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I. INTRODUCTION

There are several types of problems in science in which experi-
mental observations may best be represented by a linear combination of

exponentials of the form:

n
')\if

In these problems the parameters Ni and li have biological or physical
significance. Therefore, in fitting a function of the above form to the
data it is not sufficient that the function merely approximate the data
closely, but it is also necessary that the parameters be accurately esti-
mated. It should be noted that in Equation (1) the exponentials are all
assumed to be separate and unrelated, i.e., none of the components are
produced as the result of the decay of another component. The problem
may be stated as follows: a function f(t) is approximated by experi-
mentally determining an estimate of f(t) at a finite number of values
of t. From this discontinuous set of data it is desired to obtain
n(total number of components), and estimates of the N;*s and the A ‘s.
The essential difficulties in the solution of this problem are that we
are dealing with a series of non-linear equations, that the data are only
approximating the function f(t) over a finite range in t and that the
exponential series possesses strongly non-orthogonal properties.

With respect to this problem, the authors have principally been
concerned with the analysis of multicomponent radioactive decay curves.
However, similar problems arise in the study of a) first order chemical

kinetics, b) certain diffusion problems, such as neutrons in a moderator,
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c) some order-disorder transitions in solid state physics, d) di-
electric properties of certain compounds, e) relaxation properties

of organic polymers, f) pulses in electrical networks, g) survival
and mortality experiments in the biological sciences and h) servo-
problems of the guided missile type, to mention a few examples. Since
lately in many cases it has become technically feasible and even con-
venient to obtain experimental data of reasonably good accuracy, the
method of analysis of these data assumes greater importance. The
purpose of this paper is to describe a mathematical method of analysis
which appears to possess certain advantages over previous methods.

The method has been evaluated on the IBM 650 computer located at the

University of Pittsburgh.

II. PREVIOUS METHODS

By far the most common method used to resolve a decay curve
into its components is the graphical approach. Here the data are
plotted on semilog paper, and the curve resolved by a repeated sub-
traction of straight lines. The limitations of the method are appar-
ent and need not be enumerated here. The method is, however, certainly
the easiest to perform. The method may be considerably refined by em-
ploying a least-squares technique to fit the straight lines, and some
error estimation becomes available. The difficulties inherent in the
subtraction procedure, however, still remain. Mathematical approaches

to this problem have been suggested by Proney(l), Hudson(e),

(l) F. B. Hildebrand, Introduction to Numerical Analysis (McGraw-Hill
Book Company, Inc., New York, 1950).

(2) 6. E. Hudson, Aw. J. Phys., 21, 362 (1953).




Householder(3), Cornell(u), and Ziegler(S). To the authors! knowledge
none of these methods, except perhaps that due to Zeigler, are in any
sort of routine use. In none of these methods does the number of com-
ponents "fall out" of the analysis, although in two cases(3’5) tests
are included to determine the number needed to adequately fit the data.
As Lanczos(6) has pointed out, there are a number of simple
and straight-forward mathematical solutions to the problem of ssparating
exponentials, but unfortunately enormous practical problems arise when
they are applied to experimental data from physical experiments. The
principal reason for this is the exceedingly non-orthogonal behavior of
the exponential functions. The end result is that the 1nitial data
must be extremely accurate if more than two or three exponentials are
to be separated. In most cases the accuracy requlired is far beyond that
usually available. In Lanczos! opinion no amount of least-square or
other statistical treatment can make up for the extrems sensitivity of
the parameters to very small changes in the initial data. In the method
to be described here a transformation of the initial function to the com-
plex plane is made, wherein the new function exhibits entirely different
properties. The hope that this method may succeed where other methods,
which deal with purely real numbers, fail i1s based on the presence of

periodic functions which arise during the analysis.

(3) A. S. Householder, U.S. Atomic Energy Commission Report ORNL-455
(Feb. 1950).

(4) R. G. Cornell, U.S. Atomic Energy Commission Report ORNL-2120
(Sept. 1956).

