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The Sommerfeld Half-Plane Problem Revisited I: 
The Solution of a Pair of Coupled Wiener-Hopf 
Integral Equations *) 

A. E. Heins, Ann Arbor 

Communicated by E. Meister 

A study and the solution of an extension of the classical Sommerfeld half-plane problem 
which leads to a pair of integral equations of the Wiener-Hopf type is given. The method of solution 
is function theoretic in character and employs a combination of the ideas of Wiener and Hopf and 
Carleman. 

I Introduction 

It is now more than eighty years since A. Sommerfeld [lo] produced the 
solution of the first problem in diffraction theory. In a paper entitled “Zur 
Theorie der Diffraktion-Theorie” we see the first solution of the problem which 
is now known as the Sommerfeld half-plane problem. This problem dealt with 
the diffraction of a plane wave by a “soft” or “hard” half-plane. That is, it dealt 
mathematically with the study of the solutions of the two dimensional wave 
equation which obey Dirichlet boundary conditions (“soft surface”) on both 
sides of the half-plane or Neurnann boundary conditions (“hard surface”) on 
both sides of the half-plane. It is necessary to describe the conditions at infinity 
in order to provide a physically and mathematically meaningful problem, and we 
shall discuss this point in Section I1 of this paper. Although the results of Som- 
merfeld provided insights into the nature of some diffractive elements, his 
mathematical methods do not lend themselves to further studies. 

In 1943, it was noted by J. Schwinger that a much wider class of geo- 
metries could be considered by formulating such problems as integral equations 
of the Wiener-Hopf type. Such problems were studied by his co-workers J. F. 
Carlson [3], A. E. Heins [3] and H. Levine [7]. The problems considered by them 
were formulated as a single integral equation of the Wiener-Hopf type and thus 
fall under the general ideas considered in 181. It should be mentioned that there 
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were several technical details which had to be overcome which dealt in part with 
the formulation of the integral equations and in part with some questions in 
complex analysis. 

To date, there has been very little progress in the solution of systems of 
such integral equations. Naively, one would hope to be able to factor a matrix of 
analytic functions in much the same fashion which can be done for the single 
analytic function in Wiener-Hopf Theory [ 5 ] .  Unfortunately, such is not the case 
since, at present, we do not have the tools to do this for many of these integral 
equations which arise in the physical sciences. We should note here that the ana- 
lytic structure of these matrices are not as simple as those considered by H. Bart, 
I. Gohberg and M. A. Kaashoek [l]. A simple example of a system was provided 
by the present author in 1950 [5]  but it relies on the periodicity of the given 
geometric structure - a wave guide with n equally spaced, semi-infinite plates. 
This problem depends basically on a single analytic function. In 1975, A. D. 
Rawlins [9] reconsidered the half-plane problem of Sommerfeld with the follow- 
ing change in boundary conditions. On one side of the half-plane, the Dirichlet 
boundary condition is to be satisfied while on the other side the Neumann bound- 
ary condition is to be satisfied. This gives rise to a pair of coupled integral equa- 
tions of the Wiener-Hopf type for which, in Rawlins’ own words, an “ad-hoc 
method” of solution is provided. Our goal is to demonstrate that we can provide 
a constructive method for solving this system which depends in part on the 
original ideas of Wiener and Hopf and in part on Carleman’s ideas on singular 
integral equations. Both of these ideas, in turn, have their origin in the theory of 
analytic functions. We remark that we do not “factor” the matrix involved. We 
rely heavily on the particular analytic structure of the Fourier transforms of the 
various kernels involved and at present cannot supply any further examples. 

There is also the work of Hurd [6] who studies the same geometric struc- 
ture as Rawlins but now invokes different impedance boundary conditions on 
each face of the half-plane. This problem also leads to a coupled pair of Wiener- 
Hopf integral equations. Hurd provides a solution to this problem which he 
claims had been obtained by factoring the matrix of the Fourier transforms of 
the various kernels in the Wiener-Hopf system. This problem is more difficult 
than the one of Rawlins and takes into account (in a narrow sense) the physical 
nature of the half-plane. 

