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1 Introduction.

Infinite Horizon planning problems are motivated by the difficulty in establishing a rationale
for a fixed finite "planning” horizon.If a finite horizon is used , "end of horizon” effects can alter
the validity of the model in question. Hence, it has been argued that an Infinite Horizon is a
better way to model instances in which for dynamic optimization problems or dynamic games
, the decision makers do not have a clear and prespecified ending date.

However, the gains in modeling accuracy are severely compromised by the technical difficulties
that render intractable the analysis. This is particularly troublesome in instances in which the
parameters are not known precisely and are assumed to vary in time. In other words, the case
with "nonstationary” parameters. _

This last consideration leads to the problem of finding a finite horizon such that the first opti-
mal or equilibrium outcomes for such horizon coincide with the Infinite Horizon counterparts.
If such a horizon exists (which is called "solution horizon”), not only provides a rationale to set
such horizon as the decision makers ”planning” horizon, but interestingly enough motivates a
finite algorithm to solve an infinite problem.

In this chapter, we tackle the problem of proving existence of "solution horizon” for a class of
Nonstationary dynamic optimization problems and games. We make use of "lattice program-
ming” techniques that allow to prove monotonicity of first period optimal solution; then by a
limit argument and compactness we obtain the existence of the Solution Horizon.

1.1 Preliminaries.

We consider the following family of Dynamic Optimization Problems :



At time period ¢ , A; C R the set of all feasible actions, and S; C R the set of attainable
states, and finally A;(s;) C A; the (closed) subset of feasible actions given current state
St.

If an action a; € A4(s;) C A; is taken given state s; € S; , a reward 74(s;,a;) € R is
accrued and the next state to be attained is s;41 = fi(st, us) where the state dynamics
mapping fi(.,.) and the reward function r4(.,.) are assumed continuous.

The T —period horizon optimization problem is, for a given initial state sq :

T
max Eo r(St, 1)

s.t St41 = ft(st,at)
a; € At(St) g At t= 0,2, ,T

We will use a more compact notation for this problem, as follows :
Let A(T) C l'[ Ay, the closed subset of T—long feasible sequence of actions with product

topology and for af € A(T) , let (so,51,82,...,57) the sequence of states attained by
following the sequence of actions a” ; that is :

§1 = fo(So,ao) S2 = fl(Sl»al) 83 = f2(82,02)

then, the total reward accrued is :

T-1
Z ri(81, at)
t=0
so the T'—period horizon optimization problem above is equivalent to :

= g Frle)
and :
AX(T) = C
(T) = arg Ao 7(a”)

The Infinite Horizon Problem :

max lim inf Z re(S¢, ay)
T—oo t=

s.t St41 = ft(qtaat)

a; € At(St) C At t= 0,1,2,...

As above, we will use a more compact notation for this problem, as follows :



Let A C ﬁ Ay, the closed subset of infinite feasible sequences of actions with product

t=0
topology and for a € A , let (s, $1,52,...) the sequence of states attained by following the
.sequence of actions a, then we set the criteria as follows :

T-1
R(a) =lim inf ) ry(s;,a)
T—o0 =0

so the infinite horizon optimization problem above is equivalent to :

R = max R(a)

a€A
and :

A" = arg max R(a)

1.2 Standing Assumptions
Throughout this chapter we will assume the following :

Assumption 1 For every planning horizon T, A*(T) # 0 and A* # 0 .Moreover, for an
indexed collection {a? € A*(T)}r such that :

lim aT = a
T—0o0

we have ¢ € A* .

For a thourough study of sufficient conditions that imply Assumption 1, the reader is refered
to Flam and Fougeres|7] and Schochetman and Smith [10] and [11].

~ Assumption 2 (Compactness) For every ¢, A, is compact.

2 Examples.

In this section we give three classes of dynamic optimization problems that belong to the family
introduced in the previous section.

2.1 Optimal Exploitation of Renewable Natural Resources.

We are given an initial stock sp of a natural resource. We have to choose an exploitation level
¢; at time period ¢, from which we experiment a net reward r;(c;). The remaining stock if the



available amount of resource is sy, is then s; — ¢; which shall renew at a pace fi(s:—¢;) (with the
convention that f;(0) = 0). The T-Planning Horizon problem is to choose exploitation levels
so to maximize total discounted reward :

T-1
max ¥ () - B
t=0

5.t st1 = fu(st — )
CtE[O,St] t:O,l,Q,...,T—l

2.2 Production Planning.

The T—long horizon time varying production planning problem, with given initial inventory
level Iy, cost of finding a production schedule that satisfies demand at minimum cost.

min ::Z—:: (Cilxs) + hu(ze + I, — dy)) - B

It+1 = max{]t +z; — dt,O}

M;>z;,>0 t=0,1,2,..,T -1

where z; is the production level at time period ¢ ,C(z) is the t—th-period production cost
function and :

K,-I ifI>0

he(1) = py - I otherwise

where K; is the unit inventory holding cost at time period ¢ and p; is the unit shortage cost for
unfilled demand at time period ¢ .

Also, M; is the maximum production level allowed at time period ¢t and f is the discount
factor.

2.3 Equipment Replacement.

The problem is to find a replacement strategy that minimizes the discounted total cost of
acquiring, operating and retiring assets over the planning horizon.

Let M, the cardinality of the set of equipment technologies that were at least once available
up to time period t. We shall denote by A; C {0,1,2,.., M;} the set of available tecnologies at
time period ¢ and let z; € A; represent the choice made at time period ¢ ( z; = 0 meaning to
keep current equipment ) .

