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The Sommerfeld Half-Plane Problem Revisited 111: 
Parallel Plate Media with Mixed Boundary 
Conditions *) 

A. E. Heins, Ann Arbor 

Communicated by E. Meister 

A plane wave is normally incident upon an infinite stack of equally spaced parallel plates 
which are semi-infinite and not staggered. The plates satisfy the so-called ‘‘Rawlins” boundary 
conditions. This problem is formulated as a pair of simultaneous integral equations of the Wiener- 
Hopf type and solved by a method proposed by A. E. Heins in 1950. 

i Introduction 

We shall discuss here the reflection and transmission properties of a plane 
wave incident upon an infinite stack of unstaggered and equally spaced parallel 
plates. The plane wave will be taken at normal incidence to this structure. That 
is, its propagation normal will be both parallel to the plates and perpendicular to 
their edges. It will be assumed that each plate satisfies Rawlins’ type of boundary 
conditions. That is, the total wave function vanishes on the lower side of each 
plate while its total normal derivative vanishes on the upper side. We will further 
assume that there is only specular reflection in the free space medium thereby 
giving us the possibility of two propagating modes in the parallel plate regions. 

For the case of Dirichlet or Neumann type boundary conditions on each 
side of the plate, this problem was first solved by Carlson and Heins in 1944 [l]. 
An improved formulation and solution was given by Heins in 1956 [2]. The 
problems lead to scalar integral equations of the Wiener-Hopf type. The problem 
which we shall discuss here leads to a pair of such equations, and we shall show 
that the ideas we introduced in [3] will provide an effective solution of this 
system. Indeed, in the present instance, we shall be able to factor the matrix of 
the Fourier transforms of the kernels in much the same fashion that one can do it 
in the scalar case. 

The problem we shall consider, has been solved by E. Luneburg [5]  by a 
generalization of the mode matching method. He states “the second case (the 

*) The results of this paper were announced at the XX* General Assembly of the U.R.S.I. held in 
Washington, D.C. in August 1981. 
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problem to be treated here) is not solvable by these methods (the method of 
Wiener and Hop0 but yields to the new method” (a generalization of the mode 
matching method). 

I1 The Formulation of the Problem 

Let us recall that if a plane wave is normally incident upon an infinite 
stack of semi-infinite, equally spaced unstaggered plates, (see Fig. I). 
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Fig. 1 

(2.1) @(x,y )  = exp(ikx) + Rexp(-ikx) 

1 8G 

0 aY 
G(x,~;x’ ,O)@,~(X’ ,  +0 )  - @(x’, +O), (X,Y;X’ ,  +0) dx’ 

is a representation of the solution of the equation 

(2.2) @, + Guy + k2@ = 0 
which incorporates the Sommerfeld radiation condition for plane waves, the 
incident wave exp(ikx) and the periodic nature of the structure. The Green’s 
function G(x, y ; x ’ , y ’ )  is a solution of the equation 

(2.3) 
save at the point P(x,y)  = P’(x‘,y’) where it has a logarithmic singularity. It 
also satisfies the periodic boundary conditions 

G, + G,,, + k2G = 0 

G(x, -cY;x’,Y‘)  = G(x,u - CX;X’ ,Y ’ )  

and Gy(X, Y ; x’,  Y ’) 1 y = -a = Gyk Y ; X ’ ,  Y 9 Iy= (1 -a 

where a is a real parameter. Such a Green’s function was constructed by the 
author in 1957 [2] and it has the Fourier integral representation 
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1 [sina(y’ - y )  - sina(y’ - y + a)] (2.4) G ( x , ~ ; x ’ , ~ ’ )  = -! 
2n I 2 4  - cosaa) 

- [expiw(x - x’)] dw, y > y’  

211 Y 2a( l  - cosaa) 
1 [sina(y‘ - y - a) - sina(y‘ - y)] =-I 

. [expiw(x - x’)]dw, y < y’ . 
Here a = v G 2  and is real and positive for w = 0. 2’ is a path of integration 

parallel to the real axis of the w plane and it is drawn in the strip - 1/ - ‘f2’ - k 2  
< Im w < 0. (2.4) may be simplified to 

(2.4a) 1 
G ( x , ~ ; x ’ , ~ ’ )  = -- J 

2n Y a a  2asin - 
2 

[expiw(x - x’)]dw, 

From (2.4a) we may conclude that 
sin k(x - x ‘ )  

G (x , .Y ;x ‘ ,~ ’ )  = - , x - x ’ + o o  
a k  

and 

2n 
a r lm- 1 cos - ( y ‘  - y )  

x - x x ’ +  -co. 