I1 The Formulation of the Problem 

We recall that for a plane wave incident upon a half-plane x > 0, y = 0 

@(xt Y )  = @i&Y) 

+ q H p [ k V ( m ]  @y!(x‘, -0) - Gyt(x’, +O)]dx’  
4 0  
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is a representation of the solution of the equation 

(2.2) 

which incorporates the Sommerfeld radiation condition as well as the incident 
wave. In the present case since we have assumed that the incident wave &(x, y )  
is a plane wave, we have &(x, y )  = exp [i(xk, + yk,)] where k, = kcos a and 
ky = ksin a,  0 < a c n and a i s  the angle which the propagation normal makes 
with respect to the positive x axis. We shall assume here that Imk > 0. The 

+ @y,, + k2@ = 0 

a@ notation @(x, + 0) implies that lim @(x, y )  = @(x, + 0) and - (x, + 0) implies 
y-+o ay 

that lim 

@(x, -O), etc. The function 

a’(xJy)  - - a@(x’ . Similar interpretations are available for 
Y-+o  ay aY 

1 -H&’)[k1/(X - x’)’ + ( y  - u ‘ ) ~ ]  
4 

is a Hankel function of the first kind and is the free space Green’s function for 
the equation (2.2) which obe s the Sommerfeld radiation condition. That is, for 
fured (x’, y ’ )  and r = ~ * ,  

The particular boundary value problem which we wish to investigate deals 
with the situation @y(x, +0) = @(x, -0) = 0, the case which Rawlins [8] 
investigated several years ago. The classical cases which Sommerfeld investigated 

integral equations of the Wiener-Hopf type for a single unknown for either the 
discontinuity of the normal derivative of @ (in the Dirichlet case) or the discon- 
tinuity of @ (in the Neumann case). Now, in the case which Rawlins examined we 
are confronted with a system of Wiener-Hopf integral equations for the 
unknowns @y(xJ - 0) = fl (x )  and @(x, + 0) = f 2 ( x ) ,  x > 0. Indeed when we in- 
voke the second boundary condition @(x, - 0) = 0, x > 0, we obtain from (2.1) 

i ”  f 2 W  (2.3) 0 = exp (ixk,) + - j H&’)[kIx - x‘ /I f l  (x’)dx’ - - . 
4 0  2 

The term -f2(x)/2 arises since the Hankel function H & ’ ) [ k ~ x  - x ’ ) ~  + y 2 ]  
contains a term which is proportional to lnl/cx - x‘)’ + y 2  when x -+ x ‘ ,  y -+ 0. 
The derivative of the Hankel function therefore contains a term which is 
proportional to the two-dimensional Poisson kernel for a half-space, all others 
vanishing with y. It is this Poisson term which produces - f2(x)/2.  Let us note 
that if we had taken the limit of (2.1) with y + + 0, we would have obtained for 
x > 0, 
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f 2  (x) i d 
f2(x) = exp(ixk,) + - lHg)[kIx  - x‘I]fI(x‘)dx‘ + - 

4 0  2 

which upon simplification, is still (2.3). 
The second boundary condition which we have to invoke is that 

a@(x’ = 0, x > 0. Then f o r y  # 0, (2.1) becomes 
aY 

a@ - = ik,exp(ixk, + irk,) 
a Y  

i - 8  + - 5 -Ng)[kl/(x - x ’ ) ~  + y2]fi(x‘)dx’ 
4 o ay 

(2.4) 

- - i a ’ H g ) [ k l / ( ,  1 - x ‘ ) ~  + y2]f2(x’)dx’. 
4 o ay 

In view of the fact that Hf)[kl/(x - x ‘ ) ~  + y 2 ]  satisfies the two dimensional 
homogeneous wave equations when y # 0, (2.4) may be rewritten as 

a4 - = ik,exp(ixk, + iyk,) 
a Y  

i - 3  + - j-Hil)[kl/(x - x’)’ + y2]fl(x’)dx‘ 
4 o ay 

(2.5) 

+ i (2 + k 2 )  TH&”[kl/(x - x ’ ) ~  + y2]f2(x‘)dx’. 
4 ax2 0 

W h e n y +  + O a n d x > O w e g e t  

fl (XI 0 = ik,exp(ixk,) - - 
2 

(2.6) 
+ -!- (2 + k 2 )  TH$,’)[kIx - x’ nf2(x’)dx‘. 