(5) G. R. Keepin, T. S. Wimett, and R. K. Zeigler, J. Nuclear Energy,
6, 1 (1957).

(6) C. Lanczos, Applied Analysis (Prentice-Hall, Inc., New York, 1956).
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IIT. SOLUTION BY FOURIER TRANSFORMS

The function f(t) in Equation (1) is in the form of a Dirichlet

series which may be expressed as a Stieltjes integral.

o0

n - . ,
f()=) Nje )"t=f e 2 dh(n)
iz 0 (2)

The function f(t) may also be expressed in the form of a Laplace

integral equation.

o
tin=L e ™ g(n) aa
0 (3)
Here h(A) is a step function and g(l) is a sum of delta functions. Due
to the error inherent in the experimental estimate of f(t) and in the
numerical computations necessary to obtain g(l), a plot of g(l) versus A
will appear in the form of a frequency spectrum. The preseﬁce of a peak
in the spectrum indicates a component, the abscissa value at the center
of a peak is the decay constént A;, while the height of the peak is pro-
portional to the coefficient N;. The problem then is to determine g(k)
given the experimentally determined function f(t). The method advocated
here is based on a well-known general approach for solving linear inte-

(

gral equations. 7) We apply this approach to the specific case of the
Laplace integral equation in a manner after Perlis.(8) A somewhat similar

treatment has been described by Paley and Wiener.(9)

(7) E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals
(0xford University Press, London, 1937).

(8) A. J. Perlis, U.S. Atomic Energy Commission Report NP-786 (Sept. 1948).

(9) R. E. Paley and N. Wiener, Fourier Transforms in the Complex Domain
(American Mathematical Society, 1934).




We begin with Equation (3),

and proceed to transform the variables A and t.

Then

[

Multiply both sides by e*,

g()\

ILet A =

eXf(eX) =f ge Y elx-y) gle¥)dy

Now

-0

F(u) =|—f eX fleX)e X gx

where F(u) is the Fourier transform of e*f(eX).

Combining Equations (5) and (6) we obtain

Let s

=L

=X =Y,

or x =8 + Y.

V)eliny dyf

Then

e® ¢S g(e'y)dy}ei"(s“’)ds

SeliMs g

eV and t =

(3)

(%)

(5)

(6)

(8)



-6-

Rearranging we have

Fu) :J__zl_;[:{[:e-e(X*y) e(x-y) g(e'y)dy}e iux dx (6)

Before proceeding further it is important to keep in mind that the term
eS = eX~Y was formed by combining in Equation (5) the term e, obtained
by differentiating A = e™Y, with e*. The kernel e’e(x_Y)e(X‘Y) in Equa-
tion (5) was kept intact and later separated from the function g(e'y)dy.
This last function is related to the original variables as follows:

gle¥)dy =g (A)/A dA
(10)

Hence, when we eventually obtain g(e'y) as a function of y from Equation

(9), this will be equivalent to a plot of g(x)/k as a function of .
Returning to Equation (9) we see that the right hand side is the

product of the Fourier transform G(p) of g(e=Y) and the Fourier trans-

form K(u) of e-€5es, Therefore,

Flu)=~2m G(u) K(u) (11)

and

l Fu)

Je2r  Klu) (12)

G(u) =

Taking the inverse Fourier transform of G(p) we obtain

g(e'y)-_-_l— OOM

-iyu
2mJ K(w) °© du | (13)



In this case K(u) can be evaluated analytically, and it turns out to

be the Euler integral for the complex Gamma function:

K(u)=—l—1"(l+iu) (14)

V2n

IV. A FEW DETAILS ON THE NUMERICAL SOLUTION

Briefly, the method of solution was shown to consist.of essen-
tially only two integrations. First the Fourier transform F(u) is found
using Equation (6). This is divided by the complex Gamma function given
in Equation (14). Finally g(e'y) as a function of y is found using the
inverse Fourier transform shown in Equation (13). From the latter, a
plot of g(l)/k versus A may be immediately obtained. Since it is con-
venient to use equidistant values of u in determining F(p), K(u) can most
easily be found from tabulations (lO)_ The function g(e'y) may be found
using the same p values or an equidistant subset thereof. Two additional
subjects warrant comment: these are the cut-off error and the set-up of

the numerical integrations.

