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ABSTRACT--An evaluation algorithm is developed for a broad class of perfor-
mability models wherein system performance is identified with ‘‘reward.” More
precisely, for a system S and a utilization period T, the performance variable of
the model is the reward derived from using S during T. The state behavior of S is
represented by a finite-state stochastic process (the base model); reward is deter-
mined by reward rates associated with the states of the base model. It is assumed
that the corresponding reward model is a nonrecoverable process in the sense that
a future state (reward rate) of the model cannot be greater than the present state.
For this model class, we obtain a general method for determining the probability
distribution function of the performance (reward) variable and, hence, the perfor-
mability of the corresponding system. Moreover, this is done for bounded utiliza-
tion periods, an assumption which demands a relatively complex solution. The
result is an integral expression which can be solved either analytically or numeri-
cally. A program written for numerical solutions is discussed and an example illus-
trating the method is presented.



I. INTRODUCTION

Much of the recent work in analytical evaluation of degradable fault-tolerant computing
systems has concerned the evaluation of the total ‘‘benefit”’ derived from the computing sys-
tem during some specified interval of time [1]-[19]. In these studies, a variety of concepts and
terminology have been used to formalize benefit, including “work’[1], “capacity”’[2],
“reward”[7], and ‘‘performance”[4], Other studies have concerned the evaluation of ‘cost” in
conjunction with the evaluation of some form of benefit [8], [9], [11], [12], [15], [17). Much of
this work [3], [5]-[9], [11], [12], [16]-[18], [20] has considered systems in steady-state which are
utilized over an unbounded period of time: repair of components is allowed (indeed,
required), and the evaluated quantity is the expected rate at which benefit is derived under
steady-state conditions. However, many important applications of degradable systems have
bounded utilization periods. In such cases, a transient solution of the system benefit is usu-
ally required. Moreover, in many such applications, the user is interested in how benefit is
distributed probabilistically (i.e., the probability distribution function of the benefit variable).
This further complicates the evaluation process as compared, say, with the evaluation of
expected benefit.

Conforming with terminology used in some of our earlier studies [10], [14], [21]-[23], we
view system ‘‘performance’ as a relatively general concept which includes various types of
benefit as possible specializations. Formally, we define the performance of a system S over a
specified time period T to be a random variable Y taking values in a set A. Elements of A
are accomplishment levels representing how well S performs during T. Relative to a desig-
nated performance variable Y, performability is the probability measure p induced by Y
where, for any measurable set B of accomplishment levels (BCA), p(B) is the probability
that S performs at a level B. Evaluation of performability thus requires solution of the proba-
bility distribution function of Y. This solution is based on an underlying stochastic process
X, called the base model (of S), which represents the dynamics of the system’s structure,
internal state, and environment during utilization.

Specific interpretations of performability thus depend on how values of Y (the accom-
plishment levels A) are interpreted. In particular, if elements of A represent levels of benefit
then performability describes the system’s ability to benefit its user. In the discussion that
follows, we consider this type of performability where benefit is equated with reward (see
Howard [24] for example) derived from using the system during a specified period T. We are
interested in the case where the time period T is bounded, although unbounded periods are
considered during an intermediate step of the evaluation process. Also, by the definition of
performability (see above), we seek to determine (either analytically or numerically) the pro-
bability distribution function of the reward variable Y.

Prior work relating to this problem has dealt primarily with evaluations of expected
reward, i.e., the expected value of the reward variable Y. This background is nevertheless
relevant and two approaches are of particular interest. The first is based on the concept of
the ‘‘potential” of a semi-Markov process; see Cinlar [25] for an introductory discussion of
potentials. Gay [20] (see also Gay and Ketelsen [3]) has applied potentials of Markov
processes to modeling the performance of degradable systems. Most of this work deals with
steady-state solutions of systems having repairable components. The second approach consid-
ers transient solutions of the expected reward and is based on semi-Markov reward models
such as those discussed by Howard [24]. The formulation is in terms of a set of integrations
and variables which must be solved in order to determine the expected reward. Because of
the many inherent convolutions, the equations can be conveniently written in terms of
Laplace transforms. However, the equations are generally difficult to solve (and if done in
transform space, to invert), and so practical applications are limited. De Souza [7] has
applied Howard’s work to fault-tolerant computing systems via a unified reliability /cost
model; however, these methods presume that the system is in steady state. Though some of
the underlying characteristics (especially the nature of tramsition graphs) of these potential
and reward models are allowed to be more general than those considered in this paper, these
models are restricted to be semi-Markov and, more importantly, the evaluation results are



expected values rather than probability distribution functions.

Relatively little work has been done on obtaining transient solutions of the probability
distribution function (PDF) of the reward variable. Notably, Cherkesov [26] presents an
elegant solution for the probability of accumulating a minimum reward during a finite inter-
val when the underlying process is semi-Markov. The length of the interval can itself be ran-
dom. However, the solution is in terms of a system of equations of two-dimensional Laplace-
Carson transforms (see p. 39 of [27] for a description of this transform). Solving and inverting
these equations is intractable except in the simplest of cases. Instead, Cherkesov employs the
transforms to obtain expected values. This work is mainly of theoretical interest.