Moreover, let L;(z) represent the economic life of asset choice # (with L;(0) = 0) and Cy(z)
the cost (including first cost, operating cost and salvage value) of acquiring an asset of type z
at the beginning of period ¢ . Finally let us denote by l; the residual life at the end of period ¢
of the last asset acquired . Formally, the finite horizon problem is :



T-1
min > Cizy) - B
t=0
liy1 = i+ Li(ze) — 1

~ t=0,1,2,..,T -1
$t€AtC{0,1,2,..,Mt} 0, T

where § is the discount factor.It is worth pointing out that under this construction the cost
functions Cy(.) are not convex in general.

3 Existence of Solution Horizon.

Let us assume now that for every T —period horizon optimization problem there exists an
optimal solution such that the first period decision behaves monotonically with respect to the
planning’s horizon length.A straightforward existence of solution horizon result follows :

Theorem 3.1 (Solution Horizon Existence) Under Assumptions 1 and 2 and assuming
that there exist an indezed collection

{aT € AX(T)}

such that for all T :
either al > al™ or ol <al*!

then for some a € A*, and for any e > 0 , there exist a planning horizon T such that for T > T
we have :
d(al,a0) < ¢

‘Such horizon is called a ”Solution” horizon.

Proof. By compactness the indexed collection {a” € A*(T)}r has some converging subse-
quence :

{a" € A"(Ty)}
We denote by a the limit of such subsequence :

lim o’k
k—no

=a

By assumption 1, a € A* . By monotonicity of first period decision and compactness, the
sequence {al} converges, moreover by componentwise convergence :

cT
lim ay = ao
T—o0



4 Pathways to Monotonicity of Optimal Solutions.

We now present new weaker conditions that allow for monotonicity of first period optimal so-
lutions. In general, monotonicity results can be found in many different settings with proofs
strongly relying on the specificities of the various settings ( see for instance Heyman and Sobel’s .
[6] Chapter 8 1984 ). .

Donald Topkis [1] provided a unified treatment of monotonicity of optimal solutions by working
with lattice theory. However, it was noted that the conditions he required for monotonicity
(Super and Sub -modularity) as we shall review below, were far from necessary and were con-
stantly obtained by assuming Concavity or Convexity, which in itself was not surprising given
that most of the available results were based on these assumptions (see for instance Veinnot
[8])

More recently, Milgrom and Shannon [2] have defined a surrogate of Super and Submodu-
larity , called Quasi Super and Submodularity which is both necessary and sufficient for
monotonicity of optimal solutions.

4.1 Lattice Theory.

A set S with a partial order “>" (i.e a reflexive, transitive and antisymmetric binary relation)
is a Lattice if the “join” 2V y and the "meet”z Ay of any two elements z,y € S are both in S.
A lattice is complete if the “join” and the “meet” of any collection of elementsin S isin S .

A real valued function f: S +— R is isotone(resp. antitone) if z > y implies f(z) > f(y)

(resp. f(z) = f(y) ).

Let P(S) denote the set of all non-empty subsets of S and L(S) the set of all non-empty
sublattices (S, € P(S) is a sublattice if for any two z,y € S, thenzVy € S, and z Ay € S,

)- |

* An ordering “>p” can be defined on P(S) as follows, for X,Y € P(S) :
XrpY oVeeXandyeY sazvVyeXandazAyeY.

L(S) is partially ordered by “>p”.

An isotone(resp. antitone) function [ from a partially ordered set T into L(S) is called
ascending (resp.descending ) . In other words, F' is ascending if ¢ > t' in T and for any
€ F(t)and y € F(t') thenzVy € F(t)and x Ay € F(t') .



A real valued function f : S +— R is submodular (resp. supermodular) if for any z,y € S

fl@)+f(y) 2 (L) flzVy)+ flzAy)

If S = R? then this is equivalent to, with (z1,¥1), (z2,¥2) € R* and 22 > 21, y1 > 2

flzn,y0) + f(22,92) 2 (L) fla2, 1) + fz1,92)

If f is twice differentiable this is equivalent to :

0% f
920y <(>)o0

Assume now that f is a real valued function defined on a subset S C X x T where X is a
lattice and T a poset. We say that f has antitone (resp. isotone ) differences in (z,t) € S
iff for z > 2z’ and ¢t > ¢’ we have :

f(z,t) = f(2,t') < (2) f(a,8) = f', 1)

or equivalently :

flz,t) - f(x,at) < (=) f(xvt/) - f(mlatl)

For the case when the sets X and T are chains then the following results yields a powerful
method to prove submodularity.

Lemma 4.1 If f: X X T — R has antitone(resp. isotone) differences on (z,t) and X
and T are chains then f is submodular(resp. supermodular ) on X x T

Proof. See Topkis[l] theorem 3.2 .
n

Theorem 4.2 Topkis[1] 4.1 Let f : S — R be a real-valued submodular function where S is
a lattice, then the set of points S*, at which f attains its minimum on S is a sublattice .



Proof. Pick any z,y € S* .By submodularity on S and optimality of  and y :

0< flzVy)—flz) < fly) = flzny) <0

Hencez Vy,zAye S*. R
In a poset S, a natural way to induce a topology is by using the partial ordering.
The interval topology is defined as the one for which the sets :

[z,00) ={y:y €S,z 2y}
(—o0,z]={y:y €S,z =y}

form a subbasis of the closed sets. The next result indicates why this topology is widely used ,
see Frink [12] and Birkhoff [13] .

Theorem 4.3 Complete Latice Characterization Theorem : A lattice is complete in
the interval topology tf and only if it compact.

