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CHAPTER I

DESCRIPTION OF THE PROBLEM

A need exists for electronic systems which can determine by
triangulation, the position of many moving targets which exist simultane-
ously. Triangulation is the general method of calculating the position
of a target from measurements of the angle of direction (bearing) to the
target from a set of at least two known points. When all of the bearing
measurements on a particular target are performed simultaneously, the
error in the computed position of the target is unaffected by target
motion. When the bearing measurements are not performed simultaneously,
an error is introduced because of the motion of the target during the time
between the measurements used in the calculation of target position.

When many targets are to be under surveillance, simultaneous
bearing measurement, although desirable, is not always a practical
design requirement. In order to obtain simultaneous bearing measurement
at several bearing-measurement stations, the selection of a particular
target must be made in advance at some central point within the system
and then the selected target must be designated to each station. The
selection may be made on the basis of an expected bearing angle at each
station, a set of electromagnetic parameters of the expected signal, or
both. When many targets are under surveillance, expected bearing angle
will not uniquely define a target. For each signal received, the use of
electromagnetic parameters to define a selected target requires that a
measurement of the parameters be performed and the signal discarded if
it is not the selected one. The rate at which data i1s obtained on each

target by such a process is substantially less than the rate which would
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result if all the received information were used. Data rate is an import-
ant characteristic of a system which must handle many fast-moving targets.
Consequently, triangulation systems which do not require simultaneous
bearing measurements are of interest.

The use of non-simultaneous bearing measurements requires that
the bearing-measurement data, as well as those signal characteristics
which are used to distinguish among them, be stored for future use and
that the triangulation system possess a capability for selecting the
proper data for use in the calculation of target position.

A decision to use non-simultaneous bearing measurements in a
triangulation system should be based on whether or not the additional
error caused by their use can be tolerated. The study herein is aimed
primarily toward providing a measure of this error in terms of normalized
triangulation-system parameters. The measure is in the form of proba-
bility distributions for the magnitude of the error in the calculated
position of the target, hereafter called position error. The results of
the investigation provide a means for deciding whether or not to use
non-simultaneous measurements and, in addition, provide a way of selecting
some of the system design parameters. The results provide a way of evalu-
ating existing and proposed systems as well as modifications to systems.

Because the study is concerned with many, simultaneous, moving
targets, a situation chiefly associated with radio direction-finding
networks, the details and examples which are considered herein are limited
to the direction-finding case. This does not preclude the use of the
methods employed nor the application of the results to optical, infrared,

or any other type of system which uses triangulation.



The study described herein is restricted to the two-dimensional
case, i.e., altitude has not been considered. The position error has
been investigated in general for a triangulation system made up of an
arbitrary number of bearing-measurement stations. Consideration is given
to weighting the information from which the target position is calculated
according to the expected accuracy of the information. Numerical analysis
has been performed only for the case of three bearing-measurement sta-
tions, in a special case which 1s generally useful. The techniques used
in the numerical analysis are such that they may be extended easily to

other situations.



CHAPTER IT

BACKGRQUND INFORMATION

Triangulation is the general method of estimating the location
of a target (any desired point) by measuring the angle of direction of
the target from a set of known points. Estimation of the location of a
target from the measured data may be performed in a variety of ways. The
simplest procedure is the use of a plotting board on which the inter-
section of bearing lines from two known points (bearing-measurement
stations) is selected as an estimate of the target location. It is only
an estimate because the measurement cannot be performed without error.
Both manual and automatic plotting boards have been used, or, of course,
direct, trigonometric calculation can be substituted for them.

When more than two bearing-measurement stations are used, the
bearing lines seldom intersect at a point. Using a plotting board in this
case, a human observer may make an estimate of the location of the target
on the basis of his experience or with the assistance of a mechanical aid,
called a "spider", with which the set of intersections formed by the set
of bearing readings is adjusted into a smaller region by adding a cor-
rection angle of equal magnitude to each bearing reading. Barfield(e)
describes an interesting electromechanical device with which the most
probable target location can be obtained. If exactly three bearing-
measurement stations are used, an observer may compare the shape and loca-
tion of the triangle formed by the bearing lines with the triangles pre-
pared by Stansfield(l9), which show the location of the "most probable
point'. Estimation of the location of the target may also be accomplished

by use of digital computing apparatus. A computer may be designed to

ko



perform the estimate by making use of any one of a variety of criteria,
and can also be used to compensate the measured data for known systematic
error.

The general problems of radio direction-finding are extensively
discussed by Bond(3), Keen(lu), and Ross(17). Ross conveniently divides
the problems into three groups, (1) those dealing with the instrument
itself, (2) those dealing with phenomena occurring in the course of
propagation of the waves, and (3) those concerned with the interpreta-
tion of the bearings once the readings have been obtained. The study
described herein is concerned with the interpretation of bearing readings,
and, therefore, some attention must be given to the character of the error
in the readings.

Error in bearing measurement and means for reducing it has
received considerable attention.t However , reliable measurements of the
error due to individual sources of error are difficult to obtain because
of the large number of such individual sources and because of their de-

(18)

pendence upon many parameters. Ross classifies errors into four
groups: instrumental errors, site errors, propagation errors, and ob-
servational errors, and describes a method of estimating "a priori" the
probable error of a given bearing.

Compensation for systematic error which can be measured in
bearing-measurement equipment is accomplished by calibration. For the

random error which remains, there is general agreement that, in practice,

it is described by a probability distribution which differs very little

1 See, for example, Bowen(u), Horner(ll), and a collection of papers
devoted to direction-finding in The Journal of the Institution of
Electrical Engineers, Vol. 94, Part III A, London; 1947.
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from the normal or Gaussian distribution. Ross(lS) cites the results of
experimental trials which agree with the results predicted on the basis
of a normal distribution. In studies of position error, the normal
distribution has been used(8,10,19),

Position error is studied for two reasons: (l) to evaluate
the confidence which can be placed in the estimated target locations
obtained from particular triangulation systems as a function of the loca-
tion of the target with respect to the bearing-measurement stations and
as a function of other parameters and (2) to study the procedures by
which the probability of error in each bearing reading can be used to
obtain the best estimate of a target location. The evaluation will
depend, of course, on the estimation procedure which is used. Stansfield(l9)
points out that the problem of the determination of the most probable point
given by a set of position lines of unequal weight was considered by
d'Ocagne(l6) in 1893. Stansfield(l9) developed an expression for the
conditions which the coordinates of the estimated target position must
satisfy in order to be a best estimate of the true target position by the
principal of maximum likelihood. He considers the case of two dimensions
and an arbitrary number of bearing-measurement stations, assuming a
normal distribution for the error in each of the bearing measurements with
the absence of systematic error. He also presents a geometric inter-
pretation of his conditions for the case of three bearing-measurement
stations. Even in this case, the application of the conditions to the
problem of selecting the coordinates of the estimated target position
is not simple. Stansfield also examines the probability distribution

which describes the position error when his criterion is used. He



presents graphs of the fifty percent-probability contours (ellipses)l

as a function of the target location for the special cases of two, three,
and four direction-finding stations, when the standard deviation of each
bearing reading is two degrees.

Harkin(lo> has considered the error in the three-dimensional
triangulation problem with a normal, circular, bivariate distribution
for each of the bearing lines. He does not consider a best estimate of
target position but weights each of the bearing lines equally.

The studies of the position error which are referred to above
consider that either the bearing measurements are performed simultaneously
or that any motion of the target 1s negligible. As pointed out in
Chapter I, the use of simultaneous measurement, although desirable, is
not always practical. The author(S) has investigated the position error
when non-simultaneous measurements are used for the case of two bearing-
measurement stations, with the rather loose assumption that the error in a
bearing reading because of its age and target motion can be approximated
by a normal distribution with a mean of zero. A more realistic study
requires the use of non-normal probability distributions with non-zero
mean values.

The use of probability distributions which are not normal, or
the combination of independent, random variables by a process other than
addition often requires the use of numerical methods. Such is the case
in the study described herein. A variety of numerical methods, includ-

ing methods of sampling which are discussed below, are available for

1 re circular probability contours are desired, they may be obtained .
by use of a table of "Q-Functions" such as those prepared by Marcum(* ),
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performing convolution, the integration process by which the probability
distribution for the sum of independent random variables is obtained.l
When random variables are combined by a process other than addition,

more complicated procedures are usually necessary to obtain the resultant
distribution. The resultant distribution can be expressed in the form
of an integral depending on a parameter, but as Kaplan2 points out, it
can easlly happen that the integral cannot be expressed in terms of
elementary functions, even when the distributions which describe the
random variables are expressed in simple equation form. Tbichroew(zl)
points out that even with the use of high speed computers, numerical
integration is not always practical. "It is just as impractical to use

a high=-speed computer for a year to do an integration as it is to do it
by hand in 10° years."

"Distribution Sampling" is another numerical method of obtaining
the resultant distribution in which "the basic problem is expressed in
probability terms and sampling has been used to solve it; the integral
formulation is not necessary for the sampling procedure."3 The value
of each of the independent, random variables is sampled at random accord-
ing to the probability distribution which describes it and the correspond-
ing value of the dependent variable is calculated. The sampling process

is repeated many times and the set of values obtained for the dependent

variable is ranked in order of magnitude. The probability that the

1 See, for example, Tustin(23) and Truxal(22)o

2 Kaplan<l3), p. 218,

3 Teichroew(zl), p- 3.



dependent variable is less than some value is approximated by the ratio

of the number of times a smaller value is obtained to the number of times
the sampling process is employed. Teichroew(zl) points out that this
method was introduced by “Student"(zo) in 1908. More recently this

method has been used to evaluate definite integrals, to solve differential
equations, and to invert matrices by analogy, i.e., by approximating the
solution of a probability problem which can be formulated in the same way
as the non-probability problem at hand. The use of distribution sampling
in this application has been given the name "Monte Carlo Methods"l, a

name which has carried over to any use of distribution sampling.

Although the convergence of the approximate distribution ob-
tained by Monte Carlo methods to the true distribution is relatively rapid
in the vicinity of the mean of the distribution, convergence is quite
slow at the "tails" of the distribution because only a small fraction of
the total number of sets of samples yields values of the dependent variable
in this region. Kahn(le) discusses six techniques that can be used with
Monte Carlo methods to improve the accuracy of approximation for a given
number of samples. Two of these technigues, systematic sampling and
stratified sampling, are applicable to the approximate solution for a
complete distribution, a major part of the study described herein.

In systematic sampling, the values of one of the independent
variables in a multi-variable sampling problem are not determined by
chance, but instead each of the values of this one variable is distributed

among the total number of samples according to the probability associated

1
A collection of papers on Monte Carlc methods has been published in

book form in Symposium on Monte Carlo Methods, edited by Meyer, H. A.,
John Wiley and Sons, New York; 1956,




~10=

with each value. This technigue does not lead to substantial improvements
in accuracy, but as Kahn peints cut, "it ordinarily does not cost anything
to apply this technique, so that there is no point in not using it."L

In stratified sampling, the sample space is divided into non=-
overlapping sub=-sets, for each of which the conditional probability is
calculated. A representative sample of the same size is then taken from
each sub-set, and the results from each sub-gset are combined according
to the conditional probability for each,2

The method used in the study herein to calculate an approximate
resultant preobability distribution cannct properly be called distribu-
tion sampling or a Monte Carlc method. However, the method used herein
must be compared to Monte Carlo methods because of the current acceptance
and interest in them.

In the method used herein, which might be called "complete
systematic sampling", the probability space is divided into a large
number of non-overlapping sub-sets by dividing each of the dimensions
of the space into a set of non-overiapping intervals. The possible
values of the independent, random variables (dimensions) are grouped
and approximated by the value at the center of the interval, i.e.,
the probability that the value of the variable is within an inter-
val is assigned to the value at the center of the interval. Each
of the large number of sub-sets is sampled onece, i.e., all of

the possible combinations of intervals for all ¢f the independent,

1 Kahn(lz), p. 15k,

2 See Albert(l)y T. 44 and T&ichroew(21>, rp. 17=-20,
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random variables are considered in a systematic way. Although the number

1 certain

of sub-sets considered in this way may be unusually large,
efficiencies are available. The random sampling process is eliminated
and, therefore, the generation, storage, and use of random numbers is
unnecessary. When a systematic selection procedure is used, the time-
consuming process of computing the value of the dependent variable for
each set of randomly selected values of the independent variables may be
reduced to a simple calculation based on the value obtained on the previ-
ous trial. ©Such is the case in the study described herein.

The procedure described above is an extension of both systematic
sampling and stratified sampling to the polint where they are identical.
It is an extension, applied in grand scale to a digital computer, of a
simple technique for combining discrete probability distributions by
considering all of the possible outcomes. The computer provides a means

for systematically considering all of the possible outcomes as well as

for performing the necessary calculations.

1 1n the three-dimensional probability space considered herein, the
number of sub-sets used was in excess of 125,000.



CHAPTER IIT

DESCRIPTION OF THE ANALYSIS AND THE ASSUMPTIONS

The position error in a triangulation system consisting of 7
bearing-measurement stations was investigated in general for any arrange-
ment of the stations with respect to the target. An expression for the
magnitude of the position error in a single measurement was obtained as a
function of the geometry of the situation and the error in each bearing
reading. In developing an expression for position error, it was assumed
that the calculated position of the target 1is the centroidl of the set
of all intersections formed by all the bearing readings taken two at a
time. The centroid is used because of its suitability for high-speed,
automatic computation, a necessity for triangulation systems that are used
in determining the positions of many, high-speed targets. The use of a
weighted centroid to reduce the expected value of the position error is
also considered.

The probability distribution for the magnitude of the position
error is obtained from the probability distributions for the error in
the bearing reading at each of the bearing-measurement stations. Bearing-
reading error is separated into two components: (l) error in the bearing-
measurement itself, and (2) error due to motion of the target during the
time between the measurements used in the calculation of target position.
Error in the bearing measurement is assumed to be normally distributed

for the reasons described in Chapter IV. The age of the measurement is

1 "Centroid" means the center of mass. In this case each intersection
has the same mass. A "weighted centroid" means that unequal weights
(or masses) may be assigned to each intersection.

=12~
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assumed to be unmiformly distributed over a finite interval because
the triangulation system is assumed to operate in the following way.

Each bearing-measurement station is operated independently and
targets are selected for measurement on the basis of thelr availability.
When many targets are available simultaneously, measurements are per-
formed by sequencing through them in any orderly fashion. At each
central point in the system at which target position is calculated,
bearing reports and target-identification data from each bearing-measure-
ment station are stored according to the time of arrival of such reports.
Fach time a new report is received from one station, the most recent
bearing information on the same target is selected from the storage
associated with each of the other bearing-measurement stations and is
used to calculate the position of the target. Therefore, in each cal-
culation, one bearing reading is new; the age of each of the other bearing
readings depends upon the rate at which bearing readings are performed
at each of the stations. If T; denotes the time between consecutive
measurements of the bearing of a particular target at Station i, then
the age of the bearing measurement at the time it is used is described
by a probability distribution over the interval from zero to 72 . Be-
cause the bearing-measurement stations are operated independently, the
distribution for each station 1s a uniform one. In addition, the age of
each of the bearing readings used in the calculation of target position
is independent of the others.

As explained below, the general method selected for numerical
evaluation of probability distributions for position error is not based

on the use of such simple probability distributions as the normal
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distribution for error in bearing measurement and the uniform distribution
for age of the measurement. These distributions were selected because of
their general utility and because they are appropriate for the triangu-
lation system in question, and not for reasons of convenience in numeri-
cal analysis. The numerical method used is applicable to any theoreti-
cal or empirical probability distribution for the components of error,
provided that the components are independent.

For use in the numerical analysis, the general expressions for
the position error in terms of the error in bearing readings were approxi-
mated for the case of small bearing-reading error. The approximate ex-
pressions are simpler in form and, consequently, more convenient to use
in numerical analysis. The method used, however, does not require that
the approximation be made.

The special case of three bearing-measurement stations was
selected for numerical analysis because it is an arrangement that is
used frequently and because this arrangement is well suited for use in
a system designed to cover a large area and made up of three-station
units, such as those illustrated in Figure 3-1. The study of the three-
station arrangement has been restricted to a study of a symmetrical
arrangement with the stations located at the vertexes of an equilateral
triangle because this arrangement or those differing only slightly from
it are generally used. For this symmetrical arrangement, the variation
in the position error is demonstrated to be small for a target located
anywhere throughout a region surrounding the center which contains at
least half of the area of the triangle. TFor this reason the numerical

analysis has been restricted to this region. A number of probability
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Figure 3-1 Triangulation System Made Up of Three=-Station Units

LEGEND:
© Dbearing measurement station
A central station for calculation of target position

—> information flow
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distributions for the normalized position error have been obtained in
this case for several values of normalized triangulation-system parameters.
The results are valid for any choice of the variance of the bearing-
measurement error, provided that it is small, and for any choice of
spacing between the bearing-measurement stations. Separate probability
distributions were obtained for several values of the error due to target
motion and age of bearing readings. This error is normalized with re-
spect to the bearing-measurement error. Separate probability distribu-
tions for the normalized position error were obtained for each of MBl
directions of target motion with respect to the location of the station
whose bearing reading is new, so that the variation in position error
with target direction is determined. The separate distributions were
combined, assuming a uniform distribution for target direction, to pro-
vide one probability distribution which describes the position error for
an arbitrary target direction.

A modification of the triangulation system consisting of three
bearing-measurement stations was.considered also. In this modification
only two bearing readings, the new reading and the more recent of the
other two, are used to calculate the position of the target. The reason
for considering this modification is the recognition that in a system in
which no attempt is made to compensate for the error due to target motion
and age of the measurements, the use of the bearing reading with the
greater_age may increase rather than decrease the position error. This
maodified system was analysed in a manner similar to the analysis of

the conventional system. The conditions under which this modification

1
Because of symmetry, only 12 different probability distribution
curves are necessary for the 48 different target directions.
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provides a reduction in the position error were determined by comparing

the probability distributions which were obtained for both cases.



CHAPTER IV

ANALYSTIS

Position Error in Terms of Bearing-Reading Error

A target is assumed to be located at the origin of a two-
dimensional coordinate system. The locations of 1t bearing-measurement
stations are specified by the set of polar coordinates, ‘ii and‘G? y
in which the subscript (, which denotes the corresponding bearing-
measurement station, takes on all integer values from one to 7 . Each
pair of bearing lines intersects at a point denoted by /%} ) f%} , in
which the double subscript indicates the pair of bearing-measurement

stations involved and, of course, (%} . The total number of inter-

sections, N, is given by

N = (e (4-1)
A

The location of the target, as calculated from the bearing
readings, is the centroid of the set of N intersections. Because the
target is located at the origin of tﬁe coordinate system, the coordinates
of the centroid of the ?ntersections épecify the error in the calculated
location of the target. The magnitude of this error in terms of the
coordinates of .the intersections is obtained as follows.