Here we propose to invoke “Rawlins” [6] type boundary conditions, 
rather than those used by Carlson and Heins [I], so that for x > 0, we obtain the 
system of integral equations of the Wiener-Hopf type 

0 = exp(ikx) + Rexp(-ikx) 

@ ( x a - )  (D 

- G(x,O;x’,O)@,t(x‘, + O ) d x ‘  - 
0 2 

and 

a@ (x,a-) = 0, By Rawlin’s type boundary conditions we mean @ (x, + 0) = - 
x >  0. aY 
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Following Wiener and Hopf, we rewrite this system, valid for - QO < x 
< OD as follows. We put 

fl(x) = &(x9 +O) 9 x > o  

* 0, x < o  

f2W = (P(x>a- )  9 x > o  

= 0, x < o  

Fl (XI = QJX9 a -) , x < o  
= 0, x > o  

F2W = @(x. +O), x < o  

= O ,  x < o  
@*(x)exp(ikx) + Rexp(-ikx), x >  0 

= 0, x <  0. 

Hence the system now may be written as 

and 

f’(X) OD (2.6b) F ~ ( x )  = @ * ( x )  - - - J G(x, + O ; X ’ ,  +O)fi(x’)dr’. 
2 -0  

A final comment is required regarding the modes of propagation which 
we permit. Specular reflection requires that 0 < ak  < 2 x .  On the other hand, 
the lowest mode which can propagate in the parallel plate region requires n/2 
< ak < 3 x/2. Hence if only specular reflection is permitted, we may have one 
or two modes propagating in the parallel plate region. The propagation constant 

for one mode propagating is k’ - - 

the constants (k2 - $)‘I2 > 0 and (k’ - s) > 0. We shall only treat 

the case x/2 < ak < 3 x/2 since we will not add anything new to our method by 
permitting (I k to be greater than 3 x/2. 

> 0, while for two modes, we have ( ::’)1/2 112 

I11 The Fourier Transform of the System (2.6) 

The determination of the Fourier transform of the system (2.6) is 
straight-forward. We know, for example, that 
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as we can conclude directly from the system (2.6). We also assume for the 
present, and shall verify, that F1 (x), F2(x), fi ( x )  and fz(x) are integrable in the 
neighborhood of the origin. Since the parallel plate region can only sustain one 
or two propagating modes, we have thatfi(x) andf2(x) = 0(1), x -, OD. Hence 
the Fourier transforms of Fl ( x )  and F2(x), that is, 

j exp(-iwx)F,(x)& = 4 ( w ) ,  
0 

j = 1,2 
-0 I  

are analytic in the upper half-plane Im w > - I/ - ‘$ - k 2 .  Furthermore, the 

Fourier transforms of fi ( x )  and f 2 ( x ) ,  that is 

are analytic in the lower half-plane Im w < 0. 

GYYe(x,y;O,y’) for y = y’ = a. Here we have 
We also require the bilateral Fourier transform of G(x,O;O,O) and 

.. 

W - s i n a V F - 7  

- O D  2 v K 7 [ 1  - c o s a ~ K T 2 1  
(3.1) exp(-iwx)G(x,O;O,O)du = . 

and 

(3.2) - exp(-iwx)G(x,y;O,y’) dx a2 
a y a y  -- l y  = y‘ = LI 

v k 2  - wZsinal/k2 - w z  
= -  

2[1 - c o s a v K - 7 1  . 
(See 121 for the derivation of these transforms.) In virtue of the behavior of 

G(x, y’;  0 ,y)  whenlx) -, a, (3.1) and (3.2) are analytic in the strip - v4$ - - k 2  

< Im w < 0. The transform of Q * ( x )  is clearly analytic in the lower half-plane 
Imw < 0. Hence4(w),&(w)(j = 1,2), $*(w)andthetransformofG(x,y;O,y’) 

are all analytic in a common strip - l/Z:- - - < Imw < 0. It is therefore 

permissable to apply the Fourier transform to equations (2.6a) and (2.6b) to 
obtain 
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In matrix notation we have 

-1 1- cot 

- 1  
where A(w) = cot(al/;ki--;;r/2) 

f F z 7  
Observe that detA(w) = - cosaa/sin2aa/2 and although it has no poles in the 

strip - vF < Im w < 0, it does have a zero at Im w = - 

(Recall that we have assumed that only the lowest mode propagates in the duct.) 
Hence, as we shall see presently, it is necessary that we take the smaller strip 

- r- < Imw < 0 as the strip of analyticity. 