A very important corollary of Theorem 0 is then viable through this characterization :

Corollary 4.4 If S is a compact lattice ( in the interval topology or finer ) and f : S — R
is submodular and lower semicontinuous then the set S* is a non-empty compact and complete
sublattice, and hence it has a greatest and a least element.

Proof. By Theorem 1 , S* is a sublattice. By standard result in real analysis, S* is non-empty
and compact. Thus, by the characterization of complete lattices, S* is complete. B

4.2 Topkis’s Results.

Submodularity is preserved after the minimization operation. o
If X and T are lattices, S is a sublatticeon X X T, S; = {z : (z,t) € S} is the section of S at
t € T and the projection of S on T, which we shall denote by [Tz S, {t : S; is not empty}.

Theorem 4.5 Topkis[1] 4.8 If X and T are lattices, S is a sublattice of X x T , f is
submodular on S, S; is the section of S at t € T and v(t) = 12%" f(z,t) is finite on the

projection [[p S, then v(t) is submodular on [[7 S .
Proof. We pick any ¢t,b € [[; S and = € S,y € Sy .Because S is a sublattice of X x T :

(zVy,tVb)eS
(xAy,tAND)ES

8



Thus :
v(tVb) +o(tAL) < f(zVy,tVb) + f(z Ayt Ab) < f(z,t) + f(y,b)

Now, by taking the infimum on the right hand side over € S;,y € S, we obtain the desired
result. W

The next theorem points to sufficient conditions for the monotonicity of the optimal solution
set .

Theorem 4.6 Topkis[1] 6.1 Let f : S C X x T — R be a real-valued function with S a
lattice and T a poset such that :

e f(z,t) is submodular in z on X for eacht € T .
o f(z,t) has antitone differences in X x T
e S, € L(X) is ascending on T

then S; = {z :z € arg néisnf(y,t)} is ascending in ¢ .
ycor

Proof. Foreacht € T, by theorem 1 S} is a sublattice of S . Let us pick ¢,b € T* with ¢t < b
where :
T = {t:S; is not empty}

and z € 57 and y € S; . By hypothesis, S5; < S, and :
zAy € Siandz Ay € 5

Then by hypothesis :

f(:l?/\y,t)-—f(.’t,t)Sf(y,i)—f(xvy,i)gf(y,b)—f(l‘\/y,b)

then by optimality of z in S; and y in Sy, we have :
0< flzny,t) = flat) < fly,b) = f(zVy,b) <0

Hence,zAy€ S;andzVvVye S;
The characterization of complete lattices yields then the following corollary :

Corollary 4.7 In addition to the hypothesis of the above theorem, if S; is compact for allt € T
and f is lower semi-continuous , then S*(t) has a greatest Z(t) , and a least element z(t) both
of which are isotone ont € T .



4.3 Tarki’s Intersection Point Theorem.

A lattice S is said to be completely ordered if for all z,y € S there exists z € S such that :
TZzzy

Given a real valued function f we denote by f(X) = {f(z) : ¢ € X} where X is a certain

subset of its domain.
A function g : S — S is quasi-increasing if for X C 5':

g(sup X) > inf g(X) and sup g(X) > g(inf X)

where the ”inf” and "sup” are taken with respect to the partial ordering in S .
Similarly, A function g : S — S is quasi-decreasing if for X C S :

g(sup X) < supg(X) and inf g(X) < g(inf X)

These notions are algebraic equivalents of a function having no downward jumps and a
function having no upward jumps respectively.

Theorem 4.8 Tarski’s Theorem :Let S be a densely ordered complete lattice, f : S — S
quasi-increasing and g : S — S and :

g(inf S) < f(inf S) and g(sup S) > f(sup S)
then P={z € S: f(z) = g(z)} is non-empty .

Proof. See Tarski [4]. W

5 Solution Horizon Existence.

We now present a "monotonicity” result of optimal first period decisions with respect to Plan-
ning Horizon’s length by using the lattice theoretic approach reviewed above. It turns out that
for the set of applications presented, the requirements are relatively "weak” when compared to
other available monotonicity results in the specific field of application.

We first state the standing assumption for the analysis :

Assumption 3 : For ¢t =0,1,2,... we assume :

o The reward functions r4(s,a) are convex in their first argument, supermodular on (s, a) .

10



o The functions fi(s,a) are non-decreasing in (s,a) and convex in s .

o There exists a uniform upper bound on the set of attainable states at time ¢ ,i.e :

M = sup s < o0
t,s€S;

Hence S; C S = (—oo,M] for all t .

o The action sets A(s) are "ascending” in (¢,s) and convex .

We now introduce the notation and assumptions needed for the analysis. We will denote by
VE(s) the net present optimal value for the T'—horizon dynamic optimization problem of the
above presented family with given initial state s that starts at time period t € A'. Analytically,
that is :

(Pr)  Vi(s)= max {5 - ri(s,a) + Vit (fils,a))}

a€A(s

where we set VQT 1 =0 and V? = 0 .We now state the most important assumption :

We first show how for a fixed finite horizon T, the value functions V}(.) t € N are convex.

Lemma 5.1 Under assumption 3, for fired planning horizon T , the value functions Vi(.)
t € N are conver.