A, Cut-Off Error

It is clear that in Equations (6) and (13) one cannot numeri-
cally integrate from -« to «». Consider Equation (6). Here we must in-
troduce the limits + x, which are the cut-off points of the integral.
Instead of Equation (6) we now have

X0

EF(u)=[xoe*f(ex)e'“dx+E(x°,u) 5)

(20) National Bureau of Standards, Applied Mathematics Series 34 (1954).
"Tables of the Gamma Function for Complex Arguments’™



The calculated N2n F(u) will be in error by at least the amount E(xo,p).
The major difficulty of the method is now apparent. We are trying to
simulate a curve with an abrupt cut-off at X by a sum of exponentials
that extend to x = ». This has the effect of adding into F(p) Fourier
components which extend the range in p on which F(u) maintains appreciable
value. ©Since K(p) diminishes rapidly with increasing p, for some value of
p the quotient F(p)/K(p) in Equation (13) will begin to grow without bound.
The 'end result has been found to be error ripples in the plot of g(e‘y)
versus y which tend to obscure the results. Hence, it is necessary- that

a finite X exist such that the value of E(xo,u) is sufficiently small that
a good solution is possible. It is most unfortunate that once F(p) has
been warped by the cut-off, the warping cannot be removed by any subse-
quent mathematical treatment.

If it is not possible to experimentally follow the decay curve
for a long enough time, then the data must be treated in some appropriate
manner. For example, the longest-lived component might be extrapolated
to give the necessary information. Even a somewhat inacéurate extrapo-
lation will usually yield far better results than if no extrapolation is
made. Alternatively, it might be possible to subtract off the longest-
lived component before the analysis. Finally, a drastic and unrecommended
step would be to introduce a convergence factor into Equation (13).

It was noted that the cut-off errors in Equation (6) tend to
increase the height of the error ripples in the final results. A cut-
off at p =+ Ky in Equation (13), on the other hand, has been shown to
primarily affect the frequency of the error ripples and the breadth of the
true peaks. The larger the value of oo the narrower and more well defined

are the component peaks. Tae maximum useable value of p, will depend on



how good the initial data are and on the cut-off at XO. If Ko is chosen
too large, then the cut-off at X, will cause the amplitude of the error
ripples to increase. If p, is chosen too small, there will be an un-
necessary loss in resolution of the peaks in the final result. The
greater the value in p at which F(p)/K(u) remains well behaved, the finer

the resolution can be made in the final results.

B. Numerical Integration

It is convenient to adjust the units of t in the initial data
such that the decay constants A fall in the range from O to 1. In other
words, the half-life of the shortest-lived componenﬁ should not be less
than 0.69% units of t. This is no restriction since the range of t is
infinite and the scale with which t is measured can be arbitrary. Next,
each value of f(t) is multiplied by its value of t and the results plotted
as exf(ex) versus X. JEE F(u) is then related to the area under this new
curve.

Whereas t ranged in principle from O to =, x now ranges from

- to ». Hence, we can set up the following integral:

X
[ ° i
s gz Jy [ e a]eter o (a6)
or more conveniently,
X
l ° * *
Flu) = —= £ (x)+f (-x)[cos ux
A ]

+ i[f*(x)—f*(—x)] sin ux}dx
(17)
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Here we define f¥(x) = e*f(e¥). This yields real and imaginary
parts of F(p) which we term F_, and Fg respectively. K(u) is similarly

composed of real and imaginary parts K. and Ky. Hence

o Gluy = Fl) | FotiFs  (Fo+iFo) (Ko iKs)

K(,Ll)- Kc+iKs K%.{.K%
(18)
Next
| roF(u) -iyu, L fro(FetiFs)(KeiKs)
2m ) K(p) © d"'an K2 4 K2 (cos yu
~Ho “HUp Cc S
-i sin yu)du
(19)
A1l 0dd terms vanish in Equation (19) yielding
Fo Ko+ Fs K Fs K¢—Fc K '
0] K +Ks KC+Ks (20)