IV The Factoring of the Matrix A ( w )  

If we could write the matrix A(w)  = A - ( w ) A + ( w )  = A + ( w ) A - ( w )  
such that all elements in A - (w) would be analytic in the lower half-plane Im w 
< 0, and detA - ( w )  would be free of zeros and poles there, while A + (w) would 

have similar properties in the upper half-plane Imw > - - - k 2 ,  we 

would be in a position to repeat the original argument of Wiener and Hopf. The 
need for this last inequality will be given subsequently. That it is possible to 
repeat this argument here [3] and in several cases which we shall discuss at a later 
date, is primarily due to the fact that we are dealing with 2 x 2 matrices and we 
can overcome the algebraic problems which are encountered in these cases. Note 
the position of the factor a ( w )  in the matrix B(w) which we shall now introduce. 
We write 

[T' 

A ( w )  = exp[B(w)l 
and we obtain by Sylvester's theorem [4] 

\1/a l /  ln(-l +cot?) + - \ 
2 
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We can now rearrange the entries in the matrix B(w) as follows. 

B(w) = IlnD(w) + C(w)lnE(w). 

Here 

C2(w) = I a n d  Zis the identity matrix. We also have 

1 + cot - 

This rearrangement of B( w) is permissible since Z and C( w )  obvious Y commute. 
We shall for the present, assume that we can derive an additive de- 

composition of the matrix B(w) such that the elements of B + ( w ) ,  that is, 

(4.1) 

and their determinant are analytic in the upper half-plane Im w > - 

(4.1 a) B- (w) = I lnD-  (w)  + C ( w )  1nH2(w) 

and are analytic in the lower half-plane Im w c 0 and also have a non-vanishing 
determinant there. We shall demonstrate in the Appendix that the elements of the 
matrix C ( w )  weighted with InE(w) may be written as 

B+(w) = ZlnD+(w) + C(w)lnHl(w) 

9n2 k2. - - 
Similarly these elements of B-  ( w )  are given by li 4x2 

( 1 n y )  + + (y) - - lnW(w) + lnH2(w) 

(T) + = lnH1(w) and (-)- = ln H2 (w) 

- U U 

where the subscript + or - denotes analyticity in the upper or lower half-planes 
which we have already described. Furthermore, as we shall see in the Appendix, 

U 0 

It is this decomposition which enables us to proceed with the present problem. 
There is, at present, no guarantee that we can find decomposition of the form 
(4.1) and (4.1 a) in general. For the case at hand, we have 

A+(w)  = exp[B+(w)] = - 
2 

In component form we have 
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and it is clear that the determinant of this matrix does not vanish. The expres- 
sions for D+ ( w ) ,  D- (w) ,  Hl ( w )  and Hz(w) will be derived in the Appendix. It is 
easy to show that A + ( w )  and A - ( w )  commute and A + ( w ) A - ( w )  = A ( @ .  

We now proceed to the Wiener-Hopf separation. The vector equation 

and is analytic in the strip - f7 - - < Im w < 0. Now we employ the 

same device which is available for the scalar case (see for example [l]), and obtain 

D + ( - k ) ( w  " (  + k) H , ( - k )  + " l / H , ( - k )  
- 
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[Hl(W) - 1/Hl (w)l/D+ (w) 1 + 1/Hl (k)l/D+ (4 
- W 1 ( w )  + 1/~1(w)I/D+(w)} 

v T  4a2 and 

The left side of equation (4.4) is analytic in the lower half-plane Im w < 0, while 

the right side is analytic in the upper half-plane Im w > - - - 

both sides are analytic in a common strip of the w plane. Hence each side is 
analytic everywhere and is equal to a vector whose components are entire 
functions. That is. for Imw < 0 we have 

-IH,(w) + 1/H,(w>I/D+(w)l 

0 
(w + k ) D + ( - k )  i ” (  H , ( - k )  + l / H 1 ( - k )  

- 

where El (w)  and E2(w) are entire functions yet to be determined. Note that since 
A T ’ ( w )  is analytic in the lower half-plane Imw < 0, that is, its elements are and 
further detA-(w) f 0 in this half-plane, we can solve for the vector Cf;(w), 
f ; (w) ) .  Similar remarks are available for (pl(w), p2(w)) .  

