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Abstract

We show that if a traffic network satisfies a certain property, called submodularity then
there exists a user-optimal pure routing policy, and under some other slightly more restrictive
assumptions this policy can be obtained by an iterative routing-assignment procedure.

1 Introduction

We consider the problem of finding a user-optimal routing vector i a dynamic traffic network,
i.e. a set of routes, one for every vehicle in the network such that there is no other way for any
driver to reduce his expected travel time, by independently taking another route. This problem
can also be formulated as that of finding a fixed point of the composition of two mappings. One,
called the Assignment Mapping that given a routing vector calculates the expected dynamic travel
times for every link and the second, is called the Routing Mapping finds the optimal route for each
driver(shortest path on a network),given a set of expected dynamic travel times per link.

In order to find a user-optimal routing policy, an iterative procedure that alternates between these
two mappings has been implemented (SAVaNT Kaufman, Smith, Wunderlich 1991). Experimental
results have been favorable but difficult to justify theoretically , for there is no theoretical proof
for the convergence of such an algorithm . In this paper, we tackle the problem of validating such
algorithm and at the same time to gain some helpful insights on its possible improvemenﬁs.

Our work builds on the work done by Topkis (1979) and Vives (1990). When a traffic network
satisfies a condition called submodularity one can prove the existence of a user-optimal pure routing
choice policy. Pure means a extreme point of the convex hull generated by available routes. Then,
with some slightly more restrictive assumption, one can prove the convergence of the iterative

routing-assignment procedure to a user-optimal pure routing choice policy.



2 Preliminaries.
2.1 Notation.

We consider a traffic network where
e N ={1,2,...,n} is the index set of vehicles.

o Every vehicle has a finite number of routing choices, that is to say: for every ¢ € N there is
aset II; = {7i1,Tizy ey Tim; } Of possible routes to take. Then, the space II; is the convex hull
generated by these routes, i.e all possible convex combinations of routes and we have I co;
. m; € II; is the routing decision for driver/vehicle i € N, i.e it is a path in the network
joining origin and destination nodes. We note Il = X;¢nII; and II = X;¢nII7 as the cartesian
product spaces . A very helpful notation is 7_; € II_;, which means a vector of all routing

decisions except 7; .

e A:TI-C,CC R7 is the assignment mapping. For any 7 routing policy vector, A;(r) is the
sum over the path determined by =; of the expected dynamic travel times per link, that is to

say, the total expected travel time for vehicle .

e R;:C —TI; is the routing mapping. For any set of expected dynamic travel times per link in
the network, we let ¢ be the vector of expected travel times for all possible routes for vehicle

i, then, R;(c) is the route for vehicle i that yields the least expected travel time.

2.2 Pure and Mixed routing decisions.

A pure routing choice is any extreme point of the space II, i.e any element of II. Any other point
in the convex hull is called a mixed routing choice. Note that, by construction the product space
IT is compact and convex.

A word of caution is worth: the framework here used is more general than that of considering all
or nothing or multipath policies. All or nothing means that all vehicles entering a link at some
time must take the link specified by the routing policy . A slightly more general consideration leads
to multipath policies, i.e. a routing policy such that for all vehicles entering a link at some time,
they then take different links according to some convex combination (platoon split). Our framework
goes even further, for when entering a link at some time we allowed vehicles to take any possible
link, i.e multipath policy with the largest possible platoon split. Furthermore, we allowed drivers to
draw routes from a “lottery” that assigns a probability distribution on each vehicle routing decision
space II; . Outcomes from that “lottery” are called mixed routing decisions. When the probability

distribution is degenerate we called the outcome a pure routing decision.



User-optimal routing We say that a routing vector * is user-optimal if for every vehicle : € N
the route chosen in 7* is the shortest path or minimum total travel time route, provided that =*;,
the choice of all other vehicles is held fixed.

m; = arg mig Ai(m, 72 (1)

Now, having in mind the way we defined R;(.), the routing mapping, it turns out that (1) can also

be expressed as :

7} = Ri(Ai(mi,72;)) (2)

Finally, in vector notation (2) is :
7" = R(A(7")) ©)

from where we can see the very familiar definition of a fixed point. Therefore, a user-optimal rout-

ing vector is a fixed point of the composition of the routing and assignment mappings.