In order to determine the centroid easily, the coordinates of
the set of intersections are expressed temporarily in a Cartesian co-

ordinate system in which X =n cos ¢ and Y= sin-e . In this Cartesian

coordinate system, the coordinates of the intersections, (“Yj) %5}>’
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are

®X..= .. Coeb and. 3‘.. = R.4m B, . (4-2)

The coordinates of the centroid are

/
N ‘_Zj:x(‘} (4-3)

F¥®

and

= L (Lb
¢ AN g gLJ J )
ST
in which Z denotes a double sum performed over all permutations of
(7S
b 11 . .
the possible values of ¢ and } . The use of permutations of values

of ¢ and ) requires the factor of 1/2 in the expression for the coordi-
nates of the centroid. The position error, E ;, 1.e., the magnitude of
the error in the calculated position of the target, can be expressed

in terms of its square by

E" =X *y . (4-5)
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The combination of Equations (4-2), (4-3), (4-4), and (4-5) yields:

a2 _ _\& _\_
aN'E = N (X*+F7) = (aNE) + (aNG)
o L
= (Zx..) + (Z Y )
ig (i
P 7 P
2 2L
=(Z/t..ww9..) + (D . e
¢j ¢ ‘4 (G4 4
¥l rEL
= 2 x. omv@:Comf} NN At ain G
ikl GRG R T Gy kL
duiy L%k A el L%k
= 2 . a co e - ‘ (4-6)
ikt G kL ( k‘> ’
i¥e, Lxk
in which _2;1 denotes a quadruple summation performed over all
t¢
bl Ank

permutations of the subscripts, with the exceptions j %0 and Lxk .
An expression for the coordinates of the intersections in
terms of the coordinates of the bearing-measurement stations and the
error in the bearing readings is obtained by use of Figure 4-1 which.
illustrates the geometry of an arbitrary pair of bearing-measurement
stations. The error in the bearing reading taken at Stations i and j

1s denoted by €; and E;, respectively. An expression of the "law of
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/
Station J // /e\\\}%
¢

Station i

~$

Intersection

Figure 4-1 The Geometry of a Pair of Bearing-Measurement Stations



sines" for the two larger triangles is

ST 4 (4-7)
ain€; M{r+&.—6—. -€.
L} 4 ¢
and
JLZ* - &} 3 ()-J--8>
m €. ’ -6 —-€
anéé AM%(W'*%} f ))
or

d, win €, [M(&i*réa)m%} - oo (6 + €) ain o

- (o) aine ] (ho9)

= d _ain€, l:m(e:+e,)c,ow9_
13 A 4 ¢t

¢ [

Equation (4-9) can be rearranged to provide

ainQ; doain€ ain (0 +€) - d ain€ ain(6+E)
t . = Ly - 4 4 [4 [X ¢ L Py > )
4 coaBr. d. ain € u,-e,(e +6.) - d ane€ cou (6 +6.) (k-10)
Ly 4 4 L ¢ [2 ¢t T4 ¢

Sin -92 and cos €. can be obtained by using Equation (4-10) and the
4 4
trigonometric identity

2 ' J

e 0 = ’ (4-11
[y | + tan’ o, )
¢4
from which
- Py
. -— . 6‘) *\
2 [“ei‘“”"é; o9 +€) ~ & ainb (s +€) | (4-12)
e B = 2 2 -

2
4 A aim € ~2d d ain€ aink cou (6 -0 1€ -€) +dEain’E
i Py i L J i O A S ¢ P
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The expressions for cos 6%} and sin 65} for use in Equation (4-6) are

obtained from Equations (4-10) and (4-12). The results are:

dl}méi.aw(oi-f-ea) - £amem(%+€.)

¢
Coef. = ()-'-nl3)
'} a2 2 2 & /3
‘4 [£M6 - Jc@.i.Mf_Mf,m(G: -8 +€ —6,)+J._Ain€_]
¢ 4 é ¢ P ¢ P 3 4 ¢ [A [A
and
d. sin€. ain(6,+€) = d. ain€ ain (6 +€)
ps 4 [ ¢ ¢ ¢ ¢
aml. =

i} a .2 . . _ _ 2. & J1/a
4 ain'€, dedimé}méim(% AL 6‘:)"'4(:%6‘.:] (h-114)

An expression for J%} for use in Equation (h=6) is obtained from

Equations (4-8), (4-13), and (4-14%) as follows:

d. ain €
¢ &

‘¢ m(%ﬁ*%)m{;z} - o8 +€) aint,
y

12 2 a /A
&Mé[cﬂmé - ad. &,ME.ME.M@(&—& + €. —6,) + &Mé:l
s ¢ ¢ ¢ ¢t ¢ ¢ s ¢ P ¢ ¢ L

:ﬁ} ain € cou(6 +€)ain(0+€) ~ L ain€ m(s;»re}_)m(ﬁ.»feé)

- di_mejm(yeﬁm(e}»{e}) + 4 ain € ain (o +€ ) e (8 +€)

2 R 2
[&.me, - Ad.d an€ ain€ o8 -6 +€ -€) + ae"’mae.]'/
= 4 4 ¢t ¢ 2 A 4+ L ¢ ¢ . ()4'==15)
M(Q—G_ +6_-€,)
Pl (3 ¢ ¢
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The proper selections of algebraic signs for cos G , sin fi} B
o's
and /Q:. are determined by consideration of the special cases Eé: 0
¢
and € = O and the geometry illustrated in Figure (4-1).
¢

By use of Equations (4-13), (4-14), and (4-15), the summand

of Equation (4-6) can be put in the form:

/A & -4

c;ﬂum(q i)
- N2 6w b + Aind ain
= e (m G ke G s,

[~ han e (g2 | | dpainbeen(y ) (1-16)
N [ doain€ ainfsre) | [ 4 anb ain(gre) ]
-c%,unpﬁ.u«(eﬂfa -JknumﬁéAum(€2+§)

M(%—{,}- +e*_—eé)m(e-e,;+el— ék)
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Substituting Equation (4-16) in Equation (4-6) and rearranging the

summation into a more useful form ylelds:

* 61)1

| -dyain & coe (03+€) |

c@km@em(

b

coe(+6)

[ 4 ain €, ain(B,+E |
+M(~9)'+E&) R 3 (1 ;()

—dlmelm(e“ek)

4N'EY = 22 daine
gkttt ain(0-0+€~€) ain (8- 76" E)

s ¢ 4
pxe Axk

Ayain €, cow (66 +€,-€)
g (00767)
= 2D dain€ — —
R S AT ST PR CRLRT RN
jxi Lk

i}
N
™M

2~

}m‘ll#k (4-17)
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Therefore, the pepsition error can be expressed in terms of the error in
the bearing reading and the coordinates of the bearing measurement

stations with respect to the target as

J cﬂ xunté xun,é Con,(e %_ gl)

(kA Am(e 64-6 é)m(e 6‘+€& L)

ix, A%k (4-18)

A~ _

N"E

As would be expected from the geometry of a problem in which the angle
coordinate of each bearing-measurement station is measured from an
arbitrary reference, only the difference in angle coordinates enters the

expression for error.

The Use of Weighting Factors

In order to obtain the best estimate of target position, each
source of information should be weighted according to the possible error
produced by it. In this way, the total error tends to e reduced by
placing a greater emphasis on that information which is most likely to
have small error and less emphasis on that information which is most
likely %o nave large error.l

Stansfield(l9) properly treats the problem of weighting in
triangulation systems in terms of perpendicular distances from the esti-

mated target position to each of the bearing lines. When the error in

each of the bearing lines is described by a normal probability

ramer( ), p. 2k,
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distribution with a mean of zero, the best estimate of the position of
the target, on a maximum likelihood basis, is that position at which the
sum of the weighted squares of the perpendicular distances is a minimum.
The proper welght for each perpendicular distance is proportional to the
reciprocal of the variance of the probability distribution which de-
scribes the possible values of each perpendicular distance. For small
errors in bearing reading, this variance is approximately equal to the
product of the variance of the bearing-reading error with the square of
the distance along the corresponding bearing line from the station to the
intersection with the perpendicular distance. This weighted, least-
square estimate is generally used for convenience even when the probe
ability distributions involved are not normal. However, the use of
this criterion in the selection of the estimated target location is
complicated.

It was pointed out in Chapter III that the centroid of the set
of all possible intersections of pairs of bearing lines is convenient
to use in the calculation of target position. In the use of a weighted
centroid, a weight is assigned to each of the intersections. For a best
estimate of the target position, the weight should not be assigned
according to the possible error in each of the intersections because the
error in each intersection is not independent of the error in the others.
Even if the weights were to be assigned in this way, the determination
of the variance for the distribution which describes the error in an
intersection is not simple, as can be seen from Equation (hnlE).

The weighting factor which is used in this study is obtained

in the following intuitive way. Each intersection is formed by two



-28-

bearing lines, to each of which is assigned the weighting recommended
by Stansfield(l9)o The possible error in each intersection is also
proportional to the cosecant of the angle of intersection of the two
bearing lines. The weight assigned to each intersection is the product
of the weights assigned to each bearing line divided by the square of

the cosecant of the angle of intersection, i.e.,

+ . a
DM(Q;—GA-'-éJ-éi)

¥ crf2 a'_”1 d 2 d 2
€c E} (P P XA (h"‘l9)

in which

V[, is the weighting factor assigned to the intersection
Y4 of the pair of bearing lines from Stations i and Jj,

is some referense distance, a constant,

~q

is the variance of the error in the bearing reading
¢ at Station i, and

d.. is the distance from Station i to the intersection
‘4 formed by the bearing lines from Stations i and j,

as shown in Figure 4-1. The use of a weighted centroid using this

weighting factor yields the same estimate of the target position as the

estimate obtained by Stansfield(l9) which is more difficult to apply.
Wher. toe target position is calé;lﬁted‘by use of a "weighted

centroid" the coordinates of the centroid are given by

X = Z\/\/ x.. 2 W, (4-20)
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and

oW,
i

i¥l i=c (h-21)

which are analagous to Equations (4-3) and (4%-4) when an unweighted

centroid is used. The magnitude of the position error is given by

W. W, 4 o@km)n,éi,u'm.ék m(ﬁ,—%+é.—§)

. 2
2w =) *
4| &% 4 - :
(§ (kL Am (6,-8,+€ -€ ) ain(6 -6 +€ - €,
F¥ jri, Lxk (%4 (* ‘o :

(4-22)

Probability Distribution for Bearing-Reading Error

In a triangulation system in- which bearing measurements are
not performed simultaneously, the error, éi s 1n the bearing reading
at the time it is used in the calculation of the target location is
made up of an error, éBé s 1n the bearing measurement itself and an
error, Gfé » due to the motion of the target from the time the bearing

measurement is performed to the time that the bearing measurement is
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used in the calculation of the target location.,l These errors add

directlys

€ = € .+t € (4-23)

EB( , the error in the bearing measurement itself, is caused
by many factors, such as errors in siting, vime-varyiag propagation
effects due to refraction of the atmosphere and the addition of reflected
signals from local terrain features, and calibration errors as well as
random errors present in the measurement apparatus. ©Some of these
factors are randomly distributed, i.e., their values are subject to
chance. Other factors, called systematic errors, are invariant during
a set of repetitive measurements and, therefore, their effect cannot be
reduced by averaging the result of repetitive measurements. If the
value of a systematic error is known, the result of the measurement can
be compensated and the effect of the "error" eliminated. If the wvalue
of a systematic error is known and the result is not compensated, the
error in the result of the measurement due to the lack of compensation
can be determined directly from the equation of the measurement, such
as Equation (4-18) for the case of a triangulation system. If the value
of a systematic error is unknown but the possible values are described
by a probability distribution which expresses the lack of knowledge of

the value, this probability distribution can be used to combine the

1 Tre position error considered in this study is the difference between

the calculated position of the target and the true position of the
target at the instan®t 2t whicn the most recernt measurement used in
the calculation was performed.
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effects of this error with other systematic and random sources of error
to determine the probability distribution which describes the total
error in the result of a measurement. In such a combination, it is
necessary to ilnsure that invariant nature of the systematic error to
repetitive measurement is properly treated. In a triangulation system
in which one measurement from each bearing-measurement station is used
to calculate the location of a moving target, the probability distribu-
tions which describe the lack of knowledge of the values of systematic
error and the probability distributions which describe the random errors
can be combined directly.

The error, GBL , in thg measurement of bearing at bearing-

measurement Station i consists of a set of independent, random errors

and systematic errors, as described above, denoted by EB' . The total
tm
error, equal to the sum of these errors, is
€ . = € .
Bl ~ ZE Bim
m
(L-24)

According to the central limit theoreml, if the independent

sources of error are described by probability distributions which have
standard deviations which are finite, the probability distribution which
describes the result of the summation approaches the normal distribution
as the number of such sources of error becomes large. If no one source

of error predominates, i.e., if the standard deviations for each of the

1 Statements of the centra% 1limit theorem app?ag in slightly different
form in Goode and Machol 9), p. 112, Cramsr\7 ,» Pp. 114-116, and
Woodward(24), p. 16.
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major sources of error is of the same order of magnitude, the convergence
is relatively rapid. Cramér points out that it often seems reasonable

to assume that experimental errors combine in this wayal Goode and
Machol point out that such an assumption may lead to pitfalls.,2 However,
in a general study in which measuring equipment as yet unspecified is
involved, the central limit theorem suggests that the error in measure-
ment is best approximated by a normal distribution than by any other.

(18)

Ross cites experimental data in which approximation by a normal
distribution was Jjustified.

In the quantitative studies of a conventional and a modified
three-station triangulation system described in Chapters V and VI, the
total error in the measurement of bearing is assumed to be normally dis-
tributed. This assumption is reasonable for the reasons cited above.
The adequacy of the application of the results of the quantitative gen-
eral study to particular triangulation systems will depend upon how
closely the probability distribution of the bearing-measurement error
approximates the normal distribution. It is believed that of the total
of all possible bearing-measurement apparatus that would be used in tri-
angulation systems, the distributions for bearing-measurement error can
be better approximated by a normal distribution than by any other dis-
tribution, especially if measures are taken to suppress the major sources
of error in the apparatus. However, the method used to study quanti-

tatively the error in three-station and two-station triangulation systems

is not restricted to the use of the normal distribution; any theoretical

1 Cramér(7), pp. 120 and 230,

2 Goode and Machol(9), p. 112,
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or empirical distribution can be used, provided that the error is inde-
pendent of the other parameters which are considered.

The error, éé; » in the bearing reading dve to the motion of
the target from the time the bearing measurement is performed to the time
that the bearing measurement is used in the calculation of the target
location, is a function of the velocity of the target, the location of
the target with respect to the bearing-measurement stations, and tL 5
the age of the bearing reading at the time of its use. Figure 4-2
describes the geometry of the situation. The "law of sines" for the

triangle shown in Figure 4-2 is

£t£ d&
S T . ,
am €, ain (=6, = €,.+§) (k-25)

in which

d. & are the polar coordinates of bearing-measurement
Station i with respect to the true target position
at the time the position is calculated,

d ¢ are the polar coordinates of the target location at
the time the bearing measurement at Station i is
performed, with respect to the same reference, and

€ . 1is the error in the bearing reading due to target
motion and age of the bearing measurement at the
time the target posltion is calculated.

Equation (4-25), when solved for 62_ , 1s

L

¢ ti i é),l | (4-26)
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Target location
when
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performed

Figure 4-2 Error in Rearing Reading due to Target
Motion and Non-Simultaneous Measurement
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For a target which is traveling a straight line path, the value of d&
is the same for each of the stations and may be denoted by ¢. If in

addition, the speed of the target, V , is constant, then

aﬁu =Vt (k-27)

and

-/ Vt M ('6' - ¢)
tan - -
ti d, -Vt coo (6 - ) (4-28)

L

The triangulation system which is considered in this study
is one in which each time a bearing measurement is performed at one
bearing-measurement station, this measurement and those measurements
already taken at each of the other stations are used to calculate the
location of the target. The bearing measurements at each station are
performed by cycling through the set of targets in some orderly fashion,
independent of the measurements taken at the other stations. The time
between consecutive measurements of the bearing of a particular target
is denoted by'7z . E depends on ‘E 4 the time required to perform
an individual measurement. If only one measurement is taken at a time,
-E depends directly upon P4, the number of targets under surveillance.

In this case,

To= MY (4-29)

L

Because of the independence of measurement among the stations,
age, i% ; of the measurement at Station i1, when the measurement is used

in a calculation initiated by another station, is described by a
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probability distribution which is uniformly distributed over the inter-
val from O to 7; . 7: is a characteristic of the triangulation system
and the capacity at which it is operating. Except in unusual systems,
'E will have the same value for each bearing measurement station and
can be denoted by T .

The probability distribution for Eti can be obtained from
the probability distribution for AtL by means of Equation (4-28).
Although the set of variables denoted by é%i are independent, the parame-
ters which describe the probability distribution of these variables are
not independent; each distribution depends on the parameters V’, ¢ 5
and [ . If distributions rather than individual values of target
parameters V and ¢are to be considered, the probability distributions
for the error in the calculated location of the target for individual
values of the target parameters car “e combined ac-ording to the pro.-
abllity distributions of those parameters.

aotoe guantitatlve stuady of a couventional and a modified
whree-station triangulation system described in Chapters V and VI, a
uniform distribution for target direction is obtained by combining the
results obtained for individual target directioms. A w.iform Aistri-
bution Tor the age of bearing measurements is used alﬁhougﬁ Tae methed
used in this study is not restricted to the use of uniform distributions.

The method is restricted only to independence of the age of measurements

at different stations.
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Approximations for Small Bearing-Reading Error

Equation (4-18) for the magnitude of the position error, E ,

can be expanded into the form

d, dy ain € ain €, R,

NTE? =
"}Z“ Qg Qa}'
)#i)1$k (4330)
in which
Q, = m(oj—ol)m(e}— €) - M(%—q?)m(e}—el) L (4-31)
Qo = ain(gg)eon(e - €f) + cov (8- 8)ain(g-€y) | (4-32)
and
Q; ~ M(ﬁ‘%)m(éfﬂ) + “"(‘Si"ga)m(é;“éa) L (5-33)

Equation (4-30) can be simplified by using approximate expressions for
Q&l 3 le and QL; which are valid when the bearing-reading error is
small.

When the bearing-reading error is smeall, Q}ﬂ can be approxi-

/
mated by Q'l , given by
4

Qy = m(%'e,t)c""'(e}‘el) = sz : (k-3k)
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For the terms of the summation described by Equation (4-30) in which l==},
sin.(éf - 6&) is zero and the approximation given by Equation (4-3k4)
' g
is exact. TFor terms of the summation in which the value of f}"fﬁ is
¢

in the neighborhood of O or 77T , the error in the approximation is small

because

Im(e}—e})m(e}— é’)l < |m(€; ~G)einfe-e)|  (4-39)

For terms of the summation in which the wvalue of é?-—fa

neighborhood of i'TT/J , the error in the approximation of each such term

is in the

is large on a percentage basis, but the contribution to the summation
on subscript £ of such terms is small because the corresponding value

of Q'l is comparatively small. For example, when 6 - 91 =X 77'/07\ )
P 2

. y
|QJ‘£| = |M(€J'—€l)| =~ IQJ.II = 0 ) (ll-=36)
whereas
|9 = |eete-e | ~ (4-37)
for those terms in which 1==} or in which ét - f? = 0 or TT.