As was pointed out before, if F(p) is determined for an equi-
distant set of p's ranging from O to py in steps of say &y = 0.1, it is
then convenient to use tabulated values of the gamma function.(lo) In
most cases it suffices to use a simple numerical integration scheme
such as Simpson's Rule for Equations (17) and (20), although if the
accuracy of the 1lnitial data warrants 1t a more refined procedure such
as that of Filon(ll) may be employed. Normally it i1s not convenient to

take experimental data in precisely the right intervals that would best

(10) National Bureau of Standards, Applied Mathematics Series 34 (1954).

"Tables of the Gamma Function for Complex Arguments."

(11) 1. N. . Filon, Proc. Roy. Soc. Edin., 49, 38 (1928-29).
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suit the method of analysis to be used to =valuate the data. In the
present case, two alternatives arise. Either an unequal interval integra-
tion scheme could be employed to obtain the Fourier transform function
F(p), or else an interpolation procedure might be used to obtain functional
values of the initial data at the desired intervals. If a large number

of data are available one might choose the former approach, whereas if

the initial data are available at only a few points or if the data are

badly scattered the latter method might prove the more desirable.

V. RESULTS OF THE NUMERICAL EVALUATION

To test out the method we have constructed one, two, three, and
four component decay curves. In ths most accurate of these curves [f(t) =
lOOe‘O°02t] the data ranged in accuracy from about 1 part in lO5 at the
beginning of the curve to 3 parts in 10 at the end. The accuracy of the
remaining curves ranged from about 0.5 to 1 part in th at the beginning
to perhaps 5 parts in 10 at the end, except for the curves wherein the
data were deliberately distorted in order to study a particular desired
effect. To simplify the calculations the data were constructed at equal
intervals in the logarithm of t. This yielded many points near the be-
ginning of ths decay curve where f(t) is decreasing rapidly, and relatively
few points at widely spaced intervals in t near the end of the curve where
the longest-lived component is decaying slowly. The data thus produced
were more realistically distributed with respect to the variable t than
would have been the case had equal intervals in t been chosen, since one
would normaliy tend to take more experimental points where the data were
changing rapidly. An example of the decay curve data is given in Table I.

Here the initial data for the single component curve f(t) = lOOe'o‘02t are
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TABLE I

INPUT DATA FOR THE ACCURATE DECAY CURVE f(t) = 100e~0-02%,
TOGETHER WITH % DEVIATION FACTORS USED TO SIMULATE A DECAY
CURVE WITH SCATTER¥

£ x £(t) Deviation
0 - 100.000 -
1.0000 0 98.020 +4.1
1.2840 0.25 97.467 -8.0
1.6480 0.50 9.758 -6.9
2.1170 0.75 95.854 -6.4
2.7183 1.00 9k, 706 -1.9
3.4903 1.25 93.259 0
L. 4817 1.50 91.426 +0.5
5.7546 1.75 89.128 -1.8
7.3891 2.00 86.261 +3.6
9.4877 2.25 82.717 -2.5
12.182 2.50 78.380 +0.7
15.643 2.75 73.13k4 -2.1
20.086 3.00 66.915 +2.8
25.790 3.25 29.703 0
33.115 3.50 51.567 +1.9
42,521 3.75 Lo, 72k -1.2
54.598 4.00 33.556 -1.9
70.105 L.25 24.608 -3.6
90.017 450 16.524 -1.5
115.584 L.75 9.909 0
148.413 5.00 5.139 -1.kh
(Continued)

* Data polnts between t=0 and t=1 not listed.
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TABLE I (CONT!D)

INPUT DATA FOR THE ACCURATE DECAY CURVE f(t) = 100e-0-02%t,
TOGETHER WITH % DEVIATION FACTORS USED TO SIMULATE A DECAY
CURVE WITH SCATTER*

t x £(t) Deviftion
190.566 5.25 2.212 +4.0
2uh 692 5.50 0.7493 +5.5
31k.191 5.75 0.1866 0
403.429 6.00 0.0313 -15.9
518.013 6.25 0.0032 +122.0
665.42 6.50 0 0

* Data points between t=0 and t=1 not listed.
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shown, together with the factors used to distort the data when the effect
of scatter in the original data was studied (see Section V-D). Tae points
between t=0 and t=1 were omitted from the table since they would normally
be obtained by interpolation. The accuracy of these points was, however,

about 1 part in lO5 for this curve.

