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1 Introduction

! of infinite horizon subgame perfect Nash equilibria as limits of

A sequential characterization
Finite Horizons subgame perfect Nash equilibria is not possible due to “end of horizon™ effects
(see. for instance, Fudenberg and Levine[1983] and [1986]). This can be illustrated. with the
celebrated game “prisoners dilemma™ where "always defect” is the unique equilibrium outcome
of any finite horizon repetition of the game. However, when the game is repeated ad infinitum
then. “alwavs cooperate” is the equilibrium outcome of a certain Perfect Nash equilibrium for a
certain range of discount rates. This situation is due to the fact that for a fixed finite horizon,
“defection” in the last time period dominates "cooperation”. hence "always cooperate” can not
be an equilibrium outcome for such fixed horizon.

The first work attempted to overcome this phenomenon was carried out by Fudenberg and
Levine[1983]. They build on”the work by Radner[1980], who pointed out that if players are
boundedly rational, or equivalently. if ‘one relaxes the definition of equilibria up'to an epsilon.
making epsilon smaller as the horizon diverged. then the set of epsilon-equilibria of finite hori-
zons converged to the set of finite horizon equilibria. Fudenberg and Levine's work focused
on the space of strategies, in which. they define a suitable metric topology, that facilitates the
result.

Pearce[1990]. explains the relationship of Radner’s and Fudenberg and Levine’s work to the
self-generation approach used by Abren. Pearce and Stacchetti [1986] and [1990] for repeated
games. They exploit the structure of repeated games with imperfect monitoring to obtain a

'see Klein et al. [1984] for the Kuratowsky definition of set convergence.



dynamic programming approach to infinitely repeated games. That allows to obtain a set val-
ued "value-iteration like™ algorithm to compute the set of normalized equilibrium pavoffs. This
theory can be easily extended to stationary discounted dynamic games.

A second line of work, is provided in Harris [1985a] and [1985b]. In those papers. he studies
the various topologies, other than the one introduced by Fudenberg and Levine. that may be
used to obtain the set convergence result. Borgers[1989] took a different approach, by focusing
on the space of feasible histories (i.e infinite sequences of outcomes). Assuming compactness
of such space, he shows that the limit of a converging sequence of finite horizon equilibrium
histories 1s an equilibrium history of the infinite horizon game.

Our objective in this paper, is to provide a new method to overcome "end of horizon™ effects
in the context of non-stationary infinite horizon dynamic games. Our inspiration comes from
the works by Schochetman and Smith [1989] and [1992] which leads to the computational pro-
cedures described in [1991] and [1992]. The idea here is to restrict the deviation possibilities for
players by forcing and ending target state. Interestingly enough, Ostrom, Gardner and Walker
[1995] report the existence of a similar mechanism in the common pool resources exploitation.
In that context, players agree to restrict the catch size or net size so that implicitly a reasonable
level of stock is maintained.

On the other hand, recent work has pointed out the difficulties in extending to the dynamic
game setting the sustainability of first best outcome as equilibrium play( see Dutta[1995] ).
Only under very restrictive assumptions ( see Tolwinski[1982] and Gaitsgory and Nitzan[1994]
) efficient outcomes have been shown to be sustained by Markovian Perfect Equilibrium. In
addition to this. Engwerda[1996] has pointed out the various difficulties in approximating infi-
nite horizon open-loop Nash equilibrium in Linear Quadratic games.

Motivated by all these features, we obtain a sequential characterization of Markov Perfect Infi-
~ nite horizon equilibrium histories under some hypotheses. A tie-breaking rule is then proposed,
as in Schochetman and Smith [1991] and [1992], to ensure convergence of a particular selection
from the set of finite horizon relaxed solutions to a Markov Perfect Infinite horizon equilibrium
history.

Although. the game structure assumed is more restrictive than that assumed by Fudenberg
and Levine[1983] and Borgers[1989], the implementation of the computational procedure is sim-
pler and 1t is extended to the undiscounted case, which constitutes a very significant advance.

This 1s the structure of the chapter. We introduce the class of nonstationary dynamic games
that we study. then the new solution concept is presented and the results. Finally, an example
for which the theory holds is presented. Large scale tests and computational implementation



are currently being undertaken.