2.3 Existence of User-Optimal Routings in Mixed Decisions.

A mixed routing decision 7 € II is a convex combination of routing decisions in the space I . If we
note i, to be the measure defined on II that assigns for every ' € II the coefficient of the convex
combination to obtain 7, then the domain of the assignment mapping is extended in the following
way :
A(r)= Y Alr )ua(r) (4)
' ell
Equation (4) provides the total expected travel time for any interior point ( i.e points in II but
not in I ).
In the same manner one can also think of the routing mapping to be the stochastic shortest path

mapping, and thus it is also defined on II .



Theorem 1 : Any Traffic Network has a user-optimal routing in mized routing decisions.
Proof:
This characterization of user-optimal routings parallels Nash (1950), the fundamental existence
theorem in game theory. We use Kakutani’s fixed point theorem, to prove that (3) has a fixed
point 7.

The hypothesis on this theorem are :
(a) Compactness and convexity of the product space II .

(b) Non-emptyness of the composition R;(A(.)). This follows from the fact that (4) implies that

the assignment mapping is linear(therefore, continuous) on each II;. Continuous functions

attains minima on a compact set. Non-emptyness follows.

(c) R(A(.)) is convex on II. If R(A(.)) were not convex there would be 7',7" € R(A(r)) and a
X € (0,1) such that Ar' 4+ (1 = A\)r" ¢ R(A()). But for each vehicle i € N we have :

A+ (1= Nr] 72 = M, m_) + (1= N A(r, 7o (5)
So that if ;,; are optimal routes given 7_; so is their weighted average.

(d) R(A(.))islower semi-continuous. Suppose it is not. Then, there is a sequence (7", %") — (7, )
such that #" € R(A(r")) but # ¢ R(A(r)). Then for some vehicle ¢, there is a ¢ > 0 and a

m;, such that :
Ai(m,m_) > Ai(Riy o) + 3¢ (6)

Now, since A;(.) is continous for n large we have :
A,’(ﬂ';, 7l'2,-) > A,’(ﬂ’;, 71'._,') —-€> A,'(fl',', 7l'_,') + 2¢ > A.‘(f(’?,ﬂ':) + € (7)

Here, we say that 7; does better than #" given 7", which is a contradiction.

3 Some Concepts and Results on Lattice Theory

In this section we briefly describe some definitions and powerful tools in lattice theory. A classical
reference is Birkhoff(1967).

Lattices, Sublattices, Completeness. In order to be able to compare different routing vectors
one assume an arbitrary partial ordering (i.e binary relation that is reflexive, antisymmetric and
transitive )”>”, for every vehicle in the space of routing choices. For instance, one could think of
the natural ordering to be the preferences over the different routes given some prior knowledge of

the efficiency of these ones. But this would only provide a partial ordering in II;. An easy way of



constructing a partial ordering on II; is by means of a one-to-one mapping from II; to a compact
subset of the real line. Then, the “natural” ordering on the reals will provide via the one-to-one
mapping a partial ordering on the whole space II; .

As every routing decision space II;,z € N is compact there are 7;, 7; € II; such that Vr; € II; 7; >
T, = T;. A Lattice is a partially ordered set such that it contains for every pair of its elements
An “upper” and “lower” bounds. Then, every routing decision space II; is.a lattice.

We now define the partial ordering on the product space II to be :

rrell mx7 < mrm VieN (8)

Similarly, one can define the meet and the join for any two vectors in the product space II, to be

the min and the max taken componentwise.

min(r, 7 ) := (min(7r1,7r;), .., min(7;, 7,), ...,min(1r,,,7r:,)) (9)

! 1 !

max(r, 7 ) := (max(ry,T,), .., max(%;, T;), ..., max(my, 7, )) (10)

Then, II is a Lattice , because for any two vectors 7,r € II then the meet, min(7r,7r') and the

.. ! .
join, max(mw, 7 ) are also in II.

A lattice is said to be complete if for any subset of it there are “greatest” and “least” elements.
As we have seen , each routing decision space II; is a non-empty , complete lattice and so must the
product space II. A Sublattice is a subset of a lattice such that for every pair of elements their
“meet” and their “join” are also in the subset. A complete lattice(sublattice) is compact in the
interval topology ( Topkis 1976 ).

