = R
n = pp tan Do, + nx
H CT -1

Explanation and values of symbols used in Tables II and III:
w (angular frequency in radians per second)
f (acoustic frequency in cycles per second)
n (mode order number)
pp (principal part)
cq = 4800 ft/sec (velocity of sound in water)
¢, (velocity of compressional wave in concrete bottom)
cg (velocity of shear wave in concrete bottom)

b

1]

0.43 (ratio of water density to concrete demsity)

H 2.37 £t (water depth)

1}
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TABLE IT
Calculated cut-on frequencies fy for different
types of bottom. c, = 12,300 ft/sec, cg = 7,070 ft/sec.

Bottom type n W, fn

Rigid 0 1013t rad/sec 507 cps
1 304 0n 1520
2 5080 2540
3 7100m 3550
L 9120x 4560

Fluid 0 1080n 540
1 3050 1625
2 5400n 2700
3 7580 5790
Ly 974 0x 4870

Elastic 0 1800x 900
1 4520n 2260
2 72601 36,30
3 10, 000 5000
L 12,800m 6400

TABLE IIT

Calculated cut-on frequencies fy for different
types of bottom. c, = 16,250 ft/sec, cg = 8,960 ft/sec.

Bottom type _E_ u)n ___fn
Rigid 0 101 3x rad/sec 507 cps
1 3040n 1520
2 5080n 2540
3 7100x 3550
Fluid 0 106k4x 532
1 3192n 1596
2 5%20x 2660
3 7hh8r Z72L
Elastic 0 1550x 15
1 3960n 1980
2 6375 3188
3 8780n L350

In the experiments conducted for the purpose of observing the ampli-
tude behavior as a function of frequency, conditions were set such that
h=4a-= H/2 =\ for a frequency of 4 kcps. The frequency was varied thereafter

and amplitude measurements were made as a function of ramge. One set of data
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was taken using 8 millisecond pulses and suitable band pass filters. There
was essential agreement between this and the c-w data.

Figures 24 and 25 show some of the c-w measurements with cylindri-
cal spfeading removed. For this experiment the voltage at the projector
(1K) was adjusted at each frequency to produce identical hydrophone outputs
at a range of 1 foot. This procedure obscures the observation of mean pres-
sure amplitude increment increases as modes above the zeroth order mode cut-on.
To deduce this type of information from the data one must introduce correc-
tions for projector output variations with frequency (which are available
only for a free field situation) which implies knowledge of the effect of
the experimental parameters on the impedance of the projector. The impedance
was not measured.

However, several factors of interest are available from the data of
Figs. 24 and 25. Below 700 cps the field is highly damped and the amplitudes
in db fall off in range almost linearly. In this frequency region, which is
apparently below cut-on of the zeroth order mode, there are slight incremental
decreases in attenuation with each increment increase in frequency. The
curves are not straight lines, but are somewhat concave upward with definite
indications of a major decrease in rate of fall off beyond a range of 6.5 -
7.5 ft. The concavity and the "elbow" at the range of about 7 ft may be
attributed to the higher attenuation of the higher modes. The incremental
rises in amplitude with frequency are probably caused by the approach to
zeroth order mode cut-on. The apparently anomalous behavior of the 400 cps
curve is believed to be a result of the beginning of a deterioration from a
sine wave of the projected wave form at this frequency, a phenomenon that

progressively worsens at still lower frequencies.
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Between 600 and 1000 cps it appears that the zeroth order mode be-
comes fully propagating. The data show rapid decreases of attenuation as a
function of frequency with the major jump occurring between 700 and 800 cps.
From these data it would appear that the mode cuts on relatively slowly with
increasing frequency and that indeed it does not become fully propagating
until a frequency of 900 or 1000 cps is attained. This is to be compared
with predicted cut-on frequencies of 507, 540 and 900 cps for rigid, fluid,
and elastic bottoms, respectively using tank experimental values for velocities
in the bottom. Substituﬁion of BShell Exploration and Production Company
values for bottom velocities in wet concrete yields analogous cut-on frequencies
of 507, 532, and 775 cps.

In Fig. 25 amplitude data for the frequencies of 1800 and 2800 cps
are shown. It is fairly evident that at both frequencies the spacing of
maxima and minima of %he amplitude is uniform with smaller spacings at the
higher frequency. This trend is further exemplified by a still shorter
spacing at 3300 cps as revealed in the corresponding 8 ms pulse data. Ideally
the trend is predictable, and the exact spacing is also predictable if the
proper longitudinal and shear wave velocities and the density of the bottom
are known.

The problem is to compute the difference in range between two points
in the periodic variation of the field which are one cycle apart. If one
chooses a frequency at which two normal modes should be propagating, the
real part of the field of each of the modes can be represented by the form
Agsin(kgr-wt) and Ajsin(kqr-wt) respectively (for modes of order numbers
O and 1), Here A 1is the amplitude, r the distance from the source, W the

angular frequency, t the time, and ko and k3 the k numbers associated

with each mode (see section 3.1.1). Constructive interference between modes

+will occur where the two modes are in phase or at range r; where
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kory - kyry = 2nx n = integer
and at range T where

kory - kir, = 2(nt+l)r

From the above equations one finds the desired spacing

o - T = Ar =

The frequency chosen for comparison was 2800 cps. At this

(1)

frequency

if one assumes an elastic bottom and uses the Shell Exploration and Production

Company bottom velocity values, two propagating modes are predicted.
spacing between maxima produced by these two modes can be computed as
The two-mode spacing has been calculated for this condition.

