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Abstract

Monotonicity of optimal solutions to finite horizon dynamic optimization problems
is used to prove the existence of a forecast horizon, i.e a long enough planning horizon
that ensures that a first period optimal action for the infinite horizon and the finite
horizon problem agree, regardless of problem parameter changes in the tail. The exis-
tence of extremal monotone optimal solutions, as in the context of production planning
with convex costs, motivates a stopping rule to detect the minimal forecast horizon.

1 Introduction.

Infinite Horizon planning models are motivated by the difficulty in establishing a rationale
for an a priori fixed study horizon. If an arbitrarily chosen finite horizon is used, end of
horizon effects can alter the validity of the model in question. Hence, it has been argued
that an infinite horizon is a better way to model instances in which, for dynamic optimization
problems. the decision makers do not have a clear and prespecified ending date.

However. the gains in modeling accuracy afforded by an infinite horizon model are severely
compromised by the technical difficulties that render intractable the analysis. This is par-
ticularly troublesome in instances in which the parameters are not known precisely and are
assumed to possibly vary in time. In other words, the case with nonstationary parameters.

This last consideration motivates the problem of finding a finite horizon such that the
first optimal decision for such a horizon coincides with the infinite horizon counterpart. If
such a horizon exists (which is called a solution horizon), it not only provides a rationale
to offer such a horizon as the decision makers planning horizon, but interestingly enough
motivates a finite algorithm to solve an infinite problem via a rolling horizon procedure.

Nonetheless. the solution horizon concept is of little practical interest, for its computation
mav potentiallv require an infinite forecast of data. Thus, the concept of a forecast horizon
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(see for example, Bés and Sethi (1987) and Haurie and Sethi (1988)), that is, a long enough
planning horizon that entails the insensitivity of first period optimal actions with respect
to parameter changes in the tail, is very attractive to practitioners. In brief, in order to
compute the first period optimal action, the planner need only forecast a finite amount of
data, regardless of tail variations.

In this paper we make use of monotonicity of optimal solutions to prove the existence of
forecast horizons for a general class of dynamic optimization problems. Such monotonicity
is a pervasive feature of many applications (see for example, Heyman and Sobel (1984)).
We build on the work by Morton (1978) who exploited monotonicity in the context of the
nonstationary periodic review inventory model with stationary linear costs to obtain upper
and lower bounds for first period optimal decisions that are monotone in planning horizon.
We extend Morton’s work to cover any dynamic optimization problem with the property
that optimal solutions that are monotone to parametrized variations in the state transition
function exist. Such a property together with the principle of optimality allow to optimally
embed the finite horizon problem in the infinite horizon setting as a parametric variation
at the tail. In other words, finite horizon optimal solutions can be seen as infinite horizon
optimal solutions to problem with a stationary trivial tail of parameters. This focus on early
decision monotonicity has also been recently exploited by Smith and Zhang (1997) in the
context of production planning with convex costs to develop a closed form formula for a
forecast horizon under more restrictive monotonicity assumptions. We close our paper by
presenting a stopping rule to yield optimal early production decisions for the infinite horizon
production planning problem with convex costs that is guaranteed to detect the minimal
forecast horizon. The existence of eztremal monotone optimal solutions (see Topkis (1978))
is the key to this result.

2 Preliminaries.

2.1 Framework for parametric analysis of Dynamic Optimization
Problems.

Asin Bes and Sethi(1991). we define a parametrized family of discrete time dynamic opti-
mization problems as follows :

¢ (Canonical Four-tuple (A4,.S;.c. f;)) At time period t € N, A, C R* is the
compact set of all possible actions where N' = {0,1,2,...} and R* stands for the
nonnegative real line. S, C R* is the set of attainable states, and finally A,(s;) C 4,
is the nonempty closed subset of feasible actions given current state s;.
If an action a, € A,(s;) C A, is taken given state s, € S;, a cost c;(s;,a,) € R* is
incurred and the next state to be attained is 5,4, = f,(s;, a;) where the state dynamics
mapping f; : S; x Ay — S+ and the cost function ¢, : S, x A, — R are assumed
continuous.



