Osmotic Forces Are Not Critical for Ca\(^{2+}\)-Induced Secretion From Permeabilized Human Neutrophils

SALLY IO STOEHR AND JAMES E. SMOLEN*

Departments of Pediatric Hematology-Oncology (S.I.S., J.E.S.), and Pathology (J.E.S.), The University of Michigan Medical Center, Ann Arbor, Michigan 48109

In order to examine the role of osmotic forces in degranulation, the effects of solutes and osmolality on granule secretion were explored using both FMLP-stimulated, intact neutrophils and Ca\(^{2+}\)-stimulated, permeabilized cells. We employed a HEPES-based buffer system which was supplemented with: a) permeant (KCl or NaCl) or impermeant (Na-isethionate or choline-Cl) ions, or b) permeant (urea) or impermeant (sucrose) uncharged solutes. Intact and permeabilized cells had significantly different solute requirements for degranulation.

FMLP-stimulated release from intact cells was supported by NaCl or Na-isethionate > KCl > choline-Cl or sucrose > urea. In contrast, the rank order of Ca\(^{2+}\)-stimulated release from permeabilized cells was choline-Cl > Na-isethionate, KCl, or NaCl > sucrose > urea. Hypo-osmotic conditions caused increased levels of background granule release from both intact and permeabilized neutrophils. However, hypo-osmolality inhibited both FMLP-stimulated degranulation from intact cells and Ca\(^{2+}\)-induced release from permeabilized neutrophils. While hyperosmotic conditions inhibited stimulated release from intact cells, this inhibition was much less pronounced in permeabilized cells when the granules were directly exposed to these solutions. In fact, hyperosmotic sucrose greatly enhanced Ca\(^{2+}\)-induced secretion. Although isolated specific and azurophil granules showed some lytic tendencies in hypo-osmotic buffers, the overall stability of the isolated granules did not indicate that swelling alone could effect degranulation. These results suggest that degranulation in permeabilized cells is neither due to nor driven by simple osmotic forces (under resting or stimulated conditions) and emphasize differences obtained by bathing both the granules and plasma membrane (as opposed to membranes alone) in various solutes.

Activation of intact neutrophils by stimuli such as the chemotactic peptide N-formyl-l-methionyl-l-leucyl-phenylalanine (FMLP) results in changes in membrane potential, fluxes of ions across the membrane, mobilization of intracellular Ca\(^{2+}\), fusion of granule membranes with the plasma membrane, and discharge of granule contents into the extracellular space or the phagosome. While these events have been described in detail with respect to timing and contributing biochemical factors, the actual events of fusion and discharge of granule constituents are relatively unknown.

Degranulation from intact neutrophils is highly dependent on the ionic content of the extracellular milieu; replacement of Na\(^+\) with choline\(^+\) or K\(^+\) greatly reduces lysosomal enzyme release from neutrophils exposed to concanavalin A or immune complexes (Korchak and Weissmann, 1980). Preincubation of neutrophils with anion channel blockers prior to stimulation markedly inhibits or eliminates exocytosis (Korchak et al., 1982).

Active or passive fluxes of ions across plasma and granule membranes can be accompanied by the passive flux of water. In view of this, changes in osmolality have been proposed to play a role in promoting vesicle-plasmalemma membrane fusion and exocytosis. This hypothesis is supported by observations that fusion of artificially constructed black lipid bilayers requires osmotic gradients across the bilayers (Fisher and Parker, 1984), and that phospholipid vesicles fuse with bilayer membranes upon osmotic swelling (Cohen et al., 1980). Furthermore, degranulation by sea urchin eggs (Zimmerberg et al., 1985), neutrophils (Yassin et al., 1985), and chromaffin cells (Hampton and Holz, 1983) can be inhibited by hypertonicity. In accord with this postulated osmotic fragility, isolated chromaffin granules placed in hypo-osmotic solutions (200 mOs) release more than 70% of their contents (Hampton and Holz, 1983), whereas granules within intact cells exposed to similar hypo-osmotic conditions are much more stable, releasing only about 25% of their contents into the intracellular milieu.