A. Effect of Cut-Off with Respect to u

Using Equation (20) we determine a plot of g(e™Y) versus y by
integrating the expression from O to My for each desired value of y. Such
a plot is equivalent to a plot of g(K)/x versus A. In Figure 1 we show
the effect of increasing the final integration range from “o=2 to po=h,
using the data for the single-component curve where A=0.02. It can be
seen that the principal peak falls in the same place on each curve, just
at the proper A value. The breadth of the principal peak and the smaller
ripples appear to be caused by errors, primarily cut-off errors, in the
calculation, and errors in the initial data. As the range in p is ex-
tended, the resolution of the peak becomes better. In Figure 2 the range
in p has been extended to po=6 and uo=8, and again the resolution increases
progressively. It should be noted that the positions of the peaks in the
error ripple change as a function of Hy? whereas the position of the true
peak does not. This fact provides one method for distinguishing small true
peaks from error ripples--simply change Mo and note which peaks do not sbift
position. Once the positions of the true peaks are found they may be ex-
amined more closely by taking smaller intervals in y. The left-hand curve
in Figure 3 shows an expanded view of the po=8 peak of Figure 2. Also
shown in Figure 3 is the curve obtained for uo=9. While the resolution

is excellent and the center of the peak falls at the proper place, it can
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Fig. 1 Effect of increasing ug from 2.0 to 4.0 in the analysis of a
single-component decay curve. A = 0.02, x5 =7.0, Ax = 0.25,
and A p = 0.1. Ordinate units are arbitrary.
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Fig. 2 Effect of increasing p, from 6.0 to 8.0 in the analysis of a

single-component decay curve. A = 0.02, x, = 7.0, A x = 0,25,
and A 4 = 0,1, Ordinate units are arbitrary.
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) -0.02t
asl f(t)=100e _

EXPANSION OF PEAK
FOR po=8.0 po =9.0 Aﬂl

$

321
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0.04 003 002 00I5 10 Ol 0.0l
A

Fig. 3 Detail of the peak shown in Fig. 2 for pg = 8.0, and the results
for the analysis of a single-component decay curve with p, = 9.0.
A =0.02, x5y = 7.0, A x =0.25, and A u = 0.1. Ordinate units
are arbitrary.
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be seen that the error ripples are no longer symmetrical with respect
to the true peak. In order to obtain finer resolution without increas-
ing the height of the error ripples, it would be necessary to use better
initial data and/or perhaps a more accurate integration scheme such as the
one due to Filon.(ll) Although it was not checked experimentally, it may
only be necessary to extract more points from the initial data by some
interpolation procedure so as to be able to extend Mo to a higher value
without introducing more error.

Figure 4 illustrates the case of a two-component curve, with
My increasing from 3 to 6. In both curves the principal peaks are of
the same height. This is because the coefficient of the second component,
which is a factor of 10 smaller than that of the first component, has
been divided by a A which is also a factor of 10 smaller than the A for
the first component. Furthermore, the breadth of each of the two peaks
is the same. This means the resolution is constant over the entire range,
due to the fact that the method treats the initial data as a whole and
minimizes the error uniformly over the entire curve. This fact is useful
in analyzing unknown curves. For example, if two components have A values
so close together that the resultant peaks cannot be completely resolved,
the peak representing their sum may be wider than would be expected for
a single component peak. The symmetry of the peak would give a rough
indication of the relative amounts of each component. Consider Figure 5.
In this two-component curve we would hope to see the peak for the shorter-

lived component (0=0.02) rise to one-half the height of the second peak.

