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FOREWORD

This is the third semiannual report on a study of the use of acous-
tic eﬁission‘in nondestrﬁcfive‘teSting;vThis’research is supported'by
the Advanced Reseafcﬁ Project Agency.of the Departmen; of Défense and
is monitored by the Air Force Materials'Laborato;y, MANN; under Contract
No. F33615-68-C-1703,'initiated ﬁnder ARPA Order 1244, Progfam Code 8D10.
Mr. R. R. Rowand (MANN) is project engiﬁée£. This report covers the
peribd from September 1, 1969 to February 28, 1970.

The program is being carried out in the Rheology and Fracture Lab-
oratories of the Mechanical Engineering Department of The University of
Michigan. Thevwork is under the direction of Associate Professor J. R.
Frederick. Professor David K. Felbeck, Mr. Robert Bill, Mr. Charles

Thomas, and Mr. William Bracht have participated in the program.
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. ABSTRACT

Acoustic emission may be defined as the noise given off spontane-
ously by solid materials as a result of a sudden relaxation of stresses
within the material. Stress relaxation can occur as a result of the
nucleation or propagation of cracks, or as a consequence of various
elastic or plastic deformation processes, The principal elastic or
plastic deformation mechanisms that are sources of acoustic emission in
solids are (1) the slip of existing dislocations in a metal, (2) the
activation of dislocation sources, (3) twinning, and (4) grain boundary
slip. This report describes the results of an investigation into the
effects of one microstructure parameter, namely grain size, on acoustic
emission. It also describes a method by which acoustic emission phe-
nomena may possibly be used to determine the amount of residual stress
in metals. ' :
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A float and lever system is used to apply a load to the test specimens.
This minimizes the extraneous noise.

‘Block diagrém of the eléctroﬁic components used in the investigation.

True-stress, true-strain curves for 99. 994 aluminum used in the
investigation

The cumulative acoustic emission from 99.99% aluminum depends on grain
size. The data shown are for a frequency band of 80 to 200 kHz.

The acoustic emission from coarse grained 99. 994 aluminum is greater
at low frequencies than at higher frequencies.

Repeated loading of a test specimen to stress levels below the yield
stress results in the type of cumulative emission versus load curve

‘shown in the Figure.

Simplified model for a specimen containing uniform compressive and
tensile stresses. Region A is in tension. Region B is in compression.

Stress levels applied to the specimen shown in Fig. 7 in order to obtain
the acoustic emission response shown in Fig. 9.

Schematic diagram of the acoustic emission from the model shown in Fig.
7. Region A emits in the manner shown for the tensile loading. Region
B emits in the manner shown for the compressive loading.

vThe combined emission for the model in Fig. 7 is a combination of the

two curves shown in Fig. 9.

If a sufficiently large tensile stress is applied to the specimen shown
in Fig. 9 so that the region under compression is put into tension a
cumulative emission curve having two points of inflection should result.

Cumulative acoustic emission from 6061-T6 aluminum during loading and
unloading. The maximum stress applied to the specimen is less than
half of the yield stress. '

Cumulative acoustic emission from a 6061-T6 aluminum specimen that had
been bent to about 1/2° and then restraightended. The arrow indicates
a region of the load curve in which there is a change in slope, as
might be expected from the model in Fig. 11. The applied stress is
less than half the yield stress. ’ '

Acoustic emission from an annealed 1018 steel flat tensile specimen
which has no residual stresses.

vi



15. Acoustic emission from an annealed 1018 steel flat tenmsile specimen
containing a shrunk-fit insert having a compressive stress of about
16,000 psi.

16. Acoustic emission from an annealed 1018>steel flat tensile specimen
containing a rolled-in insert having a compressive stress of about
6000 psi.
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1.0 INTRODUCTION

One of several pdssiblé sources of acoustic emission from metals
is dislocation motion. The model being used in the present program to
explain the emission process is one proposed by Agarwal, et.‘al.,(l)
namely, that the aéouétic emission results from the slip produced by
the motion of dislocations which originate from dislocation sources
that have been activated by an applied stress. It is assumed in the
model that a source continues to operate until it is shut off byvthe
back-stress of piled-up dislocations.