In the presentation that follows, we obtain a method for determining the PDF of the
reward variable, subject to certain conditions imposed on the base model and on the
corresponding reward model. Specifically, we assume that the base model is a finite-state
process and is ‘““acyclic”’ in the sense that states are not revisited by the process. However,
the process meed not be Markov or even semi-Markov. We assume further that the
corresponding reward model is a nonrecoverable process in the sense that a future state
(reward rate) of the model cannot be greater than the present state. These conditions reflect
properties that are typically exhibited by degradable, nonrepairable computing sytems. For
this model class, we are able to obtain the probability distribution function of the perfor-
mance (reward) variable and, hence, the performability of the corresponding system. More-
over, this is done for bounded utilization periods, an assumption which demands a relatively
complex solution.

The approach is based on the strategy used in [10], [14] to solve performability, once the
performance (reward) rates were obtained via a queueing model analysis. (There, in reward
terms, the reward rate of a given structure state was taken to be the normalized throughput
rate; performance was viewed as average reward, i.e., total reward divided by the duration of
utilization.) This earlier work, however, does not suggest specific techniques for implementing
the prescribed steps. The computational example presented in [10], [14] (namely a 3-state
process) is solved using graphical arguments to determine appropriate regions of integration.
Such an approach becomes more difficult when the number of states is four and becomes
intractable when the number of states is five or more. This paper describes a solution tech-
nique wherein regions of integration are determined in a tractable, algorithmic fashion. Sec-
tion II discusses the model; Section III presents the solution and describes a program we have
written for implementing the solution procedure. Finally, Section IV presents an example
which illustrates the use of this methodology.

II. THE MODEL
A. Reward Models

We consider reward models of the type discussed in [24], although the stochastic process
need not be semi-Markovian. We restrict our attention, however, to the case where reward is
determined solely by reward rates (referred to in [28]-[30] as “operational rates’’) associated
with states of the model. We assume further that these rates are constant, i.e., time-
invariant. More general reward structures (time-varying rates and ‘‘bonuses’ associated with
state transitions) might also be accomodated by our approach, but they are not considered in
the presentation that follows.

A state, in this context, typically represents a certain ‘‘operational status’ of the sys-
tem, including configurations wherein the system is not operating (system failure). In a given
state, the associated reward rate reflects the pace at which the system rewards its user. Such
rates can thus be identified with aspects of system performance such as productivity, respon-
siveness, and utilization, or, at a higher level, with broader measures such as economic bene-
fit. We discuss reward rates in greater detail below—what such rates can represent and how
to obtain them.

More formally, let X, be the random variable denoting the state of the system at time 7.



Accordingly, the base model of the system is the stochastic process
X = {X,|re[o,0)} . (1)

For reasons given later in the discussion, we restrict X to be finite-state, i.e.,
X,€Q = {gn,qN-1, - - - »qo}. Suppose further that each ¢, € @ has an associated reward
rate r, (a nonnegative real number). Then there is a natural function

r: QIR+ (2)

where r(g,) = r, is the rate associated with ¢,. r is referred to as a reward structure of X.
Let X,, 7 € [0,00), be a random variable [taking values in r(Q)] representing the reward rate
of S at time 7, that is

X, = r(X,). (3)

Then the stochastic process

)? = {le TE [0’00)} . (4)

is a reward model of the system. Such reward models are a special class of the type of
“‘operational models’ investigated by Wu [30]. (Also, compare with the ‘“‘capacity models’ of
Gay [20], Gay and Ketelsen [3].)

The performability models we consider consist of a reward model X along with a perfor-
mance (reward) variable Y representing the total reward accrued during utilization of the sys-
tem. More precisely, given a reward model X and a utilization period T = [0, ¢], we take Y
to be the random variable

t
Y = f)'(',dr ) (5)

Equivalently, in terms of the base model X and the reward structure r,
t

Y = fr(X,)dr .

0

B. An Ezample of a Reward Based Performability Model

Consider a computing system S consisting of N processors, each processor having a com-
putational capacity of & jobs/hour. In addition, there is an air conditioner which does not
affect the computational capacity of the system (though it may the affect the failure charac-
teristics of the processors). The base model X is a (2:(N+1))-state (not necessarily Markov)
stochastic process whose state-transition diagram appears in Fig. 1. In state (¢,j),
i € {0,1,...,N} denotes the number of operational processors and j is 1 if the air condi-
tioner is operational and O otherwise. Assuming system capacity is proportional to the
number of operational processors, the reward structure is the function r(i,j) = i-6. Accord-
ingly, the reward model X has N+1 states corresponding to the V + 1 different reward rates.
Relative to a specified utilization period T, the performance (reward) variable Y is the



number of jobs processed during T.

