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Perhaps one of the most striking findings in the area of human decision
meking is that of conservatism. Edwards (1968) summarizes the phenomenon:

An abundance of research has shown that human beings are

conservative processors of fallible information. Such ex-

periments compare human behavior with the outputs of Bayes's

theorem, the formally optimal rule about how opinions (that

is, probabilities) should be revised on the basis of new

information. It turns out that opinion change is very or-

derly, and usually proportional to numbers calculated from

Beyes's theorem—but it is insufficient in amount (pp. 17-18).
In meny settings it is extremely desirable to extract from the information at
hand all of the certainty that is possible, not only because it is important
to make as informed a decision as possible but also because information can be
very expensive. Notable areas where these considerations apply are military
intelligence, medical diagnosis, business decision making, etc.

Why are men conservative information processors? The contributing factors
are several (see DuCharme, 1969; and Edwards, 1968, for reviews of relevant re-
search) but the outstanding one seems to be misaggregation of information,
People seem to assess correctly the impact of a single datum, but do not com-
bine data correctly. Edwards has proposed a probabilistic information process-
ing system to overcome human suboptimality (Edwards, 19623 Edwards, Lindman &

Phillips, 1965; Edwards, Phillips, Hays & Goodman, 1968).



In their abstract, Fdwards, Phillips, Hays & Goodman (1968) summarized
this system:

A Probsbilistic Information Processing System ( PIP) uses men

and machines iIn a novel way to perform disgnostic informa-

tion processing. Men estimate likelihood ratios for each

datum and each pair of hypotheses under consideration or a

suffiicient subset of these pairs. A computer aggregates

these estimates by means of Bayes's theorem of probabil-

1ty theory into a posterior distribution that reflects the

Impact of all available data on all hypotheses being con-

sldered. Such a system circumvents human conservatism in

information processing, the inability of men to aggregate

information in such a way as to modify their opinions as

much as the available data justify.
Fdwards, et al., go on to state their major empirical results: data which lead
PIP to give 99:1 odds favoring a hypothesis resulted in 4.5:1 odds in favor of
that hypothesis when the data were evaluated by a non-PIP system. They inter-
pret thls result as demonstréting that PIP used the information contained in
the data much more efficiently than do competing inference systems they employed
in their simulation. The implication of this superior efficiency is that in
situations where many pleces of information must be processed it should be done

by a PIP-like system and that system's output should be the basis of decision.



One common attribute of settings where it may be profitable to employ a
PIP system for information aggregation is that it is very important to make the
best decision possible. Thus the fact that a preponderance of the evidence
points in one directlion may not be as important as the exact odds level associ-
ated with the evidence. The difference between being 60:1 certain and being

99:1 certaln may be very large in terms of the course of action that is decided

upon.

In the Edwards, et al., simulation, PIP was the only processing system
which reached these levels of certainty from the data. But their simulation
concerned complex hypothetical scenarios of the "world of 1975" which did not
allow the possibility of calculating "correct" odds. PIP was certainly non-
conservative compared with the other systems, but there is no assurance that
PIP may not have been too extreme, i.e., ended up more certain than the datas
Justified. Edwards, et al., cite an experiment by Phillips (1966) which em-
ployed a PIP system in a situation where "correct" odds éould be externally
calculated. He found a resulting difference in processing systems comparable
to the Edwards, et al., finding and furthermore reported that PIP itself ap-
peared somewhat conservative. However, in her dissertation, Wheeler (1972)
examined misaggregation as the source of conservatism. She used a data gener-
ating source for which the "correct" odds could be calculated and the results

strongly point to missagregation as the basic source of human conservatism.



She reports very conservative posterior odds associated with human-aggregated
Information and nearly veridical posterior odds associated with machine-aggre-
gated information. However, in the experimental condition where the dats were
relatively undiagnoétic the machine-aggregated posterior odds were somewhat ex-
cesslve when compared with the veridical posterior odds (median machine-aggre-
gated log odds vs. veridical log odds showed correlation of .967 and regression
slope of 1.514).

But it is in exactly this sort of setting, where there is an abundance of
relatively undisgnostic data, that PIP is most likely to be applied (e.g., mil-
itary intelligence). It becomes evident that the development of an error theory
for PIP is extremely desirable. The following discussion attempts to extend
present knowledge in the direction of such a theory.