2 Nonstationary Dynamic Games.

For ease of the exposition, we will present the case for two players, bearing in mind that the
extension to the Multi-player case is straightforward.
A two-person , discrete time, finite horizon dynamic game with state variable consists of :

e Anindex set N'=1{0,1,2,3....T} denoting the stages of the game, where T"is the maxi-
mum number of stages to be played, also known as "planning” horizon.

e Anindex set 7 = {1,2} called the players set.
o A collection of sets {U} : k € N1 € I}, with U} C RP for some p . We refer to this set
as the "set of available controls at period k for player 2"

e A collection of sets {Sy : k € A}, S, C R? for some ¢, called the "set of attainable states
T

at period k”. The cartesian product [] Sk contains the set of T-long feasible sequences
k=0
of states.

o A collection of functions {fy : & € A’} of the form f, : Sy x U} x U} — Siy1, which
models state dvnamics :

S = ik, uy, ui) for every k € N

where sy 1s given a priori.
o Let H(T) be defined as :
T
H Ul x U})

In words. 1t 1s the set of T-long feasible sequences of controls that players exert. For every,
T
hr € H(T) .one can recursively construct an element of [] Sj with the state dynamics

k=0
presented above.

o A collection of functions {ri : k € A"/ € I} of the form 7 : Sp x U} x U} — R, called

the “A—stage reward function for plaver "



e Discounted rewards : The total discounted reward for player z € I is:

T
Pr(hr(s0)) = Z )\f 7Sk, ui,ui)

k=0
where A; € [0,1) is player’s 7 discount factor.

o A closed loop perfect information structure, i.e at each time period players observe the
"state” variable.

2.1 Strategies and Markov Perfect Equilibria (MPE).

We now introduce the concept of Nash Equilibria in strategies that employ available information
for dvnamic games with fixed "planning™ horizon T' .

T

o A Closed-Loop Strategy for plaver i € T . say 7, , is a T—tuple of continuous maps

70 Spoy — Ul L so that 77 is of the form :

wl=(mb, w7k

1]

We denote [T'(T') the set of all such strategies for player ¢ € Z. We refer to the 2-tuple
7l = (zl 71y € IIYT) « *(T) as a Closed Loop Strategy combination and denote [1(T')
the set of all strategyv combinations.

Such strategy combinations induce T'—long feasible sequence of controls as follows :

I. In the first period plavers play (7}(s0). 72(s0)) € U} x U2 so that at the end of that period
the state attained is given by : '

st = folso. 77(])(~50>~ 7"3(30))

2. Then they observe s; € S; and plav (7!(~)).7i(s1)) € U] X U? so that the state to be
attained is :

<o = [olsiom(s1) 75 (s1))

The process then unveils recursively.



We will denote by h?T(so) € H(T) the control sequence recursively obtained as above
(sometimes called the "history” induced by strategv combination 77 ) .
Note that from any state s, € Sy with k # 0 and k € A" ,the strategy combination completely
specifies the play that follows after state s; recursively :

I. In period k players play (r1(s), 72(s)) € U} x U2 so that at the end of that period the
state attained is given by :

Sk+1 = fk('skv n-llc('sk)v Wz(Sk))

2. Then they observe s; € Sy and play (7}, (sx), 77,1 (sk)) € Up,y x UZ,y so that the state
to be attained is :
, 1 2
Skp2 = fra1(Seg1s Wk+1_(5k)a ”k+1(3k))

The process then unveils recursively.

. T
We will denote by h}T(sk) € [I(U} x U}) the control sequence recursively obtained as above
k

(sometimes called the "historv” induced by strategy combination 77 after state s;) .

Remark 1 We can conclude that a strateqy combination can be alternatively described if for
crery attainable state s, € Sy the play to follow is specified.

We are now ready to introduce the solution concepts with which we shall be dealing with.

Definition 1 We say that =7 is a« Nash Equilibrium in Closed-Loop strategies iff for
coery player i € T who would like to deviate from 77 by playing v € 1T would find no
imcentive in doing so, t.e:

l ( xr‘ﬁzx) 5 i s
Py(hy (s0)) < ‘PT(hTT’(So))
T

where (51, 7T.) € TI(T) stands for the strateqy combination in which all players j € T and j # i
follow 7r]7 and player i € T follows 77 .