C. Determination of Reward Rates

An important consideration when applying the methodology described in this paper is
the interpretation and derivation of the reward rates. In this section, we delineate several
possible interpretations and quantifications of reward. This survey is by no means complete;
for a slightly more involved discussion, see [31].

1) Capacity. and Workload: One basic measure of a computing system’s reward rate is
the speed at which the system is able to perform computations. This is commonly referred to
as capacily. Work of Beaudry [2], Gay [20], Gay and Ketelsen [3], Castillo and Siewiorek [6],
Oda, Tohma, and Furuya [12], and Munarin [18] model capacity. A related concept is that of
workload, which is the demand for computation placed on the system by the environment.
Studies by Gay [20] and Gay and Ketelsen [3] examine workload models.

2) Queues and Networks of Queues: A detailed view of the system’s behavior often can
be obtained by studying queueing models of the system. Examples of such models abound in
the performance evaluation literature; see Kobayashi [32], Ferrari [33], Chandy and Sauer
[34], and Trivedi [35]. For instance, S could be a multiprocessor (k servers) and a buffer
(queue) for storing arriving tasks; S is then a G/G /i queueing system. If arrival and service
rates are exponential and the buffer length is L, then S is the M/M/k/L+k system considered
by Meyer [14].

The reward rate and total reward associated with a queueing system depends on what is
of concern to the analyst. One could associate reward with throughput rate, system (or ser-
vice) time of customers, server utilization, number of customers in the system, etc. In [14],
for instance, the reward was based on a ‘‘normalized’’ throughput rate.

8) Profit and Ezpense: An important measure of the reward derived from a system is
the profit (say, in terms of dollars) obtained from the system, or, in a negative context, the
expense of the system. Each system state has an associated rate of profit or expense. Such
values may be obtained, for instance, by economic analysis or by utility techniques, e.g.,
Raiffa [36]. Koren and Berg [8] and Huslende [17] have based analyses on economic factors.

4) Control Theoretic: When the system is a real-time control processor, the reward
rate associated with a given state could be specified as functions of such control theoretic con-
cepts as response time. For instance, Krishna and Shin [15] have examined such descriptions,
while Gai and Adams [19] have discussed tradeoffs between ‘‘optimal’’ and “robust’’ response
times.

D. Nonrecoverable Processes

Consider the ‘‘desired” behavior of a degradable computing system used over a bounded
period of time. Given a set of available resources, a well-designed degradable computing sys-
tem configures itself to mazimize the reward rate. Thus, when a component fails, the system
does not reconfigure itself in a manner that causes the reward rate to be greater than before
the failure. We will assume there is no repair (i.e., component replacement via an external
source), so an increase in the reward rate due to the acquisition of additional components can-
not occur. Transient faults that could lower the reward rate temporarily, thereby raising the
rate again when the fault is corrected, are not be considered. Under these conditions, the
reward rate of the system is non-increasing in time, which has the interpretation that the sys-
tem does not become a “better’’ system after a change in state (e.g., a component failure).
These assumptions are formalized by requiring that the reward model X be a nonrecoverable
process[30] relative to the usual ordering of real numbers. In other words, for all states



91,92 € Q and all times r,v € [0,00) such that 7 < v, we require that
Prob(X, = r(q;) and X, = r(g)] > 0 =r(g5) < r(qy) . (7)

Consider the process X of the multiprocessor/air conditioner example discussed above.
Clearly, by the transition diagram of Fig. 1 and the definition of the reward structure, the
reward rate of_the process cannot increase (with positive probability). Hence, the associated
reward model X is an example of a nonrecoverable process.

E. Acyclic Processes

An essential step of our model solution procedure (Section III) is to first evaluate condi-
tional performabilities, conditioned on the sequence of states entered by the process during
the unbounded period [0,00). For this reason, we restrict our attention to finite-state base
models. To insure a finite number of state sequences and hence conditions, we also require
that the base model be “acyclic” in the sense that states are not revisited by the process.
More precisely, let N, be the random variable denoting the total number of visits of the pro-
cess X to state ¢, € @ during the interval [0,00). X is an acyclic process if, for all ¢, € Q,
Prob[N, > 1] = 0.

When evaluating fault-tolerant systems where repair is not allowed, the acyclic condi-
tion is not restrictive since once the system leaves a state due to a fault, the system can never
return to that state. Often, however, one is interested in analyzing systems with transient
faults or temporary failures. Models of such systems are generally cyclic because if the sys-
tem recovers from the fault, the system returns to some previously entered state. Such
recoveries can occur an unbounded number of times during [0,t], resulting in an infinite
number of state sequences.

One approach for approximating cyclic base models is to ‘“‘unravel” the process into an
acyclic base model. This is done by simply choosing a finite set of state sequences to con-
sider. For example, the set chosen can be those sequences which have at least some threshold
probability of occurring during the utilization period [0,¢]. In other words, those sequences of
sufficiently low probability are ignored. Alternatively, the set could include all sequences less
than or equal to some specified length.