For the calculation of the spacing considering an elastic b
an iteration process must be employed to operate on the period equati
thus arrive at values for the k numbers involved. The period equat

derived in section 3.1.1 is given below.

The

above.

ottom

on and

ion as

The meanings of the above symbols are:
cq = 4,800 ft/sec (velocity of sound in water)

Cg

il

8,960 ft/sec (velocity of shear wave in concrete)

16,250 ft/sec (velocity of compressional wave in concrete)

il

<JC

li

H 2.37 £t (water depth)
b = 0.435 (ratio of density of water to that of concrete)

w = 2x x frequency = 21(2800)
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(1 -0.518 k2)2f
tan x = 0.982x w/kfl - 3.86 (.268 Kp) - T
)/k2 - 1.17
n
where k- = k° - (n+1/2)2(x/H)?
and K = u@/ci

By iteration the kn's are obtained.

kg = 2.20 for x = 6.94 radians
ky = 3.15 for x = 4.42 radians
From Eq. (1)
Aro,l = 6.6 ft

From the measurements of amplitude versus range in the tank at
2800 cps one obtains a spacing of 3 feet. Obviously this is not in agreement
with the value computed above in the elastic-bottom two-mode calculation.
The reason for this behavior is unknown. A combination of a low amplitude
for one of the two propagating modes at mid-depth and a beginning of the
third mode cut-on (predicted at 3188 cps) might possibly result in such a
spacing. Both experimental and theoretical effort on the possible contribu-
tions of modal amplitude depth dependence, branch line integrals, and highly
damped modes at this frequency are high in priority for future work.

Another factor to be noted in the figures is the increasing "fine
structure" of the amplitudes with increasing range. This is similar to the

interference noted previously at 4000 cps.
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3.2.3. Pulse Experiments

Considerable effort was expended in experiments using short pulse
signals both at 10 kcps and 4 kcps for conditions where h = 4 = H/2 = \.
The possible value of the short pulse experiments, it was believed, was two-
fold. First it was expected that data could be obtained at least over a por-
tion of the range free from wall-reflection interference. Secondly, one should
‘be able to get a direct measure of the amplitude of the wall reflection rela-
tive to the direct field. With the closest walls to the range line in the
two tanks being 20 feet and 26.5 feet respectively, one expects no inter-
ference with the direct path signal from reflections from these walls using
a 1 ms pulse over the entire range used in the experimental work. With a
4 ms pulse this range of non-interference of side-wall reflections with the
direct pulse would be limited to about 30 feet in the narrower tank. If one
considers elongation or Aistortion of the received signal due to image effect
or mode group velocity differences then this non-interference range becomes
somewhat shorter.

Wall Reflections - Experiments designed to examine the amplitudes of

side-wall reflections have been carried out at 4 and 10 kcps in various depths
of water. At each depth where both frequencies were employed all experimental
conditions were identical except for pulse lengths. The projector and receiver
hydrophone were at mid-depth in all cases. Ideally, it would have been de-
sirable to use 1 ms pulses in all cases. However at 10 kcps only 2 ms tape-
recorded pulses were available. Table IV lists the water depths used, fre-
quencies, pulse lengths, and ratios at ranges of 20 feet of the amplitude

of the direct water path signal to that of the side-wall reflection wherever

the latter was observed.
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TABLE IV
Ratios of amplitudes of direct signal to
side-wall reflection for pulses at 4 and 10 keps
and various depths

4 kcps v 10 kcps
Water depth Pulse Iength  Amplitude ratioc Pulse length  Amplitude ratio

at range=20 ft at range=20 f£*
Direct:Reflected Direct:Reflected

0.95 ft 1 ms no reflection observed 2 ms 6:1

2 .56 l " 11 17

2 .86 l 1" " 1

5 OO l ' 1" 1" 11

3.70 1 3:1 2 1:1

It should be noted that H = 0.95 ft = 2\ at 10 kcps and
H=2.36 ft = 2\ at 4 keps. Under these conditions and the assumption of a
rigid bottom it has been calculated that 4 normal modes should propagate.
Also when the direct path range is 20 ft the path length for the side-wall
reflection is k4.6 ft.

It is seen above that there are no discernable side-wall reflections
at 4 kcps except at the deepest water depth. Here at the range of 20 ft the
wall-reflected signal is superimposed upon the higher order top- and hottom-
reflected pulses which are of comparable amplitude. Acknowledging the dif-
ficulty of amplitude measurement imposed by the presence of top- and bottom-
reflected pulses superimposed on the side-wall reflections it appears that
the ratio of the direct path signal amplitude to that of the wall reflection
i1s of the order of 3:1 at this deepest depth.