Permeabilization of the plasma membranes of cells using a variety of means has allowed direct manipulation of the intracellular space (Knight and Baker, Received July 6, 1987; accepted December 9, 1987.

*To whom reprint requests/correspondence should be addressed.
1982; Dunn and Holz, 1983; Wilson and Kirshner, 1983; Smolen et al., 1986; Howell and Gomperts, 1987). While intact cells possess two barriers to solutes and water which might have an effect on secretory events, only the granule membranes could remain osmotically active in the permeabilized cell. Thus, the permeabilized cell system permits the direct testing of the effects of different solutes and changes in osmolality on the pertinent organelles, the granules.

Variable results have been obtained on the effects of hyperosmolality on cultured chromaffin cells permeabilized with digitonin. Holz and Senter (1987) observed little inhibition of Ca\(^{2+}\)-induced secretion from permeabilized chromaffin cells preincubated in hyperosmotic sucrose buffers up to 1000 mosM, while K-glutamate or Na-isethionate were more potent inhibitors of the Ca\(^{2+}\)-induced response. Ladona et al. (1987) observed 50% inhibition of Ca\(^{2+}\)-induced secretion at 600 mosM sucrose from cultured cells permeabilized with either digitonin or a-toxin. These results are more closely parallel data obtained from chromaffin cells permeabilized with intense electric fields, where hypertonic sucrose buffers in the 700 mosM range caused 50% inhibition of Ca\(^{2+}\)-induced secretion (Knight and Baker, 1982).

Using a number of solutes which were permeable or impermeable to the membranes of neutrophils, we wished to assess possible differences in solute requirements for degranulation from both intact and permeabilized neutrophils. We also wished to conduct comprehensive studies over a wide range of solute concentrations and compositions to confirm the effects of hyperosmolality on intact cells and to see if permeabilized cells, which have only the granule membranes intact, would be similarly affected. Comparisons of degranulation in both cell systems could provide valuable information on the requirements for solute flux and osmotic stress for granule discharge.

We report here that intact and permeabilized cells had significantly different solute requirements for secretion. It was expected that if osmotic stress were involved in exocytosis, hypo-osmolality would increase stimulated degranulation from both intact and permeabilized cells. In contrast, we found that hypo-osmotic conditions inhibited stimulated degranulation in both systems. Furthermore, the osmotic stress hypothesis would predict that hyposmotic conditions should inhibit degranulation. While this prediction held for intact cells, hyposmotic solutions did not greatly reduce Ca\(^{2+}\)-induced secretion from permeabilized neutrophils. Finally, while isolated specific and azurophil granules were somewhat unstable when incubated in hypo-osmolar buffers, granule lysis was not extensive, indicating that swelling, by itself, was insufficient to explain the degranulation step. Thus, our data do not support the hypothesis that osmotic stress may contribute to the processes of fusion and degranulation.

MATERIALS AND METHODS

Reagents

Digitonin (Lot 62F-0135), choline-Cl, isethionic acid (sodium salt), cytochalasin b, and FMLP were purchased from Sigma Chemical Co., St. Louis, MO. Utrapure sucrose was obtained from International Technol-

gies, New Haven, CT. Urea was obtained from Fisher Scientific, Fair Lawn, NJ, and Percoll was purchased from Pharmacia, Piscataway, NJ. All other chemicals were reagent grade.

Cells

For intact and permeabilized cell studies, neutrophils were isolated from heparinized blood of healthy, adult donors by standard techniques of Hypaque-Ficoll gradients (Boyum, 1968) followed by dextran sedimentation and hypotonic lysis of remaining red cells (Zurier et al., 1973). Concentrated stocks of KCl, NaCl, Na-isethionate, choline-Cl, urea, and sucrose were prepared in the presence of 30 mM K-HEPES and 1 mM EGTA (pH 7.0). These stocks were diluted to the desired molarities with a 30 mM K-HEPES, 1 mM EGTA solution (pH 7.0).