A second approach is to “lump” all the states in each cycle. Because each state in a
cycle must have the same reward rate (or else X would not be nonrecoverable), the reward
rate of each lumped state is the rate of each of the component states. The difficulty with this
approach is determining the equivalent stochastic behavior of the lumped model.



IOI. MODEL SOLUTION
A. A Partition of the Trajectory Space

As noted in [10], one approach to determining performability is to partition the trajec-
tory space and solve for each of the resulting classes of trajectories. During the unbounded
period [0,00), the base model process X will, with probability 1, pass through some finite
sequence of distinct states, say u = (u,,4,_;, . . . , 4), where state u, is the initial state and
state u, is an absorbing state. X is nonrecoverable (see above) so there is a sequence of
reward rates (r(u,),7(t4s-1), - - . ,7(to)), corresponding to u, such that

r(un) 2 r(uny) 2 -0 2 r(uo) (8)

Let U be a random variable denoting the sequence of states visited by the base model during
[0,00). Since the base model is acyclic, and since there are N < co base model states, there
are only a finite number of possible state sequences, i.e., sequences u such that
Prob|U = u]| > 0. Let Y be the performance (reward) variable defined in (5) and let Fy be
the PDF of Y. Further, if Fy|y is the conditional PDF of Y given U, then Fy can be
expressed as the following summation over a finite index set:

Fy(y) = ZF}'l U(y| u)Prob[U = u] . (9)
u
B. Notation
At this point, it is convenient to introduce a body of notation for dealing with the time
the process spends in various states during both T = [0,¢] and [0,00). Unless otherwise

noted, the remarks that follow assume U to be some arbitrary sequence
u = (u,, Uy, . .., up) such that Prob[U = u] > 0.

For each state sequence u = (u,,u,_j, . . ., o) there is a vector-valued random vari-
able V, = (V,,V,_y, . .., Vo) taking values in ([R*)", which describes the time the process
resides in each state in u. For 0 < i < n, V| is a random variable representing the time of
the base model process resides in state g, during the interval [0,00). State u, is an absorbing
state, and so vy is co. We will be interested in the PDF for V, conditioned on U = u, i.e,,

FvuIU(v" | u) = Prob[V, < v, | U = u]
(10)
= PTOb[Vn S, AViauS v A r AV < voIU = “]

If the conditional probability density function for V exists, it will be written fv“. We sup-
pose that fV.. exists and we find it convenient to expand fVu as follows:

fvu ]U(vu I “) = fV-IU(v"| u)fV._1| V.U (vn—ll vmu) e
(11)

fv0| V.V _y ,VpU(vol UnsUn_1, - -+ ;vlru)

For a given u, define Wi ¢ 1,6 3 random variable denoting the amount of time the pro-
cess is in state u, during the utilization period T. The basic relationship between Wiand v
]



can be expressed as

min(¢,V,),ifi = n (12)

n
max(min(¢t - Y, V,,V,),0), otherwise,
J=1+l

Note that if U = u and if w«_oandv>0 then WSIW‘

note that the value of Wy .oy always be expressed by one of the l‘ol’lowmg al'temat@ves“sp
V, t - Z V,, or 0.

1=+l

C. The Approach

We seek to determine the PDF Fy of the reward varible Y (Eq. 9). The algorithm del-
ineated in [10] will be employed:

Algorithm 1: (Determining the probability distribution function, Fy)
1)  Determine all state sequences u, i.e., the range of the random variabie U.
2)  For each of these u, determine Prob[U = u|.
3)  For each u such that Prob[U = u] > 0, determine F, | (y).
4)  Apply Eq. 9 to arrive at Fy.

For the present, we assume that steps 1) and 2) have been completed. Consider step 3), the
calculation of F

rlu:
Using the notation introduced in the previous section, the reward variable Y can be
directly expressed as a linear combination of the random variables Wr:_ IfU = u, then
n
Y = E r(u])W'; (13)

1=0

If the Wy yere independent random variables, we could obtain the PDF Fy by mathematical

convolution. However, as discussed in [10], [14] the W are statistically dependent and a

probabilistic characterization is generally difficult to obtam. Such complications are avoided
by formulating Y as a function v, of V, (if it is known that U = u). Although the basic
concept is simple to state, the details are somewhat complex.

Using the relationship between Wiand V. of Eq. 12, (see Eq. 6)
f . 12, .

r(u))t + E (r(ut) - r(u)))vk (14)
k=341
. it ), Vi<, uV,,Zt,forn>j
}/ = 7(vu) = k=) +1 kgj
r(ug)t LV, >¢.




See Fig. 2 and compare with Eq. 24 of [14].