In general, the percentage error of approximation is large in the terms
with small values and small in the terms with large values.

ka and Ql} » which appear in the denominator of the summand
of Equation (4-30), can also be approximated when the bearing-reading
error is small. These quantities are the same except for the subscript

notation, so that a discussion of the approximation of one of them
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/
applies to the other. QL' is approximated by QL}’ which is given by
¢
= ain(e - - 4-38
Q. (% &) (e -€) . (4-38)

For terms of the summation described by Equation (4-30) in which the
value of £§-£% is in the neighborhood of + TT/& , the error in the

approximation is small because

|cou(o-8)ain(e - €)| « |ain(8-0)con(g€)| . (4-39)

For terms of the summation in which the value of éﬁ - {% is in the
neighborhood of O or 77T, the error in the approximation of each such
term 1s large on a percentage basis. Furthermore, the contribution to
the summation on subscri;ﬁ;,ﬂ of such terms is large because the corres-
ponding value of GQ} is small. These are terms which represent major
contributions to the position error. The proper design of a triangula-
tion system will eliminate them by eliminating from the computation those
pairs of bearing readings which intersect at angles in the neighborhood
of zero or TT or by using the weighting factor given in Equation (4-19).

The result of these approximations for (QY s le , and Qé.
4 ¢

when the bearing-reading error is small is

R d.d me.mekm(e.—q)m(e}—g)
i}kf M(-e- G)Com(él Gk M( ) (6} 6)

}*i,l#k (ll-nll-O)
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Additional approximations can be made for small bearing-reading error.

For the Eé as large as five degrees:

am €, =€ and
1 ¢ 3
(L-b1)
with an error in each which does not exceed 0.13 percent; and
m(éé‘el) ~ | ,
we (§-€) ® |, and
(L-ko2)

um(%;-%) ~ ]

with an error in each which does not exceed 0.6 percent. Using these

approximations, Equation (4-40) becomes

VAEY = Z d.d, € € coe (s - 6,) .,
(RL ain (6~ ) ain (6 - 6) (-b3)
}.#Ziltk

The entire set of approximations which have been made for
small bearing-reading error may be interpreted geometrically as the

approximation of the bearing lines from each Station i by lines which
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are located parallel to the true bearing lines with a displacement of
&LEZ in the proper direction.l
When the intersection of a single pair of bearing lines is
used to estimate the position of a target, the error of approximation
due to the use of Equation (4-43) in place of Equation (%-30) can be
examined easily by direct comparison. If the bearing-reading error is
at most five degrees, the maximum error of approximation occurs when
the geometric interpretation of the approximation indicates that the

o

geometry is distorted most, i.e., when él = 5 and €°2 =-5°,

The error of approximation depends upon the angle at which
the bearing lines intersect, 65 "6& s and the ratio of the distances
from the target to the bearing-measurement stations. Figure 4-3 shows
this error obtained by direct comparison as a function of {Qh - 6, for
the two limiting cases, cﬂl = &J and d’l,/[fd or 44 /cﬂl = 0 . When
bearing-reading error is at most five degrees, Figure 4-3 shows that the
error of approximation does not exceed twenty percent if 50° < IG&-—éﬁI
< 1ko0°.

When more than two bearing-measurement stations are used, a
centroid or weighted centroid of all of the intersections of pairs of
bearing readings is used to estimate target position. The position
error in this case is no greater than the maximum of the errors in the
individual intersections. Similarly, the error of approximation in
calculating the position error by using Equation (4-43) instead of (4-30)

is no greater than the maximum of the errors of approximation in the

1 This geometric approx%mation has bee? used as a star?i point in other
studies such as Frese(8), Stansfie1d(19), and Harkin(10),
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error in each of the individual intersections. If a target is so located
with respect to more than two bearing-measurement stations that all of
the G} - 6( are within the interval 50° £ |6; -e;l < 140°, the error
of approximation in the position error does not exceed twenty percent
for bearing-reading errors which are at most five degrees. For the
special case of a target located at the center of an equilateral tri-
angle formed by exactly three bearing-measurement stations (9&"6& = 27T75?,
Figure 4-3 shows that the error of approximation does not exceed six
percent for bearing-reading errors which are at most five degrees.

When a weighting factor is used, approximations for small
errors in bearing readings can also be made. The weighting factor is
first expressed in terms of known distances, approximating the measured

distances from each station to each intersection by the distance from

the station to the target, i.e.,

{ ij (h-k)

Equation (4-19) then becomes

+ 2
D win (6 -0, + €, -€)
W, = bl
i i aidig? (4-15)
€L € L ¢

This approximation is valid whenever the errors in the intersections
are small compared with the distance of the target from the bearing-
measurement stations. It is necessary if the equation for position

error is to be a simple one.
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Using Equation (4-45), the position error as given in

Equation (4-22) becomes

&
- 2 . : :
Eé; ZW ) Z DMEIMEI(QZ}Q'@IQ}J?,
+ 54 G lciciold 4’4, d)]
A I (4-46)
J

in which QLJ 5 Q/cl , le are the quantities defined in Equations (M-3l),
(4-32), and (4-33). When the bearing-reading error is small, these
quantities can be approximated in the same way as they are approximated
when no weighting factors are used. The approximations are given in
Equations (4-34) and (4-38). The approximation of Q}l is valid for the
same reasons which were presented for the case of no weighting. The
approximations of Qij, and @u are better when a weighting factor is
used than when it is not, because when Qé,‘ and Oi‘eﬂ. are in the numer-
ator of the summand, the percentage error 1s large in the terms with

small values and small in the terms with large values.

By use of these approximations, Equation (4-L46) becomes

_ Z D.an€, am€, M(G}.-9‘)000(6}-Ea‘)m.{%rv%:,wwltlwéﬁ)m(ej--GI)W(EJ-Q)
A _&_d__& a 2 ’
ifhL %: OE; ek %1 a“fj ‘ﬁk 621 (k)
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By use of the approximation for (Q, s the weighting factor as given in
¢4

Equation (4-45) becomes

D ain’(6, - €)

i ot g drda?
€L E* A 4

(4-48)

As in the case when no weighting factor is used, the trigonometric func-
tions of the bearing-reading errors in Equation (4-47) can be approxi-
mated by the expressions given in Equations (4-41) and (4-42). Using

these approximations, Equation (4-47) may be written as

g
4_2 DE‘.E‘_M(G-GL M(Q*GAW(&}-GA
a 2 A 4 o &
cikt % % T b4
a_ g, Lk ¢ 5 ‘4
E-= 2
4+ . R
D ain (Q}- fﬁ)
A & pd &
“* LA

(4-149)
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Two approximate expressions for the position error have been
developed: Equation (4_h3) for the case of no weighting factor and
Equation (4-49) for the case of the particular weighting factor given
in Equation (4-19). Chapters V and VI describe the use of these equa-
tions to determine the position error for the case of three bearing-
measurement stations.

An approximationvfor small bearing-reading error can also be
made for Equation (4-28) which describes the error in a bearing reading
due to motion bf the target. For the error, étL , to be small for all
values of éi - ¢ , Equation (4-28) shows that Vt& must be much less
than d% . With this condition and by replacing tan éti by Eté ,

Equation (4-28) can be approximated by

/3, am (6= 0)

. n
‘ d, (4-50)

For Vﬁk//d% as large as 0.05, the maximum error in this approximation

is five percent and it occurs when €§"¢> is close to zero or 77 and

Etz is very small. As f% - ¢ approaches j;TBAQ » the error of approxi-

mation is zero. Because ¢, is uniformly distributed in the interval
¢

OStCS T , as discussed on page 36, Equation (4-50) shows that é{:’
A
is uniformly distributed in the interval between zero and \/Tnbn(&-¢>/£,)
¢ ¢

as shown in Figure (4-4),
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Probability Distribution for Position Error

Expressions for the magnitude of the error in the calculated
position of a target have been developed in general, Equation (4-18),
for the case of a particular weighting function, Equation (h-22), and
for both of these cases with an approximation for small bearing-reading
errors, Equations (4-43) and (4-49). These expressions can be denoted

by the general expression
E=E(4,€6,6) (k-51)

/ /
which indicates that E is a function of all of the d% S G[ S , and
/ /
9 §. Only the éis are described by a probability distribution.
A
Each €Z is the sum of an EBZ and an eti as given in Equation (4-23),

Both €B£ and Eti have independent probability distributions. The
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probability distribution of each éBi is specified directly. Each Etz
is a function [Equation (4-28) or (4-50)] of the variables de , fﬁ ,
vV, @, and £, , of wnich only f, is described by a probabilityrdis-
tribution. This functional relationship can be denoted by the set of

general expressions

€ T Etz(d% 1,V 0 itz) : (k-52)

The probability distribution for each Ef, can be obtained
3

directly from Equation (4-52) by using the probability distribution
for ¢, and the values of the other parameters. The probability distri-
{

bution for each €: can then be obtained by a convolution of the prob-

ability distributions of €B° and 6{_, using the equation
l ¢

{ B ti ‘ (4-53)

The probability distribution for the position error, £ , can then be
obtained by a combination of the probability distributions for each of
the Gz by using Equation (4-51) with values supplied for the parameters
other than EZ - The complexity of the combination process requires the
use of automatic computing devices.

To investigate the error in a particular existing or proposed
triangulation system which fits the general model described herein, the
values of the parameters used in the analysis can be selected and the
necessary combinations of the probability distributions can be performed.

To investigate triangulation systems in a more general way, configurations
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of bearing-measurement stations possessing geometric symmetry can be
selected and investigated using system parameters which are conveniently
normalized. The probability distributions which describe EBZ y Ele
and finally the position error, E » can be determined in terms of these
normalized parameters. This general type of investigation for a three-

station triangulation system is described in the next chapter.



CHAPTER V

CONVENTIONAL THREE-STATION SYSTEM

A triangulation system which consists of three bearing-
measurement stations is of particular interest because such an arrange-
ment provides an efficient way of providing area coverage when the range
of the bearing-measurement apparatus is limited. An example of such
an arrangement is shown in Figure 3-1. The position error in a triangu-
lation.system_consisting of three bearing-measurement stations is in-
vestigated in the following way.

An expression for the magnitude of the error in the computed
location of a target in the special case of a triangulé&ion system
consisting of three bearing-measurement stations is obtained from the
expressions developed in the general analysis (Chapter IV). This special -
case is specialized further/by considering the three bearing-measurement
stations to be located at the vertexes of an equilateral triangle.

A discrete and a normal probability distribution for the
bearing-reading error are used to investigate the expected value of the
position error when the target is located at the center of the equilat-
eral triangle and at several other points. The results of this investi-
gation demonstrate that the variation in the expected value of position
error 1s small as the location of the target is moved within a region
around the center of the equilateral triangle at least as large as half
the area of the triangle. Because of this small variation, the case of
the target located at the center of the equilateral triangle is selected
for detailed investigation. The position error in this case is a good
estimate of the position error in a large region around this point.

~50-
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The probability distribution of the position error for a target
which is located exactly at the center of the equilateral triangle formed
by three bearing-measurement stations is obtained from the probability
distributions for the error in each of the bearing readings. The com-
plexity of both the individual probability distributions for the bearing-
reading error and the expression for the square of the position error
in terms of these distributions requires that the combination process
which yields the resultant distribution be performed with the use of an
automatic computing device.

The bearing error at each bearing-measurement station is
grouped into a set of many small intervals and, thereby, the continuous
probability distributions are approximated by discrete distributions.

The probability distribution for the square of the position error is
constructed by examining all of the possible ways that one interval can
be selected from each of the three sets. For the particular digital
computer used and for this type of problem, the use of all possible
combinations of intervals has many advantages over the "Monte Carlo"
method which was first considered for use in the solution of this
problem.

The result of the digital computer study:is a sét of cumula-
tive probability distributigns for the position error, normalized with
respect to both the distance of the bearing-measurement stations from
the center of the equilateral triangle formed by them and with respect
to the standard deviation of the error in the bearing measurement.

The set of distributions consists of separate distributions for the two

parameters: (1) target direction and (2) a normalized combination of



target velocity and time delay.

-52-

Probability distributions are also

presented for the case of a uniform distribution for target direction.

Equations for the Position Error

For the special case of only three bearing-measurement sta-

tions, Equation (4-43), which expresses the magnitude of the position

error when no weighting factor is used and when the error in bearing

reading is small, can be expanded into the form:

mm
l
O|—

+&e,e‘3&,&3

/ / 3 cow (6,-6,)
+ —
ainl(og€)  ain(6-6)  sinle-0)ain(s-6)
,_/ / 20w (8,4 |
+ -—
2
wn(88)  am(8-8)  sin(g-9)ain(a-o)
[ ! 2w (6;- 6)
-+ —

R L L .
wn(078)  win(6)  ain(g-0)ein(o-6)
tl-0)  cotls-6) wtlo-o) P
in(6,6)  aim(66)  an(676) sin(s-0)oin(s-6)]
_ _
cotlo-g) wt(s-6) wt(s-9) /
ainlyq)  aim(8-g)  am(t-0) ainfe-)am(5-6)
atle6)  wifee) wt(s-s) /
ainfo6)  omfe-6)  ainfo-8) ainloo)ain(s-6)

(5-1)
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For the same case, but with any weighting factor usedl, Equation (4-22)

can be expanded into the form:

21 &, Ay A
Mﬂ(%_e;) l:él&l é.zca.z - Jélgcﬂl&m(%-el)il
2
+ ﬁ—- e 4l - d.d. cou (6.6
M“z(e-e) Q&% TG4 T 2585440 (8 )
3 &
i~
+——Wi— 2 - e g 4 (6-8)
A“Mfa%‘ﬁg €< €3 3 2 153%1%9 97
2 5 2 _ _
= = 2,2 (5-2)
¥ e d W, Wor -é.,z&.zm(‘%'@ +€€/%&1m(63"%)
¢ +
ain{g-8)ainlt-8) |+ €L dconly-0) - €64, 4,
S _
4 W3£( Wla B éa £3 m(%:ef) * 636,1&3&.1%(67_63)
+
ain(6-9) ain(0-6) |*€EALem(0-0) - €€ 44 |
S _
AW Wy |G enly0) e d dan(ere)
+
ain 8 -6)ainls-8) |+EEdd cwo(0-0)- €€ dd,

which is equivalent to Equation (5-1) when the welghting factors are one.

1 In the numerical analyses to be described, only the weighting factor
givén in Equation (4-19) is considered.
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For coverage of an area (Figure 3-1), triangulation systems
composed of units of three bearing-measurement stations use arrangements
of stations which differ very little from a symmetric arrangement with
each station located at the vertex of an equilateral triangle, because
it has been generally recognized that such an arrangement of three
stations leads to minimization of the position error. In the following
analysis of a three-station system, this symmetric arrangement is used
because of its more general utility. The procedures which are used in
this analysis are not restricted to this symmetrical arrangement and can
be applied equally well to any other particular arrangement of bearing-
measurement stations.

Because of the use of a symmetric arrangement of bearing-
measurement stations, it is convenient to normalize all distances,
including the position error, with respect to the distance, D , of each
bearing-measurement station from the center of the equilateral triangle.
This normalized position error is denoted by ED . This distance, D , is

used in the weighting factor also.

Variation in the Position Error

The variation of the normalized position error with variation
in the target location is studied in order to justify the choice of a
particular target location for use in a detailed study of the position
error in a three-station triangulation system. In this study, both a
simple, discrete probability distribution and a normal distribution
are used to describe the error in bearing readings.

The simple, discrete probability distribution presented in

Figure 5-1 shows that bearing-reading error is described by two equally
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likely V:alues, +€ and -€ . This discrete probability distribution
for bearing-readingierror is used to examine the position error at the
four specific target locations, designated in Figure 5-2 as the points
0, A, Band C. At each of these points, numerical values of the angles
and distances in Equations (5-1) and (5-2) were calculated and sub-
stituted in these equations. All distances are normalized with respect
to D , the distance of each bearing measurement station from the

center of the equilateral triangle. At the point 0, Equation (5-1)

becomes the simple equation

E* a_ [ ,.a. 2 2
— =E =_Ijél+€l+€3 6.26

SRR —gg—ee]. (5-3)

i 13

Equation (5—3) is valid whether or not the weighting factor is used,
because at the point O equal weights must be assigned to each intersec-
tion. Equal weights are assigned because the variances of the bearing
readings are identical and because the distances of the stations to the
point O are equal. For the other points of interest, the equations
which describe the position error are more complicated than Equation
(5-3).

For each of the points, A, B, C, and O, and for each of
the possible combinations of values of EZ given by the pfobability
distributions for éz, numerical values of E_ were calculated. The

D

expected values of ED R Ex » based on these probability distribu-

tions, are listed in Table 5-1.1 For the use of the weighting factor,

1 The process for determining Ek is described in Chapter VI for a
simpler case.
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the numerical results presented in Table 5-1 demonstrate that the ex-
pected value of the position error for a target located as far from the
center of the triangle as points A and B is little different from the
expected value for a target located at the center. A maximum differ-

ence of eighteen percent occurs when the target is located at point B.

TABLE 5-1

EXPECTED VALUE OF THE NORMALIZED POSITION ERROR FOR A SIMPLE
PROBABILITY DISTRIBUTION FOR BEARING-READING ERROR

EX
(Expected value of the
normalized position error, E, )

Without Weighting With Weighting
Point O 1.00€ 1.00€
Point A 1.18¢€ 1.1%€
Point B 1.20€ 1.18€
Point C 1.62¢ 1 1.62€

1 The value without weighting at point C was obtained
assuming that the target is on the line Jjoining the
two stations when the measured bearing lines to the
target do not intersect.

Although the expected values of the normalized position error
listed in Table 5-1 are not realistic because the probability distribu-
tion for bearing-reading error that was used is not realistic, the
demonstration that the variation of position error is small in a large
region around the center of the triangle can be extended to any more

realistic distribution, provided it is symmetric. Consider an arbitrary,



-58-

symmetric distribution for bearing-reading error such as that shown in
Figure 5-3. If this distribution is divided into intervals, the contri-
bution to the position error corresponding to each pair of symmetric
intervals can be examined separately in exactly the same way the simple,
discrete probability distribution was used. If the variation in each

contribution is small, the variation in the total position error is small.

Figure 5-3 An Arbitrary, Symmetric Distribution for
Bearing-Reading Error
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The variation of the position error in the region around the
center of the triangle can be examined using a normal distribution for
bearing-reading error. In a previous report, the author has investi-
gated the error in determining the location of a target when two bearing-
measurement stations are used and when the error in bearing reading is
described by a normal distribution.l The results of the investigation
are presented in the form of an area of uncertainty, Au s defined as
the area of the smallest region surrounding the true target position2

within which the measured target position will fall with a specified

probability. The results show that

4 d
A o< [N
Vo |een(e-6)| (5-4)

for any specific probability level and for any finite values of the
variance of the normal distributions which describe él and E# .3 This
proportionality can be used to demonstrate that the variation in posi-
tion error is small.

The arc of a circle joining two bearing-measurement stations,
as shown in Figure 5-4, is the locus of the points at which the bearing-
measurement stations subtend a fixed angle, i.e., at which -Gh-'éh

is constant.