On the other hand it is to be noted that for 10 kcps there is clear
evidence for the wall reflections at both the shallow and deep depths. The
estimated ratios of direct to wall-reflected signal amplitudes are 6:1 and

1:1 respectively at a 20 foot range.
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Over the traverse ranges employed the path length of the side-wall
reflections in the tank of greatest width (where most of the c-w data was
obtained) varied between 50 and 75 feet. The path length for the hydrophone
end-wall reflection varies between 75 and 130 ft. Some time was spent in
pulse experiments searching out the end-wall reflection.? Positive identifi-
cation was made by correlating times of arrival of the reflected pulse with
changes of range of the hydrophone.

Since all the effort at the time these measurements were madé was
in pulse work, this reflection was deemed a negligible influence on the field
for two reasons. Its amplitude was very small, and its arrival time was such
that the reflection did not interfere with the received signal over most of
the rénges being worked. The later appearance of interference peaks in c-w
experiments at range increments of approximately X/Q indicates that at the
long traverse ranges whére one is working relatively close to the end wall
and the reflected signal amplitude becomes more nearly comparable to that of
the direct signal, such interferences may be the result.

In order to give a plausible interpretation to these observations,
several other facts believed to be pertinent are described in the following
paragraphs.

To date almost all ranges employed in both the c-w and pulse experi-
ments have been of the order of 20 - 35 ft. It has been noted in section
3.2.2 "Continuous-Wave Experiments" that essentially good agreement between
the c-w pressure amplitude measurements and the rigid bottom calculation has
been obtained. These c-w measurements and those made in the mode cut-on
experiments both show an increase in "structure" at the longer ranges measured.

In a subsequent section 3.2.2 "One Millisecond Pulse Experiments"
there is a discussion of the separation in time of source image reflected

pulses and of the measurements of their individual amplitudes as a function
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of range and incident angle. Tt will suffice at this pcint to say that the
measurements provide no observable loss on reflection at the bottom. In
addition there is a small peak in the amplitudes of each of these source
image reflections at an incident angle of approximately 23%°. The data further
sﬁggest that this phencmenon is followed by a slight decrsase in amplitude
and a subsequent rise as the incident angles increase. These effects are
quite small and are observed as slight perturbations on the reflected pulse
amplitude range curves which seem otherwise to conform within experimental

error to the spherical spreading law. A%t these ranges and available water

)

depths, it is certainly questionable ag to whether measurements ars being
made in the far fielc. That is, the data taken may be indicative of inter-
mediate ranges wherein certain pertinent phenomena are occurring. These
phenomena include the possibility of a spherical wave-front, which would
influence phase considerations and reflection coefficients; also the change
in incident angle for the various source image rays from 0° to angles beyond
those critical for cut-off of compressional and shear wave propagation in
the bottom does not ordinarily occur in the far fisld.
Any valid hypothesis regarding the naturs of the propagation in
the tanks must satisfactorily reconcile the observations mentioned above.
These are summarized as followsg --
1. Wall reflections decrease (with respect to direct signal) with decrease
in water depth and with incrsase in frequency at a given range.
2, Over the limited range considered the measured field agrees moderately
with the rigid bettom calculation.
3. The source image amplitude range dependence indicates a high bottom
reflection coefficient at all angles of incidence.
4. The source image amplitudes possess a small peak at an angle of inci-

dence of 23%°, and then a slight fall off and subsequent recovery as

the incident angle is increased.
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Effect of Variations in Pulse Length - In section 3.1.2 calcula-

tions are made to show the time dependence of the pulse shapes for the normal
mode approximation and for the summation of the image series with a rigid bot-
tom assumption. For a 3 ms pulse (/2 =X\ =d = h = | ft) it can be seen
 that in only a fraction of the received signal are the four normal modes in
time coincidence because of the different group velocities of the modes.

That is, one would be compelled to be extremsly carsful in observing the re-
ceived signal in order to measure the amplitude corresponding to the vector
addition of four modes. Experience with this experimental arrangement in
the model has demonstrated that one must go to pulse lengths on the order of
6 to 8 ms in order to obtain a field which corresponds with the c-w field at
the ranges used here; the pulse length must be longer for larger ranges.
Figure 26 shows the regults of range runs (H/2 =\ =4d=h=1Tft) using

L, 6, and 8 ms pulses. Only the 8 ms pulse lergth provides a field which
correspornds closely with the c~w field and, with the exception again of the
additional measured peak at 26 feet range, corresponds with the rigid bottom
calculations.

The shape of 1 ms pulses in the tanks is qualitatively similar to
that predicted ir. section 3.1.2 and shown in Fig. 18. Experiments with various
values of H and with several values of h and d have been performed.

The records from these clsarly demcnstrate the arrivals of the pulses re-
flected from the water surface and the bottom and extending to very high
order reflections. Greater values of H serve to separate clearly the indi-
vidual reflected pulses. A more complete discussion of the 1 ms pulse data
ig given later in this section.

No attempt has been made thus far to achieve detalled agreement be-
tween experimental pulse shape and that predicted. It is hoped that in the

future the pulse shape may be studied in more detail. To date the prime
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purpose for varying the pulse length has been to attempt to observe the field
in the absence of wall reflections, although this is not to minimize the value
of other information gained in connection with the puise experiments.