One of the tasks that has been pursued has been to investigate the
effect of microstructure on acoustic emission. As a result of this
effort it has been found that the amounﬁ of acoustic emission produced
in 99.997% pure aluminum depends on the grain size of the material in an
anomalous way, namely, that a peak value of the emission occurs i; this
material at a grain size of about,350 microns. Above this grain sizé
the emission decreases‘and approaches a constant value. Bélow this peak
value, the emission also decreases and approaches zero for grain sizes
less than 10 microms at the noise threshold level of 4.0 microvolts uséd
‘in the tests, the results of which are being repofted here.

Another task that is being pursued’is the use 6f acoustic emission to
measure residual stresses in metal., The determination of the inteﬁsity
of residual stresses remaining in a manufactured part after some form of
processing has been performed on it is generally carried out by removing
sﬁcce;Sive layers of material and measuring the change in stress in tﬁe

material adjacent to the removed section. This process makes the part



unusuable. Hence it would be useful to have some method for determining
the intensity of residual stresses in a part nondestructively.

Other work in progress involves the acoustic emission from specimens
while they‘are undergoing fatigue or creep, and the development of thermal
stressing techniques for inducing emission. The temperatures being used
in the latter tests are low enough so that no significant structural
changes are produced in the material being tested. The results of these
tests willvbe reported in subsequent progress reports as definitive results

are obtained.

2.0 EXPERIMENTAL PROCEDURES

Because of the low level of the acoustic emission phenomena being
studiedband the range of frequencies (6 to 300 kHz) being used, a low .
noise-level loading system previously described has been used( )
Schematic diagrams of the mechanical components and the instrumentation
are shown in figs. 1 and 2.

The ioad is applied to the specimen by the float and lever system
shown in Fig. 1. This is located inside an "audiometric" room to reduce
the amount of ambient noise picked up by the detection system. The walls
of the room have a transmission loss of 60 dB in the octave band of fre-
quencies of 4800 to 9600 Hz. The room is also electrostatically shielded.

The low noise-level preamplifier is located in the audiometric room
adjacent to the test specimen so that the input lead from the PZT-5

transducer can be as short as possible. The specimen is supported by

nylon grips to provide further isolation from extraneous noise.



*esTou msovd..w.aﬁnm oYUy SOZTWTUTW STYJL

mﬂﬂﬁ«.cmxmm 1893 ayy 03 peoT ® ATdde 03 pesn ST Em#mhm JIBAST @ﬂ.m 1e0TI V

‘T “STd
AIVIVIAS
QNVIS NVI
oNTaNY
rieions FTAVISNCAV
FICIXTTS I/
“ - o \\ .
* -\ \, | NEIVId | /
INZANOLTV B
. - AR LR
r Y\ %8 NALVId 1({?"(?(&/ ;
IHOTAM AWV TWOAANS N ) (4von3)
~¥EINNOD S : [ ) 24 I w,
VAN | _ISVTIvE anvs|
RAAE - € 4 A 4
MNVL
\ IHOTAMIAINNOD \—”.1”— e
gy m * /
...\\ ”* saTun 52 gl NINIOZIS «
T # XV ONIQVOT SJXL NIVHD \\“
. | pdt \
> N < L 3 © / 3 0(/
> % NOILISOd TN
TIZD QYOI
SiooTd HOLOW
MOTTId ¥3dany SNONOWHONXS

“posn ST [eTIajem :owas&ﬁs J0 UOT3BTOST OTJSNODE 38YJ SIJVDTPUT . 5

LA
T# FATVA

- TOYLNOD

aLvy

. .