1 Frese(S), pPp. 2-22.
2 The smallest region is an ellipse.

3 Equation (5-4) indicates that A, increases without bound as 9, -9
approaches T . If the fact that bearing lines are semi-infinite
instead of infinite had been taken into account, AU would be bounded.
For semi-infinite bearing lines, A, is certainly no larger than the

v
value obtained from Equation (5-4).
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Target

Station 1 J3'D Station 2

Figure 5-4 Locus of Points at Which -Qa- 6% is Constant

From the "law of sines" for the triangle shown in Figure 5-4, the product

N\

of the distances CQ, and J.J can be expressed as

J§jD.Ai0L¢*J JEFI)Auhzcx‘

dd, = . —
ain (€,-9;)  ain(s; -6 (5-5)

U]

in which =, and ‘fl are the angles between the line Jjoining the two
bearing-measurement stations and the bearing lines from Stations 1 and
2,respectively, and J?j) is the spacing between the stations. Equa-

tion (5-5) can be simplified by use of trigonometric identities to the

form

I [ (o= =) = ain(9;- )]

44 = ) .
win”(6; ~ ) (5-6)

1 a
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On the locus defined by a fixed value of é&-—éﬁ , Equation (5-6) shows
that &/&.2 is a maximum when f><, = 0<a , i.e., when J, equals ‘Q,z .

Therefore, at any point on the locus defined by a fixed value of fz-e; s

Au is no larger than its value at ¢£,= &1 . Figure 5-5 is a graph of
the maximum values of ‘Au as a function of the value of 6&-€ﬁ which
defines the locus. The maximum value of Acr for the locus, fﬁ - fﬁ =
I&Oois normalized to unity.

When three bearing-measurement stations are used, the area of
uncertainty for the three intersections of pairs of bearing lines can
be examined. Figure 5-6 shows three stations located at the vertexes
of an equilateral tfiangle. The center of the triangle is the point at
which the value of Au was normalized. For each intersection of a pair
of bearing lines, Figq?e 5-5 shows that Au does not exceed twice
its value at the center of triangle anywhere in the region between the
loci defined by bearing lines which intersect at 71° and at 160°. The
region (Figure 5-6) in which the value of /\U for each of the three
intersections is no larger than twice its value at the center of the
triangle is at least fifty percent of the area of the equilateral tri-
angle. In terms of a distance rather than an area of uncertainty, the
position error is no larger than the JE‘ times its value at the center.
throughout a region around the center which contains at least fifty
percent of the area of the triangle. For a value of /\u no larger than
three times its value at the center, the region contains at least seventy-
five percent of the area of the triangle.

Thus, in a detailed investigation of the position error, the

determination of the position error for a target located at the center
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of the equilateral triangle is an adequate estimate of the position error
for a target located in a region around the center at least as large as

half the area of the triangle.

Probability Distribution for Bearing-Reading Error

At the time the position of the target is calculated in a
triangulation system which contains three bearing-measurement stations,
the bearing reading from one of the stations is new, and the age of each
of the othér two bearing readings is described by the uniform probability
distribution discussed in Chapter IV. For the purpose of calculation,
the new bearing reading is assumed to have been taken at bearing-
measurement Station 1. The assumption is arbitrary because the error
in bearing reading at each bearing-measurement station enters into the
equation for the normalized position error in the same way.

Figure 5-7 is a sketch of the probability distributions for
the error and the components of the error in the bearing readings at
each of the bearing-measurement stations for a particular target path.
"The probability distribution for the error in bearing reading at Station

1, € , is the same as the probability distribution for the error in the

/
bearing measurement itself, ée: s because the age of the measurement is
zero. The quantity, EBI » and therefore  €,, are assumed to be normally
distributed for the reasons discussed in Chapter IV. The standard de-
viations of these distributions are denoted by q;B

The error in the bearing readings at Stations 2 and 3 is given

in Equation (4-23) as

€. = € _+ € (5-7)
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and

‘€3 = 683 + Et3 ) in which (5-8)

the subscripts 2 and 3 refer to the bearing-measurement Stations 2 and 3,
respectively, and in which
Ei is the error in the bearing reading,
€ . 1s the error in the bearing measurement, and
€,. is the error due to motion of the target from the
time the bearing measurement is performed to the
time that the bearing measurement is used in the
calculation of the position of the target.
The error in bearing measurement at Stations 2 and 3 is assumed to be
normally distributed for the reasons discussed in Chapter IV. If it is
assumed aléo that identical bearing-measurement apparatus is used at
each station, and if there are no specific reaéons for the characteris-
tics of the error in bearing measurement to differ among the three

1

stations™, the standard deviations of the probability distributions for

éBa and 683 will also be equal to 'q;B .
The probability distributions for éta and €t3 , as shown in

Figures 4-4 and 5-7, are uniformly distributed between the limits of

zero and \/7‘4uab(€§ - ¢)//d& , in which ( takes on the values 2 and

3.respectively.

1 Differences in the conductivity of the ground and other features of

the local environment in addition to differences in the propagation
paths of the signals received can cause differences in the character-
istics of the error even though the measurement apparatus is identical.
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For the special case of a target located at the center of the

equilateral triangle,
d =d =D . (5-9)

If.DT. is defined as the value of VT, normslized with respect to D ,

i.e.,
VT
Dp=—FH , (5-10)

then the limits of the probability distribution for ét& and ét3
may be expressed as zero and 1%.44%»(62"¢) .

The construction of the probability distributions for 61
and 65 from the normsl and uniform distributions of their components
is the first part of a digital computer program for determining the

probability distribution for the position error.

Probability Distribution for Position Error

The probabllity distribution for the position error for a
target located at the center of the equilateral triangle formed by
three bearing-measurement stations was obtained by a combination of the
probability distributions far bearing-reading error at each station,
making use of Equation (5-3). This combination is the second part of
a digital computer program for numerically determining the probability
distribution for the position error. The use of a digital computer
requires that each of the probability distributions be approximated by
discrete distributions.

The entire probability distribution for position is desired in

order that the results be of general use to those who are interested in
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the value of position error which will not be exceeded except with a
very small probability, as well as to those who are interested only in
the mean value of position error. If that part of the distribution in
the neighborhood of the arithmetic mean of the distribution for position
error were of interest only, then the "Monte Carlo" method, which pro-
vides reasonably rapid convergence in this neighborhood could be used.
Because the probability of values of position error remote from the
arithmetic mean of the distribution are of interest, each possible
combination, rather than a random sample, of the discrete values of the
components must be considered. In addition, systematic consideration
of the possible combinations reduces by manyfold the computing time
required per combination over that required by the "Monte Carlo” method.
The succeeding sections of this chapter contain a brief
description and a discussion of some of the details of the computer

program used to obtain probability distributions for the position error.

Description of the Computer Program

The digital computer program which was used to determine the
probability distribution for the position error (using the MIDAC
computerl) is divided into two parts. In the first part, the probability
distributions for bearing-reading error are constructed. In the second
part.the probability distribution for the position error is determined.

In the first part of the program, the probability distribu-
tions which describe the bearing-reading error at each bearing measure-

ment station were approximated by discrete probability distributions

1 MIDAC is the MIchigan Digital Automatic Computer, and is located

at the University of Michigan.
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of many ordinates each. The non-normal distributlons which deseribe the
bearing-reading error at Stations 2 and 3 were obtained by processing
the normal distribution for the bearing-reading error at Station 1, a
distribution which was contained in the computer program. The different
distributions which describe the bearing-reading error at Stations 2

and 3 were obtained automatically for each selection of target direction.

In the secaond part of the program, for each possible caombina-
tion of the ordinates of the three probability distributions, the Joint
incremental probability, which is the product of the three ordinates,
and the corresponding value of the position error were calculated. The
value of the position error for each combination of ordinates was used
to obtain a storage address in the computer at which the values of the
Joint incremental probabilities were accumulated. The computer program
wap designed to cycle through all of the possible combinations of ordi-
nates of the three probability distributions for bearing-reading error
in an efficient manner so that the probability distribution for position
error was obtained with a minimum of computing time.

The result of the computation is a set of numbers which is the
desired probability distribution. Depending on the particular normalized
parameters used in the computation, the location of a number in the set
corresponds to a particular value of normalized position error.

Figure 5-8 summarizes, in block diagram form, the brief de-
scription of the caomputer program given above. For convenience in the
digital computation, the set of possible values of 6, y éﬁ , and 63
were represented by integers and integers plus one half. The variables

U, ~w, and w are used to denote this representation. Thus, in
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Figure 5-8, F , P, and EL are the three discrete probability distri-
butions for the variables v , ', and w,respectively. The Jjoint
probability of a particular combination of values of U y /', and w 1is

given by

o = BAG (5-11)

The subscript, o, indicates particular values of the variables. E; is

used to represent the square of the position error.

Details of the Computer Program

Each of the probability distributions used in the. digital
calculation to describe the components of bearing-reading error was
approximated by a discrete distribution of many ordinates. For
convenience, the elements of the set of possible discrete values of
these variables are represented by integers plus one half. The vari-
ables U , nr', nr", UII, and w are used in the description of the
computer program to denote these discrete values corresponding to the

variables € , € € , € _ ,and €t3 » respectively. The computer

8a’ Tta 83
variables are related to the components of bearing-reading error by a

scale factor, denoted by s and defined by

%
S = (5-12)
€B
in which
O; is the standard deviation of the discrete distri-
bution used in the computer program to describe
the variable U , and
GéB is the standard deviation of the probability

distribution for error in bearing measurement.
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The variable U is related to € the error in the bearing

! 2

reading from Station 1, by

v= s§ (5-13)

If U is considered to be a continuous variable, it is normally dis-
tributed with a mean value of zero and a standard deviation, Ga , Which
vis related to %ﬁ by Equation (5-12). For use in the digital computation,
the‘normal distribution for v 1s modified by truncation, i.e., by
neglecting both "tails" of the distribution, as illustrated in Figure 5-9.
The remainder of the distribution is divided into 50 equal intervals
with integer values of U as boundaries and is approximated by discrete
ordinates located at the center of the intervals. The discrete ordin-
ates are equal to the area under the normal probability-density curve for
the corresponding intervals. The values of the ordinates listed in the
computer program were obtained from a table of areas.l

In the course of the digital computer study, two standard
deviations for the probability distribution for the variable U = SE/
were used. These are 0, =/0 and 0 = 50/7 . In both cases,
fifty ordinates were used for the distribution, corresponding to the
ranges -2.50; < v = 2.5, and -3.50, < U = 3.50, . The
fifty ordinates were listed as constants in the computer program.

As previously discussed, the probability distributions for
éBl ’ Eéa , €é3 , and €I are assumed to be identical. Therefore,

the probability distribution listed in the computer program for the

discrete variable U can be used also as an approximation of the

Carver(6).
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/ /
probability distributions for the variables A/ and w , which corres-
pond to EB2 and 683 . Although the distributions are the same, the
variables are independent. Equations (5-14) and (5-15) define the

/ /
variables w~ and w :

vo=s€ (5-14)

and

§
1}

S 633 (5-15)

The probability distributions which describe Eta and éta’
the components of bearing-reading error due to target motion and age of
the bearing measurement, are uniformly distributed between the limits

of zero and .DTsin(ét - ¢) s &s previously discussed. The variables

NI "
~ and w are related to Eta and é;g by
V4
o= sét& (5-16)
and
n"

and are uniformly distributed between the limits of zero and

SDT sin (Ga - ¢) and - SDT sin (-9; - ¢) , respectively. In order
to approximate the continuous uniform distributions by usable discrete
distributions, the non-zero limits are approximated by the closest
integers, A and B, respectively. The intervals between zero and A and
the interval between zero and B are divided into |A| and |B| sub-intervals,
respectively. The continuous distributions are then approximated by
discrete distributions with ordinates of amplitude | / |A] and I/ 8]
respectively, centered in the sub-intervals. This approximation is

illustrated in Figure 5-10.
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/ ”
If ¥, &/ , and A/ were considered to be continuous variables

/

with probability density-functions sz(ﬂf) ) Cf,(ﬂf)Jand CV”(/II"), respec-
/ /

tively, the probability distribution for w = nf-+nr'can be expressed

in terms of the convolution integral

w

(’,,,(nf) = f(’ o () (;/(nr—/zr”)ol/u—” ,  (5-18)

To describe the method used in the computer program to perform the
convolution of the discrete probability distributions of the variables
/V/ and/vJ; it is convenient to interpret the probability distribution
of the variable n as the sum of the discrete conditional probability

/" ”" "
distributions of & for each value of & . Let F (Ar} vi=a")
be the discrete, conditional probability distribution for the variable &~

n

for ﬂf”=ﬂf » & particular value of ~”. Then

(-]

B(wlw"=n") = Pi(w-2") . (5-19)

(]

The probability distribution for EL_ is the summation of the products
of each of the conditional probabilities and the corresponding prob-
ability of the condition, i.e., the probability of the corresponding

"
value of ~, . Therefore,

BU‘ = 2’/ P”(/UO'”)P(/U'I/U'”=/U;”)
Vo

(5-20)
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which is the equivalent of Equation (5-18) for discrete variables.
Figure 5-11 illustrates the convolution by summation for the case of
A=3. In the program for the computer study, sequential computer storage
locations were assigned to sequential values of w over the entire range
of values of & considered. For each value of A selected, the computer
program was designed to have the following operations performed auto-
matically:
(l) The probability distribution which was listed in the
computer program and used for the computer variables
U, w'yand ~* was multiplied by l/IAI to obtain
the set of ordinates for P, (") '3}_,(”'/1};") .
(2) The storage location corresponding to 2 , the

smallest possible value of & (4 = -a¢ for A >0

and 25 = -a++ A for A <0), was determined.

(3) The set of 50 ordinates for eu-l(/?fo)P/”.(ﬂf'/U;”)

was added to the contents (original contents were

zero) of 50 sequential storage locations starting

with the one corresponding to 47 . The addition

was iterated a total of | Al times with the ini-

tial storage location increased by one each time.
In this way, the probability distribution for the variable & was
constructed. The probability distribution for the variable w was con-
structed in the same way with the simplification, B >0 , which results
from the symmetry described in the following paragraphs.

For each value of SDT selected for use in the digital cal-
culation, a set of twelve values of A and B, corresponding to the set
of twelve target directions considered, was listed in the computer pro-
gram. Values of target direction, ¢ s over a range of only Tr/a need
be considered because of symmetry. To illustrate this symmetry, an

expression for the position error in terms of the computer variables is

utilized.
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Equation (5-3) for the position error can be written in terms

of the computer variables as follows:

9E"lsa
E = = v - - w (5-21)
c -3
4D
in which:
/ 14
AR A (5-22)
¢ "
w= w+w , (5-23)
and
E = the variable used in the digital computer

program to represent the square of the
position error.

/

N
E  is a function of the variables U , & , o, w , W , and also ¢

C

which determines one of the limits of the range of possible values of
" " E / n ! "
~ and w . Therefore, E, 1is denoted by c(u, o w, wy $) .
The symmetry of E; with respect to target direction can be

examined with the aid of Figure 5-12. For the particular reference
angle arbitrarily selected in Figure 5-12 (a), sin qu—-¢) and
sin ('9'3 - 4)) , to which A and B are proportional, have been sketched

in Figure 5-12 (b). Because

win (6 = ¢ -T) =-ain (o - ¢) (5-24)
and
win (6 = § -T) = =ain (8- 0) (5-25)



STATION 3 STATION 2

(a)
STATION

SIN (6,-¢ )

SIN(@g,-¢) (b)

Figure 5-12 Symmetry with Respect to 4>
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the following is true:

’ " , _ n"
EC(U; Ay NV, w'/, “f,) ¢+Tr) - EC{UJ /U-/:—/UJ; w’) W, ¢) . (5-26)

/
The probability distributions for v, Af; and w are even functions of

these variables so that

Ev,ry-wywr'y-us 8) = E (v, -y -wy-wl-wrl ) (5-27)

Equation (5-21) shows that

E(-v,wry-wy-w'-uyd) = E (v, el wl ), (5-28)
so that
E (v, 0y 'y oty o) = E (v, 9) (5-29)

/
Additional symmetry exists because /vj and tuﬂ can be interchanged in
Equation (5-21) with no effect on E; - The fact that the probability
!
distributions for /U'/ and w are identical makes this possible. In

addition, because

win(0,-9) = ~ain(e -1 +¢) (5-30)

and

"

ain (6~ ¢) = ~ain (6, -T+¢) , (5-31)
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the following is true:
I U l n _ ’ " / "
EC(U,/U',/U',W',w‘, 7T‘¢) - EC(U,/U',-LU',LU’,‘/U',¢)

/
= E v - -wlg)

/ n ] "
Ec(“)”:”aw)wad’) . (5-32)
Therefore, only the values of ¢ in the range

0s ¢ = /2 (5-33)
need be considered.

The process used in the computer program to calculate ar and
ﬁr for each value of ¢ considered is summarized in the block diagram
for Part One of the computer program which is shown in Figure 5-13.

In the digital computer study, target direction is assumed to be
uniformly distributed over the interval 0O < ¢ ST . The previous dis-
cussion points out that for purposes of calculation, only the range
0 ¢ = Tﬁﬂz need be considered. The uniform distribution over the
latter interval was divided into 12 equal intervals, and approximated
by 12 ordinates, centered in these intervals as shown in Figure 5-1k.

A probability distribution for the position error was calculated and
printed out for this distribution of target direction. In the process,
a separate probability distribution for each value of target position

was also calculated and printed out.
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Figure 5-14% Discrete Distribution for Target Direction

For each set of normalized triangulétion-system parameters
considered, the probability distribution for the position error was
constructed by examining every possible cambination of values of the
variables U , &/, and w. For each combination, the value of E;(U,AGCU)
was calculated. Then, the value of 6hvuf = ﬁ/EL'FLr was calculated
and added to the contents of one of sixty storage locations determined
by the value of E;(Lg vy ur) . Thus, the probability distribution
for position error was obtained as a set of numbers from the set of
sixty storage loecations. The position of a number in the set corresponded
to a particular range of values of E.

For the computation, it is convenient to calculate the normal-
ized position error in terms of its square, as given in Equation (5-21).
If this form had been used directly to determine the storage. address for
%4rw" the smaller values of position error would have been compressed

into a relatively few storage locations and the larger values of position

error would have been spread uneconomically among the majority of the
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storage locations. Rather than utilize a time-consuming routine to

calculate the square root of E; , the transformation

¢ 4 (5-34)

in which K‘ , K; , and K3 are constants,was used. K, and Ka were

chosen so that

0 s K/(E+K) < 60 (5-35)

over the entire range of values of U , &/, and W considered, and so
that only the value of K, / ( EC +KJ) which corresponds to smallest

discrete value of E; would be within the interval

59 < K/ rK) < 60 . (5-36)

The constant K% was selected to be the computer "dddress" of the first
of the 60 storage locations used for the accumulation of the probability
distribution of position error.

Inequality (5-35) can be rearranged to show the range of
values of E corresponding to each storage location. For the p-th

storage location, where /< p S 60 |

Pt = KI/(Q'PKA) < /o

°

(5-37)



-86-

KI 3 Kﬁ and E; are all greater than zero so that Imequality (5-37)

can be rearranged into the form

1 _ r_

Using Equation (5-21), Inequality (5-38) can be further modified to the

form
A R
4D K, Q 4D | K
1 - < E” < ! _
95 | p 2 9s% | p-i 2
(5-39)
in which § = %/G;B . Inéquality (5-39) expresses the position

error corresponding to each storage location in terms of constants and
the two triangulation-system parameters, D and %% . For each value
of the other parameters,.DT. and ¢, separate probébility distributions
were obtained.

Part Two of the computer program was designed to obtain the
probability distribution for position error by examining every possible
combination of VU , &, and W in a systematic and efficient manner. A
block diagram of Part Two of the program is presented in Figure 5-15,
in which the subscript, s , is used to denote the smallest possible
value of each variable. In the calculations the possible values were
considered according to ascending numerical order.