The above solution concept 1s known not to be time consistent in the sense that the play
prescribed after some state other than the initial state, may not constitute itself an equilib-
rium for the game that starts at such state. Hence, play off the equilibrium history is not
“eredible ", that s, implicit "threats™ of such off equilibrium play will not be taken seriously
by opponents.To rule out such "non-credible threats™ for deviators, a refinement of the previ-
ous solution concept is to require that the plav to follow after any other state s € S; with
0 < k < T must prescribe a Nash equilibrinm in the sense above defined for the game that
starts at sg. most commonly known as a subgame( see Fudenberg and Tirole[1993] ).



Definition 2 We say that =7 is « Markov Perfect Equilibrium (MPE) in Closed-Loop
strategies iff for every player i € T who would like to deviate from ©7 by playing 41 € 1IY(T)
from every s € Sy with 0 < k < T ,would find no incentive in doing so. i.e:

‘ l ( tT’WZt) l ™
PT(h; (Sk)) < P:r(hTT(Sk))

where (3] 71,) € II(T) stands for the strategy combination in which all players j € T and j # i
follow 7TJT and player i € T follows v§

We denote II*(T') the set of all “Markov Perfect Nash equilibrium” strategies.

. (#T AT
Remark 2 [n the above definition we have slightly abused notation, by writing P}(h(T - )(sk))
77T y T . . . T «
since the play that follows after sy . that is h,fr - )(Sk) is only defined in T{(U} x U?) . However,
k
by the additive and separable reward structure assumed, the sense of the inequalitiea in the above

T
definition s to be understood by appending “play™ that reaches state s to hT“ ')(sk.) It s
worth pointing out that this is not correct in a more general setting. for instance, when there is
no additive and separable reward structure assumed.

2.2 Infinite Horizon Dynamic Games.

We now extend the above definitions and concepts to the case when "= {0, 1.2, ..}, i.e there
is an finite number of stages to play.
A Closed-Loop Strategy for plaver i € [ . say 7. is of the form (m§, 7y, ..., T, Ty, o0,
\\heu 7.0 Siop — UL We denote 11" the set of all such strategies for plaver 1.
We refer to the 2- ‘ruple 7 = (m.m) as a Closed Loop Strategy mmbznaz‘wn and denote
[l the set of all closed loop strategyv combinations.

As above explained, it should be clear that such combinations induce an infinite sequence

X ¢ .

of controls of the form (7%(sg).7'(s1)....) & T1(1) x UF) = H . We will denote by h™(s)
k=0 .

such sequence. Similarly. from any other state s, € Si. the play that follows according to 7 is

denoted by h7(sy) .

Moreover. the total aggregated reward received })\ plaver » under strategy combination 7
is defined by introducing the collections of maps p! Il — II(T) which are the T—Horizon
truncation of infinite horizon strategv combinations .:

])[.(/1'—('*(») = lim inf [”(h” ”(g()))

T—x

6



where p wstands for the T'—period truncation of 7 .
All the above definitions carry over in a straigthforward manner.

2.3 Topologies on the set II .

Since our interest is to study convergence of finite horizon equilibrium strategies to infinite
horizon equilibrium strategies, it is very important to carefully define relevant topologies on
[T, and consequently the different notions of convergence they induce.In this section we closely
follow Harris[1985b] .

We will adopt the convention that any finite horizon strategy combination is trivially extended
through any feasible choice of continuation sequence of strategies, so that its extension is an
element of II.

We first concentrate on a topology for H . Given h = (ug, uy, ug, ..., ) and h' = (wy, u}. uj. ... )
we define the metric D : H x H — R™ hyv:

e
DU ) = sup[ ™ t(ztu,ut), 1)
t

)

where d; : (U} x UF) x (U} x U}) — R is the product metric on U}! x UZ. This metric induces
the product topology on H (see Munkres[1975]. p. 123 ).

Definition 3 W is the topology with basis consisting of the sets :
{mell|D(h". h)<e}

where h € H . i.e some infinite horizon history. The basis is then obtained as we vary . h
varies. over H

In words. the notion of convergence related to the topology W is simply the fact that for

any given subgame ( or state s, ) . 7/ — 5 with respect to W if and only if the sequence of

histories induced by 77, namelyv {h}l (~¢)}r . converges to hY(s) in the product topology.