Proof. We first show that V() is convex. We notice that by convexity :
re(As+ (1= A)-s',a) < Arp(s,a) + (1= A) - rp(s',a)

Or equivalently,
BT - rr(As+ (1 =A) - ¢,a) <
A BT rr(s,a) + (1= A)- A7 12(s', )
Hence, by definition :
BT rp(As+ (L= )\) - )a) <
A VE(s)+ (1= \) - VE(S)
In particular :

Vi (s + (1= 0)s") <AV (s) 4+ (1= ) - V7 (o)



By induction, let us assume V() is convex, we have to prove that V3 '(.) is convex.As above
we first notice that by convexity :

Biirioi(As + (1= N)s'ya) + VE(fici(As + (1 = A)s',a)) <
A+ (B rea(s, a) + Vi(fia(s, o))+
(L=A) - [B (s, ) + Vi(fima(s',0))]

Hence, in particular :

Bt iri_i(As + (1= N)s'ya) + VE(fica(As + (1 = X)s',a)) <
NV () 4 (1= ) - V()

Finally,
Vi (As + (1= 2)s') <
AV (s)+ (1= 0) - V()

Lemma 5.2 Under assumption 3 the objective functions of the collection of optimization prob-
lems (PL) are supermodular on (s,a) fort € N .

Proof. We first prove it for optimization problem (PZ) . Let Lr the set of all feasible pairs
(s,a) , that is:
Lt = {(s,a) such that s € St,a € Ap(s)}

We note that L7 is a lattice since by assumption Az(s) is "ascending” in s .Let us take two
two-tuples (s,a),(s’,a’) € Ly such that s > s’ and '’ > a . Hence, with respect to product
ordering, we have :

(sVs,aVva)=(ssd)

(sAs,and')=(s,a)

BT rp(s.d) + BT - rp(s',a)) >
BT rr(s.a)+ BT -rr(s,d)
which is exactly the first part of assumption 3. For (P}) t € {0,1,2,...,7 — 1} we use the result
given in Lemma 1 as follows; pick any two pairs (s,a),(s’,a’) € L; ,where L; is the lattice

So we need to show that:

L; = {(s,a) such that s € S;,a € Ay(s)}
we have by monotonicity of fi(.,.):

ft(saa,) Z ft<57a) Z
fils,a') > fi(s',a') >

ft(8/7 CL)
ft($l7 (I,)

12



There exist A € (0,1) such that :
fi(s,a) = A~ fils,d) + (1= 1) - fu(s', a)
fi(s',a) = (1= A) - fi(s,d') + X fu(s',a)
Thus by convexity of V/+!(.) we have that :

t+l( (,a)g/\ t+1(f(8a))+( )\) Vt+1(f( ,a))
VEFL(F(sa)) < (1= A) - VEFY(fu(s, ) + A - VEFL(f(s', )

Adding the previous two inequalities and by the assumption that r(.,.) is supermodular we
obtain the desired result:

Bt ri(s,d) + Vi (fils, ') + B* - ruls', @) + VE (fuls', )
>

Bt rils,a) + Vit (fils,a)) + B° - ro(s', ') + t“(ft(s @)
n

5.1 Monotonicity of Optimal Solutions.

We now state and prove the main result of this paper . For this result we need a second key
assumption.
We shall denote by A in what follows the set of natural numbers.

Assumption 4 : For any t € N and @’ > a ,s' > s we require :

B ri(s,a’) —ri(s,a)] > Tt_—;(S,al) - rt_l(sn,a)

B-ri(sya) = ri(s,a)] > rioq(s',a) — ri_i(s, a)

One way of interpretihg this assumption is when reward functions are partially differentiable,
where the last two requirements translate into :

ri(s,a + 8a) — (s, a) > lim ri—1(s,a+ 6a) — ri-1(s,a)

G- lim

§a—0 ba T 6a—0 oa
5 lim ri(s 4 8s,a) — (s, a) > lim ri-1(s + és,a) — ri_q(s,a)
§5—0 s T 85—0 0s

or equivalently :
ory(s,a) S Ori_1(s,a)

b da ~ Ja

13



5. ory(s,a) > ore-1(s,a)
ds 0s
In words this says that discounted marginal utilities are non-decreasing in time .This assump-
tion corresponds intuitively to the fact that technological progress allows for larger marginal
utilities (via cost reduction, etc...).

Theorem 5.3 Under assumptions 1,2,3 and 4, for fized initial state s ,there exist monotone
optimal solutions for the collection of problems (PY), i.e there exist al,al € A%(s,T), where

As(s, T) = arg max {ro(s,a) + Vz(fo(s,0))}

such that for any al € Ay(s,T) :

and :

Proof.

We need to show that V}(fo(s,a)) is supermodular on (a,T) for a fixed initial state s .In
order to do so, it suffices to show that V}(z) is supermodular on (z,T), since fo(s, @) is mono-
tone nondecreasing in (s,a) .

For ease of exposition let us denote by L, the set of all feasible triplets (an action that is
feasible for a given initial state and a given planning horizon), at time period T'i.e:

L7 = {(s,a,T) such that s € S,a € Ar(s) and T € N}

We first notice that Lt is a lattice since by assumption Ar(s) is "ascending” in (T, s) .
P g )

We first note that the maximand for the T'—th stage objective function is supermodular on
(s,a,T) € Lr.Indeed, for the 3-tuples (s,a,n),(s’;a,n — 1) € Ly such that s < s’ we have :

(sVs,ava,nV(n—1))=(s,a,n)
(sAs';aha,nA(n—1))=(s,a,n—1)

and by assumption 4 :

Bra(s’ a) +raoi(s,a) > B-ra(s,a) + ra_i(s,a)

14



Also, for the 3-tuples (s,a,n),(s,a’,n — 1) € L; such that @ < a’ . Then :

(sVs,aVa,nV(n—1))=(s,ad,n)
(sAs,ahd,nA(n—1))=(s,a,n—1)

But by assumption 4, we have :
Bra(s,d) +raci(s,a) > B-ra(s,a) + Taca(s,a’)

For planning horizons that differ in more than one period the proof follows by iteratively in-
voking assumption 4.