o (Forecasts F;) We denote by F;, the set of all possible forecasts for time period t;
that is for every element p € F;, there exists a unique four-tuple of the form :

(At(';P) - At,S:(p) C Si,cel,3p) : Se x Ay — R+,ft(',';P) : St X Ay — Siq1)

associated with forecast p, where A(-; p), S¢(p), c:(-, ;p), fe(-, -; p) stand for time period
t feasible action correspondence, set of attainable states, cost and transition functions,
respectively’.

e (Null Parameter 6)We convene to define the null parameter, § € F; to which we
associate for all t € N the four-tuple :

(At(70) = {0},St,Ct(',';0) = Oa ft(',';e) = 0)

o We assume that each F; is a finite set endowed with a partial ordering “ >.”, according
to which there is a “minimum” say p,, and a “maximum” forecast p;.

e We denote by F(T) and F, the set of T—horizon forecast and the set of infinite horizon
forecasts, respectively, i.e:

T-1 o)
]:(T)zzl:[oft F=11F

t=0

¢ (Forecast Metric Space (F,d))We endow each F; with the discrete topology by
means of the metric p; : F; x F, — {0,1} defined as follows, for p;, ¢ € F; :

1 ifp=q
pu(peq) = 0 otherwise

By means of this metric. we define a metric d : F xF — R, on F as follow, for
p= (p01pl""a)sq = (QOJ]]....,) € }- .

d(pq> = Z Pt 2!; Qt)

t=0

We remark that this metric induces the product topology and that by Tychonoff’s
Theorem the space (F.d) is compact.

Given forecast p € F, the T—long horizon optimization problem induced by it, for a
aiven initial state sgis :

) T-1
min Y c/(s..a.:p)
t=0
st s = fise.anp)
a € A(sep) €A t=01,2..,T-1

"Note that the set of assumptions on the canonical four-tuple must hold for every indexed four-tuple.
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Moreover, we shall denote by C1(p) and A7 (p), the optimal value and optimal solution set
for this problem when data follows forecast p for the first T—1 periods. Similarly, the Infinite
Horizon Problem according to forecast p € F is :

T-1
min limsupy_. tgo ce(st, az; p)

st Se41 = fe(se,asp)
a; € At(St;p) C Ag t=0,1,2,...

As above, we shall denote by C*(p) and A*(p), the optimal value and optimal solution set
for the infinite horizon problem as prescribed by forecast p € F.

2.2 Standing Assumption.

Throughout our analysis we will assume that the limit of a converging sequence of finite
horizon optimal solutions is an optimal solution for the infinite horizon problem :

Assumption 1 For every p € F and every indexed collection {a}ren such that
aT € A%(p) for each T and Tlim aT = a we have a € A*(p). v
—00

For a thorough study of sufficient conditions that imply Assumption 1, the reader is
refered to Flam and Fougeres (1992) and Schochetman and Smith (1989) and (1992).

3 Examples.

[n this section we give two classes of dynamic optimization problems that belong to the
familv introduced in the previous section. with suggestions on how to apply the abstract
parametric framework above presented.

3.1 Production Planning.

The T—long horizon time varying production planning problem, with given initial inventory
level 1y, is to find a production schedule that satisfies demand at minimum cost.

min z§—:0 o' (Ce(ze) + helli41))
s.t 1£+l =1;+It_dt

M 22,201 20
x¢. I; integer t=0,1,2..,T-1

where x, is the production level at time period t, I, is the inventory level at hand at
the start of time period t, Cy(z,) is the t—th-period production cost function and hy(l;41)
15 the inventory holding cost. M, is the maximal production capacity at time period ¢ and
« € (0.1) is the discount factor.



Now let us assume that for any time period, demands can take integer values in the range
{d,d+1,...,d} and that cost functions do not vary in time. As an illustration of parametric
analysis, we can define our parameter set to be F; = {d,d + 1, ...,d}. With this convention,
an element p € F is simply an infinite sequence of demands which take values on the defined
range.

