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SUMMARY 

The paper presents a smoothing technique to the oscillated contact pressure obtained by penalty methods 
for a class of unilateral contact problems in linear elasticity. The main result is to show that the smoothed 
contact pressure satisfies the so-called Babuska-Brezzi condition which dominates the convergence of 
the penalty method. One numerical example is described. 

INTRODUCTION 

Penalty methods have recently obtained popularity to be applied in the field of finite element 
methods, to solve constrained problems in mechanics such as Stokes’ flow and plate bending 
problems.’ It is also widely admitted that iil’exact integration must be performed for evaluation 
of the penalty term in finite element approximation to get physically meaningful  solution^.^'^ 
This technique is called reduced integration, and is deeply investigated by Malkus and Hughes4 
in connection with mixed finite element methods. Within this paper, such a method will be 
referred to as the reduced integration penalty (RIP) method. 

As shown in References 5 and 6, the RIP method is also applicable for solving a class of 
contact problems. There, convergence of the RIP approximation is proved only for some 
choice of quadrature rules for the penalty term. If Gaussian quadrature rules, which are most 
popular, are applied, contact pressure is oscillated, and convergence of the methods cannot 
be obtained. If trapezoid and Simpson’s type quadrature rules, which imply inexact integration 
of the penalty term, are applied, then contact pressure is smooth, and moreover convergence 
of the approximation is proved. 

In this paper we shall obtain a smoothing technique for oscillated contact pressure which 
also provides convergence of the method of approximation. Specifically we shall consider the 
case that the penalty term for unilateral contact constraint will be integrated by one-point 
Gaussian quadrature rule. This integration rule gives a piecewise constant contact pressure 
which is oscillated, and does not satisfy the so-called Babuska-Brezzi condition, which describes 
the constraint qualification condition to the corresponding Lagrangian multiplier in the theory 
of optimization, and is indispensable to prove convergence of the RIP method. The smoothing 
technique introduced here gives a piecewise linear contact pressure, which satisfies the 
Babuska-Brezzi condition, and which is constructed from the solution obtained by using 
one-point Gaussian quadrature rule. We shall also give a priori error estimates of the RIP 
method following the analysis in Reference 5, together with a numerical example which 
confirms the results obtained in the theoretical arguments. 
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UNILATERAL CONTACT PROBLEMS 

A typical constrained problem resolving by penalty methods is a unilateral contact problem 
in elasticity formulated by the variational inequality 

u E K: U ( U ,  u - u ) > . ~ ( u  -u),VU E K 
Here 

(4) K = { U E  v: u , - g s O  on r,} 

The bilinear form a(. , .) represents the virtual work of the elastic body fl by a virtual 
displacement u at the equilibrium configuration given by the displacement u ;  f and f are 
applied body forces and surface tractions on a part rF of the boundary r; and Eijkh, 1 S i, j ,  k, h s 
N, is the elasticity of the body satisfying the conditions 

The elastic body is fixed along the boundary rD, and we assume that the total boundary r of 
the body consists of three parts: rF, To and rc. The normal displacement u, is defined as 
u, = v . n, where n is the unit vector outward normal to the boundary. The given function g 
represents the gap between the elastic body and the rigid foundation. The space H'(fl) is the 
Soboiev space,7 in which the virtual work of the elastic body is finite. The inner product and 
norm of ( H ' ( ~ I ) ) ~  are given as 

r 

As shown in Reference 8, the variational inequality (1) has a unique solution u E K, and is 
obtained as the limit E -* 0 of the sequence {u,} constructed by the solution uE E V of the 
penalized problem to (1): 

1 
UE E v: a(u,, u ) + - ( P ( u s ) ,  u, )  = f ( u ) ,  u E v (8) 

& 

Here (. , .) is the inner product for L2(rc) ,  and p is the penalty operator defined by 
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PENALTY-FINITE ELEMENT APPROXIMATIONS 

We here consider finite element approximations of the penalized problem (8) for the case 
N = 2, i.e. R is an open subset of R2. Let vh be a finite element approximation of the space 
V defined by ( 5 ) .  Let the operator ‘I’ be the quadrature rule evaluating the L2(rc )  inner 
product: 

E G 

e = l  i = l  
I ( f ,  g )  = C L ( f ,  g), Ie(fr g )  = C w;fT(XT)g(x;) (10) 

for functions f and g on rc which are defined on each integration points. Here E is the 
number of elements overlapped with the boundary rC, w; and xT are weights and co-ordinates 
of integration points, respectively. For one-point Gaussian quadrature rule, G becomes equal 
to 1, and x; is the centroid of edge of the eth element. Applying (lo), a finite element 
approximation of (8) is given by 

An approximation of the contact pressure p :  is then defined by 

for the space Qh of all polynomials spanned by Lagrangian interpolation functions associated 
with each integration point. Typical choices of G and Q h  are given in Figure 1. For the case 
that G = 1 and vh has h e a r  traces on the boundary, is the set of all piecewise constant 
functions, and the numerical integration ‘I’ can provide exact evaluation to the L2(rC) inner 
product between contact pressure 4 and normal displacement u E. 

As shown in References 5 and 6, success of the method (11) strongly depends upon the 
Babuska-Brezzi condition, i.e. existence of a positive constant > 0 such that 

for every qh E Qh, where 11. )lo is the norm on L2(rc).  The existence of for the cases M3 and 
M4 which provide conforming space Oh has been shown (see Figure 1). However M1 and M2 
do not satisfy the condition (13), and the contact pressure identified by (12) is oscillated. 