Osmolalities of each buffer were obtained by direct measurement on an advanced digimatic osmometer (Advanced Instruments, Inc., Model 3D-II, Needham Heights, MA) which measures osmolality on the basis of freezing point depression. Neutrophils bathed in an iso-osmotic phosphate buffer containing 138 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 1.5 mM KH2PO4, 0.6 mM CaCl2, and 1.0 mM MgCl2, pH 7.4 (PiCM), served as controls for intact cells suspended in other buffers. In general, 5 × 10^6 cells/ml were preincubated for 5 minutes with the desired solutes in K\(^{-}\)-HEPES buffer with 5 μg/ml cytochalasin b, 1.6 mM CaCl2, and 1 mM sodium azide. Cytochalasin b was included to produce maximal secretion from this system. Azide was added to prevent destruction of vitamin B-12 binding protein by secreted myeloperoxidase. FMLP (10⁻⁷ M) was added, and incubation was continued for an additional 5 min. The cell-free media were assayed for β-glucuronidase (Brittinger et al., 1968), lysozyme (Worthington Enzyme Manual, 1972), vitamin B-12 binding protein (Smith and Peters, 1982), and lactate dehydrogenase (Wacker et al., 1956).

For studies of permeabilized cells, neutrophils (25 × 10⁶/ml) were suspended in an iso-osmolar buffer containing 100 mM KCl, 20 mM NaCl, 30 mM HEPES, and 1 mM EGTA, pH 7.0 (Buffer K) and pre-warmed to 37°C for 10 min. Digitonin (10 μg/ml) was then added, and the cells were incubated an additional 25 min (Smolen et al., 1986). Aliquots of the permeabilized cells were transferred to tubes containing the pre-warmed buffers of choice, with or without 80 μM free Ca\(^{2+}\), the stimulus for degranulation. The cell suspensions were incubated for 7 min at 37°C, centrifuged, and the supernatants harvested for analyses. Ca\(^{2+}\)-induced enzyme release from cells in the HEPES-based buffer, brought to iso-osmolarity with KCl, served as the 100% control.

Cell fractionation

Neutrophils isolated for cell fractionation were prepared from normal human blood, with acid citrate dextrose as the anti-coagulant, by techniques described by Curnutte and Babior (1974). The neutrophils were disrupted and the specific and azurophil granules were purified using discontinuous Percoll gradients (Borregaard et al., 1983). Granules were resuspended in Buffer K at 100–125 × 10⁶ cell equivalents/ml. Aliquots of the granule suspensions (20–25 × 10⁶ cell
proportions of granule constituent release compared to bilization (Smolen et al., 1986). Thus, normalization of peroxidase (Bretz and Baggiolini, 1974), and lysozyme were assayed for vitamin B-12 binding protein, myeloid content. The number of variables examined in typical variation daily in its effectiveness and subsequent Ca\(^{2+}\) concentration of several solutes, both permeant and impermeant, induced release correlated with the degree of permeation. We selected NaCl (permeant ions) to mimic the extracellular milieu of the cell, supported nearly optimal FMLP-stimulated release of all granule markers (Panel A), lysozyme (Panel B), and B-glucuronidase (Panel C). Neutrophils suspended in PiCM, supplemented with azide and the data as percentages of stimulated controls was necessary and allowed us to compile results from several experiments.

Figure 1 shows background and FMLP-stimulated release of vitamin B-12 binding protein (Panel A), lysozyme (B), and B-glucuronidase (C) from intact neutrophils incubated in the various iso-osmolar buffers. All data are given as percentages of FMLP-stimulated release from control cells incubated in PiCM. Cytochalasin b was employed so that azurophil granule secretion could be obtained. In most cases, background release of all three granule markers (open bars) was comparable to that observed in control cells (dashed line). However, iso-osmolar choline-Cl, KCl, and sucrose buffers supported higher levels of background vitamin B-12 binding protein release (from specific granules) than the control (Panel A).