4 ax2 0 

This limit has to be verified afterfl(x) andf2(x) are determined. It is clear that 
we cannot bring the differential operator under the integral sign since the integral 
would then diverge. What we shall ultimately show is that the integral in (2.6) 
converges absolutely and indeed is of the order of I x ~ ” ~  when x + 0. We further 
will show that the integral is of the order exp(ik /XI)/ 1 ~ 1 ” ~  when 1x1 + 03. In view 
of the fact that k has a positive imaginary part, we can justify our position that 
we can apply the Fourier integral theorem in the complex domain to this integral 
and eliminate the terms which arise from integration by parts. We observe that 
(2.3) and (2.6) form a coupled pair of integral equations of the Wiener-Hopf type 
(actually differential-integral equations). That is, the limits of integration are on 
the line y = 0, 0 < x < 03 and the kernels are of the convolution type. The ker- 
nels possess the required behavior at infinity for the application of the Fourier 
integral theorem. 
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III The Fourier Transform of Equations (2.3) and (2.6) 

We recall that we do not know @(x, 0) when x < 0. We therefore rewrite 
(2.3) as follows, in much the same fashion which we do when we have a single 
Wiener-Hopf integral equation. That is, 

f 2 W  i w  
4 0  2 

Fl (XI = @&, 0) + - jf] (X’ )Ht ’  [k Ix - x‘ I] dx’ - - , 
- - < x < -  

where now 

@o(x, 0) = f i n c k  0) 9 x > o  
= 0, x < o  

flw 3 0, x < o  
f 2 W  = 0, x < o  

and F l ( X )  = @(x, -0) = 0, x > 0.  

Now we observe that 

exp [ik(x’ - x)Jfl (x‘)dx’ 
FlW = c I 

0 f X 7  

when x --* - 03 and where C is a constant. This in turn is numerically less than 

O0 exp [ - k2(x‘ - x ) ]  Ifl  (x’) Idx‘ 

f i  ICI j 
0 

where y is some positive constant and k2 = Imk > 0. We have therefore that 
Fl (x) = O(exp k2x),  x - Q). Furthermore, we assume (and shall verify later) 
that Fl (x) is integrable in the neighborhood of the origin. We have then that the 
Fourier transform of F,(x) is 

W 0 

- 0 )  -0  

j Fl(x)exp(-iwx)dx = j Fl(x)exp(-iwx)dx = Rl(w) 

is analytic in the upper half plane Im w > - Imk = - k,. The Fourier transform 
of &(x) is 

h(x)exp(-iwx)dx = 5 @o(x)exp(-iwx)dx = 
1 

- O D  . 0 i(w - k,) 
and this is analytic in the lower half plane Im w < k2cos a. The Fourier 
transform of the Hankel function in (2.3) is 

i ”  i - 5 H6’) [k 1x11 exp ( - i wx) dx = 
4 - w  2 V K 7  
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where I/kT_;;T is chosen to be equal to k = I k I exp (i arg k), 0 < arg k < x/2 
for w = 0 and this is analytic in the strip - k2 c Im w c k2. 