One Millisecond-Pulse Experiments - It had been planned at the outset

of.the tank work to investigate the behavior of very short pulse lengths. It
was believed that it might be particularly interesting if the cycles in the
pulse could be readily discernable in order to examine interferences in detail.
The image-like appearance of the received signal in the instances of the shorter
pulse-length experiments indicated that a considerable amount of information
might be obtained through the use of even shorter pulse lengths. A number
of features which one might wish to examine by these means are:

a. top and bottom reflections,

b. wall reflections,

c. normal mode buiid—up mechanism,

d. bottom transmitted energy.

Various experiments have been run using one ms pulses. The main
parameter varied was H, the water depth. Other factors that were varied
were h and d, (receiver and projector depths), and the position of the
range. The experiments were run in both of the two available tanks. The
first tank used allows a maximum water depth eight inches greater than the
second and possesses more cracks in the bottom. The significance of the
cracks is clarified in later paragraphs "Study of Bottom Characteristics".

A loop of magnetic tape was made on which several one-millisecond
4 kcps pulses were recorded. The transmitted signals were examined and their
shape at very short ranges was quite similar to that of the pulses recorded
on the magnetic tape. The x-axis of the oscilloscope was expanded so that
the four bycles of 4 kcps pulse were clearly separated.

Figure 27 is a representative plot of data taken when H = 3 ft

and h =4 = 1.5 ft. The range was along the center-line of the tank parallel
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Fig. 27. Calculated variation of arrival time with range for several
even numbered top- and bottom-reflections and the direct path signal.
Pulse length = 1 ms, frequency = 4 kcps, H/2 = h = d = 1.5 ft. Length
of vertical bars indicates spread of data.
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to the longer (side) walls and midway between the shorter (end) walls. The
curves are the calculated times of arfival (TA) of the various even-numbered
top-and bottom reflections at the ranges shown. TFor ekample, n=».L4 is
the case where the reflected signal had experienced two top and two bottom
reflections. (See Fig. 28.) It is apparent from the small signal size that
the 180° phase shift occurring at the surface reflection and, incidentally,
the lack of significant phase shifting at the bottom, eliminated odd-numbered
arrivals. . This means, of courss, that effectively the odd-numbered reflections

of equal path length are phased out.

water surface

 receiver

V4 \/ bottom
777 777777 777777777 7777777777777

Fig. 28. Ray diagram for sound paths where n = 4 (2 top and
2 bottom reflections).

Most of the spread in the data (length of the vertical bars) can
be attributed to the method of reading the pulses. Times were measured on
the oscilloscope photographs from the sweep start to the peaks of the highest
amplitude positive half-cycle and highest amplitude negative half-cycle in
each pulse at each range. This procedure results in at least a half-cycle
to a whole-cycle spread in the data. Very slight variations in the start of
the oscilloecope sweep also contributed slight errors. The curves on the

plot represent the TA's of the pulse "centers" minus a time corresponding



_75_
to one-half the pulse length. The length of the vertical bars represents
the spread of the measured time of arrivals; the bars are arbitrarily spaced
on the graph at 16 times the measuring range intervals.

With the velocity of sound in water constant, the change in path
length with increasing image order number is a function of the water depth
and range. For a given pulse length and over the ranges here considered
there exists a minimum depth at which the received signals of consecutive
order images just fail to overlap each other in time. As the depth is in-
creased beyond this minimum the signals separate further in time. In a
deeper water experiment the separation of the pulses is more readily discerned.
This fact results in clearer observation of reflected pulse arrival times
and amplitudes.

With the projector and receiver not at mid-depth the path lengths
for the odd-order reflections are no longer equal. In an experiment where
H=3.7ft and h = d = 0.84 £t one can note the effect Just mentioned. The
phase shift between top and bottom reflected odd-order images is no longer
180° due to the path length differences, and signals of significant ampli-
tudes are introduced. (See below.)

Figures 29 and 30 show photographs of the oscilloscope screen
taken at hydrophone ranges of 1 foot and 17 feet, reépectively. At one
foot there are few reflected pulses. The wall reflection appears toward
the right end of the sweep. At a range of 17 feet several even-numbered
reflections can be seen. Gain increases between two and 17 feet have been
made as the direct pulse decreased in amplitude in order to observe the detail
in the reflected pulses.

In comparing a plot of the measured times of arrival with the cal-
culated times it is seen that when the projector and hydrophone are not at

mid-depth the odd-numbered reflections are not cancelled by phase shifts.
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Fig. 29. Photograph of oscilloscope screen showing received signal
at a range of 1 foot. Pulse length = 1 ms, frequency = 4 kcps,
H=3.7ft, h =4 =0.84 ft.