We now invoke Topkis’[1] Theorem 4.3 to prove that the T—th stage value function, i.e V# (s),
is supermodular on (s,T) € S x NV (or equivalently has isotone differences in (s,T) € S7 x N).

With a backward induction argument we assume now that the t+1—th stage (0 < t+1 < T)
value function is supermodular on (s,T) € S x N'.We note that the t-th stage objective function
with planning horizon T, i.e :

B ri(s,a) + Vit (fils, a))
is supermodular on (s,a,T) € L; where L, is the lattice :
Ly ={(s,a,T) such that s € S,a € Ay(s) and T € N
Indeed, as above,for the 3-tuples (s,a,n),(s’,a,n — 1) € L; such that s < s’ and :

(svVsi,aVanV(n—-1))=(sa,n)
(sAs;aha,nA(n—1))=(s,a,n—1)

by the backward induction hypothesis we have that :
W+2(ft+1(5/,a)) + Vi (fen(s.d) 2 Vi (fia(s,a) + V,fff(fm(s’,a))

hence : _
ﬂtrt(s,v a) + V71t+1(.ft(5/v a)) + .‘rjtri(& a) + Vrfjll(fi(87a,))
>

Br(s,a) + VAP (fils.a)) 4 Are(s',0) + VEL(fl ', 0)
Similarly, for for the 3-tuples (s,a,n),(s.a’,n — 1) € L; such that a < a’ . We have :

(sVs,aVanV(n-1))=(sd,n)
(sAs,aANd'.nA(n=1))=(s,a,n—1)

15



But by the backwards induction hypothesis :

Vnt+1(ft(3’ a,)) + Vifll (ft(sa a)) 2 VntH(ft(Sv a)) + V:ill(ft(s’ a,))

Hence : A
IBtrt(S’ a,) + VnH-l(ft(Sv a,)) + Etrt(‘sv a) + vai-%(ft(sva))
>

Biri(s,a) + VI (fi(s, ) + Biru(s, ') + VA (fi(s, @)

So we conclude that VE(s) (0 < ¢t +1 < T) is supermodular on (s,T') € S x N. In particular,
Vi (fo(s,a)) is supermodular on (a,T) for a fixed initial state s .

Finally, we apply Topkis’s [1] Theorem 6.1 to the first period optimization problem for a
fixed initial state s :

mas {ros,) + VA(fols,a))}

a€Ao(s

The objective function in this problem has been shown to be supermodular on (a,T') and since
by assumption the feasible set Ag(s) is compact, the result follows. B

5.2 Application to Optimal Exploitation of Natural Resources.

In the context of Exploitation of Renewable Natural resource , the assumptions are equivalent
to :

Assumption 3 : For t = 0,1,2,... the reward functions r;(c) are continuous and the
dynamics of renewal modeled by f;(.) must satisfy :

o f1(0) = O and it is monotone increasing.
o There exists z; > 0 such thatrfor‘every T > Z; we have :
filz) < 7y
Hence, the state space at time period ¢t 4+ 1 is S;41 = [0, Z,] and

M = supz,
t

so that S = [0, M].
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Assumption 4 :
/! /!
B-ri(e) 2 ri_y(c)
Discounted marginal consumption rewards are non-decreasing in time .This assumption corre-

sponds intutively to the fact that technological progress allows for smaller marginal extraction
costs.

5.3 Application to Production Planning.

In the context of Production planning , the assumptions are equivalent to :

Assumption 3 : The requirement that A;(s) is "ascending” in (¢, s) implies , given that
in this case we identify this to the set [0, M;] which is independent of the state I, , :

Mt S Mt+1

In words, nondecreasing in time mazimal production capacity.

Moreover,
supl; <M
t

An uniform upper bound to the set of attainable inventory levels.
Assumption 4 :By linearity of Inventory/Shortage costs this assumption translates into :

B-[Cn(z") = Cn(2)] < Cnoa(2') = Cnoa(z)

For the case when :
Kn+cev-z >0

Cnlz) = 0 Otherwise

The assumption implies .
BNy < Ky

That is, nonincreasing discounted set up costs and :
Joen <envo

which means nonincreasing discounted marginal production costs .
This assumption corresponds intutively to the fact that technological progress allows for smaller
marginal production costs.
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5.4 Application to Equipment Replacement.

In the context of equipment replacement, the assumptions are equivalent to :

Assumption 3 : The "ascending” requirement on the feasible action set can be satisfied
by requiring :
Ai C Ay

and :

Mt S Mt-l-l

In words, there will appear new technologies and no available technology exits the market .

Moreover,
suply <M
t

There is a uniform upper bound on the set of "technical” lifes of the equipment for the various
technologies in time.
Assumption 4 : The condition :

B-[Cn(2') = Cn(2z)] £ Cn-a(2') = Cn-a(z)

implies that relative cost advantages decrease uniformly in time.
One particular instance is the case of Stationary costs.