Now we shall also anticipate that fl (x) is integrable in the neighborhood 
of the origin. Actually, an edge condition calculation would tell us that fi (x) = 
O ( X - ~ / ~ ) ,  x -+ O + .  fi (x) is also of the order exp (ixkcos a) when x -+ Q). The 
Fourier transform of fi (x) is therefore analytic in the lower half plane Im w < 
k2cos a. Similarly, the edge condition tells us that f2(x) = O(x1l4) when x + 

O+ . In view of the fact there is no plane wave contribution for @(x, -0) the 
Fourier transform of @(x, - 0) = f2(x) is analytic in the lower half plane Im w c 
Im k. Subject then to later verification 

and this should be analytic in the strip - k2 < Im w < k2cosa. 

x to read 
We can treat equation (2.6) in much the same fashion. We extend it for all 

(3.2) F ~ ( x )  = @Z(X) - - + - ( - + k2) rHf ) [k Ix  - x’I]f2(x’)dx’ 
2 4 ax2 0 

where @2(x) =O, x < O  
3 ik,exp(ixk,), x > 0 

F2(x) = 0, x > 0 

and fi(x) =f’(x) = O ,  x c 0.  

Now due to the assumption which we made about the behavior of the integral in 
the neighborhood of the origin, we may calculate the Fourier transform of equa- 
tion (3.2), integrating by parts to eliminate the second x-derivative and noting 
that there are no contributions from f 00. Here we get 

which is again analytic in the strip - k2 < Im w < k2cos a. It is from (3.1) and 
(3.3) that we will show that it is possible to determine acceptablefl(x) andf2(x) 
for x > 0 as well as F1 (x) and F2(x) for x < 0. 

IV The Wiener-Hopf Separation 

We shall now show that equations (3.1) and (3.3) can be separated into 
components which are analytic in the lower half-plane Im w < k2cos a and the 
upper half-plane Im w > - k2 at the expense of producing a second pair of inte- 
gral equations of the Cauchy type along a branch cut drawn from - k. It will 
turn out, due to the functions which are now encountered, that this second pair 
can be solved explicitly by a method due to Carleman [2] and we will thus be able 
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to find the Fourier transforms of f l ( x )  and f 2 ( x ) .  They are not of the simple 
structure of those encountered in the original Sommerfeld problems. 

In this section we derive the separation of equation (3.1). We first rewrite 
this equation as 

V G T P , ( w )  = v= + F 3dw)  - v=.?2(w) 

i(w - kx) 2 V G  2 

The second term may be directly decomposed into two terms, one of which 
displays the branch point singularity and is therefore analytic in the upper half 
plane Im w > - k2, The other shows the dependence on the pole w = kx and is 
therefore analytic in the lower half-plane Im w < k2cos a. That is, we have 

2 

The left side of this equation is now analytic in the upper half-plane Im w > - k2 
and the first two terms of the right side are analytic in the lower half-plane Im w 
< k2c0s a and these three terms are analytic in a common strip. The last term is 
only analytic in this strip and the Wiener-Hopf separation process is still not 
complete. 

To separate .f2(w) I/- into two parts, each of which is regular in the 
appropriate half-plane, we need the Cauchy integral theorem. First we make a 
unique determination of the v G  by drawing a branch cut from - k to - QO 

exp [i arg k], 0 < argk c 7d2, in the lower half plane (see Fig. 1). 

Fig. 1 

This branch cut is an extension of the line segment drawn from -k to k in the 
lower half- lane. Along the lower ed e of the cut (as a result of our original 
choice of {T we have i d  = e-jd2 v T  while on the upper 
edge we have eid2 - k - w . Now in the strip - k < Im w < k, cos a (see Fig. 
1) we apply the Cauchy integral theorem to V ~ f . . ( w ]  to obtain 

27ti c t - w 
1 v E f 2 ( t ) d t  

v G 3 2 ( W )  = - 5 
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Since we have assumed, subject to verification, thatf2(t) = O(t-5'4), It/ -* Q) in 
the appropriate lower half-plane, the integrals along t = L + i aand  t = -L + 
ia, -k2 < a < k2cos a vanish as L -., Q). This gives us for w in the strip of 
analyticity 

(4.1) v=fz(w) = 1 1  Ff2(t)dt k + t  + -j -f,(t)dt 
2ni I t - w 2ni u t - w 

where 

and 

where E < k2(l + cos a)/2. E has been chosen to guarantee that the path l is 
below the pole kcos a, the path u is above the branch point - k and the path I is 
above the path u .  Clearly, with the behavior we have assumed forl,(t), (4.2) is 
analytic in the lower half plane Im w < k2 cos a and (4.3) is analytic in the upper 
half plane Im w > - k,. Hence the final separation of equation (3.1) is now 