Fig. 30. Photograph of oscilloscope screen showing received signal
at a range of 17 ft. Pulse length = 1 ms, frequency = k keps,
H=37ft, h =4 =0.8 ft.
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The calculation shows a group of families of curves, each family consisting
of three closely spaced curves. The transmission pathe which yield these
curves are shown in Fig. 31, If, in a given family, the center curve is for
an even-rumbered reflecticn time of arrival 1w, then immediately below it is
the curve for (nml)D° The subscript D indicates that the raflected pulse left
the projector in a downward direction. Similarly, immediately above the n
curve is the curve for (n+l)U where the subscript U iIndicates the re-
flected pulse left the projector in an upward direction., The comparatively
small differences in path length betweern these three reflected pulses account
for the grouping intc a "family". The spread of the plotted data shows the
broadening resuiting from this phevomencn. The shapes of the calculated and
measured curves are ildentical except for a slight error due to the non-

linearity of the oscilloscope swsep.

water surface

projector { receiver

"

op ——
(n+1 )y
(n-1)p——

LAY bottom
/C/Z/////Vﬁ/G////’/’/C/G//C//’7’z’/’/’/’/’/’/’/’/’/’./‘/ ;TS

‘Fig. 31. Ray diagram for sourd paths where Ny = 1p = b,
(m+l)y = 5, (a-1)p - 3.
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Referring again to Fig. 30 the appearance of reflected pulses at
the longer range suggests an investigatiocn of the amplitudes of the reflected
pulses as a function of range. The pressure amplitude of each of the even-
numbered reflections was measured, corrected for spherical spreading, and
plotted as a function of range. Such a plot for n = L4 1is given in Fig. 32.
Here ore might expect, as predicted in section 3.1.2 of this report, to find
an indicafion of the range at which the critical angle of reflection for =n = 4
is exceeded. The rise in pressure amplitude giving evidence of a peak at a
range of 6 feet is interpreted as an indication of such a cut-on. As is
shown in the figure the critical angle calculated for this cut-on is 22°.

This may be interpreted as the critical angle for the compressional wave in
the concrete. Likewise predicted by section 3.1.2 of this report is a cut-on
or critical angle for the shear wave propagated in the bottom. The experi-
mental evidence, though very tenuous, suggests that the critical angle for
shear wave is approximately 43°.

Similar plots for higher orders lend further credence to this inter-
pretation. The mean measursd compressional wave critical angle for six dif-
ferent orders of even-numbered reflections is 23°27' with a maximum deviation
from the mean of 1°24", In the same range of n's only two vague suggestions
of ghear wave critical angle can be found giving angles of L42°%3' and 42°55'.
These critical angles yield compressional and shear wave velocities in the
bottom of 12,280 ft/sec and 7,070 ft/sec, respectively. The characteristics
of the bottom are discussed later in the report. These values of velocities,
it should be noted, are reasonable for concrete.

The probability for the data to yleld such consistent values of the
compressional wave velocity by chancs is computed to be less than 1:370.

This ratio was calculated as follows. Seven different even-ordered reflected

pulse amplitude vs range curves were measursable (n = 2 through n = 14). Two
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of the seven did not meet the acceptance criterion which was that after cor-
rection of the amplitudes for spherical spreading, the highest amplitude peak
on each plot must fall within the total spread in angle of 2.5° centered on
the critical angle. The average range of incident angles over which the
amplitudes of the various orders of reflection were measured was about 15°,
One of the two rejected measurements gave a clear peak at 24°31' but a higher
one existed at 28°. The second rejection gave peaks at 18° and 26° but at
a range where the reflected pulse and direct water path signal interfered.

The above data are not consistent with the velocity information from
the Shell Explcration and Production Company. The latter results give com-
pressional wave velocities of 15,350 ft/sec and 16,250 ft/sec for dry and wet
concrete and shear wave velocities of 9,160 ft/sec and 8,960 ft/sec respectively
for dry and wet samples. Using the same value for the velocity of sound in
water (4800 ft/sec) and ‘the Shell wet concrete velocity values, the calculated
values of compressional and shear wave critical angles are 17°27" and 28°33',

The reason for the lack of agreement is not clear. Weinstein? has
observed experimental variations in the value of the reflection coefficient
from that predicted by plane wave theory when the angle of incidence is such
that the change of phase upon reflection varies greatly with a small change
in the angle of incidence. In these regions especially one camnot use a di-
vergent beam several degrees wide to approximate at a plane wave. Weinstein -
demonstrates a shift of the reflection peak at the critical angle for the
compressional wave and a majoﬂ%minimum in the reflection amplitude in the
region near the critical angle for shear. He uses a thick aluminum plate as
a semi-infinite reflector. These observations are qualitatively similar to
some of the reflection data taken in the tanks. Further experimental effort
is indicated.

It is possible that theoretical work now in progress will determine

the correction factor needed to convert reflection coefficients obtained with
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spherical waves to the plane wave coéfficientsu Anotiner possibility is that
the introduction of a damping factor due to shear wave attenuation may clear
up the inconsistency.

Attention is now turned to the consideration of bottom-propagated
energy. Exhaustive search for evidence of this energy at the working fre-
quencies (4 and 10 kcps) have been made in tank number one. The net result
was that there was only slight evidence for some low-level bottom-transmitted
energy. It was concluded that a better approach would probably be to investi-
gate this phenomenon by means of an impulse source. However, since the sig-
nal at these frequencies was so weak that it was believed of little signifi-
cance to the amplitude measurements, and the impulse-type of experiment was
deferred. It is evident that joints and cracks in the bottem of the tank will
strongly influence bottom propagated energy. These effects will be discussed
in a later sasction.

After the experiment was moved to the second tark and more runs were
made with one millisecond pulses, any existing doubt about the presernce of
bottom propagated energy was removed. The photograph shown in Fig. %3 clearly
shows a low amplitude early arrival. It should be pointed out that the data
from which this photograph was selected were not taken for the express purpose
of investigating bottom-transmitted energy. It is felt that these experiments
can be improved in the future.