NaCl, the buffer which most closely mimics the extracellular milieu of the cell, supported nearly optimal FMLP-stimulated release of all granule markers (Panels A–C). When the chloride ion was replaced with isethionate, an optimal response was still observed. KCl supported only half-maximal stimulated degranulation from both specific (vitamin B-12 binding protein and lysozyme) and azurophil (lysozyme and B-glucuronidase) granules. Choline-Cl was a poor substitute for Na\(^+\); sucrose was comparable to choline-Cl. Urea failed to support any FMLP-stimulated degranulation (Panels A–C). Thus, optimal degranulation from intact neutrophils required an ionic-based buffer and, specifically, extracellular Na\(^+\). The permeable cation K\(^+\) was only somewhat effective as a substitute for Na\(^+\). When cations were absent (sucrose and urea) or cation
influx was prevented (choline-Cl), degranulation was severely inhibited. The reduction of anionic fluxes alone (Na-isethionate) did not inhibit the ability of the neutrophils to secrete.

Figure 2 shows background and Ca\(^{2+}\)-induced granule release from permeabilized neutrophils in various iso-osmolar buffers. All data are given as percentages of Ca\(^{2+}\)-stimulated release from permeabilized neutrophils exposed to the HEPES-based buffer, brought to iso-osmolarity with KCl, and supplemented with 1.6 mM CaCl\(_2\) (to assure that excess Ca\(^{2+}\) remained after partial chelation with EGTA) to stimulate degranulation.

Urea was the only solute which caused a significant increase in background granule marker release. Ca\(^{2+}\)-induced vitamin B-12 binding protein and lysozyme release was substantial in all ionic buffers and in sucrose (Panels A and B, first 5 bars). In general, stimulated release was supported according to the following rank order: choline-Cl > Na-isethionate, KCl, or NaCl > sucrose. This hierarchy of support for granule discharge in these buffers was, however, different and much less pronounced than that observed for intact neutrophils stimulated with FMLP. Urea failed to support significant Ca\(^{2+}\)-induced degranulation over background (Panels A–C). Ca\(^{2+}\)-induced B-glucuronidase release from azurophil granules was modest under the conditions employed; this was expected since azurophil granule release from permeabilized neutrophils generally requires higher Ca\(^{2+}\) concentrations than employed here (Smolen et al., 1986). However, similar hierarchical patterns were observed. Therefore, ionic buffers of any kind supported degranulation from permeabilized neutrophils, though permeability of the ions was unimportant.

Osmolality

We extended our investigations of stimulated degranulation from the two cell systems to investigate whether changes in osmolality (along with the already observed differences in solute requirements) might affect degranulation differently. We adjusted our buffer systems to observe degranulation from intact and permeabilized neutrophils at concentrations ranging from 90 to 680 mO\(\text{s}\). We wished to verify the inhibitory effects of hyperosmolality on intact cells, and to systematically investigate osmotic effects on permeabilized cells.

Figures 3, 4, and 5 show background and net FMLP-stimulated release of granule markers from intact neutrophils bathed in buffers of various osmolar strengths. Once again, all data are expressed as a percentage of the FMLP-stimulated control (iso-osmolar PiCM). Background release (panels A and B, all Figs.) represents granule constituent release as a percentage of this control for each condition. Net release (panels C and D, all Figs.) is the difference between the FMLP-stimulated sample (as a proportion of the control) and the illustrated backgrounds. Hypo-osmotic conditions caused extensive background release of vitamin B-12 binding protein, and to a lesser extent, lysozyme, from intact cells (Figs. 3 and 4, Panels A and B), an observation consistent with the theory of osmotically-induced granule swelling.