V G  - fm 1 v G f 2 ( t ) d t  vTTa+) - +-I i(w - k,) 4ni u t - w 

(4.4) - - v m  + i f m  
i(w-k,) 2 V G  

where now the left side of (4.4) is analytic in the upper half plane Im w > - k, 
and the right side is analytic in the lower half plane Imw < k,cosa. The 
argument of Wiener and Hopf now tells us that each side of (4.4) is an entire 
function of w, which we shall label El ( w )  . 

In a similar fashion we obtain, upon separating equation (3.3) 

1 

i j /E=T 
f2(w)  - - kY 1 3 d t ) d t  + 

(4.5) 

2 ----I 
(w - k , ) v k T  4ni / v G ( t  - w) 

= E2(w) 

where the left and right sides of (4.5) have the same analyticity properties as 
equation (4.4), E2(w) is an entire function which we shall evaluate with E , ( w )  in 
the next section. 
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V The Preliminary Determination of E,(w)  and E2(w)  

In the scalar Wiener-Hopf problems, the determination of the entire 
function of separation is affected by observing the Riemann-Lebesgue lemma for 
the unknown Fourier transforms and the asymptotic behavior of the analytic 
functions that were encountered. Now we have an added ingredient, namely the 
integrals along I and u . 

We start by examining the integrals in (4.4). For example 

k + t  - O D  l/k + r + i(k2 cos a - E )  f 2  [ r  + i(k2 cos a - E ) ]  dr 
7 + i(k2cosa - E )  - w 

I T 3 2 ( t W  = 0 I 
I t - w  

Hence we can employ the Schwarz inequality since 
I/r + k + i(k2cosa - E ) & [  7 + i(k2cosa - E ) ]  = O ( T - ~ ’ ~ ) ,  1714 00 

and we obtain 

m < j ll/k + r + i(k2cosa - E ) ] [ T  + i(k2cosa - E ) ]  I2dr 
--OD 

d r  
X T  

--OD Ir + i(k2cosa - E )  - w12 

= A/Ik2cosa - E - 0 1 ,  w = u + iu 

where A is a constant. Clearly then the integral along I is analytic and bounded 
for Im w < k2cos a - E .  However, the right side of the inequality is independent 
of u and does not vanish when u2  + u 2  -+ 00 in the full neighborhood of infinity 
when Y < k2 cos a - E .  In a similar fashion we can show that the integral along u 
is also analytic and bounded in the upper half plane Im w > - (k2 - E ) .  The first 
two terms on the left side of (4.4) vanish when I w I -t OD, Im w > - (k2 - E )  and 
the third term is bounded in the same upper half-plane. We also have that the 
first two terms on the right side vanish when I w I -t OD, Im w < k2cos a - E and 
the third term is bounded. Hence E,(w) is bounded everywhere and therefore by 
Liouville’s theorem, El (w) is a constant which we label El. In a similar fashion 
we find that E2(w)  is a constant E2.  This determination of El(w) and E2(w)  now 
gives us two equations for f, ( w )  and f 2 ( w ) .  It remains for us to cast equations 
(4.4) (4.5) into a usable form as well as to evaluate El and E2. It is unfortunate 
that the estimates are not sufficiently strong to give a more determinate value for 
El and E2. 