The above-mentioned data give an apparent hottom-propagated wave
which preceeds the direct water-propagated wave at a range roughly determined
to be between 5.5 ahd 6.5 feet. The uncertainties of the experiment do not
allow one to compute exactly from the data the velocity of this bottom wave.
Calculations reveal, however, that the measured range spread given above is
close encugh to the calculated range of the first arrival preceding the
water propagated wave so that a presumed shear or Raylzigh wave velocity of the

order of 7000 - 9000 ft/sec could account for the observation. At somewhat
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Fig. 33. Photograph of oscilloscope screen showing example
of bottom transmitted early arrival (see arrow). Electrical

pick-up at extreme left is not to be confused with the early
arrival.
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greater ranges there is evidence for an early arrival travelling with the ap-
proximate velocity of the compressional wave in concrete in addition to the one
described. P.N.S. O‘Brien6 has with a similar experimental arrangement em-
ploying exponentional pulse forms obtained quantitative data regarding the ampli-
tudes of the so-called "head" wave. He worked with a water-over-concrete
model and observed close to the interface direct to compressional and direct
to shear wave amplitude ratios of the order of 1:100 and 1:10 respectively.
One may deduce from these ratios a compressional to shear wave amplitude ratio
of the order of 1:10. Since in our experiments the shear wave signal (if it
is shear) is very low in amplitude, one might expect that the compressional
wave signal is down in the background noise. It is hoped that the questions
raised here can be resolved eventually. Further effort in this problem of
bottom-propagated energy is planned.

A number of runs employing a 10 kcps one-millisecond signal were
made. These have proved difficult to interpret for the reason that a "spool
effect” was obtained on the transmitted pulse. This phenomenon makes it diffi-

cult to identify reflected pulses and obviates amplitude measurements.

3.2.4. Study of Bottom Characteristics

It is well recognized and has been further emphasized in the theore-
tical treatment of the model program that in shallow water sound propagation,
especially at frequencies below 5 to 10 kcps, one must evaluate the degree to
which the elastic properties of the bottom influence the sound field. These
properties influence such questions as the amount of energy lost in the bottom,
the energy re-radiated by the bottom, the velocities with which the energy is
propagated in the bottom, and the critical angles of reflection at the bottom
for water-propagated waves. For these reasons several independent measurements
were made to determine the values of the pertinent elastic constants of the con-

crete bottom of the tanks employed in the experiments.
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The concrete agglomerate containsg pebbles ranging in size from
that just visible to the naked eye up to those with a cross-section of about
one inch., The density, as determired by weighing a large representative
bottom sample, is 2.3 grams/ccu The thickness of the councrete varies be-
tween five and seven inches. It has been laid in sections each about 30 feet
square. The sections are separated by one-half inch of an expansion joint
material éomposed of asphalt-impregrated paper. The bottom of the first tank
used had beern further broken in many places; many cracks are clearly visible.
The bottom of the second tank exhibits no such cracks.

The methods that have been used in an attempt to determine the
elagtic properties of the bottom are briefly described below.

a. Dynamic method - Prismatic bars of concrete sawed from the bottom were
vibrated in various longitudinal and torsional modes using a concrete
testing apparatus in the Michigan State Highway Departmert ILaboratory.
No information was gained due primarily to the difficulty in exciting
suitable modes in the bars of the small dimensions available,

b. Static compression method - A prismatic bar of concrete was compressed
and the resultant strain measured. No conclusive information was ob-’
tained since strains were localized by the inhomogeneities and yielded
an excessive spread in the data.

¢. Impulse method - A test bar of the concrete was sent to the Shell
Exploration and Development Company for a determination of the velo-
cities of propagation and attenuation of acoustical pulses. This
was done in response to an offer by Dr. A. Ginzbarg of that company
to make the measurements with an apparatus which they use for similar-
determinations. The method consists of coring the concrete sample,
measuring transit times and pulse amplitudes in the core, and then

cutting the sample into two unegual parts and repeating the experiments.
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These pieces are then saturated with water after being evacuated, and
the measurements repeated. The method gives three points on plots
of time versus length and amplitude versus length for both dry and
wet samples. The frequency of observed pulses was approximately
10 - 15 kcps.

The velocity data from both dry and wet samples gave consistent

values from sample to sample. The values of velocity as obtained
from graphs of travel time versus sample‘length are shown below.

Dry . Wet

cc (compressional velocity) 15,350 ft/sec '16,250 ft/sec
cs (shear velocity 9,160 ft/sec 8,960 1t /sec

Shear wave attenuation was also measured by observing the dif-
ference in amplitude between once and twice reflected shear pulses.
Corrections were made on the basis that both attenuation and reflec-
tion coefficients ;ffect the observed amplitude. The actual value
for the shear attenuation in the wet samples seemed to be about 1/3 db/cm
(within a factor of two). Such a value is close to the upper limit
of attenuation and, in general, one must expect that the attenuation
is actually somewhat less. |
. Reflected pulse method - This technigue has been adequately described
above in the discussion concerning the one-millisecond pulse experi-
ments. As was explained there a discreﬁanazﬂexists between the values
obtained in this manner and those obtained by ﬁéfhod c.