‘UOT4BBT1SOAUT SU3 UL Pesn squeuodwmoo. OTUOJ3} 08T oY3 JO WeIBelp MOO0Tg °2 °*S1d

¥V 9¢1 13aow
| QYYMOVH-113TIMIH e
-43AH003Y CA-A-X

41

[ose3dow]
0213 fe—

1130
avo

vV-20t .moos__ .,
~wooy |
u__mh.s_o_oai

IvI _

vo8s - 1 Jmmmm

QUVOVd-L13IMIH] | QY¥XIOVd

je— -1L1IFTMIH j&—
H31H3IANOD 90IVNVY SIINNOD

.thﬂgcway ;..920¢KMJM. —
5= | ___[¥oLvyanvo

—eoa T w509y
V GG |

XINOYIMIL  j&— .
3d402SOT11I0SO N3IWID3dS

e e e e o o e i e | e

VPdO ddALl
dvd

|43141NdWv3Nd /

_
_
!
_r HY3ONASNVYHL |

—— — — — —— ———— —— — — — — — — —

A ETRIEI
SIHVIIS Je— 431411dNY fo—Le] SSVd [e

- ONv8




3.0 MICROSTRUCTURE INVESTIGATION OF ALUMINUM

The microstructure parameter in 99.99% éluminum that was investigated
was grain size, Variations in grain size were obtained by the recrys-
tallization and subsequent grain growth in plﬁ%tically deformed material.

True-stress, true-strain curves fof three different specimens, each
of which had a different average grain sizes, are shown in Fig. 3. As
is to be expected the smaller the grain size the higher strength.

The cumul#tive acoustic emission that is obtained for a given applied
stress depends on the grain size of thé‘aluminum as shown in Fig. 4, For
small or large grain sizeé the emission is low, but at an infermediate
size there is a maximum tgtal acoustic emission. The bandwidth fdr the
data in Fig., 4 is 80 to 200 kHz, The same shape of curve is also observed
in a frequency band of 6 to 20 kHz. |

Another effect that is observed concerns the frequency conteﬁt of
the emission. As the grain size increasés the amdunt of emission at low
frequencies increases in comparison with tﬂe emission at higher frequencies.
Fig. 5 shows this effect for tBree different grain sizes. These data were
obtained by analyzing a tape recording of the emission from three different
specimens, each of which had a different average‘grain size. An Ampex
FR 100 tape recorder was used to rééord the acoustic emission. The emission
in the various frequency bands»waé measured by the use of a Krohn-Hite

model 310 AB band—péss filter.

3.1 ~DISCUSSION OF THE RESULTS ON THE EFFECT OF MICROSTRUCTURE ON ACOUSTIC

EMISSION

The increase and subsequent decrease in the amount of acoustic emission

with increasing grain size can be explained on the basis of the model proposed
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[0 4000u grain size
r | 1500u grain size

7000} , :
B 4004 grain size

6000f| B
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CUMULATIVE EMISSION, COUNTS x10°

2000} | M

10- 20kHz 2o-§6kHz 30-40kHz 40-60kHz _60-T0kHz
: FREQUENCY BANDS

1000}

Fig. 5. The acoustic éﬁliséibn from coarse grained 99.99% ‘aluminum is greater at
low frequencies than at higher frequencies.
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by Agarwal (1). This postulates that acoustic emission is the result
cf the activation of sources of dislocations by an applied stress. The
sources give off avalanches of dislocations until they are shut off
because of the back-stress caused by the pile:up of dislocations against
obstacles such as a grain boundaries. The generation of an avalanche of
dislocations in a short interval of gime satisfies the requirement that
acoustic emission is only detected if a sufficient amount of slip occurs
in a time interval that is short enough so that acoustic signals can be
detected by a piezoelectric transducer. An average grain size of 10
microns in the 99.997 aluminum is sufficient to allow enough dislocations
to be generated and glide away from the source so thét a detectable strain
pulse, or acoustic emission pulse, is produced. As the grain siée is
increased the dislocation glide distance increases and a larger strain
pulse is produced. However, as the graiﬁ size increases the grain boundary
area decreases. This means that there are fewer grain boundary sources
of dislocations.  Hence a reduction in the emission is to‘be expected.
This happens at a grain size of about 350 microns for the data shown in
Fig. 4, and for the threshold ievel ﬁf counting used in theses tests*,

The increase in the amount of acoustic emission that is observed at
low frequencies for the large grain sizes can be explained as fecllows. A
large grain size means that the dislocation glide distances are greater
than for smaller grain sizes. The dislocations are in motion for a longer
time interval and.thus'more dislocations can be emitted before the source

is shut off. From this it can be concluded that the average duration of

=

*These results will be repérted in more detail in the doctoral dissertation
of Mr. Robert Bill at the University of Michigan in the latter part of

1970.
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the slip events is longer and that the corresponding "effective frequencies"
of the acoustic emission (i.e., the reciprocal of the duration of the slip
events) are correspondingly lower. As the grain size decreases the source
will operate for a shorter timg and the "effective frequency" of the

»

acoustic emission increases.