V The Determination of the Entire Functions E l ( w )  and E2(w) 

We are now in a position to determine the entire functions El(w) and 
E2(w).  As in the scalar case, we shall find that the Liouville theorem will produce 
them up to an arbitrary constant if we invoke the edge conditions forfi (x),f’(x), 
Fl(x) and F2(x). It will then be necessary to verify that the Riemann-Lebesgue 
lemma is satisfied forf, ( W ) , ~ - ~ ( W ) ,  Fl ( w )  and F2(w) in the appropriate half-plane 
and this will produce the evaluation of the constant. 

Let us recall the properties we seek f0rf1(w),f2(w), pl(w) and &(w). We 
need the f l ( w )  and f’(w) which are analytic in the lower half-plane Im w < 0 
and the pl (w)  and p2(w) which are analytic in the upper half-plane Imw 

> - f-. In virtue of the fact thatf,(x) = O ( X - ” ~ ) ,  x + O+ we have 

by the Abelian theorem for the unilateral Fourier transform that f l (w) = 
o ( ~ - ~ / ~ ) ,  Imw < o , I w I - +  00. ~imi~ar lys incef~(x)  = o(x~ /~ ) ,x -+  0+,3; (w)  = 
O(w-’l4) I w I 03 in the half-plane Imw < 0. In a like manner, Fl(w) = 

O ( ~ - ’ ’ ~ ) a n d p ~ ( w )  = O(w-5’4)whenImw> - r%, /w]-+  4a2 00. 
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We shall show in the Appendix that H l ( w )  = O(W-’’~) ,  I w I  3 OD, 

I m w >  - [-while -- H2(w) = O(w1I4), I w I -c OD, Im w < 0. Further- 

more D + ( w )  = O(l),I w I +  m, Imw > - [- - - and D - ( w )  = 0(1), 

I w I  -+ OD, Imw < 0. This implies E l ( w )  = 0(1) and E2(w)  = 0, Imw < 0, 
I w 1 -* OD. In the upper half-plane we have that El ( w )  = O ( W ” ~ )  and E2(w)  = 0 
when1 w I -. OD. Now the Liouville theorem tells us that E2(w)  = 0. As for El ( w ) ,  
it is clear that since it is an entire function it can only be O(1) and therefore the 
Liouville theorem tells us that it is an arbitrary constant which we label a. . 

Now we are in a position to determinefl(w) andf2(w) after we verify that 
Riemann-Lebesgue lemma is satisfied. From (4.5) we have 

(5.1) 
- iRIHl(-k)  + I / H ~ ( - ~ ) I  ( - c [ ~ ~ ( w )  - I / H ~ ( W ) ] )  

2 D + ( - k ) D - ( ~ ) ( w  + k) H~(w) + 1 / H 2 ( ~ )  

Clearly.f2(w) obeys the lemma but f l ( w )  does not. However, if we choose 

i[Hl(k) + l/H1(k)] - i R [ H , ( - k )  + l/H1(-k)] 
uo= - 

D+ (k) D+ (- k) 
then f, (w) will also obey the lemma. Indeed we will now have, as we expected, 
thatfl(w) = O ( W - ” ~ )  andf2(w) = O ( W - ” ~ ) , I  w l 4  00, Imw < 0. Thesame 
constant u0 takes care of the equations involving Pl(w) and P2(w).  

VI The Determination of the Reflection and Transmission Amplitudes 

With the determination 0ff2(w) we are now in a position to determine the 
amplitude of the reflected wave in free space as well as that of the transmitted 
wave in the duct. If we examine the functional form off2(w), we observe that it 
has two real simple poles at w = +x, all other poles are simple and imaginary 
and lie in the upper half-plane Imw > 0. Indeed as we shall show in the 
Appendix, it is a single valued analytic function in the w plane save for these 
poles. This fact can be accounted for on physical grounds. 

