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Abstract

We introduce a novel procedure to compute system optimal routings in a dynamic
traffic network. Fictitious play is utilized within a game of identical interests wherein
vehicles are treated as players with the common payoff of “average trip time experi-
enced” in the network. Encouraging results from a large scale computational test on a
real network are presented.

1 Introduction

We consider the problem of finding a system-optimal routing vector in a dynamic traffic
network. In other words, we seek a set of routes that minimizes the average trip time
experienced by the vehicles in the network A closely related problem is that of finding
a user-optimal routing vector. that is. one such that no single driver may reduce her/his
expected travel time, by unilaterally deviating from their assigned route.

This latter problem can also be reformulated to be the determination of a Nash equilib-
rium solution for the dvnamic traffic network game. In such a game, players are identified
with vehicles and payoffs are computed through an assignment mapping that, given routing
decisions for all players. calculates the resulting dvnamic travel times. A routing mapping
assigns to each vehicle a time-dependent shortest path from origin to destination given the
route choices of all other vehicles. In other words. the routing mapping is a best reply to the
routing decisions of the other vehicles.

Fictitrous play is an iterative procedure in which at each step players compute best replies
assuming that opponents decisions are distributed according to the historical frequency of
their previous decisions (Brown [19531]). In the dynamic traffic network context, this pro-
cedure can be interpreted as an iterative routing-assignment algorithm, in which at each
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step, for each player, the routing mapping computes time-dependent shortest paths given
that other players decisions are distributed according to the historical frequency of routing
decisions. This algorithm has been implemented and widely tested (see Kaufman, Smith and
Wunderlich[1992]). Experimental results for this procedure have been favorable but difficult
to justify since a proof of convergence has yet to be developed.

Recent theoretical advances in game theory (see Monderer and Shapley [1996]), yielded
conditions that may be applied to the dynamic vehicle routing problem. Monderer and
Shapley demonstrate that when players (in this case, vehicles) share a common objective
function, such as minimizing the average trip times of all vehicles in the network, then fic-
titious play converges in to an equilibrium in beliefs, i.e historical frequencies of routing
decisions. Although, this convergence result requires interpretation in the dynamic traf-
fic network context, it motivates a potentially attractive algorithm. Since an equilibrium
solution to an artificial dynamic traffic game in which players share the above mentioned
common objective is probably a good system optimal routing.

2 Preliminaries.

2.1 Notation.

We introduce the dynamic traffic network game where :

o N ={1.2....,n} is the index set of vehicles.

e Every vehicle has a finite number of routing choices, that is to say: for every 1 € N
there is a set ¥; = {ri.7......7m,} of possible routes to take. Let us denote by
V=11V,

1EN

e .1} — R™is the assignment mapping. For any y € Y, i.e a routing policy vector,
A (y) 1s the sum over the path determined by y, of the resulting dynamic travel times
per link. In other words. 4,(y) is the expected total travel time for vehicle ¢ , given
that the other vehicles take routes y,. ; # 1. We will denote by A* the set of mixed
routing decisions. i.e :

A= {f0), = 10.1] such that ¥ fi(y:) =1}

vi€Y;

The extreme points of A' are just the elements of Y .
Let A= [T A'. We extend the domain of the assignment mapping so that for f € A
e N

we haves

AN =3 A ) ) ()
vy

o Let A7 = [T AL the cartesian product of the sets of mixed routing decisions for all

PE

vehicles other than 1.
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R; : A — A'is the routing mapping or “best response” for vehicle 7 to a mixed routing
decision followed by the other vehicles. Given f € A, R;(f) is the set of routes for
vehicle ¢ that yield the least expected travel time assuming the other vehicles j # ¢
follow the routing decisions as prescribed by f. Formally :

Ri(f) = arg f,meig,.[z Aily) - fHy) - Fi () - f ()]

y€eY

3 Nash Equilibrium.

We say that a mixed routing vector f* is user-optimal if for every vehicle : € N the proba-
bilities assigned to routes for vehicle i by f* yield the minimum expected total travel time,
provided that f?,, the mixed routing choice of all other vehicles is held fixed, i.e :

y in Ai(fi, f2;
Ji € arg min Ai(f, f2)

Now, recalling our definition of R;(.). the routing mapping, we note the previous equation
can also be expressed as :

[ e R(f)
Finally, in vector notation the last equation can be rewritten as :
[*=R(f")

which is the very familiar definition of a fixed point. It is worth pointing out that we only
differ from Rosenthal’s [1973] formulation in that to take into account time varying link
travel times. we do not make any analvtical assumptions on the assignment mapping.