In this context, the null parameter can be interpreted as zero demand. Notice, without
loss of optimality that for a T—planning horizon, one must end with zero inventory. If
we append to the T—long production plan an infinite tail of zero production, this would
be an optimal solution to the Infinite Horizon Production Planning Problem with demand

(dO, dl, eeey dT—l, O, O, .-.) .

3.2 Optimal Exploitation of Renewable Natural Resources.

We are given an initial stock sp of a natural resource. We have to choose a consumption level
c; at time period ¢, from which we experience a net reward r¢(c;). The remaining stock, if the
available amount of resource is s;, is then s; — ¢; which shall renew at a pace f:(s; — c;) (with
the convention that f;(0) = 0). The T-Planning Horizon problem is to choose exploitation
levels so to maximize total discounted reward :

T-1
max Y T(ce) - O
t=0

s.t St+1 = fz(St - Ct)
Ct € [O,Sg] t=0,1,2,...,T—1

where (€ (0,1) is the discount factor.

As an illustration of the parametric analysis, let us assume that the stock renewal dy-
namics f;(.) can take any of the forms described in the finite set {f°(-) = 0, f*(:), ..., (")},
where by f° we denote the no-renewal function. Intuitively, stock renewal dynamics can
varv in time due to seasonality patterns, pollution, technological improvements etc...

With this convention our parameter set is F, = {0.1,2,..,m} and to any element p € F
there is associated an infinite trend of stock dynamics. Here again, any finite horizon optimal
consumption plan. can be trivially extended with an infinite tail of zero consumption so that
it is an optimal solution of the infinite horizon problem with no-renewal dynamics at the
tail.

4 Existence of Solution Horizon.

With a slight abuse of notation let us write p € F(T') to mean that we are only concerned
with the first T parameters in the infinite vector p € F. Let us assume now that for every
T —period horizon optimization problem there exists an optimal solution such that the first
period decision hehaves monotonically with respect to parameters p € F(T'). A straightfor-
ward but very useful existence of solution horizon result follows :



Theorem 1: (Solution Horizon Existence) Under assumption 1 and assuming that
there exist a doubly indexed collection :

{a’? € AT(p)}Ten per
such that the first time period actions are monotonically increasing in p € F(T) i.e
pra=a”’2a’

then there exists an infinite horizon optimal solution a? € A*(p) such that for every ¢ > 0,
there exist a planning horizon T such that for T > T, we have :

|a§"’ - agl <e

Such horizon is called a “solution” horizon.

Proof: Without loss of generality let us assume that p, = 0 for all t € . If not, one
can always add the null parameter to F; and monotonicity still holds since associated to the
null parameter one can only have zero action. Let us now append the null action to a”? at
period T, and denote it by aT*!i.e

a a®.al?, ... ak?,,0)

By the Principle of Optimality, we have that a”*'must be an optimal solution to the T +
1—planning horizon problem with parameters (po, pi, ..., pr-1,0), formally :

T+ € A;"—#—l(powpl»"'?pT—lv 0)

and by definition of the null parameter :

(po, p1. ... pr=1.6) < (Po,p1. ..., PT=1,PT)

Hence. by monotonicity it follows that :

In words. the first perlod optimal action sequence for forecast p € F is monotonically
increasing.

oC
Recall that 4 C [] A, the subset of infinite feasible sequences of actions is assumed closed
t=0

oc
and by Tvchonoff's theorem [] 4, is compact in the product topology, hence A is compact.
t=0

Let us now embed every element in the collection {a7? € A%(p)}ren into A as follows :
a™? — (ag”.a1"......a37,,0,0. .., ) =% g
By Assumption 1, we know that using this embedding :

(@d”.al? ...al?,.0.0.....) € A"(p1,p2, ., pr-1,0,6, ...)
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By compactness the collection {a@7?}r¢x has a converging subsequence, let us denote by a?
the limit of such subsequence :

lim g7? = q?
k—o0

By assumption 1, a? € A*(p). By monotonicity of first period decision and compactness, the
sequence {ao"' } converges, moreover, since convergence in the product topology is compo-
nentwise convergence :

lim al? = df

T—o0
Or equivalently; for any € > 0, there exist a planning horizon 7T, such that for T > T. we
have :

]

In the proof of the above theorem we have constructed a well defined function af : 7 —
R*, the next corollary establishes that when action spaces are finite, this function inherits
the monotonicity property.