Part Two of the computer program consists of three loops

corresponding to three variables whose values must be cycled. In Step 1,

g the initial value of & is selected. In Steps 2 and 3, all of the
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computation that can be performed after the value of w has been selected
is performed and, w; , the initial value of w is selected. In Steps 4,
5, and 6, all of the additional computation that can be performed after
the value of w has been selected is performed. Then, y; , the initial
value of v 1is selected, and aU; , and EC(LE,AQ;UE) are calculated.

In the inner loop, which consists of Steps 7, 8, 9, and 10, fzsmgag

is calculated and properly stored, making use of El:(Qs)‘Gﬁ «g) .

Then, E;(L&*I’AG, w;) is calculated in a simple fashion, making use of
E}((@, P ,a@) and other quantities calculated in steps outside of

the inner loop, as indicated in the following equations in which the

subscript, 0 , indicates any particular value of the variable. From

Equation (5-21),
-2 —
T, YW, TGN AW, WL, (5-40)
and
£ - i+ 2 2
(o, g, wr) = () +ag v w) = (g )y ~apw, - @y ) L (5-h1)

Equation (5-41) can be rearranged into the form

2 & 2
Eoriyan,w) = U +a +w - gu; -aw, - wyo+ 24, +1-2- ), , (5-h2)
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or

Ec("a*’: Yy s “’5) - Ec(Uos Wy wy) * AU AL mw, (5-13)
Equation (5-43) was used to calculate E, in the inner loop of the
computer program because this method requires a minimum of computation
time on MIDAC, the digital computer which was used.

In Steps 10, 11, and 12, the number of cycles through each of
the loops is controlled: 50 times for the variable U , (B+'+9) times
for the variable w and (/A] +49) times for the variable /. A total
of 50(B8+49)(]Al+ 49) combinations of values of U , & and W were
considered to obtain each probability distribution for position error.
After cycling through these combinations, the computer printed out the
probability distribution.

In Step 13, the probability distribution was read out in the
form of a cumulative probability function rather than a probability
density function in order that the results be useful directly and to
provide a check! on the results. In Step 14, the number of values of
target direction which were considered was controlled.

The computer program is listed in Appendix A. The changes
necessary in the program to change P and.:DT are listed in Appendixes

v

D and E, respectively.

1 g@_ = (Z(’U)(Z (’,,,)(Z Pw-) y a known value.



CHAPTER VI

MODIFIED THREE-STATION SYSTEM

A modification of the three-station triangulation system was
investigated also. In this modification, only two bearing readings are
used to calculate the position of the target. When a bearing report
from one of the bearing-measurement stations 1s received at the central
station, the more recent of the reports on the same target from the
other two bearing-measurement stations is selected from storage. The
"new" reading and the "more recent" reading are then used to calculate
the position of the target.

The numerical investigation of this modification proceeds in
the same general fashion as the investigation of the unmodified case
which was described in Chapter V. Details, of course, are different.

The result of the digital computer study is a set of separate probability
distributions for the magnitude of the position error for the parameters:
(1) target direction and (2) a combination of target velocity and time
delay. Probability distributions are also presented for the case of a
uniform distribution for target direction. The results of the investi-
gation of the modified case and the unmodified case can be compared

directly.

Equation for the Position Error

In this modified case, for the purpose of calculation, the
new bearing reading is assumed to have been taken at bearing-measurement
Station 1. Thus, Equation (5-33), which expresses the magnitude of the

position error when the error in bearing reading is small, can be

-90-
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expanded into the form

2 4
2 de +d € - addEc cuo,-0)

E = xuhz&(fﬁb— ft) ’

(6-1)

in which the subscript "a" assumes the values 2 or 3, depending upon
which bearing-measurement station provides the more recent bearing
reading. Of course, no weighting factor can be used because only one
intersection is computed.

As in the unmodified case, the bearing-measurement stations
are assumed to be located at the vertexes of an equilateral triangle.
It is convenient to normalize all distances, including the position
error, with respect to the distance (D) of each bearing-measurement
station from the center of the equilateral triangle. The normalized
position error, denoted by E} , is obtained by modifying Equation (6-1)

to the form

Variation in the Position Error

The variation in the normalized position error as the location
of the target is varied throughout the triangle formed by the bearing-
measurement stations is investigated by using the simple, discrete,

probability distribution for bearing-reading error (Figure 5-1) that



was used in the study of the unmodified case. For this investigation,
only two bearing stations need be used. Stations 1 and 2 have been

selected arbitrarily.

Using this simple,discrete distribution, four equally likely

arrangements of bearing-reading error are possible:

Case I € = € € = €
Case II € = € é& = -€
Case III € = ~€ € = €
Case IV € = "€ , €& = - €

The expected value of ED , denoted by EX , is given by

I =
E = 7 EI +EH + EE[+ EIY] (6-3)

in which the Roman numeral subscripts indicate the particular arrange-~
ments of bearing-reading error. From Equation (6-2) (Cases I and IV
and Cases II and III yield identical values for ED ) Ex can be ex-

pressed as

a4 add 7
_I) + __J’ + ’a'z CO'O/(G’ "6‘)
. \> D D 2 %/
£x = 2 ain (6;- 6)) I 4, '2+ &1& ad d, | l/’l, .
+_(7>_ (T> p? cowl6,-0) (6-4)
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Reference to Figure 6-1, which describes the geometry of this situation,

shows by the "cosine law" for a triangle that

cg . J& < acgc&
(?)*(3) Ty enlge) =3

(6-5)

Equation (6-4) can be simplified, using Equation (6~5), to the form:

¢ p) 1/a
E, = —F—= 3++—’f"m(%—67) + /8 :
2 4in.(6;-5) D (6-6)
Station 3

©
l
I
l
I
I
I
I
|

. =

Station 1 ° 5 Station 2

Figure 6-1 Normalized Geometry for the Two-Bearing-Reading Case
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For numerical computation it is convenient to define the angles <X, and
>, @as the angles between the bearing lines to the target and the line
joining the bearing-measurement stations. The "law of sines" for the

triangle is

4,/0 4, /D 3
T = E e
A.(M,‘X, M°§z M(ﬂi--e;) (6-7)
in which = + °<4+ -6:2-6; = 77 .
Therefore,
6@,% _ 3M°<'»Ol'm.o<a
»* ain? (9, - 6 (6-8)
Substitution of Equation (6-8) into Equation (6-6) yields
V3'€ +Mo<,m«°zm(%-~9,). 1/4
Ey=————| |1+ . 1|
2.4in(9; - 6) ain? (6, - ©)
(6-9)

Equation (6-9) was used to calculate values of Ex for a variety of
target locations as shown in Figure 6-2. For a target.located near the
center of the equilateral triangle, the value of £ x 1s 1.59€. As
explained in Chapter V, the values of E X calculated from Equation (6-9)
are not realistic because the probability distributions for bearing
reading that were used are not realistic., However s the calculations

demonstrated that the variation of Ex is small in a region surrounding
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STATION 3

(I VARIATION IN Ex IS NOT
GREATER THAN 10%

STATION | STATION 2

Figure 6-2 Variation of the Expected Value of the Position Error
' for a Simple, Discrete Distribution for Bearing-Reading
Error
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the center of the equilateral triangle. The region in which E X does
not exceed its value at the center of the triangle by more than ten
percent is shaded in Figure 6-2. If the variation in the position
error with variation in target location is investigated by using a
normal distribution for bearing-reading error, the results obtained in
Chapter V apply directly. The region in which the area of uncertainty
is no larger than twice its value at the center of the triangle is at
least 80 percent of the area of the equilateral triangle.

In the numerical investigation to determine the probability
distribution for the position error using realistic probability distri-
butions for the error in the bearing readings, only a target located at
the center of the equilateral triangle has been considered. This pro-
vides an adequate estimate of the position error in a region surrounding

the center.

Probability Distribution for Bearing-Reading Error

In the modification of the three-station triangulation system
in which only two bearing readings are used to calculate the position of
the target, the probability distribution which describes the component
of the error in the bearing reading from each station due to error in

the bearing measurement itself ’éB 5 1s the same as in the unmodified

case. This component, €, , is described by a normal distribution with

8

a mean of zero and a standard deviation The probability distribu-

q;B .
tion which describes the component due to age of bearing measurement and
target motion is obtained in the following way.

As already stated, the new bearing reading is assumed to have

come from Station 1. The other bearing reading used in the calculation
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is from either Station 2 or 3, depending upon which of the stored readings
from these stations is the more recent. The ages of the stored bearing
readings from Stations 2 and 3 are denoted by t;{ and 'Cg . As discussed
in Chapter IV, both t‘z and ‘t3 are described by a probability distribu-

tion which is uniform over the interval from zero to T, i.e.,

2 LO elsewhere (6-10)
and
/
€ = T for  0<T<T
- 73 0O elsevhere (6-11)

in which Q: and (1 are the probability density-functions for the
] 3

variables t& and ts s, respectively. The Jjoint probability density-

function for t, and t3 is denoted by P

2 te'l t.?

and is given by

|
P =P P = TX for 0<Q<T, 0<g<T

O elsewhere

(6-12)

If a=a& and @=3 denote the use of the stored bearing
reading from Station 2 and Station 3,respectively, the probability of

a= 1is given by

Pla=a)= P(t,< t,) = Jf = =3

it T
(6-13)
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in which A, 1is the area within a region 0< t'z< T and O < 'L'3 <T

such that t4<t3 . As shown in Figure 6-3, this area is
Tu'l
‘AI = E—‘ N (6-114-)

and therefore,

| .
P(ﬂ,=a1) 23‘ " (6-15)

By similar reasoning, or by use of the fact that
Pla=3) = | - P(a=2) , (6-16)

the following can be determined:

P(a=3)= -i— . (6-17)

If T is an arbitrary constant, the probability that the age

of the bearing reading which is used, be it from Station 1 or Station 2,

exceeds T 1is given by

Aa (6-18)

T

P(ty>7) = P(t>7,t,>7) =ant30qﬂol -
2

in which A, is the area within the region 0<t,<T and 0< t,<T

such that t.z >7 and t3 >7T . As shown in Figure 6-3, this area is

) o4
A= (T-1) (6-19)
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Figure 6-3 The Areas A, and A& in the t& » t, Plane
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and therefore,

(-7

P(ta_> ’7‘) = T&

for 0 < PY<4£T (6-20)

The probability density-function for to. is obtained by differentiation

of Equation (6-20) with respect to 7.

o P 2(T-T)

0< T« - 6-20
A == T .  (6-208)

This probability density-function is illustrated in Figure 6-4, The
relationship between the error in the bearing reading and the age of
the bearing measurement when the error is small is provided by Equa-
tion (4-50) which is repeated here:

¢ VE, 4in (6~ $)

ta = &a, S (6-—21 )

in which V ,% y ¢>and (faare constants, The probabllity distribution
for %a’ is obtained by use of Equation (6-—21) and is shown in Figure
6'5t

The error in the bearing reading which is old is given by
E = €, 1+ € , (6-22)

in which EB is the error in the bearing measurement itself. The prob-
ability distribution for the error in the bearing reading which is old

is given by the convolution integral

qa,, - j Péa(éﬁ) (6 -€) 46, (6-23)
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&

Figure 6-4 Probability Density-Function for T, , the
Age of the Bearing Reading which is Used

m O
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V Tain (6 -§)
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Figure 6-5 Probability Density-Function for é%
/8
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The solution of this convolution integral is the first part of a digital
computer program for determining the probability distribution for the

position error.

Probability Distribution for Position Error

The probability distribution for the position error for a
target located at the center of the equilateral triangle formed by the
three bearing-measurement stations was obtained by a convolution of the
probability distributions for bearing-reading error at each station.
This convolution is the second and third parts of a digital computer
program for numerically determining the probability distribution for
the position error.

For a target located at the center of the equilateral triangle

(as shown in Figure 5-12),

4 4
iBL = 'isi' = | (6-24)
ain’(e,-8) = ain’(0,c€) = —f: ) (6-25)
/
(o 0) = (o -0) T-T , (626

and, therefore, Equation (6-2) becomes

2 4 R . 2
ED = ?EI + éa‘ + €Iéa] ) (6-27)

in which €, depends upon éB and éta’according to Equation (6-22).
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The probability distribution for €ta‘(shown in Figure 6-5) can be

described in terms of the quantity a’, which is defined as

6.-9) = Drain(g-¢) . (6-28)

For a particular value of the constant, a , the conditional probability
distribution for Ei , denoted by C:(Ebl a) , is a function of {1
The probability distribution for Eb may then be expressed in terms of

the conditional distributions as

P P(&=J)PC(EDICL=Q)

*P(a=3)¢ (E,laz=3)

(6-29)
which, by Equations (6-15) and (6-17), can be written as
l 3
P 2 G5 1a) . (6-30)
D asza

Equation (6~30) suggests that for numerical computation it may be
convenient to obtain (LD for each value of target direction, ¢ , from
a pre-calculated set of conditional probabiiity distributions corres-
ponding to a set of values of {L, Because @B is an even function
of 68 , Equation (6-27) shows that only the absolute value of Y, need
be considered. Therefore, the second part of the digital computer

study of the modified three-station arrangement consisted of tabulating

a set of conditional probability distributions for a set of values of l{LL
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In the third part of the digital computer study, selected
groups of conditional probability distributions were combined to obtain
probability distribution for position error assuming a uniform distri-
bution for target direction, ¢ . This latter distribution, denoted by

/
F} y 1s given by
D

AT

! !

- 37?/()5ch¢ ) (6-31)
(o]

which can be expanded, by using Equation (6-30), into the form

QT
o Blalesy relglag]us . e

The terms of the integrand depend on q; , as defined in Equation (6-28).
Because the integration is performed over a complete cycle of sin(é&;—¢9,

Equation (6-32) can be written as

, QT
PED = #[Q(sblma)aﬂqs , (6-33)
o

Because only the absolute value of %i need be considered and because of
the symmetry of the integrand, Equation (6-33) may be rewritten in the

form

/2

e, =%f@(fbla=x)i(63—¢) . (6-34)

(0]
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/ T
In the numerical computation of F; , the interval O = f%\-tﬁ < Y
D

was divided into a set of sub=-intervals and the integral was evaluated
by approximating the value of fz'-¢ within each sub-interval by its

value at the center of the sub-interval.

Description of the Computer Program

The digital computer program which was used to determine the
probability distribution for the position error is divided into three
parts. In the first part, the probability distributions for bearing-
reading error are constructed. In the second part, a set of conditional
probability distributions for the position error are constructed and
stored in the low-speed computer storage. These conditional prob-
ability distributions are applicable to both cases, 4= and a=23
In the third part of the computer program, groups of conditional
probability distributions are combined to obtain a probability distri-
bution for position error which assumes a uniform distribution for the
target direction angle.

Except for the third part, the computer program differs only
slightly in detail from that used in the analysis on the unmodified
three-station case. Because only two stations are involved, the re-
quired computation time is comparatively small. Figure 6-6 summarizes
the computer program in block diagram form. For convenience in the
digital computation, the set of possible values of E’ and QR was
represented by integers and integers plus one half. The variables U
and N are used to denote this representation. Thus, in Figure 6-6,
e’ and }ar are the probability distributions for the variables ¢ and

W, respectively. The joint probability of a particular combination of
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values of U and w is given by

P =R P . (6-35)

A o Yo

The subscript, o , indicates particular values of the variables. EC
is used to represent the square of the position error and L is used

to represent |§Z|.

Details of the Digital Computer Program

As in the study of the unmodified three-station triangulation
system, each of the probability distributions which are used to describe
the components of bearing-reading error for the modified system was
approximated by a discrete distribution of many ordinates. For conven-
ience, the set of possible discrete values of these variables is repre-
sented by integers plus one half. The variables v , ' and o’ are
used in the computer program to denote these discrete values and are
defined by Equations (5-13), (5-14), and (5-16), in which the scale
factor § is defined by Equation (5-12). The same discrete probability
distribution for the variables v and /v! that was used in the unmodified
case was used in this case also. This distribution is illustrated in
Figure 5-9.

The discrete pfobability distribution which describes the
variable ﬂF” was obtained by approximation of the probability distri-
bution for éta\’ shown in Figure 6-5. The approximation is illustrated
in Figure 6-7 in which %. is used to describe the distribution for ét
If nf” is considered to be a continuous distribution over the interval

O = o < (C in which C is a positive integer, the continuous
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Figure 6-7 Approximation of the Probability Distribution for € £2

distribution is divided into C equal intervals, which are replaced by
C ordinates, each with a value equal to the area under the continuous
distribution in the corresponding interval. The discrete distribution

can be expressed in equation form as
’ ”"
=
Eu_// - a [E’ = T a (6'36)

for values of &~ which are integers plus one-half in the interval
L < ” < - __I_
a - /U— - C J .

The discrete probability distribution for the variable & =
' + " was obtained by the same method used in the unmodified case
described in Chapter V. For each value of C selected, the computer

program was designed to have the following operations performed auto-

matically:
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(l) The probability distribution which was listed in the
computer program and used for the computer variables
U and A was multiplied by the factor ar”(ﬂf” = :%Q
to obtain the set of fifty ordinates for
B (=) By (- L)

(2) The fifty ordinates were added to the contents (original
contents were zero) of fifty sequential storage loca-
tions starting with the one corresponding to v s the
smallest possible value of w, which is Ve = - 4.

(3) Operations (1) and (2) were performed a total of C
times, with the value of nf” and the address of the
first storage location augmented by one each time.

In this way, the probability distribution for the variable &~ was con-
structed for each value of C selected. This process is summarized
in the block diagram shown in Figure 6-8.

The probability distributions for the variables U and &~
were combined by the process described in Chapter V, with, of course,
one less variable described by a probability distribution. The variable,
E. , used to represent the square of the position error in this case is

C

defined as

4

_ 322 _ 2
=555 RS (6-37)

The probability distribution for position error was obtained as a set of
numbers from a set of sixty computer storage locations. The position

of a number in the set corresponded to the same particular range of
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values of Ec as described in Equation (5m38). Thus, the corresponding

range of values of E 1is given by

2 2
R
L K < E = #D | K _
2 2 A 2 )
3s k 3s P!

(6-38)

which is analogous to Equation (5-39) for the convention system.

Separate probability distributions were obtained and printed
out for each value of C from one through fifty by use of Program I
which is listed in Appendix B. The second part of this program is'sum-
marized in the block diagram shown in Figure 6-9.l The change necessary
in this program to change ﬁ, is listed in Appendix D.

In order to obtain a probability distribution for position
error which assumes a uniform distribution for the target direction
angle, Program II, which is listed in Appendix C , was used to change
Program I. With this change, the separate distributions for each value
of C were stored in the low-speed computer storage. For each set of 12
values of C corresponding to a particular value of l)T and twelve values
of target direction angle, ¢, the corresponding set of twelve probability
distributions was selected from the computer storage and combined.

The second part of the program, when changed by Program II, is
summarized in the block diagram shown in Figure 6-10. The sets of values

of C which were used are listed in Appendix F.

1 The first part of this program is summarized in the block diagram
shown in Figure 6-8.
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Closed Form Solution

For the special case of (ZB very small in comparison with

a;ta , an expression for the position error can be obtained in closed
form, even for the case of uniformly distributed target direction.