The following is the basic.theorem for this work :
Tarski’s Fixed Point Theorem (1955) : Let I C R" be a non-empty,compact sublattice. If
f: 1 — 11 is non-decreasing, i.e if t > © implies f(r) > f(r'), then f has a fized-point in 1I, i.e
f(m*) ==

Submodularity. The assignment mapping is said to be submodular if for all 7,7 € II, for all
t € N then :
Ai(T) + Ai(') > Ay(min(m, 7)) + Ai(maz(r, 7)) (11)

It is hard to interpret this condition without some idea of what the partial ordering in each
driver/vehicle decision space means. If we take for instance, the natural ordering then submod-

ularity yields some hope for compromise between any two routings, for if drivers are given their



highest preference and their lowest between two routings and we take the average of the expected
travel times experienced, this average is less than or equal to the average of the travel times for
these two routings . One can also look at (7) not in the product space,but in each routing decision

space for each driver/vehicle. For that, the following lemma is very useful.

Lemma 1 : If A, the assignment mapping, is submodular in II then , for allt € N, we have :
(a) For any 7_; € II_; and 7r,-,1r; ell; :
Ai(miy o) + Ai(m, o) 2 Ai(min(mi, 7)), 72) + Ai(maz(mi, 1), 73) (12)
and
(b) If m; = 7r£ and 7_; > 1r'_,. then:

Ai(miy 7)) = Ai(mi, m2y) 2 Ai(mi ms) = Ai(mg,mss) (13)

Proof :

(a) Take 7,m € II such that 7; = 7rJ'- for all j € N,j # i, then apply (7).

1

(b) Define u = (r;,7_;) and v = (m;,7_,) so that min(u,v) = (r;,7_,) and max(u,v) = (m;,7_;) .

Then, if we apply (7) to u and v we get (b).

In the litterature, (a) is also called submodularity on 7; and (b) , isotone differences on =; .

4 Existence of a Pure Routing User-Optimal Solution

We now show that if a traffic network satisfies submodularity i.e the assignment mapping is sub-
modular, and 4;() is lower-semicontinuos on 7;, then with the help of Tarski’s fixed point theorem
there is a pure routing user-optimal solution. Furthermore, the proof is constructive, so we char-

acterize this pure routing user-optimal solution .

Theorem 2 : Any Traffic Network that satisfies :
(1) Submodularity
(2) Vi€ N A;() is lower semi-continuos on II;

has a User-Optimal solution in Pure routings.

Proof :



(1) Ri(Ai(,7_;)) is a sublattice on II; . Suppose 7; and 7; are both in R;(4;(,7_;)) . Then, by
optimality we have :

Ai(miy o) = Ai(m, o) < Ai(max(m, ), 7_5) (14)
Submodularity on II; implies then :

A,-(min(1r,-,7r;),1r_;) < A,'(?l',',ﬂ’_; (15)

A;(min(m, ), 1) < A,-(<7r;,\7r_,-) : (16)
which is a contradiction, therefore, min(;, 7;), max(m;, 7;) € Ri(Ai(,7-;)) -

(2) Ri(Ai(,7_;)) is non-empty . Consider a sequence 7 such that :

;nf A;(ﬂ';,?r_.') = nlin;lo Ai(ml m_y) (17)

m€ll;

The space II; is compact thus there is a converging subsequence {7}, i.e:
k]jm {x*}=m; . (18)
Then ,lower semi-continuity of 4;(,7_;) on II; implies:

liminf A;(7]*,7_;) > Ai(mi,7_;) (19)

nj—00

therefore, 7; € R;(Ai(,7_;)).

(3) So finally as R;(Ai(,7-;)) is a non-empty,compact sublattice of II; there are x; and 7;, least
‘and greatest element on the sublattice . Since, A() is submodular on II, A;() has isotone
differences on II; ,and this implies that both m; and 7; are non-decreasing in II_; . Hence

. ,defining f() to be : - ‘

- £(#) = (Ey(7et); o Ba(1n)) ()

Conditions on Tarki’s fixed point theorem are met, and by construction = is the user-optimal

pure routing choice .
It is worth noticing that 7 is also a user-optimal pure routing choice .
5 On the convergence of an Iterative Routing-Assignment Proce-
dure.

A straightforward question on this approach is the question of when the Iterative Routing- Assignment

Procedure will converge, and if so if it converges to a pure routing user-optimal solution . This



Iterative mechanism is also known as fictitious play for at each iteration, all driver/vehicles take
their optimal route given that the choices of all other drivers of the last iteration are held fixed.