. Barly arrival method - Now that definite observation of early arrivals
(see "One-millisecond pulse experiments" above) has been made, it
should be possible with refined experiments to get a reliable check on
the velocities obtained by the reflected pulse method previously de-

scribed. In the second tank one can work within a gingle concrete

block with no cracks in the bottom over the working range.



IV. SUMMARY AND CONCLUSIONS

The results of the experimental work may be classified in two
ways. One set of results provides information about the acoustic charac-
teristics of the water tanks. The other deals with the more general prob-
lem, namely the characteristics of the propagation of sound in shallow

water.

4.1.1. The Acoustic Characteristics of the Tanks

The Qégggg - Various standard experimental techniques and one
rather unique one have been employed to determine values for the physical
constants of the concrete bottom of the tanks. These have been described
in Section 3.2.4. From the experiments two sets of values for the velo-
cities of propagation of the compressional and shear waves associated with
the concrete have been obtained. Although the two sets of values differ
in a ratio of L:3, both lie in a range of velocities which are reasonable
for concrete.,

Remembering the difficulty of ascertaining the true values for
the physical constants of the concrete, a reasonable similarity has been
found between the measured and calculated sound fields over the ranges
employed in the tanks. It has been shown that the assumption of a per-
fectly rigid bottom is a fair approximation to the existing situation.

In addition the calculation including the effect of a compressional

wave in the bottom (fluid bottom) bears unmistakeable resemblance to the

-86-
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measured sound field. The basic reason for the similarity between the
rigid and fluid bottom calculations lies in the fact that in the situa-
tion for which calculations were made, four normal modes are propagating
in either case.

It appears that agreement between the calculation and the mea-
gured field will be improved by more accurate determination of the phy-
sical constants.

In the short pulse experiments where the amplitude-range depen-
dence of the source images was measured, it was found that over the path
lengths and number of associated bottom reflections considered, little
attenuation was apparent. This implies low energy loss per bottom re-
flection. It is necessary to postulate only a slight loss per reflection
to account for considerable attenuation of the normal modes at long ranges.

No evidence -has been found to lead the authors to believe that
the bottom cannot be considered a semi-infinite half-space at least at
the frequencies of interest. In the Appendix to Section 3.1 a calculation
indicates that the above conclusion is probably correct. Experimentally
no reflected pulses attributable to reflections from the interface between
the bottom of the concrete and the ground or from the ground below have

been observed.

4.,1.2. The Effect of Other Factors

In the course of the experiments several factors, other than
the bottom and its effect upon the acoustic characteristics of the tanks,
were investigated. For example, the measured sensitivity of the sound
field to variations in water depth, receiver depth, and frequency is shown
in Fig. 34ka, b, c and the AH -effect, Ad effect and Af effect, re-

spectively. The plots of pulse data were selected to demonstrate the
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Effect of slight variations in water depth,

receiver depth, and frequency.
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order of magnitude of the shift in the sound field with small changes in
individual variables. They serve merely to point out the care with which
the parameters must be controlled in order to obtain repeatable results.

The degree to which the bottom approximates a level surface has
been examined aiong the range under the trolley traék. The steepest
slope found amounted to 0.00L ft/ft over a 10 ft range. This is a slope
of 14 minutes. Over a 4O ft range interval the slope was more like
0.0015 ft/ft or 5 minutes. Variations of depth and bottom slope of this
order of magnitude are not believed significant over the range and with
the water depths employed in these experiments.

Water temperature has been measured each day near the surface,
at mid-depth and near the bottom. The total spread between the top and
bottom is generally less than 2°C. This has been considered a minor effect
insofar as the gradient. is concerned. To determine the sound velocity
for use in computations an average temperature, which is near the mid-depth
temﬁerature, is used. The velocity of sound at the average temperature
is taken from British Admiralty Tables of the velocity of sound in fresh
Water.(7)

The problem of wall reflections has been examined. It seems
clear that when conditions are such that more than three or four modes are
propagating, wall reflections must begin to contribute significantly to
the observed signal. For example this occurs with deeper water or higher
frequency, or both. By shortening the pulse it is possible‘to observe in
a region wherein the wall reflections do not arrive in time to influence
the measurement. One approach to the solution of the problem of working
with higher numbers of propagating modes is to change the scale factor.
This can be done by lowering the water depth and raising the frequency to
the limit imposed by the fact that the bottom is not perfectly level. To
observe the sound fields at ranges longer than 40 or 50 )\ such a change is

necessary anyway.
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It does not appear that wall reflections offer a suitable explana-
tion for the high amplitude interference signal superimposed on the modal
field at range intervals of approximately k/E. The possibility that the
interference is the result of re-radiated bottom-propagated energy has
been posed. It is considered more likely that the normal modes of order
number higher than four (presumed heretofore to be highly damped) are
the source of this phenomenon. Particular attention is being given the
attenuation of these modes in order to determine their contribution to
the sound field.