However, net FMLP-stimulated granule release was inhibited under both hypo-osmotic and hyperosmotic conditions. These results support the notion that changes in osmolality differentially affect the release of various granule constituents. Since previous studies have shown that degranulation is necessary for the release of anionic granule contents and that FMLP-stimulated degranulation can be inhibited by sodium channel blockers, these findings further support the idea that anionic solutions are necessary for FMLP-stimulated degranulation.
OSMOTIC FORCES AND PERMEABILIZED NEUTROPHILS

VITAMIN B-12 BINDING PROTEIN

INTACT NEUTROPHILS

BACKGROUND RELEASE

NET RELEASE (+FMLP)

Fig. 3. Effects of osmolality of various solutes on background and FMLP-stimulated vitamin B-12 binding protein release from intact neutrophils. Intact neutrophils (5 x 10⁶/ml) were preincubated for 5 min at 37°C in buffers of various solutes and osmolalities, containing 30 mM K⁺-HEPES, 1 mM EGTA (pH 7.0 with KOH), 1.6 mM CaCl₂, 1 mM azide, and 5 µg/ml cytochalasin b. Stimulation of the cells with FMLP (10⁻⁷ M) was for an additional 5 min. Supernatants of the pelleted samples were assayed for vitamin B-12 binding protein, a specific granule marker. Neutrophils suspended in PICM, supplemented with azide and cytochalasin b, and stimulated with FMLP served as the 100% control. Background vitamin B-12 binding protein release from ionic buffers (as a percentage of this control) is shown in Panel A, and background release from non-ionic buffers in Panel B. Net FMLP-stimulated release (% control release-background release) is shown for ionic buffers in Panel C and for non-ionic buffers in Panel D. The results are means of at least three experiments.

conditions when the intact cells were bathed in ionic buffers (Panel C of Figs. 3–5). Cells exposed to sucrose reacted similarly, with the exception of vitamin B-12 binding protein (Panel D of Figs. 3–5). Failure of sucrose to support stimulated release of this constituent is not easily explained. While it was recognized that background vitamin B-12 release under highly hypo-osmotic conditions was significant (up to 33% of the total vitamin B-12 binding protein present), most of this marker remained in the cells and FMLP-stimulation could have subsequently triggered additional release. Urea was the only solute which blocked all FMLP-stimulated degranulation; this was not likely to be due to the effects of urea on the FMLP receptor (Yassin et al., 1985).

Figures 6, 7, and 8 show background and net Ca²⁺-induced release of granule markers from permeabilized neutrophils (expressed as percentages of the defined control samples) in solutions of various osmotic strengths. Like intact cells, hypo-osmotic, ionic buffers caused background release of granule markers (Panel A, Figs. 6–8).

Net Ca²⁺-induced release from permeabilized cells, like net FMLP-stimulated release from intact cells, was inhibited under hypo-osmotic conditions, an observation contrary to the simple osmotic hypothesis. Most significantly, only weak inhibition of Ca²⁺-induced lysozyme degranulation was observed under hyperosmotic conditions (Fig. 7, Panels C and D). Surprisingly, hyperosmotic sucrose buffers greatly enhanced Ca²⁺-induced granule discharge (Panel D, Figs. 6–8), an effect which has no parallel with intact cells. Urea appeared to be lytic when it was directly bathing the granules, reflected in the high background release of granule constituents; Ca²⁺-induced granule release in urea was constant or even lower than the backgrounds (Panel D, Figs. 6–8). These situations are likely to be due to the ability of Ca²⁺ to stabilize membranes against lysis induced by hypotonicity or urea.