For a target located at the center of an equilateral triangle
formed by three bearing-measurement stations, Equation (6-27) for the

modified system is

a a2
E.D - % [El * ea, + €, éa:] . (6-39)
When
e < Teta (6-40)

Equation (6-39) can be approximated by

2 4,2
E, T €a (6-41)

and, therefore,

- & -
E.D F eta. for Eta 2 0 . (6_)_‘.2)
The probability distribution for Eb is obtained from the probability
distribution for E;m and Equation (6-42). As explained previously,
[Equations (6-32) and (6-33)]only the case a=4 need be considered.
Therefore, the probability distribution for Eb as obtained from Figure

6-7 and Equation (6-42) is as shown in Figure 6-11. The quantity, ¥, ,

a
is defined in Equation (6-28) as
< Dpsin(9-4) (6:43)
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<[ Ll

oA
YER

Figure 6-11 Probability Density-Function for E}
When 0 < 0

€B Eta
As also explained previously, only values of €5-—¢ within the interval
0 = 9--4) s g— need be considered. For uniformly distributed target
direction, the joint probability distribution for Ei) and ft - ¢ is
as shown in Figure 6-12. This joint distribution has a triangular cross-
section normal to the €§-¢ axis and, of course, it satisfies the

condition that

D
J ff’E - de, d(e-¢) = 1 . (6-k)
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Within the region in which it is non-iero, F; o-é can be
»° &

expressed as

0 0 aJ3’ B 3E,
1979 T ain(0-9) DFain™(8,-9)
(6-45)
The probability that ED exceeds some arbitrary value, X\ , is
T 2
2 EDTM(%_@
] 243" 3E,
P(E>N) = 5 4 do-¢
(D ) m [DTM(O:L"» D:Ml(‘si"#’)] 3 (2 )
-13° N A
ain (_&DT)
(6-46)

Performing the first integral yields:

T
o L _ a/3 ax '_
6 ’f[ [”2 Drm(ei-¢)+owfm“(%—¢)] ect)
. =1(/3A
i (3,

T (6-47)
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Performing this integral yields:

a 2
~ FER f§')\> 3x 4Dy
P(ED>A) = | T An (&D,— :JTD;‘ IN% /

(6-48)

Values of F’(Ei > A) were calculated and are plotted in Figure 7-5
using notation developed in Chapter VII. This graph is a limiting case

of a set of graphs obtained by using the digital computer.



CHAPTER VII

NUMERICAL RESULTS
The position error in a triangulation system consisting of
three bearing-measurement stations located at the vertexes of an equi-
lateral triangle was calculated and is presented in the form of cumula-
tive probability distributions.
For the presentation of the results, normalized system parame-
ters are used which are independent of the choice of 0; in the computer

program. These parameters are:

fv = B (7-1)
N 'DOEB
and
D - VT - D,
N DT, C, (7-2)
in which
EN is the normalized magnitude of the position error,
E is the magnitude of the position error,

D is the distance from the center of the equilateral
triangle to each of the bearing-measurement stations,

is the standard deviation of the error in the bearing
measurements at each station,

D is the normalized distance that the target moves in
the time between consecutive bearing measurements of
a target at each bearing-measurement station,

" is the speed of a target traveling a straight-line
path,

~119-
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T is the time between consecutive bearing measurements
of a target at each bearing-measurement station, and

D is the distance the target moves in the time T .

T

Figure T7-1 shows the cumulative probability distribution for
the normalized position error for the three-station triangulation system
in which all three bearing measurements are used to calculate the position
of the target. Target direction is uniformly distributed. Figure 7-2
is an expanded view of the same graph for the higher values of position
error. In both figures, the ordinate is P(E'N> Eo), the probability
that EQ will exceed the corresponding value of the abscissa. Four
graphs are presented for four values of 1% .  The value l%==0 corres-
ponds to the use of simultaneous measurements. Figures 7-1 and 7-2
describe the magnitude of the position error if the system parameters are
known. These figures clearly show the additional position error which
results when non-simultaneous measurements are used. These figures also
provide a way of specifying system parameters to meet particular restric-
tions on the position error. Examples of these uses are presented in
Chapter VIII.

Figure T-3 shows the cumulative probability distribution for
the normalized position error for a modified three-station triangulation
system in which only two bearing readings, the new reading and the more
recent of the other two, are used to calculate the position of the target.
Figure 7-4 is an expanded view of the same graphs for the higher values
of position error. Eight graphs are presented for eight values of l% .
These graphs can be used in the same way as the graphs of Figures T7-1

and 7-2.
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In Figure T7-5, the abscissas of the curves presented in Figures
7-3 and 7-4 have been divided by Z%,. The probability distributions
which describe the position in the modified three-station system are
given in terms of P([EN/DN] > [EO/DN:D or P([E/VTJ > [EO/DN]) 5
which are identical according to Equations (7-1) and (7-2). By present-
ing the distributions in this form, they can be compared with a graph of
Equation (6-48), which is a solution in closed form for the probability
distribution when the value of D~ approaches infinity.l The graph for
this limiting case has been added to Figure 7-5. When compared with the
set of calculated probability distributions, this graph of the limiting
distribution demonstrates that little would be gained in using a digital
computer to calculate many distributions for values of I% greater than
seven.

A comparison of the graphs for DN==0 (e.g., no target motion)
shows, as would be expected, that for any selected value of E; s
P(E~>~EQ is greater for the modified three-station system than for the
conventional system. As the value of DN is increased in both cases,
P(Eh >E;) increases less rapidly for the modified system because the
information which is most likely to be in large error is omitted in the
calculation of target position in the modified system. In the range of
values of DN from 3.5 to 4.0, f’(Ek > Eo) is approximately the same
for both systems. For values of 1% greater than 4.0, ;>(Eh > E;) is

less for the modified system than for the conventional system. Thus,

The approach of Lk to infinity corresponds to the case of position
error due to error in bearing measurement being negligible in com-
parison with the error due to time delay and target motion.
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from the standpoint of minimizing the position error, these graphs indi-
cate that the modified type of system should be employed if a three-
station triangulation system is to operate in an environment in which QN
is greater than 4.0.

The comparison of the conventional and modified systems is
illustrated further in Figures 7-6 and T=7. The same data used in the
previous figures have been used to construct a family of curves for both
systems for several values of constant P(EN > E;) . As DN increases
for both systems, a greater range of values of position error is in-
cluded at each probability level. For a selected probability, the value
of DN at which the range of values of position error is the same for
both systems is quite evident. Minor extrapolation is required because
the range of values of DN investigated for the conventional system was
somewhat restricfeda For this reason, the calculated points on these
graphs have been indicated.

The data previously presented are for the case of target direc-
tion which is uniformly distributed. Of interest also, are the probability
distributions which describe the position error for particular target
directions. For the conventional three-station system, a set of such
distributions has been plotted in Figure T7-8 for the case of Ik =3
and for several values of lfﬁ-—¢l s the absolute value of the angle
between the target path and the line joining the center of the equilateral
triangle with the station whose bearing reading is new. Table 7-1 lists
the values of }6}— ¢’ for each of the cases listed in Figure T7-8. The
curves in Figure T7-8 indicate the variation in position error that can be

expected in a sequence of measurements as each of the stations becomes
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TABLE 7-1

GEOMETRY REPRESENTED BY THE TWELVE CASES IN FIGURE 7-8

? 1
Case E ffﬁ"¢?

S

1, 86.25° 93.75° 266.25° 273.75°
2 é 78.75° 101.25° 258.75° 281.25°
3 1 7L.25° 108.75° 251.25° 288.75°
| 63.75° 116.25° 243.75° 296.25°

=

' 56.25° 123.75° 236.25° 303.75°
6 - 48.75° 131.25° 228.75° 311.25°
7 4b1.25° 138.75° 221.25° 318.75°
8 © 33.75° 1k6.25° 213.75° 326.25°
9  26.25° 153.75° 206.25° 333.75°

10 18.75° 161.25° 198.75° 341.25°

11 . 11.25° 168.75° 191.25° 348.75°

12 3.75°  176.25° 183.75° 356.25°

1 When Station 1 provides the more recent
bearing reading
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the one to provide the new reading. The observed, extreme variation

with target direction corresponds in magnitude to the variation observed
in the probability distributions for uniformly distributed target direc-
tion when DN is varied between zero and 3.5. However, if target direc-
tion with respect to the system rather than with respect to the station
providing the new bearing readings is considered, each station is

equally likely to be the one providing the new reading. In this case,
the position error is described by a combination of the three conditional
probability distributions fof the absolute values of the angles between
the target path and the lines Jjoining the center of the equilateral
triangle with each of the three bearing-measurement stations. The
variation with target direction among the resultant distributions is
negligible. The limiting curves of the set of probability‘distributions
which describe the position error differ by at most 0.02 'in the P(EN>E;)
coordinate and they can be approximated by the corresponding curve for
uniformly distributed target direction.

For the modified three-station triangulation system, a set of
probability distributions which describes the variation in position
error with target direction has been plotted in Figure 7-9 for the case
of DN =3 . For the modified system, target direction affects the posi-
tion error by way of IQi- ¢l s the absolute value of the angle formed
by the intersection of the target path and the line joining the center
of the equilateral triangle with the station which provides the more
recent of the two bearing readings which are old. The entire range of
variation of the probability distributions is covered by the four curves

plotted for four values of this angle. Comparison of Figures 7-8 and 7-9
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shows that when .QM= 3 , the variation due to target direction is ap-
proximately twice as great for the conventional system. Thus, the modi-
fied system has some advantage if the probability of large error is to
be minimized, even at values of I%I as low as 3.

If target direction with respect to the system rather than
with respect to the station providing the old bearing reading is investi-
gated, considering that each station is equally likely to provide the
old reading which is used, the variation in the probability distribu-
tions which describe the position error is negligible, as in the case
of the ummodified system. The limiting curves of the set of probability
distributions which describe the position error in this case differ by
at most 0.04% in the P(Ekl>E;) coordinate, and they can be approximated
by the corresponding curve for uniformly distributed target direction.

The results of this study are based on a normal distribution
for the error in bearing measurements. The numerical results of this
study are in error because the normal distribution was truncated and
then approximated by a discrete probability distributionul In order to
estimate this error, the probability distribution for the position error
for DN = 2.5 in the conventional three-station system was calculated
using two different discrete probability distributions for the error in
bearing measurements. The distributions differ in the points of trunca-
tion. One of the distributions results from truncation at v = % 3.50;)

the other at U = 14.50; 62 Both of the discrete distributions consist

1 The points of truncation determine the range of values of bearing-
measurement error considered.,

e The variable v 1is used in the digital computer program to represent

the error in the bearing measurements. The quantity 0, 1is the standard
deviation of the continucus distribution from which the approximate dis-
crete distribution for the variable U is obtained.



-135-

of a set of probability values for the same fifty values of v . Because
of the difference in the points of truncation, the sets of probability
values and the relationships of the variable u to the error in bearing
measurement are different for the two distributions.

The discrete distribution which results from truncation at
v==% if% was used to obtain the results presented in the previous
figures. The particular distribution for position error for .DN = 2.5
for the conventional three-station system (Figure 7-2) 1is repeated in
Figure 7-10, using an expanded abscissa. For the same case, the proba-
bility distribution obtained by use of the discrete distribution which
results from truncation at # = .57 1is presented for comparison in
the same figure. The difference in the two probability distributions
for position error is small. As expected, the discrete distribution
which was truncated at u=23.5(¢, produces a higher probability that
large position error will occur. It is believed that most of the dif-
fereﬁce between the two probability distributions for position error is
due to the difference in the points of truncation rather than to the use
of discrete distributions. The percent difference in the values of E;
for the cumulative distributions shown in Figure 7-11 was calculated and
plotted as a function of the probability level. In the range of prob-
ability values in which these calculations can be performed accurately

(0.05 to 0.9), the difference does not exceed three percent.
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CHAPTER VIII

APPLICATIONS

The numerical results presented herein can be used (l) to esti-
mate the position error in the evaluation of existing or proposed three-
station triangulation systems, (2) to study the effect on position error
of proposed modifications to the system, and (3) to specify system de-
sign parameters when requirements on position error have been established.
The following fictitious example illustrates these uses.

A triangulation system consists of three bearing-measurement
stations located at the vertexes of an eguilateral triangle. The distance,
D , from the center of the triangle to each of the bearing-measurement
stations is fifty miles. The standard deviation, CEB , of the error in
the bearing measurement at each station is 0.057 radians. The time re-
quired at each station to perform one measurement is 5.0 seconds. Targets
with speeds of 0.2 miles per second are expected. The characteristics of
this fictitious triangulation system are summarized in Table 8-1. It is
assumed that this system may operate in either the conventional or the
modified mode.

For a target located near the center of the triangle, it is
desired to determine the magnitude of the position error that will be
exceeded only ten percent of the time when ten targets are under surveil-
lance. From Equation (4-29), the time between consecutive bearing measure-
ments of a target at each bearing-measurement station is T = M7 = 50 sec-
onds. From Eguation (7—2), the normalized distance that the target moves
in the time T is VT/DOe‘B= 3.5. From the graph for P(EN > E°> = 0.1
in Figure 7-7, the value of Eo which corresponds to .DN = 3,5 is 2.86,

=138~
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TABLE 8-1

CHARACTERISTICS OF A FICTITIOUS THREE-STATION
TRIANGULATION SYSTEM

50 miles

0.057 radians

5.0 seconds

= 10

It

50 seconds

I

0.2 miles per second

b < 4 X = ,9 Y

1!

VT/Da;, =3.5

2.86 (from Figure 4-8)

m m
I i

EOD OEB = 8.16 miles

From Equation (7-1), the magnitude of the position for this value of Eo
is given by E = EOI)GEB = 8.16 miles. Thus, the magnitude of the
position error will exceed 8.16 miles with a probability of 0.1. The
results of this analysis have been included in Table 8-1.

Study of the effect of minor modifications to the system is
most easily accomplished by use of an equation for the position error
and perhaps a Taylor series expansion of the equation about the values
of the parameters which represent the present system. Again, for the
purpose of illustration, it is assumed that the position error which
will be exceeded only ten percent of the time is of interest. Therefore,

the graphs in Figure 7-7 of the locus of P(Ek/> E;) = 0.1 for both the

conventional and modified three-station system are used. The locus for



=140~

the modified three-station system is observed to have zero slope at
I%J= 0 and has, for large values of DN , an asymptote which is a
straight line with a slope of 0.58. This latter observation is made
from the graph of P([EQ/IN] >[f;/i%]) for D, = ° 1in Figure 7-5.

This asymptote, expressed in equation form is

E, ® C, + (D, , (8-1)

in which C;. equals 0.58 and C,, estimated from Figure T7-7, is 1.0.

In spite of some similarity, the locus is not a hyperbolaoi
The entire locus could be approximated by a quotient of higher degree
polynomials; a quotient of low degree polynomials is not a satisfactory
approximation. However, for the purpose to be served herein, a simple
second degree polynomial is sufficient. For both the conventional and
modified three-station systems, that part of each locus represented by
1

the graphs plotted in Figure 7-7 can be approximated reasonably well

by the parabola

J
% C,* (D, * CD

E

]

(8-2)

in which all of the constants are positive. Cé =1.75, C;_= 0,0965,
and C%.= 0.0624 for the conventional three-station system, and Cé = 2,52,
Q+ = 0.0400, and C%_= 0.0376 for the modified three-station system.

From Equations (7-1) and (7—2), the position error which is exceeded

1 The deviation of the approximate equation from the points plotted in
Figure 7-7 does not exceed 0.03 (1.2 percent) in the E, coordinate.
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only ten percent of the time can be expressed in the form:

cSVQ“T“1
E, ~ D, + C4_VT + T‘ée— (8-3)

The partial derivatives of Ew with respect to D, O;B ,and T , as

obtained from the approximate Equation (8-3), assuming these variables

to be independent, are:

OF ¢ vir?

LAY -5 - 2 8-L
oD G2 %es D% [63 C5D~} e (&)

€B

DE ¢ var?

10 5 a

2 C - = -

e G T e - 60D e
oy y ac VT
37 =~ = = C+JCD]V.
oT 4 DT, {4 TN (8-6)

/a
For values of DN less than (63/65) , each of the partial derivatives

is greater than zero, which indicates that a small increase inD, OEB B

or T causes an increase in E,O . For the parameters D and 4 _, the

€8’

effect on Em is a maximum at DN= 0 and is smaller for larger values

of DN° For the parameter T, the effect on E/O is a minimum at DN= 0

and is larger at larger values of ‘DN‘

Equations (8-4) and (8-5) indicate that the partial deriva-

1/2
tives of E/o with respect to D and 0;8 are zero at DN= (C3/C5)
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and negative for DN in excess of this value. Obviously the approxima-
tion is not valid in this region; DN = (C’ /C‘?)//"z corresponds to

D, = 5.4 for the conventional, and D, = 8.2 for the modified three-
station system, values which are béyond the range of points plotted in
Figure 7-7 from which the approximation was made.

For the modified three-station system, Equation (8—1) can be

used to examine the partial derivatives of Elo at large values of DN .

Assuming the variables D, (TéB , and T to be independent, these partial
derivatives are:
0E
10 = 8-
33 C 0y (8-7)
oF
10
= CD and
I ) 8-8
2T, (8-8)
oE,,
= c. Vv )
oT 2 (8-9)

all of which are positive.
If AD/D R AGE‘B/G;B , and A"/”' denote small fractional
changes in the parameters D , O;B s,and T ,respectively, the correspond-

ing small change in E/o is approximately

AD AT
o~ _ 2 €8
AE/o |ic3 C§DN:I O;B D D * a‘eB

AT
+ [64 - .ZCSDN] D, Gy D (8-10)
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for values of - which are small, and

10 1 E€B D a (8—11)

for the modified system when the value of DN is large. For the modified
system, the coefficients C/ and Coz DN in Equation (8-11) are the
limiting values for large values of DN of the coefficients (:‘J;"C“‘,])I:2
and (C"_ +JCS_DN>DN » respectively, in Equation (8-10). The relative

effect on E@a of the same fractional change in D , 0'25 , and T can be

[{

compared by comparing the coefficients in Equation (8-10). The relative

effects are the same when

o
- o T -
c.3 CS’ DN’ Crs} T d 'y ‘)N (8 12)
or when
C.-C -
D & /————3 Yo - | ) (8-13)
N I c
VoS

For the conventional three-station system, Equation (8—13) yields
DN & L.2, which indicates that throughout the range of values of DN
in which the conventional system should be used in preference to the

modified system, greater reduction in position error will be accomplished

by a reduction in D or O::E than by the same fractional reduction in T .l

1 When D , OEB » and T are independent variables, the equality of the
relative effects of D and OEB on E

10 18 a consequence of the
definition of E, and D, .
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For the modified three-station system, Equation (8-13) yields D, ® 7.2,
which indicates that in the range 0 < .DN <7, E/o is more sensitive

to a fractional change in D or U; 8 than to the same fractional change
in T.
Depending on the nature of the triangulation system, the

parameters D , , and. T may or may not be independent. Variation

a
€B
in the parameter D corresponds to variation in the area of surveillance.
If T 1is directly proportional to the number of targets under surveil-

lance, and if the expected number of targets under surveillance is

directly proportlonal to the area of surveillance, then

2
T=¢D , (8-1k)

in which C6 is a proportionality constant. T must be consideredvde-
pendent upon any variation in D but must also be considered to be inde-
pendent when D is constant because T may be changed in other ways.