Moreover. as opposed in the static setting (see Haurie and Marcotte[1985]) in this dy-
namic setting. there is not a straightforward relationship between Wardrops’ user optimality
and the Nash equilibrium concept.

3.1 Existence of Nash Equilibrium in Mixed Decisions.

Recall that a mixed routing decision f € A is a “lottery” combination of routing decisions
m the set )
A straightforward conclusion from the classical Nash equilibrium existence theorem is :

Theorem 1 :A dvnamic traffic network has a Nash equilibrium in mixed routing deci-

SIONS.

Proof: It simply follows Nash[1950;. given the finiteness of the set of routes for each
plaver and the way pavoffs are defined for mixed strategies. »

4 Fictitious Play Convergence.

We now briefiv review Monderer and Shapley s result :
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4.1 Notation.

Let us denote by K C A the equilibrium set for the artificial traffic game above presented
and ||.|| any fixed euclidean norm on A .
For 6 > 0 let Bs(K) the open ball with radii 4 , i.e :

Bs(K) = {9 € & mipllg - /1 < 8}

A path is a sequence y = {y(t)}$2, of elements of Y .
A belief path is a sequence f = {f(t)}2, in A .

Definition 1 : We say that a belief path converges to equilibrium (or converges in beliefs)
if each limit point is an equilibrium point. Formally, for every § > 0 there exists T such that
f(t) € B§(K) forallt > T .

To every path y we can associate a belief path fy by simply computing the historical
frequency of the various routing decisions, for given r € Y; :

fur) = HEEs 2L 21)

Note that if we define I}, ,(r) to be the indicator function of the route r in the path then :

(I;,‘t(T) - f;'t(r))
t+1

fyenr(r) = fyu(r) +

where :
. _lify(t)=r
lyur) = 0 otherwise

Definition 2 : A pathy is a fictitious play process if for everyi € N and every t :
w(t +1) € arg %?[Ai(yi»f;,i)]

[n words. at each t the route prescribed for player 7 ,is the pure best response to the mixed
strategy for all other vehicles consisting of the historical frequency of routes they have chosen.

Definition 3 :A Game has the Fictitious Play Property if every fictitious play process
converges in beliefs .
We now state the important Monderer and Shapley's result.

Theorem 2 : If all plavers have the same payoff function, then the game has the Ficti-
tions Plav Property.

Proof :See Monderer and Shapley [1996]. =
We now itroduce the artificial dvnamic traffic game that will, by construction, posess
the fictitious play property.



5 The Artificial Dynamic Traffic Game.

In order to apply Monderer and Shapley’s convergence result, we redefine the traffic game
by artificially imposing the same payoff function to every player in the game. Specifically,
we will use in this artificial traffic game (which we shall refer to as ATDG) the “average trip

time” as the commmon payoff function for all vehicles, U: A — R :
A;
vip=y 2L
ieN T

Let us now examine the meaning of an equilibrium with respect to this “artificial” game.
* € arg min U(f;, 2,
fz € gf‘GAi (ft f—‘l)

Intuitively, given that all other vehicles j # ¢ follow f;, vehicle ¢ can not reduce any further
the “average trip time” experienced by the vehicles in the network by deviating from the

prescribed routing f;. In other words. for the optimization problem :
(P) minsea U(f)

the mixed routing f* is some sort of a “local” optimal solution. However, there may be
optimal solutions to problem (P) that are not neccesarily equilibrium routings for the AT DG
game. In other words;

Optimal Solution Set(P) C Equilibrium Set(ADTG)

5.1 An Algorithm.

We formally present the algorithm motivated by Monderer and Shapley’s result. It presents,
however. a major difficulty: Theorem 2 onlyv asserts that for a converging sequence of mized
strategees generated by fictitious play the limit is a Nash equilibrium of the original game. It
I~ 1o sense. a “limsup” set convergence result. and for computational purposes we need a
“hiinf™ tyvpe of result. However. it is worth pointing out that whenever the equilibrium set
of our artificial game is a singleton. the algorithm is guaranteed to converge. In any other
casc. the algorithm will compute routings that will be arbitrarily close to the equilibrium
set. then continuity of the assignment mapping. a reasonable assumption, will ensure a good

APPTOXIIAtION.
Algorithm
boick anomitial cpure” routing vector fq.