We also examined the effects of osmolarity on specific and azurophil granules isolated from neutrophils by means of cell fractionation and purification on discontinuous Percoll gradients. Figure 9 shows the release of constituents from granules incubated in hypo-osmolar, iso-osmolar, and hyperosmolar KCl, sucrose, or urea. Granules bathed in Na-isethionate, choline-Cl, or NaCl reacted similarly to those in KCl, and these data are not shown. Ca²⁺⁺ (60 µM) was
Fig. 4. Effects of osmolality of various solutes on background and FMLP-stimulated lysozyme release from intact neutrophils. Intact neutrophils (5 x 10⁶/ml) were treated as outlined in the legend to Figure 3. Supernatants of the pelleted samples were assayed for lysozyme, a constituent of both specific and azurophil granules.

Fig. 5. Effects of osmolality of various solutes on background and FMLP-stimulated B-glucuronidase release from intact neutrophils. Intact neutrophils (5 x 10⁶/ml) were treated as outlined in the legend to Figure 3. Supernatants of the pelleted samples were assayed for B-glucuronidase, an enzyme found exclusively in azurophil granules.
Fig. 6. Effects of osmolality of various solutes on background and Ca2+-induced vitamin B-12 binding protein release from permeabilized neutrophils. Neutrophils (25 x 106ml in Buffer K) were permeabilized with 10 μg/ml digitonin for 25 min at 37°C. Aliquots of the cell suspensions (5 x 106 in 0.2 ml) were added to 0.8 ml of pre-warmed buffers of various solutes and osmolal strengths, containing 30 mM K\textsuperscript+-HEPES, 1 mM EGTA, (pH 7.0 with KOH), with or without 60 μM free Ca2+. Incubation of the cell suspensions was continued for an additional 7 min. Supernatants of the pelleted samples were assayed for vitamin B-12 binding protein. Neutrophils suspended in the HEPES-based buffer, brought to isotonicity with KCl and supplemented with 60 μM free Ca2+ served as the 100% control. Background vitamin B-12 binding protein release from ionic buffers (as a percentage of this control) is shown in Panel A, and background release from non-ionic buffers in Panel B. Net Ca2+-stimulated release (% control release-background release) is shown for ionic buffers in Panel C and for non-ionic buffers in Panel D. The results are means of at least three experiments.

DISCUSSION

A comparison of the data on stimulated degranulation from intact and permeabilized neutrophils in the various iso-osmolar buffers indicated that intact and permeabilized cells had significantly different solute requirements for secretion. Na+ appeared to be an essential constituent for FMLP-stimulated granule release from intact cells, in agreement with previous reports to this effect (Showell et al., 1977; Korchak et al., 1982), while all the ionic buffers supported Ca2+-induced degranulation from permeabilized neutrophils rather equally. Replacement of Na+ with either the permeant cation K+ or the impermeant cation choline+ resulted in a decreased response in the intact cell system, but the elimination of Cl- was not inhibitory. The observed optimal secretory response of intact neutrophils incubated in Na-isethionate buffer brings into question the specificity of previously investigated
anion channel blockers, SITS and DIDS (Korchak et al., 1982). The uncharged, impermeant solute sucrose supported only minimal degranulation from intact or permeabilized neutrophils, and urea was consistently inhibitory in both cell systems. These latter results suggest that substantial concentrations of ionic solutes are required for secretion.

If an osmotic component of granule discharge were important in secretion, then we would have expected that hypo-osmolality would enhance degranulation from permeabilized cells and, perhaps, intact cells as well; instead, we observed the opposite response. While hypo-osmolality caused increased levels of background granule release from both intact and permeabilized cells, hypo-osmolarity actually inhibited stimulated degranulation.