Definition 4 L s the topology with basis consisting of the sets :
(r =1 ' = pTo)

with 4 € 1. obtained as v varies over 11 and T varies over all periods.



In words, 77 — 4 with respect to £ if and only if for all subgames simultaneously the
sequence of histories induced by 77" converge in the discrete topology (they fullv agree) to the
histories induced by 5. L is essentially a uniform version of W | for convergence in L requires
that for all ¢ there exists a T'() such that for all T > T(t) we have that p'z’ = p'~ | that is,
the strategy combinations from the first period up to period t as prescribed by 77 and ~ agree.
Clearly, for practical purposes it may be easier to prove convergence with respect to W | since
convergence need only be verified for representative subgames. On the contrary , £ imposes
more restrictive conditions on an approximating sequence, so it may be more helpful in proving
uniqueness.

We now proceed to present the metric on II that was used by Fudenberg and Levine[1983]
and that for most applications will induce topology £ on II .
To capture the notion of closeness most relevant to Markovian Perfect Equilibrium we expect
two strategies to be close if for every ¢ and from every feasible state s; (subgame) the histories
induced by these strategies are close and the histories resulting when any one plaver deviates
from them are also close. The metric that generates such topology is defined as follows, for
r.yell:

p(m,v) = sup {D(h”(st), K (s¢)); sup [D(h* ™ (sy), hé'”“(st)]}
t.st €5 INHIE

Fudenberg and Levine [1933] observed that the topology induced by metric p coincides with £
when the action sets for all plavers in all periods are finite .

3  Constrained Markov Perfect Equilibria.

- In this section, we introduce a new methodologyv to obtain sequential characterization of infinite
-horizon perfect equilibria.

3.1 Preliminaries.

We denote I1*, I3, and II*(7") : the set of Infinite Horizon MPE strategy combinations, the set
of strict Infinite Horizon MPE strategv combinations and the set of T'—period horizon MPE
strategy combinations, respectively.

Definition 5 Let sp € St be some feasible state at time period T'. we denote by [T, s7), the
set of closed-loop strategy combination such that for every s, € Sp, 0 < k < T. and the state
st 15 reachable from sy, the play to follow must reach sp. In other words, the history prescribed

oo



. T . S . .
d.e h} (sg) reaches state st, at time period T, whenever state st is reachable from sp € 5. .

0<k<T.

Note that the play prescribed by any =7 € II(T, sr) from some state s, € Si from which
st 1s not reachable, is completely irrelevant to the definition.
Let us now briefly discuss the motivations for the solution concept rela\atlon that we \\11[
introduce shortly.
The main difficulty for a sequential characterization of infinite horizon equilibria as limits of
finite horizon equilibria is due to "end of horizon” effects. In words, for a fixed finite horizon.
the final state attained for finite horizon equilibrium will generally be different from the state
attained by the truncation of the infinite horizon equilibrium . Myopic behavior close to the
fixed finite horizon is the explanation for this.We will try to overcome this effect by forcing
equilibrium strategies to attain a certain "target” state. However, this artificially imposed
constraint introduces "strategic” alterations to the original game. Intuitively, some player may
find it attractive to deviate in the early stages if he knows in advance that players will have to
coordinate at the final stages in order to attain the target state. This is clearly a new artificial
feature that as we will see pose difficulties to prove that any Infinite Horizon MPE is the limit
of Finite Horizon Constrained Approximate MPE.

Definition 6 A strategy combination =¥ € II(T, s7) is called a “Constrained MPE to state

st iff for every deviation T € TI(T) such that (vF,7L.) € (T, s7) from every s, € Sy with
0 <k <T. such that state sy is reachable from sp we have :

Prhy " (s¢)) < PR(RE (s1))
We denote [17(T, s7) the set of all “Constrained MPE to state s7”
We now introduce the last a'dditiorml notation needed for the analysis.
o Let:

| I(T,s

STEST

The set of all constrained MPE equilibrium strategies to all attainable states for horizon

T.