(11) 1. §. 6. Filon, Proc. Roy. Soc. Edin., 49, 38 (1928-29).
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Fig. 4 Effect of increasing Hg from 3.0 to 6.0 in the analysis of a
two-component decay curve. A\ = 0.1, A =0.01, x5 = 7.0,
A x =0.,25, and A u = 0.1. Ordinate units are arbitrary.
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two-component decay curve. A3 = 0.02, 2 =0.01, x5 = 7.0,
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With uo=6 the peaks are not separated, but the sum peak is noticeably
distorted to the left. With po=8, however, the peaks become separated
and appear with about the expected relative heights. Because of the
close proximity of the two peaks, the A=0.02 peak has been shifted very
slightly to the left giving rise to an apparent A value of slightly more
than 0.021. This ~ 5% error could be reduced by extending Ho to a
slightly higher value or perhaps by an analysis of the profile of the
double peak.

In Figure 6 the results of the analysis of a three-component
decay curve are displayed. Again the increase of Ho from 6 to 8 greatly
improves the accuracy of the final results. Finally, in Figure 7 the
results obtained from the analysis of a four-component curve are shown.

In this curve, the A\ values range from 0.5 to 0.01 while the coefficients
range from 3750 to 100. In Table II, the relative height of each com-
ponent peak [g(ki)/ki] and the associated N value as determined graphically
from the data in Figure 7 are compared with the actual values. The devi-
ations from the true values give an indication of the accuracy of the
method. Here four components were determined from only 29 points on the
gross decay curve in the range from t=1 to t=1100, together with the as-
sociated points in the range from t=0 to t=1 which would normally be
found by interpolation. By using more points in the initial data and

by extending the limit p, slightly, a more accurate determination of the
parameters would have been possible.

The relatively large error ripple peak, which occurs at a A value
of about 0.0035, can be distinguished from a true peak by several means.
First, the original data can be checked to see if a component with a half-

life roughly three times as long as that of the A=0.0l component is
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reasonable. Next the final integration limit pg can be changed and the
shift in position of the error ripples noted. Finally, the width of the
suspected peak at its base [where g(l)/k = 0] can be compared with the
width of true peaks, since error ripples have always appeared narrower
than true peaks. The nv5% shift in the apparent A value of the A=0.01
peak was not encountered when the A=0.02 and A=0.0l two-component curve
was analyzed, but did occur in the results of the three-component analy-
sis. Since experience has shown that a 5% shift is relatively large for
a major peak, it i1s possible that the data for the A=0.1 decay curve is
slightly in error.

The range in A can easily be extended to cover a much greater
spread in half-lives provided the coefficients N; tend to decrease as
the Ay values decrease. What is important here is the relative values
of the quotient Ni/li. Although in Figure 7 the A and the N; values
vary by factors of 50 to 37.5 respectively, the quotients Ni/li, i.e.,
the heights of the peaks, differ at most by a factor of 2. The maximum
acceptable difference in Ni/ki will depend on the integration limit pj
and on the separation in A; values. For example, with similar )\; values
such as 0.02 and 0.0l in a two-component curve a difference in peak heights
of 3 or 4 might be the maximum variation which would still permit a reason-
ably accurate determination of the parameters N; and )\; for a p, of the
order of 8. 0a the other hand with widely separated \; values such as
O.S and 0.02 in a two-component curve, the peak heights might differ by
a factor of 10 and still allow a useful solution to be found for a p,
of the order of 8. Obviously, the limiting factor is the relative heights

of the error ripples compared to the peak heights.
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B. Effect of Cut-Off with Respect to x