For this case, the partial derivative of E/o with respect to D , as ob-

tained from the approximate Equation (8-3), is:

2R R
oF CV (3D

%s

Q
= (¢ + acd, + 3¢ ), . (8.15)
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For this case, the partial derivative of Eu) with respect to D as

obtained from Equation (8-1), which is the limit for large values of

D

N is

. (8-16)

The partial derivatives of EM> with respect to (EB and T are the same
as those obtained for the case of all independent parameters. In terms

of small fractional changes in the parameters, the change in E)o is

N 4 aD
‘AEZO - (Cé * QQ+D~ * 3C?EW )‘EB D D
a a0,
- (3
(G - ¢Dy) g p2le
€8
i aT (8-17)
* \/C4 T ACD, ) G DT
for values of I%I which are small, and
A ] :iEl
E/o (C,+JC4DN> O;BD D
+ ¢ ¢ p20%e
! €B g
» €8
LY
+ ¢,D a D&l (8-18)
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for only the modified system when the values of DN are large. The co-
efficients of Equation (8-17) and (8-18) demonstrate that 4E, is most
sensitive to fractional changes in D at all values of I% .

Dependence among parameters may exlst in other ways, depending
upon the exact nature of the triangulation system. For example, the
standard deviation of the bearing-measurement error may be related to
the time T , the distance D , or both. If functional relationships
which describe the dependence are obtained, the effect of small changes
in the parameters can be examined in the same way as those considered
herein.

Study of the effect of modifications to the system in which
large changes in parameter values are involved requires direct use of the
graphs presented in Chapter VII. To illustrate the effect of large
changes, the following modifications to the system described in Table 8-1

have been considered:

Modification A D =25 miles,
Modification B ‘28 = 0.285 radians, and
Modification C T = 25 seconds.

In each case, the parameter value has been decreased by half. Each
modification and combination of the parameters was analysed in the same
way as the original system was analysed; the results are tabulated in
Table 8-2. Dependence of T upon D , as described in Equation (8-1k4),
has been considered also in a modification designated by the symbol A’.
In all of the cases, it has been assumed that the system operates as a
conventional three-station system for DN < 3.5 and as a modified

three-station system for .DN > 3.5,
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TABLE 8-2

EFFECT OF LARGE CHANGES IN PARAMETER VALUES ON THE
MAGNITUDE OF THE POSITION ERROR (WHICH IS EXCEEDED
WITH A PROBABILITY OF 0.1)

D, E, E
(miles)
Unmodified System ' 3.5 2.86 8.16
A | 7.0 L. 6h 6,61
B 7.0 .6k 6.61
cC ' 1.75 2.0 5.71
|

AB | 1k.0 8.1% 5,76%

System with
the listed AC 3.5 2.86 4,08
modifications BC 3.5 2.86 k.08

and combina-
tions of ABC ! 7.0 L.6L 3,30
modifications: At % 1.75 2.0 2.86
A'B l 3.5 2.86 2.04
Arc 0.875 1.86 2.65
A'BC 1.75 2.0 1.43

¥ estimated
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Knowledge of the position error as a function of the system
parameters and knowledge of the importance of changes in each parameter
provide a foundation upon which values of these parameters can be
specified in design when requirements on position error have been estab-
lished. The state of the art determines the minimum value of O;B that
can be used and partially limits the minimum value of T for a fixed
number of targets under surveillance. A value of D can then be
selected to satisfy the pcsition error requirements. If the value of D
so selected is impractical, i.e., does not provide a sufficient area
of surveillance, then advances in the state of the art are required.
The relative importance of the parameters suggests which of the parame-

ters should receive the most attention in advancing the state of the art

in order to satisfy the system requirements.



CHAPTER IX

CONCLUSIONS AND POSSIBLE EXTENSIONS

This study provides a measure of the additional error in
locating a target by triangulation when non-simultaneous, rather than
simultaneous, bearing measurements are used. It extends the previous
work on the analysis of the error in triangulation systems and investi-
gates the effect of a geometric approximation used in previous studies.
The results suggest areas in which future study would be profitable.

This study extends the work of the authorl, who first con-
sidered the error in triangulation systems which use non-simultaneous
bearing measurements by loosely approximating the effect of the non-
simul taneous measurements. The approximation consisted of increasing
the variance of a normal distribution used to describe the error in the
bearing measurements. This present study uses a separate, realistic
probability distribution for the components of bearing-reading error
due to non-simultaneous measurements.

In previous studies(8:loil9), the geometry in the vicinity of
the target has been approximated in order to simplify the mathematical
expressions used in the studies. This study determines the error in
this approximation by deriving the equations for position error without
approximating the geometry.

This study demonstrates the advisability of using a weighted
centroid of the intersections of all possible pairs of bearing lines,
whereas previous studies(l9) have considered a weighting procedure which

is more complicated..

1 Frese(8).
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For a triangulation system consisting of three bearing-
measurement stations, this study determines the conditions under which
greater accuracy is obtained when only two, rather than three, bearing
readings are used to calculate the location of the target. These con-
ditions had not been determined previously.

The methods used in this study are applicable to future studies
of the error in triangulation systems. These future studies include
numerically investigating the position error when more than three
stations are used and extending the range and scope of numerical investi-
gations of the three-station system.

For triangulation systems which employ four or more bearing-
measurement stations, the general expression for the position error which
was developed in Chapter IV, and the numerical procedures presented
herein can be used to calculate probability distributions for the posi-
tion error. Each additional station considered adds an additional
dimension to the probability space. In such a study, if the number of
intervals used in the approximations of the probability distributions
for the components of bearing-reading error is the same as the number
of intervals used in the study described herein, the computing time
required would be increased by a factor of approximately sixty for‘each
additional station considered,l Reduction of the number of intervals

used will decrease the accuracy of the calculations. However, the

1 The computer (MIDAC),which was used to obtain the numerical results
presented herein, performs multiplication in approximately three milli-
seconds and, when most efficiently programmed, performs addition and
logical operations in 0.43 milliseconds. The computing time required
to calculate each of the probability distributions presented in Figure
7-1 (with the exception of D, = 0) was from 8-1/2 to 9 hours.
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results of this study as presented in Figures T7-10 and T7-1ll indicate
that the number of intervals may be reduced a small amount with little
effect on the overall accuracy because the error due to truncation
appears to predominate.

For the conventional three-station system, probability distri-
butions for the magnitude of the position error can be obtained for
values of Z%, greater than those considered herein in order to obtain a
quantitative measure of how much reduction in position error is produced
by the use of the modified three-station system. The calculations of
each such probability distribution would require computing time only
slightly in excess of the time required to calculate the distributions
_ presented herein. However, the calculation of such distributions does
require the use of a digital computer with a high-speed storage capacity
of greater than 512 words in order to accommodate component distributions
over a larger range of arguments if the size of the approximation inter-
vals is not to be increased,l

For any number of bearing-measurement stations, the equations
and numerical methods presented herein can be used to describe the
magnitude of the position error in any combination of the following
situations:

1. a target located at a point other than at the center of
the system,

2. a non-symmetrical arrangement of the bearlng-measurement
stations,

1 The computer program, listed in Appendix A, utilizes 511 of the 512
high-speed storage cells of the MIDAC computer. Only a small saving
in the use of these cells could be accomplished by changes in the
program.
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3. a non-normal probability distribution for bearing-
measurement error,

4, a non-uniform distribution for the age of the bearing
measurements, and

5. large rather than small bearing-reading error.

Four times as much computing time would be required to obtain
each probability distribution for uniformly distributed target direction
in the first and second situations than in the special case numerically
treated herein because of differences in symmetry. The third situation
requires only a change of the numerical distribution which is stored
in the program and does not require additional computation time. The
fourth situation may not require additional computing time nor additional
computer storage space if the distribution to be used for age can be
described by a simple equation. Changes in the computer program are
necessary, of course. If an empirical distribution is to be used in
the fourth situation, additional storage space in the computer is re-
quired. The fifth situation would substantially increase the required
computing time because of the additional arithmetic operations to be

performed.



APPENDIX A

PROGRAM FOR THE CONVENTIONAL SYSTEM

The program listed below was used with the MIDAC computer to
calculate a set of cumulative probability distributions for the normal-
ized position error for the case of uniformly distributed target direc-
tion. Intermediate results for each of twelve target directions were
obtained also. This particular program applies to the cases 0, = 10
and sD.r = 25. A modification to this program for 0, = 50/7 is presented
in Appendix D. Modifications for SDT = 125/7 and 150/7 are presented in
Appendix E,

MIDAC, the digital computer which was used to calculate the
probability distributions for position error, is a three-address, serial,
general purpose computer.l The programs presented herein make use of
the Magic I system of MIDAC, an automatic programming system which trans-
lates a programAwhich is written in floating address form into the
correct computef‘language for computation.2

A MIDAC instruction word is made up of four parts; =<, @, ¥,
and an operation symbol, which are written in the order listed. Table

A-1 contains a simplified description of the logical and arithmetic

operations performed by MIDAC in terms of these four parts of each

1
MIDAC is described in detail by Carr and Scott(5), Appendix IX.1.

2 The Magic I system, which includes other features such as automatic
error diagnoses and a library of frequently used sub-routines, is
described by Brown, J. H., "Programming for the Magic I System,"
Section II.3 of a book edited by Carr and Scott(5).
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TABLE A-1

SIMPLIFIED DESCRIPTION OF THE MIDAC OPERATIONS

e e e

Operation
Symbol Description
ba Augment C, by -o¢. If 8>C,,> ¥,
If B = C; , set CB = 0 and continue .
ex ] = [x1®[e].
ad [4] = [«1 + [e].
ri Read in < words from input station or drum
address € to o cells starting with
address ¥ .
su [¥] = [=] - [f].
cn 1f [8] > [«],» ¥ . 1f [B] < [=],continue.
-4+4
sn [X] = [“]X 2 w/o ([B]XJ \
cm 1f |[8]] > [[edl, > ¥ . 1f |[]] = I[x]jcontinue.
fi Store C£+’ in ¥ of = and = Y,
av [ = [6]/[<] .
= o<
mr [¥] [ﬁ][ ] 5 (rounded) .
-44
me [¥] = [el[«d=xa™*",
ro Read out o words from o cells starting with
address B to output station or drum address ¥ .
bd [¥1 is a binary coded decimal number
equal to [e¢],
LEGEND: CB is the base counter, a counter used in cycling.
CZ is the instruction counter, which is set to the address
of the instruction belng performed.
> means "set (£, to".
[ ] means "the contents of".
® means a logical "and" rather than arithmetic addition.
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instruction word. The symbols < , 8 , and ¥ are used to designate
either numbers or the addresses of storage cells, depending on the
nature of the operation. By affixing a minus sign to an address, the
address is automatically augmented by either of two counters, the base
counter if the operation symbol is prefixed by a minus sign, or the
instruction counter if not. A minus sign affixed to a number in a
"read in" or "read out" instruction specifies that the contents of the
cells are coded typewriter symbols and not numerical quantities. The
address which precedes the instruction words is the floating address

which is not assigned to a computer address until translation takes place.



PROGRAM

cd

faa Ol
faa05
faa06
faaO7

faa08

faa09
faalO

faall

faal2

faal3
faall
faal5

faalb

faal7

faal8

fab05

fab0ob

faal9

000
leOl
e00
000
-001
c00
-d01
-001
1b00
2b00
2e01
£00
c00
c00
3c00
c00
2e01
e02
512
2c00
keoo
-001
1e00
al2

000
-001

2e0l

keo1

1e00
3b00
1c00
-d00
-001L
2e00
000
-001
2e01
heol
2e00
eOl
-001
2c00
1c00
3e00
000
cOl
koo
2e01
heoo
000
1lcOl
heol
ScOl
6e01
1cOl
col
2c0l
3cok

000
e02
b00
000

e02
-d01
155
eQ2
e
3e01
c00
le02
al2
al2
cOl
2c00
e02
001
2e0l
-d00
050
1e00
e26

000
050
1e00

2c00
e(02
2e01
5¢00
050
2e00
000
050

2e00

alb
1c00

050
5e01
5e01
3e00
000
cOl
e02
3e01
keoO
000
cOl
1lcOL
2c01
3e0l
cOl
1lcOk
cOl
6c0L

000
e00
a07
000
a07
2c00
-dol
a08

b05
cOl
a09
3c00
al2
al2
cOl
alo
keoo
all
kecoo
-do3
all
1e00
b05

al2
1e00

alb
5¢00
-d03
al5
2e00
000
alb
2e00
alb
al6
-d03
al7
c02
lcO2
3e00
000
2c01L
b06
1cOl
ke00
000
keon
5e01
6c01
col
1lcOk
2cok
3colk
heol

ba
ex

ad
ri
ba
ex
-8u
ba
ex
ex
su
cn
sn
ad

ad
ad

) {

) {
A

) |

cm

ex
1
dv
-mr
ba
su
ex

ri
ba
ad
ad

cm
ex
dv

ba
su
ri
ba
ad
ad
cm
-mr
ba
ad
ad
su
ri
mt
ex
su
su
ri
su
mt
ad
su
ad
su

mt
ad

}{
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clear the base counter
set Ty , the § tally, to its initial value (usually zero)
put unmodified instruction in 207
put selected value of A x 2-30 ana 8 x 2'36
in c00 an% 1c00, respectively
Jalx 2-3° 11 2c00
clear 155 cells from address dOl
through address 73402
put unmodified instructions
in al2 and b05
n; = -2k x 236 1n co1
if A > 0 = a09
A x 2-24 15 3c00
add A to the addresses in
Y and @8 of instruction al2
(7;+ A) x 2°36 1n col
if [A] > 1 » al0
1-2"% /1A 1n keoo
< all
1/1Al in 4co0
Rl w"=a5") = Bula")R, (2 - a7)
stored in 50 cells starting with address d03
clear T, , the A" tally
use instruction al2 (already modified) to modify instruction
b05 so that the use of F,. starts at P;v(/v;_)

) <accumulate P, at the proper

) (
) {

) {

address determined by instruction al2

augment Tk by 1

augment @ and ¥ of instruction al2 by 1,

i.e., augment ng" by 1

if |Al > T, - al2

put unmodified instruction in alb

1/8 1in 5c00

P (wrl mwf) = By (W) (i

in 50 cells starting with address d03

clear 7; , the *8” tally

accumulate F,. at the proper address

determined by instruction alb

augment 7; by 1 .
augment @ and ¥ of instruction al6 by 1, i.e., augment « by 1
if B > TB -> alb

R /12 in 50 cells starting

with address 403

(49 + Jal ) x 2-36 1n co2

(49 + B ) x 2‘3§ in lc02

clear T; s the ‘nr"tally

Po(»,) 4in 3cOl

gAx 2-28 15 2c01

put ‘unmodified instruction in b06

w; = =24 x 2‘3v in lcOl

clear T, , the w tally

P () Pur (wr) __ in 2e27
(w,-n7,) x 2736 1n keol

w, (w, - a,) x 2728 1n Sco1
[w2+ w,(w,-a)] x 2728 1n 6co1
v = -2k.5 x 2739 1n cob

(wo+ ) x 2-36 1n 1cob

(y - w, -a3) x 236 in 2¢Ok
U (uy - w, - ag) X 2-28 45 3cok
Ec( vy, 7y, w,) x 2728 1n beok



faa20

faa22

faa23

faa2l

faa28

faa29

faa25

faa26

faa27
fae25
acbe25
fae28
da001
fae26
da005

fae27
ac3le27
fae29
da001
ac2e29
cd
£ab00o

heok eOl
2e01 lcOk
e05 c05
5col 3e02
cOl 6e02
a27 001
2e01 LkeooO
2eQl lecOl
TeOl b06
Lke0O 1c02
2e0l1 3e00
2e01 cOl
TeOl b05
3e00 c02
c0b c06
001 1leOL
e[} % e00
-lck c06
c0b o0l
001 1c06
-001 060
heo2 e00
e00 5e02
000 000
e25 e29
-d03 2e27
le29 e26
le25 le26
3e25 2e26
e27 4326
3e25 3e26
5e25 Le25
2e25 e25
ke25 e28
le27 000
-001 050
512 001
0oL
00Offf
0001ck
~0000000000c
O00fff
000000f f'f
000000d46f2¢
f00 -e03
-d03 -21401
00 000
-do3 -do2
3c01 do02

c05
Scol
e25
5e25
ke25

keoo
1le0l
b06
b06
3e00
cOl
b05
b05
c0b

001
ooL
c0b
1c06
001
a28
e00
a0b
000
le29
le27
le25
3e25
e27
a26
a26
2e25
e25

he25

000
a25

000

-c00
-21401

3cOoL

-do2

2e27

sn
su
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E x 2-13 in c05

(:-/v;-ur')x2'36 in 5cO4

ad (g, + K,) x 2713 in e25

sn (1 - - w,) x2-13 in 5e25

sn U x 275 1in ke25

fi > a25, the start of the inner loop subroutine

ad augment T, by 1

ad

ad) augment w, by 1

cm if 49+ B > T > 1bob

ad augment T, by 1

ad

ad) augment w, by 1

cm if b9+ JA} > T, > D05

su clear cell c06, the cell at which the cumulative
distribution is accumulated

ro print out code words which

ro

) {

identify the results

-ad construct the cumulative distribution

bd convert the result to a decimal number

ro print out the result

ba - a28 until all 60 results are printed out
ad augment T¢ by 2

cm if 2h > T4 a06

ri BALT

av Eo (o, m,05) x272% = K x2737/(£,+K,) x2 " 1n le29
-mr Pnrwr (Vo vy w,) in 1e27

ex [ i.e., B digits of En x 2'21" in le25
ad (452 + B,) x 2724 in 3e25

sn (452 + 8, ) x 2736 1n e27

ad
ad
ba

modify instruction

a26 so that the

results are accumulated properly

(2u, +1 - a -wy) x 2713 1n 2e25
[E(ur1) +r,] x213 = [E (u,) + K,] x 2713 +

(2u, +1 - o

°

-w;) x 2713 1n €25

2(vu, +1) x 213 =2y, x 2713 + 2 x 2-13 1n ke25

accumulate P

v w

in the proper cell

- a25, i.e., cycle through all values of U 1in order to

B (E,

accumulate A

Jweng ,w =w;) in 60 cells starting

with cell number 452
- 1la22, i.e., return to the main program
assign six cells for

i
) (temporary storage

2 x 2-13

hexadecimal numbers

(conﬂ tants entered as

} (assign three cells

-ad
-ad

ad

-ad

mr

temporary storage

K, x 2-37

for

assign one cell for temporary storage

fixed instructions

vwhich are modified in

use elsewhere in the program



fac00
ac6c00
facOl
acTcOl
fac02
ac2cQ2
facok
acbeok
fac05
fac0b
ac2c06
def

£adoo

.1988
.2526
.3179
.39%61
.4886
5967
.7213
.8635
.10234
.12008
.13950
.16043
.18270
.20596
.22989
.25405
.27795
.30109
.32289
.34285
.36040
37511
.38651
39432
.39828
.39828
39432
.38651
37511
.36040
.34285
.32289
.30109
27795
.25405
.22989
.20596
.18270
.16043
.13950
.12008
.10234
.8635
.7213
5967
4886
.3961
.3179
.2526
.1988

=24
=24
-2d4
-2d
-2d
=24
-24
-24
-1ld
=14
-1d
=1d
=1d
-1d
=1ld
=1ld

-1ld
=1ld
-1d

-1d

-1ld

-4

=1d
-1ld
=1d
=24
=24
-2d4
-2d4
-24
=24
-24
=24

§88989888989888888888282888888898888¢

gee

£8e8s8ggsg

S N SN AN
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assign six cells
assign seven cells
assign two cells

assign six cells
assign one cell

assign two cells j

the set of constants, P, (u)

for temporary storage

» entered as decimal fractions



-159-

:igiiOl )’ assign eighty-one cells
fad02
acTlhdo? assign seventy-four cells
£ad03 for temporary storage
250403 assign fifty cells
zi;ggo > assign five cells
faeOl
da008 0000000000f used to multiply by 215 by shifting
0 initial value of T}
000000001 1x 2736
000000019 25 x 2-36
000001001 used to modify an instruction
000000031 k9 x 2-36
0000000008 0.5 x 2-36
000001 used to modify an instruction
fae02
da007 FEEFFELrrere extractor
0000000000c used to multiply by 2l2 by shifting
00000000009 used to multiply by 29 by shifting
00000000017 used to multiply by 223 by shifting
000002 2 x 2-2
000018 2k x -2k
00000000018 used to multiply by 22h by shifting
fae03
da02h ~-000000015
000000016
-000000013
000000018
~-000000010 .
000000019
-00000000e
000000019
-00000000b
000000019
~000000008
000000019
-000000005 values of A and B
000000018
~-000000001
000000016
000000001
000000015
000000005
000000013
000000008
000000010
00000000b
00000000e )
faeOl
def -83333333333  -14 ob 1/12
fae05
da001 03208 ' K, x 2713

beaOk computation begins with the instruction at address aOk



APPENDIX B

MODIFIED SYSTEM, PROGRAM I
The program listed below, in floating address form, was used
with the MIDAC computerl to calculate and print out a set of fifty
cumulative prc-)bability distributions for the magnitude of the position
error for the modified three-station system for values of C from one
through fifty. In this program, 0,6 = 10. Appendix D contains a

v

modification to this program for OL = 50/7.