9



4 A First Example : Sequential Duopoly.

In this section we briefly illustrate all the definitions above introduced for the case of a duopoly
competition in prices, as in Maskin and Tirole [1988].

Players move sequentially, so that in odd numbered periods k , firm 1 chooses its price which
remains unchanged until period k + 2 .That is, p;,; = p; if k is odd. Similarly, firm 2 chooses
prices only in even numbered periods, p;,, = pi if k is even. Hence, at time period & | firm’s i
instantaneous reward ri(.) is a function of the "state”, i.e the price that firm’s j set on period
k —1, say pi , and the "action” | i.e the price that firm’s ¢ will establish p, . Price sets are
discrete and bounded, goods are perfect substitutes, that is, firms share the market equally
whenever they charge the same price. Firms have the same unit cost ¢. Let Dy(.) denote the
market demand function at time period k. The total reward at time period £ is given by :

ri(p) = (p = ¢)Di(p)
Then :
re(pi) 3 i <
| 1 i (p? . p . y
ri(piepi) = UL if b= pf
0 if pi > pl
Strategies are " Markovian™ in that thev depend on the current "state”, i.e last period rival’s
action. Hence. the set of all histories is the same as the set of all feasible sequences of states.

Counsider the infinite history i = {(p}.pi )}« then firm i total discounted payoff is :

X

Pl = SN vk 82)

k=0

Eendl S

Now, let us assume that pJ is a feasible price decision for firm 1 at odd time period T. Then.
[[(T, p}) stands for the set of all markovian strateey combinations for horizon T' in which plaver
| is constrained to play p} at time period T .Similarly, II*(T, p}) is the set of T-long horizon
“constrained” MPE strategy combinations to “state™ ph . Notice that under the assumptions
by a backwards induction argument one can show that (T, ph) # 0 .

5 A Second Example: Linear Quadratic Games.

Each plaver chooses controls at time period b uj € UL C R where 1 € I, ¢ some positive
integer. The state variable s, € Sy € R with p some positive integer, follows linear dynamics

10



S = ASk_l + Z B.l-uﬁg
i€l
where A is a given p x p matrix , and B; ¢« € T are p x ¢ given matrices. The imtial value of
the state vector s is given. ‘
Players pavoffs are of the form :

ri(sk, u}c) = 81 Qrsk + u) Pruy

where (Qx and P are p x p and ¢ x ¢ positive definite matrices respectively. Basar and Olsder
[1995] give a wide array of applications of this model and sufficient conditions for existence of
constrained open-loop Nash Equilibria.

6 Approximating Nonstationary MPE.

6.1 Assumptions.

Assumption 1: (Non-Emptyness) \*(T') # 0 for every T .
Assumption 2 :(Continuity) Reward functions are continuous and uniformly bounded,
that 1s
VheN. T sp € Spouy € Uy T};(Sk, uk) <M< oo

Note that P4 — P uniformly. so that P(-) is continuous.

Assumption 3: Reachability:
Forany s € Si . and any infinite feasible sequence of states s = (s, 81, 82, ...) with s}, # 55 there
exist some finite time period T > & and sequence of control profiles {us}kqsp so that state
st the sequence is reached in T =t + A(s).s) > { periods.

6.2 The Approximation Scheme.

We now present the main results in this section. Lemma 1( Harris[1985b] ) ensures that in the
family of dynamic games considered to prove that a certain strategy combination is an MPE
for the Infinite Horizon game we only need to look at finite deviations, that is to say, deviations
that take place for a finite number of periods. This result simplifies the task of proving that a
certain candidate 1s in fact an MPE. On the other hand. Lemma 2 ensures that a limit point of
the constrained MPE set constitutes a feasible strategy for the infinite horizon game. In words,
the reachabidity assumption ensures that the limit point strategy is well defined.

11



6.2.1 Preliminaries.

Lemma 1 Let # € Il and let us assume that no single period deviation from any subgame
against 7 is profitable, then = € I1*, i.e it is a Markov Perfect Equilibrium.

Proof. ( Harris[1985b] )Let v = (4. AL A .)€ TTF be some general deviation for
Y Toy 11 T 7T+1 ! o

plaver i from 7 from the initial state s, .Let us construct a collection of deviations denoted by

v for player i that will approximate 7; as follows.

k _ i a1 1
V= (70’ 71 ..,’)k,ﬂ'k+1,7rk+2...)