Bayes's theorem is the formally optimal tool for revising probabilistic
opinion in the light of new information. Given a hypothesis and a datum bear-

ing on that hypothesis, Bayes's theorem states that:

P(D|{I)P

P(D) :

Here, D represents the datum, H the hypothesis, P(DIH) is the probability of
the datum given the truth of the hypothesis, P(H) the prior probability of the
hypothesis, P(D) the probability of observing the datum (unconditionally), and

P(H]D) the posterior probability of the truth of the hypothesis. For two com-



peting hypotheses, H_, He, and a datum, D, bearing on them, Bayes's theorem may

1

be used in odds form:

P(HllD) P(DlHl)P(Hl)

P(H, D) P(DIHQ)P(HE)
or,

o, = L-a,

where Ql 1s the prior odds for Hl agalnst H2, and L is the likelihood ratio as-
sociated with D. The quantity L completely summarizes all of the diagnostic
impact of D vis a vis H and H2 (see Edwards, Lindman & Savage, 1963). When a
sequence of conditionally independent data are considered, Bayes's theorem may
be applied iteratively, the posterior odds for the (n - 1)th datum being used as

the prior odds for the lncorporstion of the nth datum.

In a PIP system human experts estimate the relative impact of each datum,

i.e., they estimate the quantity L, and a computer aggregates these according
to Bayes's theorem. The computer, which is Just Bayes's theorem mechanized,
never observes the basic datum—it receives only an operator's estimate of the
impact of the datum, the likelihood ratio. Thus to the computing system, the
basic datum is the operator's estimate of the likelihood ratio.

Men seem very adept at estimating likelihood ratios (much of the litera-
ture establishing this is reviewed in Edwards, 1968). However, if error enters
into the PIP output it enters at this point-~where the human operators trans-
form the information contained in the data into numbers. Even if the estima-
tors are very good on the average in assessing the diagnostic impact of the

data, their estimates are bound to be somewhat variable, That is, if on some
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occasion an operator estimates the likelihood ratic for some datum to be 1.7
we cannot be sure that at some other time for that same datum and situation he
might have estimated the likelihood ratio to be a little more or a little less
than 1.7. Unfortunately the formal nature of probabilistic inference is such
that this sort of variabllity doesn't just "ecancel out.”" When additional vari-
ability is introduced into an inference system, the inevitable result is to
1limit the level of certainty which that system can reach. In some cases the
effect of this sort of source unreliability can be quite surprising (Schum &
DuCharme, 1969).

What does this mean for a PIP system which uses human estimates of likli-
hood ratios? When PIP receives a likelihood ratio to be entered into the com-
puting algorithm, this ratio can be taken to mean: "a datum with this exact
diagnostic value has occurred." This is the definition adopted by Edwards, et

al. (1968). Given this interpretation, the report of a likelihood ratio is Just
as dlagnostic as the observation of the datum.

A second interpretation is suggested by consideration of human variability.
Here, when a likelihood ratioc is given to the computer it is interpreted as "a
datum has been observed and its diagnostic value is estimated to be (some num-
ber). Use this estimate to infer the true diagnosticity of the datum and use
the result of that inference as input to inference algorithms for Hy and Hg."
Note that adopting this second interpretation introduces into the inference
problem uncertainty based on the quality of the estimated likelihood ratios.

Any inference-making system which takes thls datum-level uncertainty into

account can never be as sure of itself (so to speak) as a syster which ignores



this source of uncertainty—as does the PIP used by Edwards, et al. Maybe PIP
was extracting more certainty than the data, i.e., the estimates, Justify.

Thus the goal of an error theory for PIP, as PIP is currently conceptualized,
is to characterize the source of possible error in the system and to incorpor-
ate this characterization into ﬁhe inference algorithm in a formally optimal
manner. An outline for one approach to this problem comprises the rest of this
paper.

Suppose that our basic problem is deciding between two competing hypoth-
eses, Hl and H2. As the basis for inference we collect data, dl’d2"°°’dn € D,
where D is the set of all data relevant to the two hypotheses. The diagnostic
impact of a datum, di’ is completely described by its likelihood ratio,

P(diIHl)

P(dilHe) :

For each d, there exists a L(di) e, where

P(4d, |H
M) FEE}_:T{L: ’
i 2
andZis the set of positive real numbers. Since the map L:D »L is many:1, it
makes sense to spenk of' a density function over the setX under the function
(D),

If the density function f(dIHl) / f(d]H?),then it is possible to speak of

two distinct density functions over & , f(LIHl) and f(LIH?). low, speaking of



the basic datum for Bayes's theorem as a likelihood ratio, it is pertectly per-
missible to write:

P(HilL) P(LlHl) P(H, )

P(H L)~ B(LMW) ~ R(PH)
Given an L sampled from the distribution with density f(LlHi), the estimated
1ikelihood ratio.can be characterized as 1,', a random variable with density
f'(L'|L), where the distribution of the estimated likelihood ratio is dependent
only upon the value of the veridical likelihood ratio (this assumes that L' is
conditionally independent of H; i.e., f(L'|L,H) = f(L'|L)). Now, following the
development by Gettys & Willke (1969), we may write

P(L'lHl)P(Hl)
P(L!) )

1l

P(HllL')

where

P(L']Hl) f_f'(L'IL)f(LIHl)dL .