Let B, be the set of accomplishment levels (reward outcomes) not greater than y, i.e.,
B, = {b> olb < y} and let C, = ~;'(B,) be the set of all base model trajectories which
traverse the state sequence u and provide reward no greater than y. Then

Fyjy(y| u) = Prob[V, €C,|U =u] = [ Iy u(velu) dv, . (15)
C

y

Since the probability density function f.

v IU( « ) is assumed to exist and be known, to formu-
late F_| = we must determine C,. ¢

Ylu

D. Formulation ony| U

In the next section, we show that, depending on the values of u and y, C, can be easily
partitioned, i.e., expressed as a union of disjoint regions. Such a partition provides the ability
to break up F, | into a sum of smaller, less complex integrations. In particular, if the length
of the sequence u is n+1, C, will be decomposed into n+2 disjoint regions

{c;+,cy,...,CcH. (16)
Let v, be a point in C; and let
Cyn = {v,,| there exist v, ;,v, 5, ..., vosuch that (v,,v,_;,...,v0) € C;} , (17)
and forn > j > 0, let
Cyi(VnVpy, oo, 04) = {vj I there exist v,_;,v, 5, ..., v,
(18)
such that (v,,v,_), . . ., v0) € C;}
In other words, Cy (v,,v,_y, . .., v,4,) is the set of all values v, that are “contained’’ in some
vy, € C;. For conciseness, we shall write Cy ; in place of Cj (v,,v,.;, ...,v,4,) when the
(vn,¥ac1, -« ., ¥,41) is implicit.

Consider v, (Eq. 14). The regions C, are not generally Cartesian, that is, C, is usually
not expressible as the cross-product of the Cy ;. Rather, a different relationship based on ‘‘&
resolvability” (see the next section) will be employed to define the C,.

By the definitions of the C; and Cj;, Eq. 15 can now be expressed as

n+1 n41
Friu(ylu) = Y Prob[V, €C;lU =u] = ¥ [ 1, |y(vulu)dv,
1=0 i=OCr u
’ (19)
n+1
= 2 f f f fvulu(vuIU)dvu
=00, Crana G0

The expansion of f IU(Vu | u) in Eq. 11 is especially appropriate in this representation.
Finally, combining E§s. 9, 11, and 19 with the characterization of the Cy,, developed below,
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we arrive at an integral solution for the PDF Fy.

D. i-resolvability

In this section, we describe a method of partitioning the set C, = «,7'(B,) into the C,
(Eq. 16) and characterizing C,, (Eqs. 17 and 18). The immediate difficulty with characteriz-
ing the C, arises from the nature of 7, (Eq. 14), viz., v, is a sum of a random number of ran-
dom variables V,,V, ,, ..., V;. We introduce the notion of ‘‘i-resolvability”” which allows
the decomposition of the single large problem of describing the sum of a varying number of
random variables into a set of smaller problems, each consisting of describing the sum of a
fixed number of random variables. The number of random variables to be considered will be
determined by i-resolvability, a notion which takes full advantage of both the monotonicity
of 7, and the finite utilization period. The concept can be loosely stated: ‘“For a given sub-
trajectory, based on the past and regardless of the future, what can we say about the entire
trajectory?”’

We are interested in determining the probability that the total accumulated reward
Ya(Vu) < y. Recall that the time the process resides in each state of the sequence u is given
by the random variable V, = (v,,v,_;, ...,v0). Suppose that the sojourn times for the
first n-i+1 of these values are known, ie., (V,,V,,,...,V) = (v,,v,,...,7).
Knowledge of these times conveys significant information regarding the set of possible sojourn
times (V,_;,V,_g, . . ., V,) that can be associated with the remaining states and still satisfy
7e(Ve) < y. As an informal introduction, imagine that someone chooses at random some
vector v,, of sequence times and starts dealing, in order and one at a time, the values v,, v,_;
, .., vo. We look at the values as they are dealt. If sfter the value v, has been dealt—but
not before~we can determine with certainty that v,(v,) < y, then we shall say that v, is
such that y(v,) < y is i-resolvable based on vy, or, more succinctly, v, is i-resolvable (y ~nd
7. are implicit). If at any time we can determine with certainty that ~,(v,) > y, then
v, ¢ C,; we are not interested in that value v, (since it does not contribute to Prob|Y < y])
and so we reject it.

We now formalize this property. Let 7,iR'— Rand v, = (v,,0,_1, . ..,9,) € IR be
such that v, < y. In addition, let 7, (vs, -y, . . . ,v,,0,0, ..., @) be the (n—i+1)-variable
function derived from ~,(e,e,...,®) by setting V, = v,, V,_,, = v, ,..., V, = v,
When y is an upper bound! of the function v,(v,,v,_1, ...,v,,8,...,0) but not of
Ya(Vnr U1y - - -, Vg1,0,@, . .., @), we shall say that v, is i-resolvable. |[As a special case,
when y bounds 7,(e,e, ... ,e), then v, is (n+1)resolvable.| In other words, when a deter-
mination as to whether 7,(v,) < y can not be made based solely on the values
(vn, 1, - - -, ¥,47), but such a determination can be made with the additional knowledge of
the value of v,, we shall say that v, is i-resolvable. [When v, is (n+1)-resolvable, then the
determination can be made with no knowledge of v,.]