By hvpothesis : _ .
PR (s0)) < PR (50))

Let us denote by s, the state attained by following deviation 'yf from 7 with 0 < k£ < T .Then
by hypothesis :
Sk

PUROT 70 (54)) < PHRT(s1))

Concatenating these inequalities we obtain :
PR =) < P (s0)

Then by construction :
AT - -
Ji ""')(.SU) — /1(”“”“)(50) as T — oo

and continuity of discounted reward functional :
P ()) < PN (s0))

The same argument can be argued if the deviation “starts” at an arbitrary intermediate feasible
state .

|

The idea behind the above presented proof is simple. If single period deviations are un-
profitable then finite sequences of deviations unravel. Since any infinite sequence of deviations
gives rise to a history that is the limit of histories derived from finite sequences of deviations.
Noue of these deviations are unprofitable and the limit is also not profitable by continuity.
The next lemma ensures that a limit point from our constrained MPE set 1s a well defined
strategv for the Infinite Horizon game.

12



Lemma 2 lim sup \*(T') C Il .

T—oo

Proof. Let 7 € lim sup \*(T') . By definition, there is a infinite feasible sequence of states

T—c
{ST:TEN}

and constrained MPE strategyv combinations {77 : T € N’} with 7T € TI*(T,s7) , such that
the it has a converging subsequence {77* : k € K C N} with respect to the topology W whose
limit is 7.

We will focus our attention on the following infinite sequence of states :

S :(""STk’SITkH = ka('STk‘ 7‘FTA-+1(ST:¢))*3/T;;+2 = ka+1('3/Tk+lv7er+1(SlTk+l)7 e STygrs v

In words, we have appropiately filled the gaps on the sequence {s7, }rex.

In order to prove that = € Il. we need to verify that from an arbitrary intermediate feasible
state s,,, the play prescribed by 7 1s well defined.
By reachability from state s, there exist a feasible finite sequence of actions the “reaches™ the
infinite sequence of states s above constructed at some period n . Then let :

b =min{k € K : Ty > n}
Thus every 7% such that & > &= prescribes play that reaches state sz, which we denote by
=Tk
/’T‘\_ ('5711)
By definition of convergence i W :
-1y -
/IT}\ ('*m) - h' (Sm)

So we conclude that # € [1 . 1

”The limit point of constrained MPE is an MPE for the Infinite Horizon Game”.

Theorem 3 lim sup (1) C 11" with respeet to the topology W .

T—~



Proof.
Let us first show that : | |
PR (s1)) < PHRT(s1))
for any playver ¢ € Z, who would deviate by playing +; € II*, which constitutes a single period

deviation from 7 from the arbitrary feasible state s,, . We recall that this is sufficient in view
of Lemma 1

Then by convergence in W and lemma 2 :

(WTkJer)
th’ T (8p) — h(”"w“)(sm) as k — oo

where (7?", ’/Tf}‘f) 1s simply the strategv combination formed of the Ti-period truncation of 7; as

a deviation from 77 .

.By hypothesis :
T, T

o O, '7-“ ¢ w7 |
Tk(h‘T}\- ('Sm>) S PTk(thk(Sm))

Finally \by continuity of the discounted reward functional after taking limits as k — oo :
PR =) (5,,)) < PR (50))

We note that Lemma 2 and the above theorem are easily proven when considering the
topologv L in the set of Infinite Horizon strategies.

Corollary 4 Lemma 2 and Theorem I hold true with respect to the stronger topology L .

” Any MPE is the limit of Constrained MPE” .

T . ‘ . T :
Let pI'# be the T—truncation of 7 .Let s be the state attained by h% "(s,). in general :

plr ¢ (T, s7)

The reason being, that from some state s, € S, with 0 < k < T the play prescribed by pT 7, i.e
A 8 play p yp

kY 7 (si) need not attain state st at time period T .We now define a projection operation which,

when applied to any strategy combination 77, will yield the "closest” constrained strategy

combination to 7.