6 Of Further Reséarch : The Stochastic Case.

Let us now consider briefly the case where the state dynamics is not deterministic. Given state
s at time period ¢ , and if the action « € A(s) is taken, we will denote by Q(-/s,a) the
t— period stochastic kernel (see Hernandez-Lerma[l14] ) the Dynamic Programming functional
Equations are : o '

(P Vi(s)= max {3 r(s.a) + [ VEP(0)Qudy/s,0))

a€A(s)

for t € {0,1,2,..,7 — 1} and :

(Pf)  V{(s)= max {87 rr(s,a)}

a€Ar(s)
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In order to extend the proof of Theorem 1 to the stochastic case, the key step is to prove that
submodularity is preserved after maximization, and for this it is crucial to prove that the term

/ Vi (y)Quldy /)

is supermodular (s,a,T) and ¢t € {0,1,2,..,T —1,T} . Pairwise, this leads to :
e (:(-/s,a) supermodular on (s, a) for fixed ¢ .
e For the 3-tuples (s,a,n),(s’,a,n —1) € L; such that s <s" and :

(svVs,avVa,nV(n-1))=(s,a,n)
(shsyaha,nA(n—1))=(s,a,n—1)

we require :
SfV,fH(y)Qt(dy/S'aa) —JWH(ZJ)Qt(dy/S,a)
> B
erffll( y)Qi(dy/s',a) — V”l( )Q:(dy/s,a)
fort € {0,1,2,..,n —1,n} .
e For the 3-tuples (s,a,n),(s,a’,n —1) € L; such that a < a’ and :

(sVs,aVvad,nV(n-1))=(s,a,n)
(sAs,aNd,nA(n—1))=(s,a,n—1)

we require :
gVJH(@/)Q;(dy/S,a') —SfVJ“(y)Qt(dy/S,a)
> _
[V )@y s, = [V )Qudy/s,0)
fort € {0,1,2,..,n — 1,n}.

The particular forms that these requirements can take depend upon the specifics of each
application.
7 Solution Horizon for a Class of Dynamic Games.

R. Amir [3] pioneered the application of Lattice theoretic monotonicity results to prove existence
of Markov Perfect Equilibria for a class of stationary dynamic games. In this section, we consider
the nonstationary case and prove a Solution Horizon Existence result.
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7.1 Common Pool Resource Dynamic Games.

We present the class of nonstationary dynamic exploitation of common pool resources. Given
”consumption” levels ¢; and ¢’ at time period ¢ , and the current level z; of the Common
Property resource, the dynamics is modeled by :

Ty = ft(l‘t - C} - Ct2) t= 0, 1,2,..1

where we assume that f;(0) = 0 and it is monotone increasing. Moreover, there exists z; > 0
such that for every > z; we have :

ft(:r) < Iy
Hence, the state space at time period ¢ + 1 is Sy41 = [0, &¢] , regardless of ”consumption” levels
¢} and ¢? .Moreover, let us assume that :

M =supz; < >
¢
and we will denote by S = [0, M] .
Given that there is no over-consumption , i.e :

Ogcigxt 1=1,2
ad+cd <z t=0,1,2,..

the Payoffs for the Infinite Horizon Game are :
> B Uie) =12
t=0

where we assume that : .
sup Uy(c) S M < o0

nt,c
Under these basic assumptions, this class of dynamic games is ”continuous at infinity” as defined
in Fudenberg and Levine [5].

7.2 Markov Perfect Equilibria.
A strategy for player : = 1,2 is a sequence of maps of the form :
Y = (7(2)77;77; )

where 4! : S, = Rt . We will restrict our attention to strategies that do not lead to over
exploitation, i.e :
Y+ <
2= fis(To1 — v —ve) t=1,2,..
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A pair of strategies (7,,%,) is called a Nash Equilibrium of the dynamic game if :

(> o0

£ 61 ULGHe) 2 55 81 U e)

o0 [ee]

PR Ui (3 () 2 X o Ui (% ()
In words, this says that no player gains strictly more by following a different consumption plan
from the intial state zo . To avoid non-credible equilibria, that is those that may not prescribe
equilibrium play after a subsequent state, the notion of Markov Perfect Equilibria (MPE) is
introduced .

We say that a pair of strategies (7,,%,) is called a Markov Perfect Nash Equilibrium (MPE)
of the dynamic game if for every feasible state zx € Sk at time period k¥ > 0 ,we have :

PERCIE B RG]

£ 54 UG2e)) 2 £ 65 U203 (e0)
For a finite planning horizon the above definitions apply by simply considering total discounted
payoffs up to the planning’s horizon length.

7.2.1 Solution Horizon Existence.

The class of dynamic games presented belong to the family of so called ”continuous at infinity”
games ( see Fudenberg and Levine [5] ). One of the most interesting features of this family,
1s that limit points of MPE of Finite Planning Horizon versions of the game are MPE of the
Infinite Horizon game.

Thus, if first period MPE outcomes are monotone in Planning’s Horizon length then a
solution horizon can be easily proved to exist along the guidelines of theorem 3.1 .

7.3 Solution by Dynamic Programming.
7.3.1 The last stage game.

Let us consider the T'—long planning horizon version of the dynamic game. In particular, let u
s focus on the last period’s game.

We recall that a strategy combination , i.e (v!,v%) is "admissible” for the last stage game if for
every s € S, there is no over consumption , 1.e :

v (s)+7%(s) < s
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Player’s 1 best response to strategy 4* : S — R is the solution set of :

Vig(s;9?) =  max )[ﬂT'U%(C)] (1)

0<c<s—2(s
Similarly, Player’s 2 best response to strategy 4* : S+ R is the solution set of :

Vir(s;9') =  max )[ﬂT-U%(C)] (2)

0<c<s=1 (s
Let us restrict our attention to the next set of strategies :

L= {y:5— R, 7(0) =0 7 is l.s.c and
y(z) —y(y) <z —y Va,ysuchthat z >y}

If we define a partial order »=;in L as follows, for 71,72 € L:
71 =172 if and only if Vs € S we have y;(s) > 72(s)

Then the next result justifies the partial ordering choice.