One can define i-resolvability recursively, as follows:
For a given vy = (v,,v,_4, . . ., Vo)

i) v, is (n+1)-resolvable if and only if 7,(v,) < y regardless of the value v,.

ii) wv, is i-resolvable if v, is not j-resolvable for all ;> i but
Yal(Vn V51, - . ., v,0,0, ... ,0) < yregardless of the values of (v,_;,v, o, . . ., vp).

To motivate our interest in i-resolvability, consider the following example. Suppose U
is such that (r(uj),7(u,),7(uo)) = (2,1,0) and that y = 5and ¢t = 4. If V, = 1, then

1A constant y is a spper bound of the function f:D—R if forall z € D, f(z) <y
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for 7,(Vy) < y to be true, we must have W <t-V,=4-1= 3(see Eq. 12), and

2
Y )Wy = 1w =)
‘=0 ' CH12=Wiiocsi2=5=y.

Now W‘1 < 3 irrespective of V), so V, can therefore take on any value in the interval [0,00)
and still satisfy 7,(V,) < y. In other words, since V, = 1 then, without further examina-
tion of V; or V,, we know 7,(V,) < y. Thus, every (1,V,,V,) is 2-resolvable.

E. Solution

The partition {C,} of C, that we desire is the one induced by i-resolvability. Specifi-
cally, let a trajectory v, € C, be in C; if v, is i-resolvable. One can easily see that every
vy € C, is i-resolvable for exactly one i. The recursive definition of ‘‘i-resolvability’’ yields
the following algorithm for determining the C:

Algorithm 2: (Determining the C,)

For a given B,

i) Determine C;%, i.e., all v, € 7,7'(B,) such that v, ‘€ v,7}(B,) regardless of
the value of v,. These are the v, which are (n+1)-resolvable. (C;*! will
either be empty or all C, depending on the value of y.)

ii) Foreach i = n,n-1,...,0, determine all v, € 7,7}(B,) such that v, ¢ c;H
UC/uUuC U U CHandv, €7,7)(B,) regardless of the values of
(vi-1, %2, - . . ,v0). These are the v, which are i-resolvable.

To show that a given vector v, is i-resolvable, the definition of i-resolvability may be
used directly. Unfortunately, space does not allow the full derivation of the characterization
of the C, (see [31]). An important intermediate result is the following (compare with Eq. 14
and see Eq. 12 for the relation between V, and W‘s .

v, i3 i-resolvable (n > i > 0) if and only if

v 2 rlua)t+ B (rly) - rlu))wy (21)
and
, < r(u')t + J=z§+l(r(u]) - r(u’))wr’ ifn>1>0 (22)
r(u,)t ifi=n

As mentioned above, the i 5pe gtatistically dependent and thus inconvenient to use. Hence,

Egs. 21 and 22 must be rewritten in terms of the v, (see Eq. 12). We use the properties of i-
resolvability and the monotonicity of Y to obtain the main result of this section:
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Characterization of Cy ;:

i) Ifr(v) = r(u,1), n 2> 1> 0, then no v, is i-resolvable. C, = ¢ and for each j such
that n > k > 0:

Gy = ¢ (23)

i) Let y € [r(u,)t,00). Then every v, is n+l-resolvable. C;*' = C,, C, = ¢ for
n > 1> 0, and for each j such that n > j > 0 and for each k such that n > k > O:

¢t = [0,) (24)

Ck,=¢. (25)

ui) Let y € [r(u_y)t,r(uw)t), n > 1> 0. Then for every i such that | > i > 0 and
r(u,) # r{u,_,), there ezist vectors v, such that v, is i-resolvable.

o) If i = n, then
i) O = [O’Tyu,,j)'rf(ur%l,.)__t,)] "

and for each j such thatn > j 2> 0

i) CJ, = [0,00), n>j > 0 and (27)

i) CJo = o0 . (28)

b) Ifi % n, then

N o y - r(un_)t y - ru)t (29)
D) G = 2(0 r(u,) — r(uny) * r(ug) - r(u,y)
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and for each j such thatn > j > 1 ,

y-r(ya)t— 3 (r(w) - r(yo))w
i) ), = (

— k=);+1
>0 r(uj) - r(u)—l) ’
(30)
y-r(wa)t - 3 (r(ue) - r(ua))u
k=141
r(u) - r(u,,)
and forj = ¢
y-rlua)t— 3 (r(w) - r(uo))ve (31)
iii) C, = |o, F=h
’ r(u,) - r("x-l)
and for each j such that © > j > 0
) Cy, = [0,00),7> ;7> 0and
(32)

1 —
y,0 = 00 .