M Simplification of Equations (4.4) and (4.5) 

If we could deform the path I into an integral taken along a real variable, 
this would be of much assistance in our future development. This cannot be done 
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directly in the present case, sincef2(w) is not analytic in the upper half-plane. In 
order to circumvent this difficulty and simultaneously produce a useable form, 
we rewrite (4.1) as 

Now sincef2(t) is analytic below u, we shall examine the integral 

where T(R)  is the path which encloses the branch cut drawn from - k  and is 
connected to u by circular arcs of radius R (see Fig. 2). Let us note that the 

I 
' W  

n Iu 

I Y 

TIRI 
Fig. 2 

integral along th circle of radius E drawn about the branch point - k does not 
make a contribution when E + 0 sincef2(r) is analytic in the neighborhood o f t  = 
-k and ( t  + k)'l2 is O ( E ' / ~ )  in this neighborhood. Furthermore, the integral 
along the circular arcs of radius R does not make any contribution when R -+ m 
because we have assumed that.f2(t) = O( I t 03, Im t < k,cos a. This 
then leaves us with the integral along u and integrals along both sides of the 
branch cut which, of course, add to zero in virtue of the Cauchy integral 
theorem. Hence the integral along u is the negative of the integral along the 
branch cut taken in the clockwise sense. 

Now because of our choice of the branch of I=, we have V ' E  = 
- i V-on the lower side of the cut and v E  = i v z  on the upper 
side of the cut where now we have arg fw = p when t is on the cut. Along 
the cut we have then, when R -+ 00 

I i I 

; t - w  t - w  

With the substitution t = - rexp ip, this last integral may be rewritten as 

I / - k  + rexpipf;(-rexpiP)expipdr -2i j 
Ikl sexpip  + w 

where now the integration is taken along the real variable r. Hence the right side 
of (4.4) becomes 
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-k + rexpia.f2(-rexpi/3)d~ (6.1) --7v = El 
2x  Ikl 7 + w(exp - i s )  

valid in the lower half-plane Im c k2cos a, w not on the cut from -k. 

Im w c k2cos a, we can rewrite (4.5) as 
In a similar fashion, when we observe that 3, (t) = O( I t /-'I4), I t I -P 03, 

fl ( - r exp i j) d 7 = €2 
+ - 7  1 

2~ I ~ I  f-k +  exp pip [ T  + w(exp - is)] 

with the same restriction as for equation (6.1). 

VII The Reduction of Equations (6.1) and (6.2) to a System of Carleman 
Type Integral Equations 

Equations (6.1) and (6.2) were derived subject to the fact that w was not 
on the branch cut from -k. We now examine the combination of terms 

- f 2 ( w > I / G  1 gi v T G G P f 2 ( - r e i 8 ) d s  
2 2 x  Ikl r + we-'p 

when w is on the cut. The situation we face becomes more familiar if we replace 
w by - w. Hence we consider 

With v G  = fl = Ik)e(im/2 when w = 0, we note that I/- = - i v q  
when w is on the top side of the branch cut and is i v q  when w is on the 
bottom side of the cut. On the other hand, if w = u + iu, the integral in (7.1) 
may be written as 

(7.2) - -7  1 

2n  Ikl 

v m 3 2 ( - 7 e i 8 ) [ 7 -  (ucosp+  usins) + i(ucosB- usin/3]dt 
r2 - ~ ~ ( U C O S ~ I  + usins) + (u2 + v 2 )  

Now a point on the branch cut from k is on the straight line u cos #I - u sin f l =  0, 
u > 1 k lcos 8, u > I k Isin 8. If u cos p - u sin /3 < 0, u approaches a point on the 
bottom of the branch cut. In this case (7.2) has the limit 
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--; I vTGG?f2( - re‘8 Y T  

271 Iki T - (ucosp + usinp) 

+ - 1 / - k  + eiB(ucos/3 + ~ s i n ~ ) ~ ~ [ - ( u c o s ~  + usin/3)eiB] 

where now o cos p - u sin /3 = 0 when u and u are coordinates on the cut from k. 
(7.3), in turn, simplifies to 

(7.3) ix 

2X 

This last form follows from an application of the Poisson integral formula for 
the half plane. The integral is taken in the sense of a Cauchy principal value. 
With the result of (7.3) we note that the limit of (7.1) when w approaches the cut 
from k on the bbttom we have 

(7.4) 
e(ia)/2 OD f*r2( - 7eiB) d T - - 1 OD 6 f-f;( - rei8)dr = --$ 

2 x  Ikl 7 -  IWI 2 R  Ikl T - IwI 
Finally we note that if w approaches the top side of the cut from k we obtain (7.4) 
once again since the sign of the term external to the integral in (7.1) is now 
reversed and of course so is u cos p - u sin p when this limit is taken. 