Lemma 7.1 The set (L, >;) is a densely ordered complete lattice.

Proof. See Amir[3].
[ |
The following lemma will prove helpful in the next discussion.

Lemma 7.2 Let 4,42 € L.If for every s € S and'd > ¢
- BUHE) = Up(e)] 2 Up_y() = Up4 (0
then the value functions Vi r(s;v*) and VEr(s;+") are supermodular in (s,T).

Proof. We give the proof for the optimization problem (1), that is :

Vig(siy?) = max [BTUz(c)]

0<ce<s—v2(s)

We note that the set 0 < ¢ < s —~%(s) is ascending in (s,T) and by assumption the objective
function is supermodular in (s,¢,T) € S x [0,s —v%(s)] x N ( note that this cartesian product
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is a lattice, since the set [0, s —%(s)] is ascending in s ). Hence by Topkis’s Theorem 6.3, there
exist an extremal monotone best reply , i.e :
» T
BRy(si7") € arg _max, 6 Uz(c)
BRY(s;4%) in (s,T) .Moreover, by Topkis” Theorem 4.1, the value function V7 1(s;7?) is su-

permodular in (s,T) € S x N .
|

Lemma 7.3 For fited s € S and v,u € L such that v = p then :
BRi(s;7) X BRy(s; )

Proof. It simply follows form the fact that Optimization problems (1) and (2) are supermodular
in (¢, ) with v € L being the opponent’s strategy. The feasible consumption set 0 < ¢ < s—y(s)
is ascending in v € L fro fixed s € S . After noting these facts, the results follows from
Topkis’Theorem 6.1 .

|

We now use the previous results in conjunction with Tarski’s Theorem to prove existence
of monotone equilibria in T' for last stage game.

Theorem 7.4 For fized s € S there exist a Nash Equilibrium for the last stage subgame in
strategies that belong to L.

Proof.

We define two relevant maps as follows :

P:LxLw—LxL
(vop) = (Y + ) As, (v +p)As)

We note that the identity function f(s) = s is the lowest upper bound of lattice L . P is clearly
isotone in L x L with respect to product ordering and :

P(0.0) = (0,0)
P(s.s) = (s,8)

The other useful map is :

QT_:LXL»—)LXL )
(y,) = (BRY (i i) + i1,y + BRE(:57))
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By the Lemma 2proven above the map @t is isotone in L x L with respect to product ordering.

Moreover :
Q1(0,0) =ix: P(0,0)
Qr(z,z) = (z,2)
Hence the conditions on Tarki’s intersection Theorem are met , i.e there exist (y*, u*) € L X L~

such that : _
(v + ) Ns=BRp(;p*) + p*
(" +u*) As = BR3(;7") +7*

from where we conclude the result.

7.4 Bacward Induction.

We now consider the ¢ stage game, to prove existence of MPE for all feasible subgames starting
at time period ¢, and assuming existence for the subgames starting at the remaining stages of
the game and the monotonicity properties as shown for the last stage game .

If for every s € S, there is no over consumption , i.e :

Y'(s) +7%(s) < s

Player’s 1 best response to strategy ¥ : S +— R is the solution set of :

Vir(s;%) = max 8 Ut(e) + Viir(fls —c=+*(s))] (1)

0<c<s—~2(s

_Similarly, Player’s 2 best response to strategy 7' : S 'R is the solution set of :

Vir(siyt) = max  [8° Ui(c) + Vi p(fils —c=7'(s)))] (2)

0<c<s=1 (s)

We now replicate the results in the previous section for the ¢ period stage game with initial
state s .

Lemma 7.5 Let v',4% € L . Under the same assumptions as in Lemma 1 above the value
functions V'r(s;9*) and Vip(s;9") are supermodular in (s,T) € S x N, moreover, for fized
s € S there exist extremal monotone decrcasing optimal solutions in T .

Proof. We give the proof for the optimization problem (1), that is :

Vir(sio®) = | max, [8-UL0) + Virlfls —e=7(s)

0<e<s—v2 (s
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We note that the set 0 < ¢ < s—+%(s) is ascending in (s,T') . Let us make a change of variable
as follows :

y=s—c—)
Thus the equivalent to player’s 1 optimization problem is :

Vir(s;9?) =  max )[ﬁt Ut (s =y =7%(9)) + Vit o (fr(v))]

0<y<s—% (s

The objective function of this problem is supermodular in (s,y,T) € S x [0,5 — ¥*(s)] x N .
We note first that for the two tuples (y',T) and (y,T — 1) such that y’ <y we have :

(y’Vy,TVT—1)= (y,T)
YNy, TANT-1)=(y, T -1)

and by supermodularity of V;}; 7(s) on (s, T) by backward induction and by monotonicity of
fi(.) we have that :

Vti—l,T(fT(y)) + V;}}-I,T—l(fT(y,)) > Vt}H,T(fT(?JI)) + Wi—l,T—l(fT(y))
Hence :

BU (s =y = 7%(s)) + Vi1 o (fr(y) + U (s =y = v*(s)) + Vi 71 (fr ()
>

BUNs =y = 72(5) + Viaa(Fr(y) + BUL (s = y = 7%(5)) + Vibaza (Fr(v))

We finally show that the aforementioned objective function is supermodular in (s,y) .Indeed,
for the two tuples (s',y’) and (s,y) such that s’ > s and y’ <y we have :