¢) For each k such thatn + 1 > k > I (or k = 0) and for each § such thatn > j > 0

Cry=9. (33)
where the notation ( a,5] means
>0
[0,8] ifa<O 34
( d,b] = ( )
20 (a,8] ifa>0

If r(s) = r(y,_;), then in Eqs. 29 and 30, terms with the denominator r(u,) - r(u,_,) [or
r(us) — r(u,-1)| are replaced by 0, and Eqs. 26 and 31 are replaced by ¢ [see case i)]. Also, in
Eq. 30, if r(u)) - r(u,_;) for n > j > i, then r(u,) = r(y,_;) and Eq. 30 is replaced by ¢ [see
case i)].

An integral solution for the PDF Fy (and hence the system’s performability) is thus
obtained by employing Eqs. 9, 11, 19, and 24-33.
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F. METAPHOR

The remaining difficulty is calculating the integrations. For certain classes of probabil-
ity densities f,, lv.v v .y it may be possible to perform symbolically the integrations
[ 2’ n-l AT 2 Y

to obtain a true closed-form solution. For example, a closed-form solution for the performa-
bility of a queueing system is derived in [14]. The symbolic integrations may be performed
either (laboriously) by hand or by computer programs that manipulate symbolic quantities,
e.g., MAXIMA [37] and REDUCE2 [38]. A recursive version of Egs. 19 and 24-33 is derived in
[31] and may help in reducing the amount of work necessary to perform symbolically the
required integrations.

However, when performability is evaluated for complex systems with large state spaces,
one is primarily interested in numerical results as opposed to closed-form solutions. For this
purpose, we have written a numerical program based on Eqgs. 9, 11, 19, and 24-33. This pro-
gram is now part of a larger performability evaluation package, METAPHOR (see [22], [31]
for descriptions of METAPHOR). To obtain a system’s performability, METAPHOR is given
information about each trajectory sequence u, including the sequence itself, the conditional
densities fy |, T and the utilization period T = [0,t]. METAPHOR then

computes the regions of integrations C,, and using Gaussian quadrature, computes FY' U

IV. MULTIPROCESSOR/AIR CONDITIONER EXAMPLE

To illustrate the application of the solution procedure for F'y and to exhibit its ability to
deal with non-semi-Markov base models, we consider the multiprocessor/air conditioner exam-
ple discussed in Section II. B. (See Fig. 1). Recall that the performance (reward) variable Y is
the number of jobs processed during some utilization period T = [0,t]. State (i,7) reflects
the number of processors operational and whether the air conditioner is operational; each pro-
cessor is identical and has computation rate of & jobs/hour. The reward structure is
r(i,j) = i-6. For simplicity, the example constrains the system to a single air conditioner.
(A more complete example would include multiple air conditioners.)

Suppose that, relative to a specified threshold y (y > 0), the system user is interested in
processing more than y jobs during the bounded utilization period. For instance, the system
might be a computer in a business or university during a working day, or it might be a pro-
cessor handling financial transactions overnight. Note that especially in the latter category of
applications, availability over the entire utilization period is not required since most of the
computation could be done early in the period, or, alternatively, spread out over the entire
period. In performability terms, we are considering (for a given value of y) the set of accom-
plishment levels BY = {b |5 > y}. The performability p(BY), i.e., the probability that the
number of jobs processed (reward) Y is greater than y, can then be obtained from Fy since
p(BY) = Prob[Y > y| = 1 - Fy(y).

The stochastic properties of the processors are affected by the failure time of the air
conditioner in such a way that the base model is not semi-Markov. At the beginning of the
utilization period, the air conditioner and all of the processors are functioning and the tem-

perature of the room containing the equipment is 20°C. Since the amount of heat which the
air conditioner must dissipate places stress on the compressor, the air conditioner’s failure
rate is influenced by the number of processors it must cool. Assume the air conditioner fails
with an exponential failure rate \4c(N) = N-0.05 failures/hour, where N is the number of
processors in the room. If the air conditioner fails, the ambient temperature in the room R
begins to increase to a higher steady-state temperature with an exponential rise time; the
number of processors in the room affects the speed at which the temperature rises. More pre-
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cisely,

R(A7) = 55° + 2N — (55° + 2N - 20° Jexp( - NpA 1), (35)

where (55°+2N)°C is the new steady-state temperature, A 7 is the time (in hours) since the
air conditioner failed, and p = 10 degrees/hour/processor is a constant reflecting the rate of
temperature increase. If a processor fails, it does not shut off and so continues contributing
heat to the room. The failure behavior of the processors is influenced by the ambient tem-
perature; each processor fails at an exponential rate which varies linearly with room tempera-
ture (over the range 20°C to 55°C) from 0.001 failures/hour to 0.1 failure/hour. If the room

temperature is R°C,
0.1-0.001

Ap(R) = 0.001 + [ p—

](R—20°) . (36)

There are N+1 state sequences u such that Prob[lU = u| > 0 (see Fig. 1):
{u} = {((N,1),(N,0),(N-1,0), .. .,(0,0)),

((N,1),(N-1,1),(N-1,0); . .. ,(0,0)), . . ., (37)
((N,1),(N-1,1),(N-2,1), . . .,(0,1),(0,0))}.