We turn then to the examination of the lim f 2 ( x )  in order to determine 

the required amplitudes. What is required then is the residue of .f2(w) at 
w = fx. On the other hand, H2(w) /D-  ( w )  has simple poles at w = fx, while 

.r+ 0) 
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D - ( w ) / H 2 ( w )  does not have poles at w = + x .  We therefore obtain these 
residues from the term 

the remaining poles supplying those terms which vanish when x + 01. There is an 
immediate simplification since Hl (k) + l/Hl (k) = Hl ( - k) + 1 /HI ( - k) = 2 
(see A.lO). Furthermore by putting in the explicit expressions for H2(w)  and 
D- ( w ) ,  (6.1) becomes 

m ( w )  [2aa(w) + R] exp [K (w)/2] 1 8 a(x - w 2 )  
R + ” 1 

2 D + ( k ) ( w - k )  D + ( - k ) ( w + k )  

00 fl [l/l -a2k2/4n2x2+ iaw/2nx]exp(-iaw/2nn] 

’ [VI -4a2k2/(2n + 1 ) ~ + 2 i a w / ( 2 n  + 1)n]exp[-2iaw/(2n + 11x1 

(6.2) 
n = l  

1”’ m 

I n = ,  

The functions L ( w )  and M ( w )  have been derived in the Appendix and are 

exp (1 / 2  n ) 
(1 - 11411)’ - a2k2/4n2n2 + iaw/2nn 

n = l v ( l  + 1/4n)’ - a2k2/4n2n2 + iaw/2nx 

and M ( w )  = 

~ 1 )  (1 - 1/4n)a(w) + ak2/2nx + iwf(1-  1 /4n)2 -a2k2 /4n2~2  n exp(l /2n) .  
n = l ( 1  + 1/4n)a(w) + ak2/2nx + iw1/(1 + 

From (6.2) we can, by calculating the residues at the poles w = fx, find 
the limitf2(x), x + OD. However, the residue at w = - x  implies a wave from the 
far right in the duct which we have excluded. Therefore the coefficient of this 
duct term vanishes and gives us R immediately. That is, 

+ = o  R 
D+ ( - k ) ( k  - x )  

1 
D+ (k)(k + X )  

- 

or 

Since D+ (k) is conjugate to D+ ( -  k), we have finally that 
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k - x  IRI=-. 
k + x  

Now it is possible to calculate I TI , the amplitude of the duct wave travelling to 
the right, by a conservation condition [2]. This condition is 

k[l - lR12] = xlTI2/2 
from which we obtain 

X/2 C ak C 3 X/2. 8k’ 
(k + x)’ 

(6.4) ]TI2 = 

However (6.2) and (6.3) offer an independent verification of (6.4) which we shall 
now carry out. 

If we now calculate the residue of (6.2) at w = x,  eliminate R by (6.3), 
observe that ID, (k) I = ID+ ( -  k) I = 1 ,  and then take the absolute value of (6.2), 
we obtain 

The product factors appear in the same order as they do in (6.2). Now we can 
combine the first three factors of (6.5) since they are absolutely convergent and 
we have 

(6.5) 2(k + x )  [jl (1 - $)T[j, (1 - +1’” 
Now it is possible to give the numerical value of these product terms since 

m 2 n (1 - 1/4n2) = 
n = l  

m - sinx 4 

and n (1 - 1/(2n + 1)’) = Lim - -  
nu1 x-+n/2 1 - 4x2/x2 4 ’  

n (1 - 1/16n ) - - 
n n 1  

m cosx - x 
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Hence (6.5) reduces to (6.4). The advantage of this latter calculation is that it 
permits us to evaluate the phase angle of the transmission amplitude if it is 
required. 

Appendu 

A The Additive Decomposition of InD(w) and InE(w)/a 

In this section we will give the explicit decomposition of lnD(w) and 
lnE( w ) / u  into additive components which are analytic in the appropriate upper 
and lower half planes. We note to start that the treatment of lnD(w) is 
particularly simple since most of the required information can be found in 
certain scalar problems [ l ] .  Two cases may occur when we only ask for specular 
reflection in free space. In the first place, only one mode will propagate in a duct 
if n / 2  < a k  < 3x12 and this implies in the present instance that x z  = k 2  
- x 2 / 4 a 2  > 0. On the other hand we will have specular reflection if 0 < a k  
< 2 n .  Hence for the simultaneous propagation of a single mode in a duct and 
specular reflection in free space we require x / 2  < a k  < 3x/2. 