4,0 RESIDUAL STRESS DETERMINATION

The basis on which it is proposed to investigate residual stress in
metals by acoustic emission techniques is as follows.
Most metals produce acoustic emission when strained. The amount
of emission is related to the stress level, and to the volume of material
stréssed. For many engineering materials, including steel and aluminum,
the emission is found to have the following characteristics:
(1) On repeated loading to a stress below the yield stress of
a test specimen the rate of emission is essentially con-
stant and low. The total emission produced on loading to
a particular stress level is proportional to the applied
stress, as shown in curve 'o-a" in Fig. 6.
(2) During the unloading part of the cycle the acoustic
emission is negligible for a small decrease in the
stress level, then it increases in an exponential manner
as shown in curve "a-b" in Fig. 6.
A simplified model that is proposed for a specimen that contains a
region of uniform tensile stress and a region of uniform compressive
N stfess, both of the same magnitude, is shown in Fig. 7. Fig. 8 shows the
stress levels reached as a résult of applyihg-a tensile load "F". Fig. 9

shows the separate cumulative emission from sections A and B of the model

in Fig. 7. Fig. 10 is a combined cumulative emission curve.



CUMULATIVE EMISSION

+

LOAD —

Fig. 6. Repeated loading of a test specimen to stress levels below the yield
stress results in the type of cumulative emission versus load _curve shown in

the filgure,

Fig. 7. Simplified mbdel for a specimen containing uniform compressive and ten-
sile stresses, Regilon A is in tension. Region B is in compression.,

Sy
Stress| fa’
a, O"
b Strain
t;,bu
Sy

Fig. 8. Stress levels applied to the specimen shown in Fig. T in order to
obtain the acoustic emission response shown in Fig. 9.
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If a large enough stress is applied to the specimen so that the sec-
tion that was originally in compression is now subjected to a tenmsile
stress, the cumulative emission curve would appear as shown.schematically
ian Fig. 11.

llence, in a general case it is necessary to apply a tensile or com-
pressive stress larger than the residual stress and then to observe the
shape of the load and the unload cumulative acoustic emission curves., If
a curve such as is shown in Fig. li is obtained, the change in the slope
of the load and unload curQes will occur at the peak value of the residual

stress,

4.1 EXPERIMENTAL PROCEDURES

Tests have been performed on 1018 steel specimens and on 6061-T6
aluminum. The steel specimens were annealed at 950°Ffor three hours and
the aluminum:was tested in the T-6 condition.

The 6061-T6 aluminum specimens were 0.5 in. in diameter 4.0 in. long
and had flat surfaces 1.5 in. long and 0.1 in. deep milled on both sides.
One of these was tested in the "as-received" condition. ReSidual stresses
were introduced in the other specimen by bending it to an angle of about
1/2 degree and then straighteﬁing it.

Three flat specimens of annealed 1018 steel were prepared having a
gage section 5/8 in. wide, 1/4 in. thick and 4 in. long. Rectangular slots
an inch long and 1/4 in. wide were cut in the center of two of the specimens.
A 1018 steel imsert 0.0015 in. longer than the siot was shrunk fit into the
slot of one specimen. The slot in the other specimen was filled with an

insert that was 0.002 in. thicker than the specimen. The specimen was then

‘rolled until the insert was the same thickness as the specimen. The



O" bll

CUMULATIVE EMISSION

LOAD —

Fig. 11. If a sufficiently large tensile stress is applied to the specimen shown
in Fig. 9 so that the region under compression is put into tension, a cumulative
emission curve having two points of inflection should result.