That the departures of the calculations from the measurements
are probably related to the bottom constants is further emphasized by
the results of experiments utilizing different bottom types. One set of
measurements was taken with a fiber glass bottom. Asphalt covered fiber
glass 7/8" thick was placed over the concrete along the range. The sound
field was measured with H/Q =h =4 =\. The periodic nature of the pres-
sure amplitude vs range plot indicated a field with two propagating modes.
Assuming the water layer was bounded by pressure release surfaces, a cal-
culation of the spacing of the modal interference peaks was made. The
calculated spacing was Jjust three per cent different than the measured
spacing. The fact that good agreement was obtained serves to indicate
that the assumption of a pressure release bottom was correct and that no
spurious effects were encountered from the bottom or from wall reflectionms.
It may be inferred then that effort must be placed on the problem of ar-
riving at consistent and reliable values for the velocities and energies
of the waves propagated in the concrete bottom.

Another experiment was carried out utilizing a bottom of sintered
clay blocks laid over the concrete. The effect upon the sound field was
that which would be anticipated with a bottom which is "lossy". In one
millisecond pulse runs the amplitudes of the top-and bottom-reflected

pulses were observed to fall rapidly with range.
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In summarizing the acoustic properties of the tanks it can be
stated that they offer a definite promise of value in their employment as
shallow water models. The degree of versatility of the model, particularly
in investigating the sound propagation mechanisms acting in the near and
intermediate fields, has been suggested in this report and is reviewed
below in Section 4.1.3. Tt is believed that work in progress will solve
the problem of the inconsistency in the values of the elastic constants of
the concrete bottom. Once this has been done the more serilous application
of the model to shallow water sound propagation problems will begin.
The restrictions Imposed by wall reflections and/or concrete-propagated
energy are not believed to be serious. The extent to which ranges can be
lengthened probably in the final analysis will be determined by the bottom

roughness.

4,1.3. The Propagation of Sound in Shallow Water

In the investigation of the acoustic properties of the tanks
and the probable value of the tanks as models, several interesting factors
related to propagation have been explored. The following summary of these
factors serves to exemplify the different types of problems to which the
model can be applied.

First the convenience of the model for making rapid checks on
theoretical results and on certain calculations is evident. Within the
capabilities of the model one is able to set up an experiment and very
often in the period of a day or two have a set of pertinent data. Such
a procedure enables both the theoretical and experimental phases of the
program to procede with a minimum of extraneous difficulty. At the present
time this procedure 1s being utilized in the investigation of the role of
presumably damped modes and branch-line integral contributions in the

near and intermediate sound field.
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It has been shown that the model offers a good facility for the
determination of the frequencies at which the normal modes cease to be
highly demped in a prescribed situation. With little additional complica-
tion of the experiment one can also expect to observe changes in the energy
in the sound field associated with mode cut-ons. This type of experiment
includes the capability for the examination of the excitation function as
a function of frequency. Thus both frequency and amplitude studies of the
Airy phase can be made.

While no effort has been expended in this type of investigation,
attention has been given to the possibility of exploring certain other
modal mechanisms which are of considerable interest. These are the examina-
tion by means of pulses of the build-up of modes at longer ranges and
the examination of the decay or the conversion of higher modes to lower
modes due to scattering using a c-w signal at long range. Scattering
caused by bottom irregularities (using larger scale factors) and by a
roughened water surface are possible mechanisms to employ in the latter
problem. An investigation of the effect of the shear wave attenuating
in the bottom would also be of interest. In the former problem it can
be shown that as the path lengths of the various source image signals
approach that of the direct signal at long ranges, the pulseé will merge
in time to form modes. As these modes are formed one should be able to
observe their group velocities and amplitudes.

Some effects of varying pulse length upon the form of the re-
ceived signal have been observed. Qualitatively these observations are
in agreement with those computed using the approximate normal mode method
and the image series summation method. It is believed that a rigorous
experimental and theoretical program concerned with these c-w pulses could
possibly result in the development of practical techniques applicable to

the investigation of propagation mechanisms in the ocean.
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In the matter of determination of reflection coefficients of the
bottom it is proposed that the technique employed in Section %.2.% of this
report be considered as a practical shallow water technique. Here c-w
pulses were used, and the pressure amplitude-range dependence of the
various orders of the received pulses was observed. The critical angles
for cut-off of the compressional and shear bottom propagated waves (and
so the velocities) were determined by observing peaks in the amplitude
curves. The multiple reflections provide a convenient means of measuring
mode attenuation. Simultaneous measurements at a few select frequencies
could reveal a great deal regarding the bottom characteristics and trans-
mission loss.,

Two preliminary experiments which were performed employing
bottom types different from the concrete bottom have been described above.
These represent the attempts made thus far to change the bottom material.
The possibility of introducing various bottom materials and configurations
in the model gives rise to a number of feasible experiments. One of the
advantages offered by the model in this type of experiment is the possi-
bility of extending the pressure amplitude measurements into the bottom
materials. Thus direct measurements of velocity, amplitude, and attenua-
tion in the bottom materials could be made.

In summary it is believed that the model discussed in this report
can be employed to investigate some of the probable mechanisms which may
account for the attenuation of the sound propagating in shallow water.

The more probable mechanisms include (1) depth variations; (2) attenua-
tions produced by the non-plane upper surface; (3) attenuations due to
scattering at the lower surface; and (4) attenuations produced by dissipa-

tion in the bottom.



(Continued from page 47)
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