Hence on the cut from k (either side) 

- v m  + ifl(-w) e(iB)/2 ; v n f 2 ( - 7 ) e x p i j 3 ) d r  = El.  
i(w + kx) 2 v G -  2R Ikl 7 -  Iwl 

Upon putting w = I w I (exp ip) and k = I k 1 (exp ip) we have 

(exp ip) T v q f 2 (  - rexp ip) d T 

2 x  Ikl 7 -  I w I  

for J w I  > Ikl. 
There is a second such integral equation of the general form (7.6) which 

we derive from (4.5) with the same methods which we just employed. Here we 
have 

(expiP)f2(- IWlexPiS) v m  
+ E2. (7.7) = - #  i OD f l ( - f e x p i p ) d ~  - 2i m s i n  a 

1~ I ~ I  v q ( r  - ~ w l )  ( ~ w l +  lklcosa)I/i-+cosa 
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VIII The Reduction of Equations (7.6) and (7.7) to a Single Integral Equation 
of the Cauchy Type and its Solution 

It may be tempting to substitute either equation (7.6) into (7.7) and obtain 
an integral equation for f 2 (  - sexp i s )  or perhaps do the reverse and substitute 
(7.7) into (7.6) and obtain an integral equation for.& ( -  rexp is). Unfortunately, 
in either case we cannot use the Bertrand-Poincark formula to effect any simplifi- 
cation since the Fourier transformsf, andf2 do not meet the conditions needed to 
apply it. Hence we proceed more directly. We first show that we may invert the 
integral operator in equation (7.6) and thereby find&( - sexp is) explicitly. We 
may therefore combine the inverted equation (7.6) with (7.7) to produce an 
integral equation for j1 ( - Texp ip). 

We will first show that we can solve equation (7.6) explicitly for 
f 2 (  - Bexp is). This will provide the necessary reduction to enable us to obtain an 
integral equation for f1 ( - eexp is)  which, in turn, can be solved explicitly. The 
same method can be used to invert the equation (7.6) and solve the integral 
equation for f,( -@expig). We start with the observation that the integral 
operator on the left side of equation (7.6) may-be inverted to give [2, 41 

(expip)?;(- IwlexP i s )  

1 + cosa) + i j ; ( -~expip)  

n lkl 7 + IkIcosa m 
d7 + Cl 

f q q ( 7  - IwD I w l -  lkl* 
The term Cl/( I w I - 1 k D is a solution of the homogeneous operator 

However, such a solution would imply that f 2 [  - w ]  would have a pole in the 
upper half-plane and therefore Cl = 0. We note further that the integral 
involving El vanishes. Hence equation (8.1) reduces to 

(8.2) (expiS)f2(- IwlexpiS) 
-i O0 f l(-sexpip)dr 2i  

= - I f  + 
x lkl - I W D  Iw l+  lklcosa 

upon evaluating the second integral in (8.1). 
From equation (7.7) we also have an explicit expression for 

(exp ip)f2( - sexp i s )  and it is now possible to eliminate this quantity to obtain 

- i 7fi(-QexPiB)d@ 

E2 

1 1 

+ A w F F k e  - 7) V G I V  v'm 
(8.3) - 2i m s i n  a - 

T + Jklcosa 



The Sommerfeld Half-Plane Problem Revisited I 87 

With the substitutions @ = Jk ) (2d2  - 1) and 7 = Ik1(2a2 - l), equation (8.3) 
becomes 

2 

We have already seen that such an equation has a solution of the form 

(8.4) A [ -  Ikl(ex~iP)(2A~ - 111 

L 2 J 
But clearly the part of the solution containing the factor E2 diverges and there- 
fore in order to invoke the regularity condition onfl [ - Ikl(exp i/3)(2A2 - l)], we 
must take E2 = 0. The integral in (8.4) therefore reduces to 

fx d a  T - 2 V E  (8.4a) 3"- Ikl(expiP)(2A2 - l)] = 
x 

(a - sin+)(. - 1) 