Corollary: Under the same assumptions of the previous theorem and assumming that
action sets are finite, there exists an infinite horizon optimal solution a? € A*(p) such that
the first period action is monotone and continuous in F , i.e for p,q € F: p > ¢ => af > a{.

Proof: By the Solution Horizon Existence Theorem, for every ¢ > 0, there exist a
planning horizon T? such that for T > T? we have :

Tv
Iao P ag} <e
Similarly. there exist a planning horizon T¢ such that for T > T¢ we have :
og* —a| <«

Lot us pick. £ < 1 and T > max{TP.T?}. By this choice we have that for T > T:

T T
aO P = ao a 9= ag
But by monotonicity hypothesis :
ag 2 ag
Moreover. since :
laf — af| < |af - af”| + o) ” - o3| + |07 - af

For anv & > 0. by continuity?of ag"’in p € F and the sequential construction of af) there
exists 2 > () and T such that if d(p.q) < =z then

laf — b < |af - ag”| + | " - o3| + |ag — af| < 6

Heneeo the map af : F — RT is continuous.  ®

“This 1s due to the finiteness of F(7 ).
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5 Existence of Forecast Horizons.

In this section we prove the existence of Forecast Horizons for the class of dynamic optimiza-
tion problems considered by exploiting the monotonicity properties of optimal solutions. It
is worth emphasizing that these monotonicity properties are a a pervasive feature of many
applications of the class of problems we study. To reader is referred to Heyman and Sobel’s

(1984) chapter 8.
Let us now state and prove the most important result :

Theorem 2: (Forecast Horizon Existence) Under Assumption 1 and assuming that
action sets are finite and that there exists a doubly indexed collection :

{a? € A'(T,p)}ren per

such that first period actions are monotonically increasing in p € F(T'), i.e :
prqg=a3">a3"

then there exists an infinite horizon optimal solution a” € A*(p) and a finite planning horizon
T such that for T > T and for every g € F such that py = g, for 0 <t < T we have :

T,
ay? = af

Such horizon is called a “forecast horizon”.

Proof: Let us construct a sequence of forecasts based on p € F as follows; we append
pr to the T—truncation of p € F we obtain the forecast :

T)=(po-p1.---.PT-1.PT, PT41...)
where clearly we have :
u(T) — pasT — oc
But by the Solution Horizon Existence theorem. we know that :

ag? —a asT — oc (1)

Al (T . . . . .
and by Corollary 1 the sequence {ay '} is monotonically decreasing in T, i.e :

0 <

u(T+1, u(T)
ay
By compactness of the first period action set and continuity of the map af : F — R*:

"~ asT—oc (2)



So the results (1) and (2) ensure the existence of a large enough horizon such that T such
that for T > T : . -
" =a" =d

Now let us consider g € F such that p; = g, for 0 < ¢ < T , by monotonicity it follows that
and the choice of T, for every T > T :

D > a8 > al”

u

Qg

Hence, a} = af; in words, infinite horizon first period optimal solution aj is insensitive to
parameter changes after time period 7. =

6 Detection of Minimal Forecast Horizons.

The proof of existence of a forecast horizon provides a few clues on how to effectively compute
it, by means of a stopping rule. For the sake of concreteness we shall illustrate the suggested
stopping rule in the context of production planning with convex production and inventory
holding costs.

6.1 Application to Production Planning with Convex Costs.

In Smith and Zhang (1997) a closed form formula is developed for the production planning
problem with convex production and inventory holding costs, by exploiting the monotonicity
properties of production plans with respect to demand, a result due to Veinnot(1964).

As an application of the theory above presented. we propose a stopping rule for the same
problem structure. Moreover, we show that it detects the minimal forecast horizon and
the reader should note that it requires less restrictive monotonicity properties than those
required in Smith and Zhang's paper in that it is only assumed that first and not all periods
optimal decisions are monotone.