A SMOOTHING TECHNIQUE 

We shall restrict our discussions to the case M1, i.e. one-point Gaussian quadrature rule is 
applied to evaluate the penalty term. As noted in above, this scheme does not satisfy the 
condition (13). We shall further simplify the problem so that the surface Tc is identified with 
a straight line for a two-dimensional domain R of the elastic body. 

Let 4, and ue be nodal values of q h  and u ;  on the line rC, respectively. Then, for the case 
M1, we have 

for a piecewise constant contact pressure 4h and a piecewise linear normal displacement u t ,  
where he is the length of the segment of an element on rc shown in Figure 2, Within an edge 
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Case G 

111 

M2 

h! 4 

"h 'h 

Figure 1. Typical examples of Vk and Qh 

h 
: 9  : I n t e g r a t i o n  ----- 

P o i n t s  

: Nodal P o i n t s  - . -h 
. 9  

Figure 2. Definitions of q h  and qh 
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of an element we have 

Let i j  be a piecewise linear function defined by 

Then 

E 

= C ((?eve + q e + l v e + l ) h e / 2  
e = l  

E 

= c f e ( i j h ,  ut> 

= &qh, U t )  

e = l  

where the operator 'fe' is the trapezoid quadrature rule, and 

E 
i(ijh, Ut) = C fe(qh, TI:, 

e = l  

f e  (4  h 9 21 L = 5 (qeue + q e  + 1 u e  + 1 1 2 

This means that the L2(Tc)-inner product between q h  and u: can be identified with the 
quadrature rule of trapezoid for the L2(Tc)-inner product between piecewise linear functions 
4' and v,. The penalty from (11) is then written as h 

a(u,", u h ) - f ( p : ,  u L ) = f ( u h > , t l u h  E v, 
as well as 

Here p," is a contact pressure smoothed by (17), and is a piecewise linear polynomial which 
is continuous on Tc. 

We next show that q h  satisfies the LBB condition. 

Theorem 1 

Let Tc be a straight line for a two-dimensional domain R. Let one-point Gaussian quadrature 
rule be used to integrate the penalty term, and let 'f' be the trapezoid quadrature rule for 
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functions qh and u i .  Then 

for some positive constant p > 0. 

Proof. Taking u, = q,, e = 1, . . . , E + 1, in the form (qh, u : )  = f ( q h ,  u t )  yields 
A - h  - h  1/2 A h h 1/2 

(4h, u!3={1(4 , 4  1) U ( O n ,  un>) 

By direct expansions, we have 

Then 

To obtain the inequality (20) it suffices to prove that 

I I ~ f : I l o a  cIluhIIi h’” 
for an arbitrary element u E vh such that values of u are zero at all nodal points of the model 
except on the boundary rC, and the tangential components of u h  along Tc vanish. Let r‘, be 
the edge of the element a, related to the boundary rc. Without loss of generality, we may 
assume Re is a square whose edges are parallel to the x-y co-ordinate axes. Let r‘, be parallel 
to the x-axis, and let u1 and u2 be displacements in the y-direction (i.e. normal direction) of 
nodal points located on r;. If h is the length of edge, we have 

(24) 
h 

(u:)’ ds = - { 3 ( U ~ + ~ 2 ) ~ + ( - f J 1 + ~ 2 ) ~ }  I,, 12 
and 

Thus, it is clear that there exists a positive constant C, > 0 such that 

Establishing inequalities for each r‘,, (23) is now clear. 
We have shown that the contact pressure q h  and &, specially constructed by (17) from q h  

and pt ,  does satisfy the LBB condition which ensures convergence of the method. 
Following analysis given in Reference 5 ,  we can also obtain a priori error estimates for the 

penalty-finite element approximation under a certain regularity assumption on the solution 
of (1). 

Let v h  be the finite element approximation of V constructed by PI (three-node triangular) 
or  Q1 (four-node quadrilateral isoparametric) elements, and let quadrature in (11) is the 
one-point Gaussian rule. 

Theorem 2 

Let same conditions in Theorem 1 hold, and let 

u E H2(R),  p E H1’2(rC),  and g E H3l2( rC) .  
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Then, the following estimates hold for some positive constants C1 and C2 independent of the 
mesh and penalty parameters, h and E ,  respectively: 

-114 112 Ilu-u:lllsCl(h+h E ) 
IIp -ppllos C2(h”Z+h-3/4E112) (26) 

We simply note that a key step to obtain estimates (26) is the condition (21) proved in 
Theorem 1, and that details of derivation (26) can be found in Reference 5, especially 
Theorems 6.1, 6.2,7.1 and Example 6.1 in Reference 5. 

NUMERICAL EXAMPLE 

As a model problem we shall consider a plane strain problem of Hertz type. Let be a 
isotropic and homogeneous linearly elastic foundation characterized by Young’s modulus 1000 
and Poisson ratio 0.3, and let s1 be a rectangular of 4 x 16 as shown in Figure 3. An infinitely 
long circular cylinder is indented into the centre of the foundation. Let the cylinder be rigid, 
and let its radius be 8. We discretize the foundation by a,-elements, and integrate the penalty 
term by the one-point Gaussian quadrature rule. 

Pressure distributions given in Figure 4 are obtained by 32 and 128 Q1-elements. It is easily 
observed that the contact pressure pf is smooth, whereas p: ,  which is originally obtained by 
the penalty method, is oscillated. 

. Q1-Elements with 
One-point Gaussian 
Integration Rule 

. Young‘s Modulus E=1000. 

. Poisson‘s RatioU=0.3 

. Penalty Parameter &=lo- 5 R=8 

\ . Plane Strain Problem 

I Cylinder 

8 

I 
Figure 3. Finite element model and deformed configuration (depth of indentation = 0.8) 
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( 32-Elements ) ( 128-Elements ) 

Figure 4. Distributions of contact pressure 
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