See Appendix A for a brief description of MIDAC operations and
programming.
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PROGRAM

cd
faaOl
faa08

faa09

faalO

faall
faal2

faal8
fab05

faal9

faa20

faa22

faa2li

faa28

faa29
faa30

000
-dQ1
-001

b0o0

1b00

eQl

eOl
-d00
-001

512

e00

e00
c00
1c00
1c00
1e00
-doo

000
-001

3c00

e0l
keol
1e00
e00
2e00
000
cOl
6e0L
cOl
1cOk
lcOl
3cob
e05
cok
eOl
2c05
3c05
keos
a27
eOl
eQl

TeOl

2e00

c06

001
~-001
~-e10

c06

ool
-001

eOl
-el0
-001
-004

e00

000

000
-dol
099
e02
e02
leQl
e00
e02
050
001
leQ2
e00
2e0l
2c00
3e0l
1e00
3c00
000
050
keoo
1e00
al2
e00
5e0l1
2e00
000
cOl
leOl
col
cOl
2cok
2e02
c05
le02

3e02
1c05
2e2
001
2e00
cO1
b05
c02
c06

e00
e0b
c0b
001
1c06
060
e00
-el0
060
e0b
8eOL
000

000
-dol
a08
al2
b05
cOL
alo
-dol
a09
al2
c00
1c00
2c00
3c¢00
4e00
1e00
do3
000
all
3c00
1e00
al2
all
co2
2e00
000
lcOl
cok
1lcOk
2cok
3cok
c05
e25
1c05
2c05
3c05
keos
2e25
a25
2e00
cOl
b05
b05
c06

0oL
0oL
c06
1c06
001
a28
e00
~-el0
a30
001
a0k
000

ba
-su
ba

ex
=) {
su

cm
-ex
ba)
fi

sn
me
su
dv
dav
su
-mr
ri
ba
su
ad
ad
cm
ad
su
ri
ms
su
ad
mp
ad
sn
ad
sn
ad
sn
ad
sn
fi
ad
ad
ad
cm
su

ro
ro
-ad
bd
ro
ba
ad
-su
ba)
ro
cm
ri
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clear the base counter -
clear 99 cells starting
with address dQl
put unmodified instruction
in cells al2 and b05

w; = -2h x 2-36 15 cor
if € > 1 » alo

Fr = P, (/U'-;{-) in 50 cells
starting with dol

- al8
aC x 2-28 1n coo

¢* x 2728 15 1000

(ac - 1) x 2728 15 2c00

(2c-1)/c* = P u(1/3) 1n 3c00

/¢ in 4ecoo ..
clear T, x 2'26, the € tally
B(w|w"s 4) = Bpn(w,") B, (wr -a)
accumulated at the proper address
determined by instruction al2

Bl +1) = B«(2,") - afc* 1n 3co0
augment T, by 1
augment A by 1
if € >T, » gll

(49 + ¢ ) x 2-36 1n coe
clear T, x 273%, the ‘w” tally
AP én 2e27

a2 x 2729 45 1c0

U = - 24,5 x 2730 4n cob

(v + ;) x 2-36 iglcO’#

U (g + a7) x 2720 15 2c0h

[w2+ v(vg+m)]x 228 = E(y ,a;) in 3c0k
E (v, a5) x 2713 4n co5

E, *+ ;) x 2713 in e25

aug x 2-28 1n 1005

(1 + a4 ) x 2-36 1n 2¢05

1+ a, ) x 2728 10 3c05

(2Us +1 + a5 ) x 2728 1 keos

(20 +1+ a;) x 2713 1n 2e25

-> a25, the start of the inner loop subroutine
augment T, by 1
augment 4 by 1

149+ C > 7, - 1b05

clear cell c06, the cell at which the
cumulative distribution is accumulated
read cut ¢ identifies results
carriage return

construct the cumulative distribution
convert the result to a decimal number
print out the result

- a28 until all 60 results are printed out
augment C by 1

clear 60 cells starting with
address el0
read out four carriage return instructions
if 50 > ¢ - a0k
HALT
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faa25 e25 €29 le29  av E (v, , n;) x272 = K, x 2-37((& + K,) x 213
1le29 e26 1le25 ex Be» i.e., @ dlgits of E, x 2724 4n le25
1e25 1e26 3e25  ad (452 + 8, ) x 2-2% 1n 3e25
3e25 2e26 €27  sn (452 + B, ) x 2-36 1n e27
e27 Le26 a26 ex} modify instruction a26 so that the
3e25 3e26 a26 ex results are accumulated properly
2e25 e25 25 ad  [E(y+1) + K] x2 3= [E(y) * K] x2713 4
(2 up + 1 + a5 ) x 2713 4n e25
2e25 e28 2e25 ad (@Lus+1] +1+a)x213=(u, +1+ ;) x213+
2-12 15 2e25
-d00 2e27 1e27 -mr P,(v)) Py (#7)  1n 1e27
faa26 le27 000 000 ad accumulate P, P, in proper cell
-001 050 a25 ba - a25 and cycle through all values of U in order to

accumulate P (ER | ar =) in 60 cells starting with
cell number 452

faa27 512 001 000 fi - la22, i.e., return to main program
:‘22:25 g assign six cells for temporary storage
fae28
42001 001 a constant, 2-12
fae26
da005 000fff
0001ck
-0000000000c constants entered as hexadecimal numbers
000fff
000000f £f
fae27
ac3e27 assign three cells for temporary storage
fae29
42001 000000d6£2¢ K, x 2737
ac2e29 assign one cell for temporary storage
cd
fab00 do3 -dol -dol -ad ( fixed instructions used at
£00 dol 2e27 ad addresses al2 and b05
fac00
ac5c00 assign five cells
facOl
ac2col assign two cells
facO2 assign one cell for temporary storage
facOk
ackeol ) assign four cells
fac05 )
ac5¢05 assign five cells
fac0b
ac2c0b ) assign two cells )
def
£ad0o .1988 -24 o )
.2526 -2d Ob
3179 ~-2d Ob
.3961 -24 Ob
.4886 -2d Ob
.5967 -2d4 Ob
.7213 =24 Ob
.8635 -2d Ob
.1023% =1d Ob the set of constants, ﬁ,(u) » entered as decimal fractions
.12008 -1d Ob
.13950 -1d ob (Continued on the following page)
.16043 -1d Ob :
.18270 -1d Ob
20596 -14 Ob
.22989 -1d Ob
.25405 -1ld Ob
27795 -1d Ob




fadOl
ac99d0l1
fad03
fae00
da001
ac3e00
faeOl
da009

fae02
daook

fae05
daO01
fae06
daook

ach52
fael0
beaOl
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.30109 -1d Ob
.32289 -1d Ob
.34285 -1d Ob
.36040 -1d Ob
.37511 -1d Ob
.38651 -1d Ob
.39432 -1d Ob the set of constants, PU (U) , entered as decimal fractions
.39828 -1d Ob
.39828 -1d Ob
.39432 -1d Ob
.38651 -1d Ob
.37511 -1d Ob
.36040 -1d Ob
.34285 -1d Ob
.32289 -1d Ob
.30109 -1d Ob
27795 -1d Ob
.25405 -1d Ob
.22989 -1d Ob
.20596 -1d Ob
.18270 =14 Ob
.16043 -1d Ob
.13950 -1d Ob
.12008 -1ld Ob
.10234 -1d Ob
.8635 -24 Ob
.7213 -2d Ob
.5967 -2d 0Ob
4886 -2d Ob
.3961 =24 Ob
.3179 -2d Ob
.2526 -24 Ob N
.1988 -a2d Ob
assign ninety-nine cells
) (for temporary storage
assign one cell for temporary storage
00000000L ¢ x 236, initially set at ¢ =1
assign two cells for temporary storage
000000001 2-36
000000019 25 x 2-36
0000001 2-2
0000002 2 x 2-28
000001001 used to modify an instruction
000000031 49 x 2-36
0000000008 0.5 x 2-36
000001 used to modify an instruction
000000032 50 x 2-36
PELLELPEELE extractor
00000000009 used to multiply by 29 by shifting
0000000000f used to multiply by 215 by shifting
00000000008 used to multiply by 28 by shifting
03208 ;.(-1 x 2-13
ec
ec code for carriage return, used for the format of the results

ec
ec

assign one cell for temporary storage
computation begins with the instruction at address aOk



APPENDIX C

MODIFIED SYSTEM, PROGRAM II

The program listed below provides a change in Program I by
which the set of fifty cumulative probability distributions for the
position error is stored on the magnetic drum of the computer instead of
being printed. Each of these cumulative distributions may be interpreted
as a conditional distribution for the corresponding value of C . The
program then provides that any sub-set of twelve conditional distribu-
tions may be selected (with replacément) and combined to obtain a re-
sultant distribution assuming that each of the selected values of C 1is
equally likely. This combinatorial procedure is used to obtain cumula-
tive probability distributions for the position error for an arbitrary
target direction. The selection of the twelve distributions is
accomplished by listing the twelve corresponding values of C on an
auxiliary tape which is processed by the computer. These values are

listed in Appendix D for the several values of .SDT which were used.
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PROGRAM
change
aca2l
cd 512 001 a3k fi — to drum storage subroutine
acke0b
cd
faa3l ell ell ell su clear cell used as temporary storage for distribution sum
€00 1le13 lel2  sn 8C x 2-36 1n lel2
a37 le12 2el2  ad (1064m + 8C) x 2-36, drum address for
distribution storage, in 2el2
2el2 2el3 3el2 sn (1064km + 8C) x 2'2’1 in 3el2
2el2 ke26 a32 ex add proper drum address to instruction a32
3el2 e26 la32 ex add proper drum address to instruction la32
faa3l -el0 cl0 -lell -mr multiply distribution by 1/12
ell -lell ell -su obtain the distribution sum
-00L 060 a3l ba <and place in cell ell :
a36 001 a35 i - distribution sum check subroutine
£00 cll a3k cm - a34k if distribution sum check is not correct
faa32 061 ell 000 ro store the distribution plus the distribution sum on
the drum starting with drum address (1064m + 8C)
061 000 451 ri read the distribution plus the distribution sum from
the drum starting with address 451
136 001 b35 i = distribution sum check subroutine
£00 cll a32 cm - a32 if distribution sum check is not correct
ell 001 el2 bd print out distribution sum
001 el2 001 ro to indicate progress of computation
faa33 -el0 -el0 -el0 -su clear cells used for storage
-001 060 a33 ba of the distribution
eOl e00 e00 ad augment C by 1
€00 3el3 a0k cm if 51 > € - a0k
fab20 013 001 els ri read in a code word followed by twelve values of
C x 27° from an auxiliary tape
£00 e28 el2 set T , the distribution tally, to 1 x 2‘12
fab21 -lell -lell -lell -su) clear 60 cells starting
-001 060 with address lell
fab2l a38 el2 b25 ad add T, to = of instruction a38 and put the
resu.lt at address b25
fab25 000 000 000 ri select the ( 7;, - 1) 'th value of C x 2712 yhich was read in
from the auxiliary tape and put it at address lel2 with a
scale change to C x 2-21
a37 lel2 2el2 ad add 8 C to B of the instruction at address a37 and put
the result at address 2el2
2el2 e26 b22 ex put the drum address (1064m + 8C) in B of the instruction
at address b22
fab22 061 000 451 ri read the distribution plus the distribution sum corresponding
to the ( T, - 1) 'th value of C from the drum to 61 cells
starting wit.h address 451
b36 001 b35 fi - distribution sum check subroutine
£00 cll b22 cm =» b22 if distribution sum check 1s not correct
fab23 =52 -lell -lell -ad Y accumulate the sum of the twelve distributions
-001 060 b23 ) (in 60 cells starting with address lell
e28 el2 el2 ad augment T, by 1
el2 ke13 b2k cm 1f 13 > T - b2k
fab26 001 elk 001 ro print out a code word which identifies the results
-001L e0b 001 ro read out a carriage return instruction

ell ell ell su clear cell ell
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fab27 -lell ell ell -ad construct the cumulative distribution
ell ooL cll bd convert result to a decimal number
001 cll 001 ro print out the decimal result
-001 060 b27 ba - 127 until all 60 results are printed out
-00k e06 001 ro read out four carriage return instructions
512 0oL 20 fi - b20 and repeat the distribution combination process for the
next set of twelve values of C . (end of main program)
faa35 cll cll cll su clear cell used for temporary storage
-ell - cll cll -ad) { obtain the distribution sum
-001 061 la35 ba. and place it in cell cll
faa36 512 001 000 i return to the main program
fab35 cll cll cll su clear cell used for temporary storage
451 cll cll -ad obtain the distribution sum and
-001 oé1 1535  ba {place it in cell cll
fab36 512 0oL 000 fi return to the main program
faa37 000 1064m 106km  ri dummy instruction used only for the address it contains
faa38 elk el3 lel2 sn fixed instruction used at address b25
fael2 ) assign four cells for
acliel2 temporary storage
fael3
da005 ~00000000009 used to multiply by 2-9 by shifting
00000000003 used to multiply by 23 by shifting
0000000000c used to multiply by 212 by shifting
000000033 51 x 23
0od 13 x 2712
faclO
def .83333333333 -1 Ob 1/12
facll assign one cell for temporary storage
faell
acl3eld } assign thirteen cells for temporary storage
faell assign one cell for temporary storage

beaOl computation begins with the instruction at address aO4
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APPENDIX D

OTHER VALUE OF 0,

The program listed below was used to change the computer programs

listed in Appendixes A and B for 0, = 50/7.

PROGRAM

change

acd00

def .157 -3d Ob
.251 =34 Ob
.39 -3d Ob
.606 -3d Ob
.914 -3d Ob
.1352 -24 Ob
.1961 -2d Ob
.2788 -2d Ob
.3889 -2d Ob
.5319 -24 Ob
L7134 -24 Ob
.9381 -24 ob
.121 -1d Ob
.15301 -1d Ob
.18977 -1d Ob
.23078 -14 ob
27522 -14 Ob
.32186 -14 Ob
.36911 -1d ob
U151 -1d Ob
L5776 -1d Ob
49503 -1d Ob
. 52496 -1d Ob
.54591 -1d Ob
.5567 -14 Ob
.5567 -1d Ob
.5k591 -1d Ob
.52496 -14 Ob
49503 -1d Ob
L5776 -1d Ob
RSES) -1d Ob
.36911 -1d Ob
.32186 -1d Ob
27522 -1d Ob
.23078 -1d Ob
.18977 -1d Ob
.15301 -1d Ob
.121 -1d Ob
.9381 -2d Ob
L7134 -2d Ob
.5319 -2d4 Ob
.3889 ~2d Ob
.2788 -2d Ob
.1961 -2d Ob
.1352 -2d Ob
.91k -3d Ob
.606 -3d Ob
.39 -3d Ob
.251 -3d 0Ob
.157 -3d Ob

bcaOl



The following sets of values of. the constants A and B

APPENDIX E

OTHER VALUES OF A AND B

used in the program listed in Appendix A at address

distribution for the variable v is described by

%

were

fae03 when the

= 50/7.

The value

of sDT for each set of values of A and B is listed at the head of

each column. The set of values listed in Appendix A are used for

sDp = 3.5.

sD = 2.5

000000008
00000000a,
000000006
00000000¢
000000003
000000004
000000001
00000000f
~-00000000L
000000010
-000000003
000000011
~-000000006
000000012
-000000008
000000012
-00000000a.
000000012
~-00000000¢
000000012
-000000004
000000011
-00000000f
000000010
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5DT=3.O

000000009
00000000¢
000000007
00000000e
000000004
000000010
000000001
000000012
-000000001
000000014
~00000000%
000000014
-000000007
000000015
-000000009
000000015
-00000000¢
000000015
-00000000e
000000015
-000000010
000000014
-000000012
000000014



APPENDIX F

CODE WORDS FOR PROGRAM IT
Each group of twelve code words (values of C ) listed below
was used in Program IT to select and combine twelve probability distri-
butions for position error in order to obtain a distribution for the
case of uniformly distributed target direction. The code words apply
to the case of 0, = 50/7. The values of SDT are listed at the head

of each column.

0.> 1.0 1.5 2.0 2.5 3.0 3.5

001 00L 001 001 001 001 002
001 001 002 003 003 OOk 005
O0OL 002 003 005 006 007 008
002 003 005 006 008 009 OOb
002 00k 006 008 00a 00c  QOe
002 005 007 009 00c OOCe 011
003 005 008 0OOb 004 010 013
003 006 009 OO0ec OOf 012 015
003 006 00a 004 010 013 016
003 007 00a 00e 011 014 (018
ook 007 0O0a 00e 012 015 019
00k 007 O00Ob 00e 012 015 019

L.0 4,5 50 5.5 6,0 6.5 7.0

002 002 002 003 003 003 003
006 007 007 008 008 009 OOa
009 00a OOb 00d OOe OOf 010
00d 00e 010 011 013 015 016
010 012 o014 o016 018 0l1a Olc
013 015 018 0la Olec O01f 021
015 018 O0lb Ole 020 023 026
018 O0lb Ole 021 02k 027 Oea
Ola 0l1d 020 023 026 O02a 024
Olb Ole 022 025 029 O02c Q2f
Ole 020 023 027 02a 02 031
Ole 020 024 027 02b O2e 032
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