(Vs yVy)=(s,y)
(5/ A Say/ N\ y) = (Say/)-
Moreover :
s' =y =) 25—y =) 2 s —y —(s)
s'—y' =) 25—y —4(s) 2 s —y —7*(s)
hence, there exist A € (0,1) such that :
sS'—y =7 ()= A (S =y =) H A=A - (s —y —7(s))
s=yY =) =(L=X) ("= =72 (s) + X (s —y = ¥(s))
and by concavity :

Ui(s" =y = 7%(s")) 2 X Uls' =y = 4*(s) + (1 = A) - Un(s =y = 7*(s))
Uls —y' =7%(s)) 2 (1= 2) - Ui(s" =y = ¥*(s)) + A - Us(s =y = 7*(s))

~

25



The claim follows by adding the previous inequalities.
Finally, by Topkis’s Theorem 4.1, the value function V7_, £(s;4?) is supermodular in (s,T) .
If we apply Topkis’ Theorem 6.3 to the optimization problem :

Vir(s;9?) =  max )W Ui (s —y = 7(s)) + Vihar(Fr(v))]

0<y<s—% (s

Since we have shown that the objective function of this problem is supermodular in (y,s,T)
there exist extremal monotone optimal solutions in 7' . W

Lemma 7.6 For fized s € S and v, € L such that v = p then for each player i = 1,2 there
ezist an extremal monotone best reply , i.e there exist BRy(s; i) and BR}(s;7) where :

BRﬁ(s; p) € arg  max [ Uti(c) + Vtii-l,T(ft(S —c—u(s)))]

0<c<s—u(s)

BRy(s;7) € arg _max [ Uj(c) + Vi z(fils — ¢ = 7(s)))]

0<c<s—(s)

such that B B
BRi(s; ) = BRi(s;7)

and BRy(s; u),BR;(s;7) € L.
Proof. Let us make a change of variable such that :

y=s—c—ps)

Thsu the equivalent to player’s 1 optimization problem is :

. v t 1 : 1
ogy?siﬁ(é)[ﬁ Ui (s =y = p(s) + Vigar(fr(y))]
We note that the constraint set is "descending” in u € L by the very definition of the partial
ordering in L. Moreover, the objective function is submodular in (y, 1) . Indeed, let us consider
the two-tuples (y', u) and (y,7) such that ¥’ >y and v > u we have :

' Vy,yVp)=(y,7)
W' Ay, vy Ap)=(y,p)
Moreover :
s—y—p(s) >s—y—7(s) 2s—y —(s)
s—y—pu(s)Zs—y —p(s)2s—y —1(s)
hence, there exist A € (0,1) such that :



Hence by concavity :

Uls =y —7(s)) 2 A-Us(s —y — u(s)) + (1 = A) - Us(s = 9" = 7(s))

Uls—y' = p(s)) 2 (1= A) - Us(s —y — p(s)) + A Usls — 9" = 7(s))
By adding the previous inequalities we obtain the desired result. We now invoke the Dual
Statement of Topkis’ Theorem 6.1, to get the existence of a monotone decreasing optimal
solution. By the change of variable this is tantamount to the claimed result. B

We now use the previous results in conjunction with Tarski’s Theorem to prove existence

of equilibria for the ¢ stage game that has initial state s .

Theorem :For fixed s € S there exist a Nash Equilibrium for the ¢ stage subgame in
strategies that belong to L.

Proof :
We define two relevant maps as follows :
P:LxLw—LxL
(o) = (v ) As, (v + 1) As)

P, is clearly isotone in L x L with respect to product ordering and :

P(0,0) = (0,0)
P(s,s) = (s,3)

The other useful map is :

Qu:LxL—LxL
(v 1) = (BR{(5 1) + 1,y + BE{(57))

By the lemma proven above the map @ is isotone in L X L with respect to product ordering.
Moreover :

©:(0.0) =41 P(0,0)
Qt(-Tv r) = (Ia l‘)
Hence the conditions on Tarki’s intersection Theorem are met , i.e there exist (v*,p*) € L x L
such that : ~
(Y 4w ) As=BR(5p7) +p
(v +w)As =BRIGY) +

from where we conclude the result.



7.5 Monotonicity of First Period Outcome of an MPE.

The next theorem is just a straightforward application of the above stated chain of results.

Theorem 7.7 For the T—Planning Horizon game, there exist a Markov Perfect Equilibrium
such that for a given fized initial state sq, the first period outcome is monotonically decreasing
in T

Proof. Let (v5r,p57) be the first stage pair of equilibrium strategies for the T'—planning
horizon game , as constructed by the backward induction procedure outlined in the previous
section. By definition :

nr€ag  max  [Us(c) + Vip(fols — = pmor(s))] (1)

0<ceLs—pg (s

nd
' i €arg_max  (UF(e) + Vir(fols = = 132(s)] (2

<e<s—3 T(s

For fixed initial state sy , Lemma 2 above yields :

70,T(30) < 75,T+1(30)
NO,T(SO) < NS,T+1(30)

8 Conclusions.

We have used lattice programming techniques to obtain monotonicty of first period outcomes
with respect to planning horizon’s length. The set of sufficient conditions derived are relatively
weak when compared to other similar results and have nice economic interpretations.

This monotonicity result is then used to prove the existence of a ”solution” horizon for a class of
nonstationary dynamic optimization problems and games. For production planning problems,
the sufficent conditions are pretty weak in that production cost functions are not required to
be convex or concave and in the context of equipment replacement, this is the first solution
horizon existence result that we are aware of.

Finally, for a class of common pool resource exploitation dynamic games, the existence of a
solution horizon is established with little additional work.
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