I

(Gettys and Willke use summations; here the continuous case is considered. 1In
either case the arguments are parallel.)

Then in odds form this becomes

P(HlIL') ) P(Hl) . ££f'(L'|L)f(L|H1)dL o
P(HPIL') P(Hp) £Lf'(L'|L)f(L|H2)dL



Taking logs, we get

P(HlIL') P(H,) iif'(L'lL)f(LlHl)dL
—_— log —— + log
P(HQ'L') P(He) iﬁf'(L'lL)f(LlH2)dL

log (2)

The derivation of equation (1) depends on three assumptions. These may
be itemized as:
(Al) L' (the estimated likelihood ratio) is conditionally inde-

pendent of H, and of H2.

1

(A2) f'(LlLi) and f'(L'le) differ only in the value of the pa-

.rameters L for all i, j.

(A3) the value of the variable L' is known.

To actually calculate the posterior odds, given an estimated likelihood ratio,
one must specify the conditional probability density functions f(LIHl), f(LIHe),
and £'(L'|L). The importance of the various parameters which these functions
involve to the form of the ratio of integrals in equation (1) is demonstrated
by the following example.

Assume that the basic datum input to the PIP system is the logarithm of a
likelihood ratio estimate. Let L be the log veridical likelihood ratio, and L'
be the log estimated likelihood ratio. Now, under the log transformation,EfZis
redefined as the set of all real numbers. Assume that f(LlHl) is the normal
density with parameters p and oi. Note that by specifying f(L]Hl) the density

f(L|H2) is automatically specified because the relation

f(LlHl)

gy ~ P (L) )



must be satisfied at all points T, €X (here we assume that logarithms to the base
e are used). Assume further that the density f'(L'|L) is also the normal den-
sity functlion, with parameters I and bi.

In words, 1t has been assumed that if Hl were true and we collected all
possible data that would distinguish between Hl and H2 and observed the distri-
bution of the veridical log likelihood ratios associated with the data we would
find that it was the normal probability distribution with mean y and variance
oi. Furthermore, given a partlcular datum with log likelihood ratio I the es-
timate which would be given to the PIP system, L', may be thought of as
L' = L + w, where o is a random error which is normally distributed with a
mean of zero and variance oi. In other words, the estimator is pretty good in
that on the average when a datum of diagnosticity L occurs he will give an es-
timated dlegnosticity L' = L, but may vary around the true value a little bit.

The quantity of interest is the likelihood ratio that should be used in
Bayes's theorem when the estimator gives and estimate of L'. This quantity is

the ratio of integrals in equation (1). Substituting into the numerator of this

ratio the densitles that have been assumed we get:

1Tt o 1,.'-1L.2
d = - -
o&f (L IL)f(LIHl) L o= [ exp {- 5( - )

2n02 L
L

171 -

. exp --—(LL——P‘)2 dL.

2 o

2102 B
h

In the denominator, using the assumptions and relationship (3), we get:
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o 1 1,L' - L,2
éf'(L‘L)f(L|H2)dL = /. exp 'é( )
V2n 2 L
L
. exp -%(L—G-—E)Q - L{dL .
2 h
Enoh

Simplifying and teking logarithms we get the adjusted log likelihood ratilo:

2
g, 0
UJ;,f'(L'IL)f(LIHl)dL L'af1 + ”“i - haL
L" log —_— = (4)
g{ff (L IL)f(LlHa)dL 0121 . "i

This isrfhe quantity that is used in (2), the log odds form of Bayes's theorem.
The quantity that the Edwards, et al. (1968) study used to éalculate posterior
log odds would have been L', whereas if variability in likelihood ratio esti-
mates 1s taken into account the quantity that would have been used is L" which
1s somewhat less than L'. Note that L" = L' if there is no possibility of
error in the estimates, i.e., 02 = 0. How much less than L' is L" depends upon

L

the parameters o and pu under the assumptions that have been made.