- cos au ) For this case 

lnD(w> = -In( 1 
2 sin2au/2 

4 a 2 ( k 2  - w 2 )  
( 2 n  + i ) ’x2 

i? [I - 
( *2 -  W2 0-1  

Observe that we have chosen the principal branch of the logarithm and since 
x/2 < a k  < 3 n / 2 ,  - cosao is real and positive for w = 0. Hence 

where lnD, ( w )  is analytic in the upper half-plane Im > - - - k Z  . The 

factor x(w) will be chosen to give lnD, (w) algebraic behavior for I w I + 03 in 
this half-plane. The linear factors following the logarithmic terms on the right 
side of (A.l) have been inserted to make the infinite sums absolutely convergent. 
Similarly 

V ::: 
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1 16 ( x ’ -  w 2 )  
(A.2) lnD-(w)  = -1n- + lnD+ (- w )  

2 x 2  (k2 - w2) 

is analytic in the lower half-plane Imw < 0. 
We now turn to the determination of the function ~ ( w ) .  Recall that for 

I m w > -  f-andl -- wI+  a ~ ,  lnD+(w) is independent of ak  [7]. Hence 

the dominant behavior of D + ( w )  in this half-plane at infinity can be derived 
from 

(A.3) 
1 exp(2iaw/(2n + 1)x) 1 2ia w 

(2n + l ) x  

Now (A.3) can be rewritten as 

(A.4) 

(A.4) can be expressed in terms of the gamma functioh as 

- a2 w 2 r 2 (  - ia w / 2 x  )r( - ia w / x )  
8x(n  - 2iaw)T(-2iaw/n) 

exp[K(w) - 2 i a w / ~ ] .  

With the aid of the Stirling expansion we find that when I w I -+ 05,  Im w > 

k2 that the dominant term in (A.3) is -V=- 
( x  1/2/41 exp h ( w )  + (3 ia w ln2 - 2ia w) /n]  . 

In particular when ~ ( w )  is chosen iaw(2 - 3 ln2)/x, InD, ( w )  is bounded in this 
half-plane. The same factor ~ ( w )  makes D-(w) bounded in lower half-plane 
Imw < 0, I w l - ,  03. 

We now turn to a somewhat more subtle task, namely the additive 
decomposition of 

1 
2 a  
- 

sin(? + a) 
. In 
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where we have chosen the principal branch of the logarithm in (A.5) for w = 0 
when x / 2  < a k  < 3x12. We write a product representation for the ratio of the 
trigonometric functions in order to reveal the singularities of the logarithmic 
function in (A.5) to obtain 

sin(? + t) 
- (2a0  + x )  - 

sin(? - :) (2aa  - x )  
‘ 5  
n i l  

exp(1/2n). 
m 

The exponential factors have been inserted in the above infinite products in order 

to make them absolutely convergent in the strip of analyticity - v- - - 
< Im w < 0 and permit us to form the above preliminary decomposition. The 
term 

(A.7) 
1 (2aa  + x)’ - In 

2 0  4a2(x2 - w2) 

1’ 
.exp(-1/2n) t ( w )  1 

is analytic in the lower half-plane Im w < 0 while the term [lnL( - w)]/2a is only 

analytic in the strip - [- - - c Imw < 0. 

the Cauchy integral theorem. We form the integral 
However [lnL( - w)J/2a may be decomposed additively with the aid of 

1 lnL(-r)dr 
2xi P O ( t ) ( r  - w )  

( A 4  - 5  
where P is a closed path taken over the rectangle whose horizontal sides are 
a - isl a n d a  - is2, - K  < a < Kand 

-y-< - & I <  - & 2 < O .  
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The vertical sides of the rectangle are -K + i/3 and K + is, -cl  < /3 c - c 2 .  
With w interior to this rectangle, it is a simple task to see that there are no con- 
tributions to (A.8) from the vertical sides of P when K + 00. Hence 