15
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compressive stress produced'in:tne:ineert in this nay was reduced sub-
sequently by plastically straining the main body of the specimen in a

- standard tensile machine. The stresses in the inserts were then measured
by the use of’strain gages placed on the_inserts and appiying.sufficient;
tensile load so that no further change in the length of the insert occurree."
These tests indicated that the compressive stresses were approximately
16,000 psi in the shrunk fit- specimen and 6,000 psi in the rolled-in

specimen,
4,2 RESULTS -

The results of the aconstic‘eniseion,tests on'anvannealed (stress-
free) and»the residual stress specimen are shown in Figs. 12-16. The
curves_ehown are reproducible to within + 3% on any particular epecimen.

‘A pfe-load of 50 pounds was maintained on the specimens whennmaking a -
test, hence the applied load is shown in the Figufes as tanging from
50 to 400 pounds. The maximum load of 400 pounds in all tests is less

than half the yield stress of the materials.

4,3 DISCUSSION OF RESULTS OF THE RESIDUAL STRESS TESTS'

The effect of'residual compressive stresses‘onvthe acoustic emission
from the 6061—T6 aluminum specimen that has been bent about 1/2o and
restraightened is evident by comparing Figs. 12 and 13, The emission
obtained on loading the specimen is greater than when no fesidual'com—
\pregsive stresses are present and-there is an increasing rate of emiesion
on loading up to the stress at which the compressive stress isvovercome

by the applied tensile stress. This point is indicated by the arrow on
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Aluminum 6061-T6
Bent and then straightened

o

0o

D

CUMULATIVE EMISSION, COUNTS x 103
nN D
|

| : |
- 100 200 ‘ 300 400

LOAD, POUNDS

Fig. 13. Cumulative acoustic emission from a 6061-T6 aluminum specimen that
had been bént to about 1/2° and then restraightened. The arrow indicates a
region of the load curve in which there is a change in slope,. as might be ex-
pected from the model in Fig. 11. The applied stress is less than half the

yleld stress.
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the gragh at a load of about 250 pounds. Beyond this load the‘rate of
increase of emission 1sjconstant.

According to the model described in Fig. 11 there should be a
point of inflection on tﬁe unload part of the curve. This is not
evident, however, perhaps because of the ;ow value of the unload stress
that is assbciatedHQith that part of the specimen having residual com-
pressive stress. | .

Fig. 14 shows the emission from a 1018 flat steel specimenjﬁaving
no residual stresses. Tﬁe constant rate of emission obtained on the
-application of a load can be noted. In Fig. 15 and 16, however, the
emission rate increased during the application of a load. In both
specimens it is evident tha; the applied stress was not sufficient to

overcome the residual compressive stress and there is no inflection

point on the load curve.

5.0 CONCLUSIONS

The following conclusions can be drawn fromvthe results that have
been presentgd.in this report. |

(1) = The effect of grain size on acoustic emission can be explained
by a model'Bésed on the activation of dislocation sources and the sub-

sequent shutting off of these sources by the back-stress of dislocation

pile-ups.

(2) 1In those matefials in which the unlpaénep;ssion phenqmenon is
observed it is possiblé-to obtain‘fhe unls&d emiééion effect by supér-
i;posing a fensile stress on a residual compressive stress.

(3) The change in rate of acoustic emission when a residual stress
is exceeded by an applied stress of opposite sign may have some promise

as a means of detérmining the magnitude of the residual stress.
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6.0 FUTURE EFFORT

No more direct effort will be expended on the effects of microstruc-
ture on acoustic emission. It i§ felt that the work reported here sub-
stantiates the model for acoustic emission baséa on the activation of
dislocation sources as proposed by Agarwél, et. al.(l) ‘The model will
continue to be applied to the interpretation of the results of acoustic
emission tests on the materials tested in future work on the program.

| Work is continuing on the determination of residual stress. Efforts
will be made to correlate the magnitude of stress as determined by acoustic
emission with the results of destructive measurements of stress.

An investigation of creep and fatigue phenomena is continuing, along

with low noise level loading techniques.
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