2 Compute best reply
vt +1) € arg rrg)r){b’,-(yi,f[’)]
Yi 1

3 Update Instorical frequencies of route choices. f; |

VAL fior = fill € = then Stop. otherwise go to 2.



5.2 Implementation.

We have implemented the above algorithm in a software package called Alliance. To ensure
tractability, we made several simplifications to the original algorithm. First, it is extremely
difficult to, for each vehicle 7, analytically compute a best response to the historical fre-
quencies of the routings of the other vehicles. Instead we simulate the passage of these
other vehicles through the network where each vehicle chooses its route with probability in
accordance with the historical frequencies of its routings. Using the time dependent link
travel time profile produced by this simulation, vehicle ¢ may then be assigned to a path
minimizing the increase to total system travel time. To further simplify matters, since a
single vehicle will have little effect on congestion, we also simulate the the travel of vehicle
¢ in this simulation, thus avoiding the need to run a separate simulation for each vehicle. It
is hoped that for a heavily congested network with many vehicles leaving at the same time
with the same origin and destination this approach will allow to adequately approximate
true best responses.

The second simplification we perform is to discretize time into a sequence of slices. Within
each slice. vehicles are routed by the simulation according to the routing tables. These tables
assign, for each slice s and node n. the probability distribution with which a vehicle arriving
at node n with destination d at time s. will choose its next link. Note that this simplification
allows vehicles to follow routes thev may have historically never taken, contradicting the al-
gorithm's scheme. Here again. we appeal to the large number of vehicles flowing through the
network to justify this simplification since the effective congestion should remain relatively
unchanged while greatly reducing storage and computation requirements.

5.3 Computational Tests.

To validate Alliance we applied the algorithm to the Troy. Michigan traffic network. Ap-
proximatelv 16500 vehicles were allowed to flow into the network in 24 minutes according
to travel patterns approximating those actually observed in Troy. After 24 minutes the flow
mto the network was halted and the vehicles were allowed to to travel for further 36 minutes,
thus allowing the network to clear.

To account for the impact of different market penetration levels of ITS technologies we
defined three tvpes of vehicles classes: Class 1. consisted of those vehicles following the free
flow shortest path. Class 2. consisted of those vehicles that perform a periodic update of the
free flow shortest paths. and finally. Class .7 vehicles were guided by the Alliance algorithm.
The mitial routing given to all classes corresponded to shortest path under free flow.

In the first test. with high market penetration (i.e. Class 3 vehicles account for 25% of
the total number of vehicles) we observe that Alliance computes routings which are as good
as those computed with SAVaNT in terms of svstem average trip time, in considerable less
munber of 1terations and c¢.p.u time.

Test 1



C1(50%) | C2(25%) | C3(25%) | # Iterations
Alliance | 8.85988 | 8.85677 | 8.71779 | 14
SAVaNT | 8.87245 | 8.84866 | 8.68266 | 34

In the second text, with low market penetration (i.e. Class 3 vehicles account for 5% of
the total number of vehicles) we can observe reductions in travel time for intelligent vehicles,
here again at a substantially lower computational effort when compared to SAVaNT.

Test 2
C1(95%) | C3(5%) | Average | # Iterations
Alliance | 17.30430 | 15.59930 | 17.21905 | 20
SAVaNT | 17.49250 | 15.49160 | 17.39240 | 68

6 Conclusions.

Through the application of recent results in the theory of learning in games and the extension
of Rosenthal’s[1973] framework to the formulation of the dynamic congestion game, we have
implemented a decentralized iterative procedure to compute system optimal routings.

By focusing on discrete routing decisions and with the help of a dynamic travel time
simulator we avoided the technicalities of a more thorough analytical development.

First large scale results are encouraging, mostly by the substantial reductions in compu-
tational requirements.
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