14



Definition 7 Let 77 € [I(T) be some strategy combination that attains state st at time period
T .The projection pp(x7) = 77 of 77 is defined as follows :

The play prescribed by #7 from s¢ is exactly the one prescribed by 77 . That is :

T

BE (s0) = h3 (s0)

o For all states s, € S, with 0 < k£ < T such that hr;‘rT(sk) reaches state s at time period
T, we again set th’T(sk) to be exactly h}T(Sk) :

o For all states s, € Sy with 0 < k < T such that 7f(s;) leads to state s;;; (through, the
dynamics sp11 = fi(sk, 7L (sx)) ) from where state st is reachable, we set

T (sk) = mp (8)

o [or any other state s, € S, with 0 < £ < T not in any of the above cases, and such that
state s7 1s reachable from s, we set lzf‘fT(.s;;) to be any sequence of controls required
to attain state st.

Notice that by construction #7 € TI(T.s7). Intuitively, this is the constrained strategy
combination to state sy whose play from every feasible state s, t < T "resembles” the most

the play prescribed by 77. However, as we shall now see, the great degree of freedom in choosing
ending play that satisfies the ending target state requirement renders difficult the full sequential
characterization.
We now prove the converse statement.
Theorem 5 [f Il is compact with respect to W then

[T;, C him inf \*(T)

T—x

Proof. Let 77 be the T—truncation of = € I3, and sp the state attained by following this
strategy.Let us consider the sequence {#7 : 7€ A"} where 77 = pgp(x7) .
By construction we have :

7= lim #7
T—x

Reasoning by contradiction, let us now assume that :

T 1 (T.sq) for all T



T

By definition, this implies the existence of profitable deviations. i.e for each T" there is 5, with

i € T such that (y],#7;) € (T, s7) and :

T :.T)

i 00T, i(p7T
Pr(hy " ™ (s0)) > Pr(h7 (s0))
But by compactness of the space Il with respect to the topology W, the collection :

(I #T): TcN ieI)

has a converging subsequence with limit. say (y;, 7_;) € II. By continuity of discounted reward
functional after taking limits, we obtain :

PR =0 (s0)) = PR (s0)

In other words, = ¢ II7,, hence a contradiction. B

A comment on this result is mandatory: we have said that the artificially imposed constraint
of reaching a target state, introduced “strategic™ alterations to the original game. Intuitively.
some plaver may find it attractive to deviate in the early stages if he knows in advance that
plavers will have to coordinate at the final stages in order to attain the target state. Thus it is
critical to choose when constructing the projection map pr(.) the right ending play. However,
as the planning horizon diverges to infinity this alteration becomes negligible. Nonetheless,
only “strict” Infinite Horizon Markov Perfect Equilibria are immune to this effect.

We believe that this problem can be solved by looking at the specifics of each application so
to reduce the artificiality involved in constructing the projection map pr(.). This is a matter
of further research.

Theorem 6 If all Infinite Horizon Markov Perfect Equilibria are ”strict” and II is compact
in W then : »
[I_im V() =117

Proof. By the statement in the hypothesis and theorems 1 and 2 :

lm sup \Y(T) Z 11" = 11, C lim _inf \™(T)

T—x T—x



7 Existence of Markov Perfect Equilibria (Average Re-
ward).

Perhaps the main contribution of the approach introduced is that it enables to infer existence
in the undiscounted case, provided the set of constrained MPE for finite planning horizon is
not empty. We say that it constitutes a significant advance in that none of the sequential
characterizations available and reviewed, can be applied in this context.

We focus our attention for the case when players do not discount rewards, i.e \; = 1 for
v € Z. For the infinite horizon dynamic game we define the following total aggregated reward
received by player 7 under strategy combination 7 as follows :
T7T

i P
AR (s0)) = lim inf. P_ﬂﬁ%ﬁi{ﬁl

Since there is no discounting, the function Pi(.) vields the total reward accrued up to period
T . Thus. the above defined functional can be interpreted as the "average reward” received
under strategy combination 7 from initial state syo. One can easily extend this definition if we
restrict to different starting states at different periods.

7.1 Assumptions.

Assumption 1: (Non-Emptyness) \*(T) # ) for every T .
Assumption 2 (Average case):

|. Discreteness . Each set U,f_ 1s discrete. and endowed with the discrete metric.

Hence. the product space {" = [] {7} x [} is compact in the product topology and I is
k=0
compact in L .