h’ 7r
To obtain some idea of the magnitude of the adjustment from L' to L", con-
sider a numerical example. In the Edwards, et al., study the posterior odds of
99:1 were achieved by the cumulative impact of 60 data. Since the particular
hypothesis belng considered began with odds of 1:5, the posterior odds repre-
sents a cumulative likelihood ratio of L95, or, in natural logarithms, 6.20k.
The average log likelihood ratio estimate was thus approximately .103. Since
the model of estimator error assumes that the average estimate is the veridical
value, let us assume for the sake of example that y = .103. The data reported

by Edwards, et al., do not allow calculation of the variance of log likelihood

ratios for the 60 data scenario leading to the posterior odds of 99:1. However,
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they do give a distribution of likelihood ratios for all data used in all scen-
arios (some 5400 data). The overall variance may be approximated from the fig-
ures they give(page 262, Table V); using this ylelds the estimate ci = .0253.
In practice, to use equation (4) one would obtain a log likelihood ratio
estimate, L', for each datum then solve for L", the adjusted log likelihood
ratio, and use this value in equation (2) to revise the prior log odds. For the
Edwards, et al., data we do not have the individual likelihood ratio estimates
for the 60 data sequence. Instead, for the sake of example, we will use equa-
tion (L4) to obtain L" corresponding to an estimate of L' = .103, the mean for
the 60 data. Multiplying the resulting L" by 60 gives us the expected log cum-
mulative likelihood ratio for the 60 data taken together. This value is then
used to glve a rough estimaté of what the posterior odds might have been for
Edwards, et al., data sequence if estimator variability had been taken into

account. The following table dlsplays these calculations for selected levels

2

of cL.
Posterior Adjusted Odds for Selected Levels of oi
02 L Estimated 02 L Estimated
L Posterior 0Odds L Posterior Odds

0000 .1030 99 .00 . 0055 .1007 8L4.36
.0005 .1028 92.19 .0060 .1006 83.52
.0010 . 1025 93.86 . 0065 . 1004 82.72
.0015 .1023 92.59 .0070 .1003 81.95
. 0020 .1021 91.3%8 0075 .1001 “1.21
.0025 .1019 90.23% .0080 . 1000 £0.50
.00%0 .1017 89.14 .0085 .0998 79.82
.003%5 .1015 88.09 .0090 .0997 79.1¢
. 0040 .1013 87.10 .0095 .0995 78.53
. 0045 .1011 86.14 .0100 .009Y4 77.91
.0050 . 1009 85.23
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As may be seen from the calculations, the effect of estimator variability
on the posterior odds may be quite slight in this situation where there is an
abundance of data which 1s relatlvely slight in 1ts diagnostic value. A reason-
able question is what values_of oi one might encounter. Unfortunately the 1lit-
erature on likelihood ratio estimation is rarely reported in a way that allows
this quantity to be estimated. Edwards, et al., do report standard deviations
for repeated estimates by thelr subjJects which may be used to estimate ci.

Their value aversged around .0007. From the table it may be seen that this
smount of varlability would have only minimal effect on the reported posterior
odds. Wheeler (1972), whose subjects gave estimafes for abstract laboratory
stimuli, does not report a number comparable to Ui; but inspection of her Fig.-
ure 5, a plot of veridical log likelihood ratios against medlian estimated log
likelihood ratios, allows us to take & rough guess that a value of .0l may not
be unreasonable in the range of * .4 for the veridical log likelihood ratios.
This size variability would decrease the PIP posterior odds from 99 to about 78.

It must be emphasized that the calculations that the table is based upon
employ only the roughest estimates of the parameters needed for exact solutions.
In addition, the model of man as an estimator that is implicit in the equations
is & falrly generous one. It assumes that the only source of estimate error is
random variablility. This may not be the case at all—more likely, variability
increases with the magnitude of the veridical log likelihood ratio (see Wheeler,
1972, Figure 5). However, as has been pointed out above, situations where
PIP might be applied seem most often to be those where tﬁe data is of low diag-

nosticity, i.e., low average log likelihood ratio and not too much variability
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around that average. The example used for the table may be considered

prototypical of this type of setting.

One possible criticism of the present development concerns the distribu-
tional assumptions that have been made. The theory which culminated in equa-
tion (2) is sound regardless of the true data and estimator distributions.
However, one may argue with the further development which assumes that f(LlH)
and f'(L'|L) are Gaussian densities. We would argue that for the sake of study-
ing analytically the effect of estimator variability on the PIP posterior odds
that the forms assumed for these densities should probably serve very well as
approximations in the settings being considered. Unless the data generating
process is very perverse the distribution of veridical log likelihood ratios
will be roughly single peaked. Once this condition is met the normal density
can be considered to be a very good first approximation. If one is very con-
cerned about the fit (or lack of it) he can always be generous in estimating
the variance, since the magnitude of the adjustment in log likelihood ratio in-
creases monotonically with variance of the normal distribution used to appfoxi-
mate f(L]H). The result will be a conservative estimate of the adjusted posterior
odds.