Let u = ((N,1),(N-1,1),...,(k,1),(k,0), . . .,(0,0)). The probability of the seqﬁence u is

Mac ud JAp
~— X [l =———— ifk<N

EXp + X\ = IAp + A (38)

Prob|U = u| = P AC  j=i417AP AC
_Me o w
NXP + )‘AC .

Suppose u, = (j,1); the conditional probability density function for the time the process

spends in state u, is

fV.' VarVay 'V-+1yU(v' I Uni¥n-ts - - ’v"H’u)
(39)
= (])\p(20°) + )\Ac)exp(—(j)\p(20°) + XAC)”:) .
Suppose u, = (7,0) and that the first state in u representing a failed air conditioner is Uy,

k > 1; the conditional probability density function for the time the process spends in state u,
is

Tl vvy o @l omtes o vgu) = 2 D(R(A D)exp(-i0p(B(A 7))v,)  (10)
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where A7 = v, + v,_; + ' + v, and K is a normalization constant equal to
o]
K = [iXp(R(A 7 Jexp(-i)p(R(A 7 ))v)dv , (41)
0
(where A T = w4+ + - + ;41 + v). That the base model is not semi-Markov can

be seen from the time-varying failure rates associated with states (i,0) [Eq. 40]; these rates
are functions of the process’ history and cannet be inferred from the present state, present
time, and time of entry to the state.

It is clear how Eqs. 38, 39, and 40 can be applied to Eqs. 9 and 11. To see how Egs. 19
and 24-33 are employed to calculate Fy, consider N = 3,
u = ((3,1),(3,0),(2,0),(1,0),(0,0)) and y = 1500 € [r(u,)t,r(u5)t). From Eq. 19, we see
that Fy is the sum of six multiple integrals, three of which are 0 since they are integrated
over empty C, (these are C;, C, and C;). The other 3 C; correspond to the sets of base
model trajectories which are 3, 2, and 1-resolvable. Consider Cyz. From Eq. 29:

1500 — 1000) 2
2, — [o(1500-1000) | _ 1, ;). (42)
Crua [ ’~ (300 - 100) [0,2.5);
from Eq. 30:
o ( 1500 - 2000 - (300 - 200)v, 1500 — 1000 — (300 — 100)v,
v 300 - 200 ’ 300 - 100
- (43)
o 500 - 2000, |
1 200 ’
from Eq. 31:
o2 '0 1500 - 1000 — (300 — 100)v, — (300 — 100)v,
S 200 - 100
(44)
'0 500 - 200(v, + vs) | |
A 100 ’
and from Eq. 32:
€2, = |0,00) and
(45)

2
Cyo

I
8

Once regions C; and C; are similarly obtained, Eq. 19 can then be evaluated. This process
must be repeated for each state sequence u and then Eq. 9 can be applied to obtain the per-
formability p(BY).
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Fig. 3 shows a plot of p(BY) = 1- Fy(y) for N = 1, 2, 3, and 4 processors, t = 10
hours and § = 100 jobs/hour. Note that these evaluations provide a considerable amount of
information regarding the system’s ability to perform (provide reward) in the presence of
faults. It is easy to show, for example, that the performability p(BY) is 0 when y is greater
than or equal to N-&t (e.g., for N = 2, p(B**°°) = 0; see Fig. 3). Hence, to obtain a

nonzero performability, the number of processors must be greater than 6_yt . For instance, to

have a nonzero probability of accomplishing more than 1500 jobs, one must have at least 2
processors. Generally, for the values of N shown on the plot, there is a significant gain in
p(BY) for values of y above 1000 when additional processors are included in the system. For
values of y below 1000, there is relatively little gain from having more than a single proces-
sor. Indeed, if the specified minimum reward is between about 500 and 1000 jobs, a single
processor provides a greater probability of performing within BY than do two processors.

In non-critical applications, a system designer may choose to settle for a lower perfor-
mability to avoid the cost of additional processors. Information such as that provided by Fig.
3 can be quite useful in investigating such tradeoffs. For example, suppose the threshold is
y = 1500. The difference between the performability with N = 3 and with N = 4 is
about 0.03, while the difference between N = 2 and NV = 3 is about 0.12. The probability
of accomplishing more than 1500 jobs with 3 processors is about 0.96. If this probability is
adequate for the application, and the additional .03 probability is not worth the cost of an
extra processor, the designer may well choose a 3—processor system.

V. CONCLUSION

In summary, the techniques described in this paper provide a new means of evaluating
performability for a broad class of systems and for a general class of performance variables.
The evaluation procedure is admittedly complex and requires a programmed implementation
for practical applications. This is true, however, for most evaluation methods, particulary
those applicable to degradable fault-tolerant systems. Moreover, although not the subject of
this paper, the feasibility of such implementations has been demonstrated (see Section IILF.).
Future research will seek to accommodate more general reward structures (time-varying rates
and ‘‘bonuses’’ associated with state transitions) and more generally defined performance vari-
ables, e.g., variables defined with respect to random utilization periods.
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