2. Reward Boundedness . that is. for everv i € Z and k € N :

oo < =M <) <M <

Assumption 3’ Uniformly Bounded Reachability:
Forany ). € Sy, . and any infinite feasible sequence of states s = (¢, 81, 5, ...) with 8] # s, there



exist some finite time period T > k and sequence of control profiles {u;}ic.<7. so that state
st in the sequence is reached in T = k + A(s),s) > t periods. Moreover,

sup sup A(sy,8) < L < o0
ks

A comment is due on this last assumption. In the discounted case, the reachability assumption
required players to be able to effectively control the state dynamics by cooperating, i.e given
any infinite feasible sequence of states and any state off that sequence, players could agree on
a finite sequence of actions so to reach the given infinite sequence. In the average case, we
have to limit the "reward” effect of such finite sequence of actions by requiring that it is of
an uniformly bounded length. This assumption then ensures that in the average the "reward”
effect caused by it disappears.

7.2 The Existence Result.
Theorem 7 ) # lim sup \*(T) C II™ with respect to L.

T—x

Proof. Non-emptvness is due to discreteness of action sets.

Let # € hm sup \*(T) . By Lemma 2 . we know that = € IT .
T—x

Let us denote by {7%: k € K C A"} such that :

7= lim =" with respect to £

c— %

Let us first show that : ,
AR s0)) < AR (s0))

for any plaver ¢ € Z. who would deviate by plaving 5, € Il from initial state s,. We recall that

/1!,7"""‘)(5“) and hp(sy) stand for the T—truncations of such histories.

|

Let 5% denote the state attained by //(,A-"' (~0) .

By convergence in £ and Lemma 2 there exist kp € K such that for any 7% with & >

kr > Tthe play prescribed by (44, 7% ) and 7% coincide exactly with h?” )

(s0) and h7(so
respectivelv.in the first T periods . Morcover. the deviation for plaver i :

( 1 ) !
e T T A s e Q)



in which we append from T'—period the actions (af,,, ..., a%,,) as prescribed 7%, is such that
(75, 7F,) "reaches” state s;. Formally :

(’—7;k~7"55) € II(k, si)

Hence, by hypothesis on 7% with & > k7 > T we have :

PR (s0)) < PHAE (s0)

By cost boundedness and the choice of k, the strict reachability assumption and the fact
that we deal with markovian strategies :

k”_‘k )

PRy o)) _ PRbE (s0)) | 2M - L
+
T - T T
and : . |

Pr(hy " (s0)) - Pr(hT(s0)) . 2M - L

T - T T
Hence :
s PR . Pi(h3(s .
AR T (50)) = i inf Ak} = (o)) < hmT‘EEO—T_("YTTEO_)) = A (h7(s0))

Thus. from the nitial state. the proposed deviation is not profitable.
For a deviation from any other state s, € S). with 0 < k we proceed in the same manner. B

8 Conclusion.

[n this chapter, we have addressed the problem of approximating MPE for Infinite Horizon
Games. For finite planning horizons. we introduced the notion of "Constrained MPE” as a
surrogate that is immune to “end of horizon™ cffects.

We see that under fairly general assumptions and "reachability” (players can, by cooperating,
effectivelv control the state dynamics) the limit point of constrained MPE is an MPE for the
Infinite Horizon Game. This result is of particular value as a computational procedure.
However, due to “strategic” effects induced by the artificial terminal constraint, any Infinite
Horizon MPE is not necessarily the mit of “Constrained MPE”. Nonetheless, when all Infinite
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Horizon MPE are strict and the space of strategies is compact, then every Infinite Horizon MPE
is the limit of "Constrained MPE™. This sequential characterization allows for computational
procedures as in Smith and Schochetman [1991] and [1992].

We believe that substantial improvements can be obtained by focusing in very specific settings
in order to avoid the artificiality resulting from working in an abstract framework. This is a
subject of further research.

Finally, and perhaps more importantly, for a different set of assumptions, when plavers do
not use discounting, the limit point of "Constrained MPE” is MPE for the Infinite Horizon
Game. A standard compactness argument yields existence, which constitutes a significant
advance given that existing methodologies do not work well in this setting.
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