Hyperosmolar buffers did inhibit FMLP-stimulated degranulation from intact neutrophils, as would be anticipated if swelling of the granules were important for effecting secretion. Similar observations have been made on intact chromaffin cells exposed to hyperosmotic sucrose, stachyose, or potassium glutamate (Hampton and Holz, 1983), platelets bathed in hyperosmotic NaCl or sucrose (Pollard et al., 1977), and sea urchin eggs in Na-sulfate, sucrose, or stachyose (Zimmerberg and Whitaker, 1985). However, inhibition was much less pronounced in permeabilized neutrophils when hyperosmolar solutions directly bathed the secretory organelles, an observation which correlates well with the chromaffin cell studies of Holz and Senter (1986). For charged solutes, it is conceivable that enhanced ionic strength could help maintain secretory responsiveness. Interestingly, hyperosmotic sucrose actually enhanced Ca2+-induced degranulation from permeabilized neutrophils. Under iso-osmotic conditions, Holz and Senter (1986) observed a reduced requirement for Ca2+ if potassium glutamate was replaced with sucrose. Our own observed enhancement of Ca2+-induced release at hyperosmotic concentrations of sucrose is currently being investigated.

Finally, our investigations of isolated granules in different osmolar buffers indicated that isolated granules were more sensitive to hypo-osmotic stress than granules within permeabilized cells. Isolated chromaffin granules exposed to hypo-osmotic conditions were comparatively less stable than granules within intact cells (Hampton and Holz, 1983). While swelling of the granules did, in fact, cause discharge of granule constituents, differences in lytic tendencies of different solutes of the same osmolar concentrations may be indicators of sensitivity to the solutes themselves rather than simple osmotic forces; indeed, specific granule discharge was actually increased under hyperosmotic conditions. Purification of the granules and elimination of the plasma membrane portion of the cells and their contents eliminated the increase in granule discharge which could be achieved in permeabilized cells by the addition of Ca2+. Thus, Ca2+ continues to be a candidate for playing a role in the important event of fusion of the membranes which

Fig. 7. Effects of osmolality of various solutes on background and Ca2+-induced lysozyme release from permeabilized neutrophils.

Neutrophils were treated as outlined in the legend to Figure 6. Supernatants of the pelleted samples were assayed for lysozyme.
Fig. 8. Effects of osmolality of various solutes on background and Ca\(^{2+}\)-induced β-glucuronidase release from permeabilized neutrophils. Neutrophils were treated as outlined in the legend to Figure 6. Supernatants of the pelleted samples were assayed for β-glucuronidase.

Fig. 9. Effects of hypo- and hyperosmolarity and different solutes on granule marker release from isolated specific and azurophil granules of human neutrophils. Granules were purified from neutrophils as described in "Materials and Methods." Granules (25 × 10⁶ cell eq/0.2 ml in Buffer K) were added to 0.8 ml of pre-warmed buffers of various solutes and osmolar strengths, with or without 60 μM free Ca\(^{2+}\). Incubation of the granules was continued for an additional 10 min. Supernatants of the pelleted samples were assayed for vitamin B-12 binding protein (Panel A), lysozyme (Panels B and D), and myeloperoxidase (Panel C). Total granule content (100%) was determined from Triton X-100-treated, sonicated samples. The addition of Ca\(^{2+}\) resulted in both decreases (shown as a black portion within the shaded bar) and increases (shown as an open bar above the shaded bar) in granule discharge. Significant change (p < .05) as indicated by *.
precedes degranulation. Swelling may promote later stages of the secretory response. Fusion of mast cell granules with the plasma membrane precedes swelling of the granules, and it has been proposed that in these cells, swelling may accompany movement of substances through an exocytotic pore and that osmotic stress could affect the size of this pore (Zimmerberg et al., 1987).

In conclusion, while we verified and expanded upon earlier evidence which had been used to support the osmotic swelling theory of degranulation, the additional data provided here indicate that osmotic swelling is neither necessary nor supportive of degranulation in either intact or permeabilized neutrophils. We are further investigating ionic requirements for degranulation in the permeabilized cell system, again taking advantage of the fact that in this system, the pertinent organelles are directly exposed to the solutes in question.

ACKNOWLEDGMENT

This work was supported by NIH grant AM32471 (J.E.S.).

LITERATURE CITED