Assuming f'(L’IL) to be the normal density may not be a bad approximation
at all. This assumption is quite pervasive in the area of psychophysics. One
should worry more about assuming that the variance is independent of I, than
assuming the f' to belong to the family of normals. Here again, though, inad-
equacy of fit may be compensated for by overestimating the variar-e which in

turn overestimates the necessary adjustment to the PIP posterior ~dds.
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The steps one would go through to apply the present error theory in an
applied PIP situation follow two distinct paths. Tf the necessary distributions
are known the theory could be applied at the level ot the computing algorithm.
This will almost never be the case. Assuming that the requisite distributions
are unknown, one could make assumptions similar to those made here and compute,
using equation (L) iteratively, datum by datum. Alternatively one could go
ahead as did Edwards, et al., and use the estimates as if they were veridical;
then, using assumptions we have outlined, retrospectively examine the numerical
consequences of assuming various amounts of variability in the estimates as we
did in the table.

This latter route would be by far the easiest because it is highly likély
that the exact parametric values for u, ci, and ci needed for the datum by datum
application can only be estimated in retrospect. Presumably the posterior odds
level at which the course of action to be chosen will change is known before the
data are evaluated. The retrospective application of the error theory as out-
lined above will show Jjust how much error, i.e., the magnitude of ci, can be
tolerated without changing the decision. If even generous estimates of esti-
mator variability fall within this region of tolerance, then we can feel assured
that inherent variability will not be deleterious to the decision. On the other
hand, if likely levels of variability will possibly change the decision, one
would be advised to recompute on a datum by datum basis using the retrospective

parametric estimates and use the resulting adjusted posterior odds as the basis

for decision or to reserve judgment until more conclusive evidence is collected.
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This last consideration, what to do if the error analysis indicates the
decision could be affected, points up the major weakness of the present devel-
opment. 1In practice there will be formidable obstacles to acquiring the neces-

sary knowledge to apply the theory as an integral part of the aggregation

algorithm. The true distributions and their necessary parameters will glmost
never be known meking it impossible to apply equation (2) in exact form. When
(2) is applied in approximate form as demonstrated here, we may be conclusive

in saying when the PIP posteriors are sufficient for making a given terminal
decision, but not in saying when they are not sufficient. The major advantage

of the present theory is that it uses log likelihood ratio estimates as its

basic input rather than individual likelihoods or probabilities, the latter task
being one at which humans are far less adept (Phillips & Edwards, 1966). Other
discussions of datum reliability are closely tied to this later type of Judgement
(see Kelly, 1972).

As a final note, it should be pointed out that the alternatives to PIP are
as subJect to estimator variability as is PIP. The next best system for infor-
mation processing examined by the Edwards, el al., study was christened POP.

In this mode, operators reestimated the actual posterior odds after seeing the
data instead of estimating likelihood ratios and letting the computer aggregate
for them. When PIP was reporting odds of 99:1, POP was giving 4.5:1. But again,
if we were to take into account inherent variability in the POP posterior odds
estimates, the 4.5:1 odds would be reduced as are the PIP odds. The same basic

approach used here would lead to a similar error theory for POP, iicwever some
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of the algebra would be different. Such a development is beyond the scope of
the present paper.

Where to go from here? The theory that has been developed is sufficiently
promising to warrant more intensive work. The goals of further research should
Include both extension and refinement of the theory and broadening the empirical

basis for application. The first obvious extension of the theory is obtaining

concigse formulas for adjusted likelihood ratios such as equation (L4), but
basing the derivation on distributional assumptions other than the ones used
here. Once concise forms are obtained, there should be numerical work done to
examine the magnitude of error possibly introduced by using the wrong assump-
tions as approximations. We expect that most reasonable distributions will
not significantly change the conclusions we have reached using the normal ap-
proximations; but it would be nice to have the numerical work to support this
statement.

For empirical work, the first step would be to characterize the distribu-
tions of data likelihoods that may be encountered in application of PIP in a
variety of information processing settings. A concurrent line of investiga-
tion would comprise building an empirical data base from which the f'(L'|L)
distributions could be obtained. One byproduct of this would be a characteri-
zation of those inference problems in which estimator variability is sufficient
to warrant applying the theory on a datum by datum basis rather than the retro-

spective fashion we have described.
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