-i'z+m 1nL ( - t )  dt lnL(- t )dt  - i e l + m  l n t ( - w )  
2xi = I  - I  

Q ( W )  -it,-- a(t)(t - W )  - i c 2 - m o ( t ) ( t  - W )  

where the first integral on the right side is analytic in the upper half-plane Irn w 
> -cl while the second one is analytic in the lower half-plane Imw < - c 2 .  
Since the infinite series in lnL(-w) being absolutely convergent, it may be 
integrated termwise in a sense which we shall presently describe. It will also be 
shown that the portion of [lnL( - w ) ] / o ( w )  which is analytic in the upper half- 

plane Imw > - fp - - can be reduced to 

Upon evaluating the integrals in (A.9) we finally obtain 

a2k2  where /3, = - 
U 

(/3:, + kz ) (k2  - w 2 )  + iws-,, + k2 
I/</3', + k2)(k2 - w 2 )  + iwp, + k2 

and M ( w )  = ' 
This sum can be rewritten as 

iaw 
2nx 

exp(- 1/2n) 

' E' I /. 1 \ . . . 1 /  / 1 \ 2  02k2 ak2 I 
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In order to derive (A.9) we observe that for a given n, we are concerned 
with the evaluation of a term of the form 

(A.ll) - 

The second integral vanishes. The first integral may be evaluated by noting that 
the integrand has branch points at t = - is,, and - is-,, . We draw branch cuts 
from -is,, to -io3 and from -is-,, to -im. Then ln(t + is,,) = In I t + is,, I 
- i d 2  on the right side of the cut from - $3, and it is equal to In I t + @,,I + 3 in12 
on the left side of the same cut. The path from -isl - R to -isl s R may be 
deformed into the half-plane to circular arcs of radius R in the third and fourth 
quadrants. These arcs are joined by a “hairpin” path which follows the left and 
right sides of the cut. When R + 03, the contributions from the circular arcs 
vanish and (A.11) reduces to the corresponding terms in (A.9). 

dt - & I + -  
( t  + is-,,) + L] 

2ni - ieI-m (t + is,,) 2 n  o(t)(t - w )  

Rather than evaluating the integral 
InL( - t )d t  -iez+m 

(A.12) -- 5 2xi - i .?2-ma( t ) ( t  - W )  
in order to complete the additive decomposition of L( - w), we shall simply form 

lnL( - t)dt - i e ~ + m  

5 -- lnL( - w) 
d w )  2ni -ieI-m ~ ( t ) ( t  - W) 

and obtain for (A.12) 
In M( w) 

a ( w )  
This last expression is clearly analytic in the lower half-plane Im w < 0. With it 
we can now complete the additive decomposition of (AS). Upon bringing 
together the various terms which we have found in this Appendix, we have that 

I I 

11 + (““4“,, 
exp( - 1/2n) I 

In M2 ( w . L ( w ) M ( w )  = 
Q 

is that component of (A.5) (in the additive sense) which is analytic in the lower 
half-plane Im w < 0. 

B Verification of the Single-Valuedness of (A.lO) 

It is a simple task to verify that (A.10) is analytic in the upper half-plane 

k2. We note first that ln(w + iP-,,)/(w + ip,) is analytic 
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in this half plane since it only has branch points at w = - ip,, n = f 1, f 2, . . . . 
In particular the branch point with the smallest magnitude is - iP-l. The factor 
a ( w )  = l/G2 which we have taken to be k when w = 0 is analytic in the cut 
wplane, cut from --Q) to -kand from k t o  00. If we put w = u + iu, u + 0-, 
u > k, (A.10) becomes 

ivu ’  - kL (1 J 

11 il/(k2 + p tn ) (u2  - k 2 )  + iup-, + k2 
u + iP-, 

- 
n= 1 ln[ 

1 -il/(k2 + P;)(u2 - k2) + iup, + k 2  
u + is,, 

1 - - 
i v z 2  

11 - i l / (k2 + p2-,,)(u2 - k 2 )  + iup-,, + k 2  

u + ip-, 
- In[ 

n = l  

after some simplification. But the right side of this equality is Lim (A.10), 
u -+ 0 + ,  u > k. There is a similar remark to be made when u -+ 0- or 0 + ,  
u < -k. Hence (A.lO) is analytic and single valued in the upper half-plane 

Added in proof 

After the present paper was accepted and was already in the press, we were a p  
prised of a paper by E. Lilneburg and R. A. Hurd “Diffraction by an infinite set of soft/ 
hard parallel half planes” which appeared in Radio Science 17 (1982) 453 - 462 and which 
dealt with the same problem. Our formulation as well as our use of the methods of 
complex analysis is entirely different from theirs and we believe they are of independent 
interest. 
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