Nonetheless. the minimality of the Forecast Horizon detected through the Stopping Rule
suggested is not evident. The reason being that in the construction carried out in the Solution
Horizon Existence Theorem of an infinite horizon optimal solution whose first period action
was monotone we selected for the finite horizon approximates any optimal monotone solution.
This is not enough to ensure that the Forecast Horizon effectively computed through the
above procedure is minimal.  For that purpose. we need to select for the finite horizon
approximates the smallest monotone optimal solution. Here we digress a bit from Veinnott'’s
result in that it does not ensure the existence of such object. However, Topkis(1978) and
more recently Milgrom and Shannon(1994) have developed a general monotonicity theory
of optimal solutions using lattice programming techniques that not surprisingly apply for
the production planning problem with convex costs. This theory ensures the existence of a
smallest and a largest optimal solutions that are monotone.



6.2 The Stopping Rule
Assuming costs are uniformly bounded as follows :
sup, Cy(-) < C(-) sup, he(-) < h(:)

One can construct a pessimistic scenario, in which demand, production and inventory holding
costs are at their maximal levels, namely :

N1 | -
min lim sup ¥ o*(C(z:) + h(I41))
N—ooo t=0

s.t It+l =It+$t—(z
M Z It ..>.. O’It Z 0
x4, I; integer t=0,1,2,..

The above problem is very easy to solve by means of the functional equation :

(DP) V(I)= min O{C'(x) +h(z+1-d)+aV(z+1-d)}
Let us now consider the quasi-nonstationary infinite horizon production planning problem:

N—
min lim sup Zla‘(Cz(Iz)-i-ht(ItH))

N—oo t=0
s.t It+1 =1t+xt —dt
M >z, >0,1; > 0 integer t=0,1,2,..

Which can be solved by the next simpler finite dimensional problem :

min T A(C() + h(l)) + 57 Vi(Ir)

s.t ]t+1=],+.rt—d¢
z¢ > 0.1, > 0 integer t=0,1,..,.T -1

(Pr)

By the Corollary to Solution Horizon Existence Theorem there exists a optimal solution to
the problem (Pr) such that its first period action is monotone in the demand parameters,
sav al and @l > al*'. Moreover. by the smallest monotone selection rule that we discussed

above. we know that @l is the smallest optimal solution to the above stated problem.
Similarly, if we solve:

min 3 A(Culze) + he(lisy))
t=0

s.t 1:+] = 11+Iy—dt
M>zx>0.1 >0integer t=0,1,....,T -1

(Er)

we know that there exist and optimal solution such that its first period action say, al is

monotonically increasing in T i.e :

T+1 T
Q" 2 g
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Let us set a] to be the largest optimal solution. By the Forecast Horizon Existence Theorem,
we know that these sequences must meet, in other words the algorithm we are to describe
below must stop after a finite number of steps.

Step 1. Solve Functional Equation (DP). T=1
Step 2. Solve (Pr) and (Py) for a7 and af
Step 3. If al = al then Stop.

Else T=T+1; Go to Step 2.

Proposition 1 Let T* be the Forecast Horizon detected by the above procedure, T* is
also the minimal Forecast Horizon.

Proof: By contradiction, let us assume there exists T < T* such that T is the minimal
Forecast Horizon. By hypothesis:
al >al
But since @} is the first period action of the smallest optimal solution to problem (Pr) and
a] is the first period action of the largest optimal solution to problem (Py), this implies that
the above inequality is valid for any chosen pair of optimal solutions to the problems (Pr)
and (Pr), but this contradicts T being a Forecast Horizon. =

7 Conclusion.

We have presented strong existence and computational results for forecast horizons in a
large class of dynamic optimization problems. These results depend critically upon the
monotonicity properties of optimal solutions, which is a rather natural and pervasive feature
of these models. We are currently exploring the extension of this approach to infinite hori-
zon stochastic dynamic optimization problems which also posess monotonicity properties of
optimal early decisions.
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