2 But the second integral vanishes since A > 1. The substitution a - 1 = Q 
reduces the first integral to 1/1- sin- a 

2 
fl [ -  Ik l ( exp ip ) (2~~  - 111 = - 

a A - sin- 
2 

The determination of f2 [ - sexp i/3] is now elementary. We turn to 
equation (7.7) and find that when IwI = lk1(2A2 - 1) and 7 = lk1(2a2 - 1) we 
have 

(8.5) r n U e x P i S ) 1 2 [ -  Ikl(exPi/3)(2A2 - 111 
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We decompose the integral into three terms, that is 

A B - - 
a - sin- 

2 

a sin- 
2 1 

where 
, B =  A =  

2 a  

2 
sin - - I’ 2 L - sin- ( 3 

(8.6) in turn reduces to 

XC 

1 - sin- 

IX Some Properties of @(x, 0 + 1 and - (x, 0 - 1 
0x 

We are now in a position to discuss some of the properties of fi ( x )  and 
f 2 ( x ) .  We basically have their Fourier transforms in (8.9) and (8.10). If we make 
the substitution w = k(212 - l ) ,  we find that 

v i = x z f l +  f@=Tjm 
(9.1) 3&4 = - 

v@=TjEE - sina/2 
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(9.1) is analytic in the lower half plane Im w < Im kcos a and is O(w-'14) when 
I w I -+ m in this half-plane. We therefore know that f , ( x )  = O ( X - ~ / ~ ) ,  x + 0 
which verifies one of our assumptions. If we examine (8.10) with the same 
substitution we find that 

We note now that f2(w) is analytic in the lower half-plane Im w < Imk and is 
O(W-''~) when I w I -P m in this half-plane. This then verifies that f z ( x )  = 
O(xi14), x -+ O+ . (9.2) may be written in an alternate form as 

(9 .W 3zCw) = 
i v T Z i G Z v 1  - v m  
y W [ l / m  + sin a/21 ' 

Finally, we shall examine @(xJ 0) for x < 0 and x > 0, y = k0. To this 
end, we rewrite equation (2.1) as a Fourier integral representation, that is 

(9.3) @(x, fO) = exp(ixk,) + - i j fl ( w )  exp (i wx) dw 
4 R Y  v n  
1 * - jfz(h)exp(iwx)dw 

4 X Y  

where Y is a path in the common strip of analyticity off1 ( w )  andf2(w), that is, 
in the strip - Imk  < Imw < Imkcosa. 

We can dispense with the determination of @(xJ 0), x < 0 very easily. We 
close 2' in the lower half-plane taking into account the branch cut drawn from 
- k. Since 3, and f 2  are regular in the lower half-pIane, the integral containing 

f2 (w)  vanishes and we are left with 

@(x, 0) = exp(ixk,) 

upon using the same methods which were used in Section VII. The substitution 
T = cosh w will remove the radical signs to give us 

(9.4) @(x, 0) = exp(ixk,) 

v m  7 exp ( -  ixkcosh w )  cosh y/4 d v/ 

1 / z x  0 cash y/2 - sin d2 
+ 

From (9.4) we observe that @(xJ 0), x -+ - 03 is asymptotic to exp(ixk,) plus a 
term of the form exp ( -  ixk)/I/-X. 
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For x > 0, we first examine @(x, -0). Now the path Y is closed in the 
upper half plane and there is a pole at w = k cos a as well as a branch cut from k. 
If we now deform the path about the branch cut and take into account the pole 
we get @(x, - 0) = 0, since the integrals along the branch cut combine and vanish 
and the residue term cancels the term exp(ixk,). For the examination of 
@(x, +O), we find that the residue term still cancels and the integrals along the 
branch cut from k double, thus verifying that the left side of (9.4) reduces to the 
right side. Similar comments can be made about p1(w) and F2(w). 
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