In all cases, the experimentally determined function f(t) must
be cut off at some finite value of t. Actually, under the change of
variables, we are interested in the function e*f(e¥X) versus x. Consider
the case of the single-component curve with A=0.02. In Figure 8 we show
a plot of the function exf(ex) and two cases of cut-off. In the first
case |x,| = 5.25, while |x,| = 6.25 in the second case. It should be
kept in mind that equal intervals in x correspond to exponentially in-
creasing intervals in t. While little information is lost on the left,

a considerable amount can be lost on the right. Even with a cut-off at
|xo| = 7 the amount lost is not negligible for high p, values (po > 9)
since the curve actually extends to x = + . Figure 9 shows the results_
of a cut-off at ]xol = 5.25. When the final integration is carried out

to po=6 the error ripples completely mask the true curve. The dark triangle
shows the expected height of the trus peak. However, even in this poor
case where the initial data have been cut off after about 5.5 half-lives,
excellent results can be obtained if we are willing to accept poorer reso-
lution. By restricting p, to 4 the error ripples are greatly reduced and
the true peak appears at the proper A value. Figure 10 illustrates the
case of a cut-off at [xol = 6.25, For uo=6 there is no apparent deviation
from the results shown in Figure 2 where the data was cut off at Xo =T
Only when py 1s increased to 8 do the error ripples appear larger than
they were in Figure 2. Even in this cass the true peak falls at the proper

A value.
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C. Effect of Poor Extrapolation of the Initial Data

Since a large cut-off in the initial data can exhibit such a
profound influence on the final results it is naturally of interest to
see if it would be advantageous to extrapolate the initial data, even
if the extrapolation is somewhat in error. In Figure 11 we show the true
decay curve for a single component with A = 0.02 together with two rather
poor extrapolations, where in each case the accurate data ended at
|xg| = 5(t=148.L). The final results obtained for each case appear in
Figure 12 and may be compared with Figure 9 where the initial data was
cut off at IXo[ = 5.25. In the case of the high extrapolation the ini-
tial data appears to contain an additional component with a A value less
than 0.02. Thus, for po=6 we see a double peak near A = 0.02. The
presence of the additional ficticious component has shifted the position
of the true peak to a larger value, and has caused large error ripples at
the beginning of the curve due to the fact that the initial data in the
range from t=0 to t=148.4% did not contain the additional component. Al-
though badly distorted, the results are still of mich more value than if
the extrapolation had not been made,'as in the case of the cut-off at
]xOI = 5.25. At a sacrifice in resolution the high extrapolation data
yield excellent results for a po=h. In the case of the low extrapola-~
tion and po=6 we again find that even a poor extrapolation is much better
than a large cut-off. With po=6 the error ripples are large but the true
peak appears at Jjust about the proper place. Of course, by decreasing Ho
much better results could be obtained. It may be said, then, that even a
poor extrapolation will usually yield better results than if the data had
not been extrapolated at all, but care must be taken not to try to push

the resolution beyond the accuracy inherent in the data.
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D. Effect of Scatter in the Initial Data

Since we are dealing with a Fourier-type analysis we expect the
method to exert a smoothing effect, in the least square sense, on the data.
The greater the smoothing effect the more statistical scatter can be tol-
erated in the initial data. To investigate this effect we have constructed
a curve, using the A=0.02 single component data, which contains a certain
amount of more or less random scatter. Table I lists the percent devia-
tion and the sign with which each point of the accurate data was changed
to produce the scatter effect. While the scatter so introduced may seem
large with respect to certain types of actual experimental data, it is
just those cases whare accurate data are not available that are in most
need of a method of analysis. In Figure. 13 the results obtained with the
poor data are shown for p, values of 6 and 4. For p0=6 large error ripples
are produced but the true peak still appears at the proper A value. By
reducing p, to 4 relatively excellent results are obtained due to the
reduction in the error ripples. It is anticipated that smoothing of the
data prior to analysis would have appreciably improved the final results.
It should be possible to successfully analyze decay curves containing
considerably more scatter provided that the data does not contain a bias
and that a sufficient amount of initial data is available to provide a’

basis for the smoothing effect.

E. Effect of Decreased Accuracy in the Numerical Integration

In the results presented so far, we have used steps of A x = 0.25
in the numerical integration to obtain F(p), and steps of A u = 0.1 in the

final integration. Several curves have been run, however, with A x=0.5
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and/or A u = 0.2 or 0.3. As might be expected, for relatively low p,
values (up to 5 or 6) little if any effect could be detected in the
results for single- or well-separated two-component decay curves. For

Mo Values near 8 or 9, however, the increase in A x did produce a notice-
able increase in the error ripple while an increase in A p still remained

relatively ineffective.