The proof makes use of Lemma 2, which states the monotonicity in the partial ordering of each
player of the composition of the routing and assignment mappings. This property looks very much

alike the contraction property , in other contexts(for instance, dynamic programming ).

Lemma 2: If7; € R;(Ai(,7-;)), a compact,non-empty sublattice of II,-‘ and A;() has strictly isotone
differences on 1I;, then :
T ET S, (21)

proof It is implied by the following sequence of inequalities :

Ai(miymoy) < A,-(max(7r,~,7r,f),7r_,~) (22)
Ai(mi, 7)) < A; (ma.x(7r.,7r )7 (23)
A;(min(m;, ,) T ) < 4 (7r,,1r ) (24)
A; (mm(7r.,7r,) ) A; (1r.,7r ) (25)

(16) means optimality of m; against 7_;,(17) follows from isotone differences on ; and the fact
max(m;,7;) > m;. (18) comes from submodularity on 7; and (20) is optimality of ; against =_,.
Now ,let us recall the simple algorithm structure of an iterative routimg- assignment method.
Pick any 7° starting routing vector then, 7* := R(A(r*-!)) and so on, we stop when for some
k>j,nF=nl
Theorem 3 : In Any Traffic Network that satisfies, Vi € N :

(1) Submodularity on II; and strict isotone differences on II; ( i.e (b) in lemma 1, with strict

inequality .)
(2) A;i() is lower semi-continuous on II; and continuous on II_;.

an Iterative Routing-Assignment Mapping converges to an User-Optimal solution in Pure routings.

Proof : Let 70 > sup R;(A;(,72;)). That is to say, under partial ordering on II; the starting
point is above the best response to _;( i.e R;(A4;(,7_;))). Then,

) > sup Ri(Ai(,7-0)) 2 7} (26)

3

recalling that, 7} € Ri(4;(,7°;)) . Therefore, Lemma 2 implies that 7} > 72 since 7} € Ri(A;(, 7))
and 72 € Ri(Ai(, 7)) for 7%, > x1,. If 7%, = n1, then T} =7l

Hence, the iterative routmg-assxgnment mapping generates a “decreasing” sequence in II, say *.



The intersection of closed sets of the form, C* := {r € II; #* > 7} is non-empty and equal to the
infimum of the sequence 7.
x = inf r* (27)

« is also an user-equilibrium solution because,

Yk Ai(m,mFY) > Ay(nk okt (28)

197

using, lower semi-continuity on 7; and continuity on m_;:
Am, ) 2 liminf Al 7t) 2 Ax, 2t) (29)
—+00 .

In the same manner, one can prove that if the starting point is such that, inf R;(4;(, wg),)) >0

then the algorithm converges to 7.

6 Some final comments.

The submodularity condition, is very restrictive in our context (although in some economic appli-
cations it seems to arise naturally , Vives(1990)). To see this, take for instance the case in which
n drivers/vehicles enter the network all at the same node, and all have the same final destination.
Suppose there are two routes available, a freeway and a sideroad. Furthermore, all drivers “prefer”
the freeway. Now, submodularity would imply that no matter what the routings of the n vehicles
between these two choices are, if you take the average of the expected travel times this one must
be greater than or equal to the average of “allowing” every driver to take their highest preference ,
(freeway) and their lowest (side-road). This condition clearly suggests some sort of complemen-
tarity in a network, although it goes beyond this, for if the two routings of the n vehicles are
such that in one, driver ¢ gets the freeway all alone, and the second, drivers 7 and ¢ + 1 get the
.freeway, the two of them only, then it is hard to require the average of the travel times that driver.
t would experience to.be greater than or equal'to what he would experience under the “highest”

and “lowest” routings.

Experimental results have shown that using a rather simple assignment rule such as “the link
travel time that the vehicle entering the link will experience is equal to the travel time experienced
by the last vehicle that left the link ”, convergence is obtained very frequently . This empirical fact
would eventually lead to an easy way of “constructing” submodularity.

Finally, one could also pose the question in the opposite sense, and try to find partial orderings in
every driver/vehicle decision space II; such that the partial ordering induced in the product space

IT satisfies the submodularity condition. These are topics of further research.
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