VI. DISCUSSION

As was mentioned in the introduction, it is hoped that the method
that has been described here may be of use in the analysis of data from
a wide variety of experimental problems in the physical, chemical and
biological sciences. The ultimate accuracy will, of course, depend upon
the data available. For example, when analyzing a mixture of radiocactive
isotopes it is usually possible to accumulate a large amount of accurate
decay curve data. This is one case where a high level of resolution in
the final results should be possible., It is interesting to note that
when the usual radioactive decay rate data are analyzed, the heights of
the resultant peaks are proportional to the number of atoms of each species.
The height of a peak will be proportional to the decay rate of that spe-
cies at time zero divided by the decay constant, therefore, we have N =
(aN/at)/\ since dN/dt = NA for a first-order reaction.

Another case where good resolution should be possible occurs
when the measurements may be repeated as often as desired and the results
from each set of measurements averaged. For example, electrons may be
distinguished from heavy particles such as protons or alpha particles by
differences in the decay times of the fluorescence produced by each in

certain scintillators. Oscilloscope presentations of the pulses may be
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photographed as often as desired, thus increasing the accuracy of the
experiment. Dielectric relaxation properties also lend themselves to
repeated measurements. Certain types of chemical kinetics data, on the
other hand, or measurements involving the rates at which injected materi-
als disseminate in a living organism cannot always be obtained with great
accuracy. The meager or poor data often, however, represent reactions in
which there are only one or two components. Hence, a lower level of reso-
lution may give a satisfactory solution that would not be available using
other types of mathematical approaches since the detrimental effects due
to the non-orthogonal properties of the exponential series can, to some
extent, be avoided using the present method.

A few remarks of an empirical nature on the subject of errors
are applicable here. With reasonable resolution, the function g(e~VY)
versus y will produce symmetrical peak profiles for true components.
Furthermore, the breadth of the true peaks will be independent of y.
Therefore, an error estimate may be obtained from the peaks themselves,
and if a peak appears unsymmetrical or wider than another peak the pres-
ence of unresolved components would be indicated. The positions of the
peaks in the error ripple depend upon s while the positions of the true
peaks do not. This fact can be used by merely carrying out the final

integration to two different maximum u_ values and noting which peaks

o]
shift position. Also, the width of the base of a true peak is wider
than the base width of an error ripple. Another test depends on the
regular damping of the amplitudes of the error ripples. A divergence from
the regular trend signals the presence of a true peak. Finally, it may be

possible to obtain an error estimate for the integration scheme and also

for the cut-off error. When there is doubt about a particular component,
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calculated decay curves can be constructed, both with and without the
suspected component, and the scatter of the experimental points about the
calculated curves may be examined statistically with respect to '"goodness
of fit".

The fact that the results of an analysis are available as a
functional display particularly at several levels of fineness of resolu-
tion, rather than merely a set of values for the parameters, is quite
advantageous. Although the determination of the number of components in
principle is reduced to counting the number of true peaks, in difficult
cases it is desirable to view the solution as a whole, in reference to
the mutual interaction of all of the parameters. A study of the curves
representing the final results at several levels of resolution can pro-
vide a sounder basis for the application of human Jjudgment in cases where
there is only a small amount of one of the components or where two com-
ponents have similar A values. Another advantage is that the initial data
are not required to be as accurate as in other methods, and full use 1is
made of the accuracy that is avallable since the data are treated whole,
as opposed to "subtraction-type" methods wherein all but the shortest-
lived components are determined using fewer points than are actually
available. Furthermore, the occurrence of half-lives very close together
in magnitude does not endanger the entire solution aé in other methods.

The major limitation of the method appears to be that information
concerning the decay of the longest-lived component must be available for
many half-lives. This limitation may not be too serious and several

methods for treating the data in this regard have been suggested.



