
Mathematical Methods in the Applied Sciences, Vol. 10, 303-328 (1988) 
AMS subject classification: 45 E 10, 73 D 25, 76 B 15, 78 A 45 

The Sommerfeld Half-plane Problem Revisited, IV: 
Variations on a Theme of Carlson and Heins 
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Uniljersity of Michigan, Ann Arbor, MI  48109, U.S.A 

Communicated by E. Meister 

A plane wave is incident upon an infinite set of equally spaced, semi-infinite parallel and staggered plates. 
The boundary conditions on the plates alternate between the Dirichlet and Neumann ones. This problem is 
formulated as a pair of coupled Wiener-Hopf integral equations and solved by a method proposed by 
A. E. Heins in 1950. For the case of specular reflection, that is, a single reflected plane wave, the magnitudes 
of the reflection coefficient and the transmission coefficients are determined. 

1. Introduction 

We shall discuss here the reflection and transmission properties of a plane wave 
which is incident upon an infinite stack of staggered and equally spaced parallel 
plates. Here we shall assume that the boundary conditions on the plates alternate 
between the Dirichlet and Neumann ones. Carlson and Heins' originally considered 
such a stack of plates which obeyed either Dirichlet or Neumann boundary conditions 
and were led to solve a single integral equation of the Wiener-Hopf type. The problem 
we propose here now leads to a pair of such equations, and a method proposed by 
Heins4 in 1948 will provide the solution. (See also the paper of Daniele.' This author 
stated in correspondence dated 7 September 1981, to A. E. Heins that his work is 
based on Reference 4.) We shall formulate the present problem with the aid of a 
periodic Green's function constructed by Heins3 in 1957 and thereby be spared the use 
of the artifice that the wave number k have a positive imaginary part. The magnitudes 
of the amplitudes of the specularly reflected wave and the transmission coefficients for 
the dominant propagating wave in two consecutive ducts will be given. (There are two 
distinct transmission coefficients.) We shall find that magnitude of the specularly 
reflected wave can be calculated in a particularly simple manner by a method 
introduced in Reference 3 .  In fact, this reflection coefficient has the same magnitude as 
the one which was derived in Part I of the Carlson and Heins paper.' 

A special case of this problem has recently been discussed by Hurd and Luneburg.' 
There is no stagger in their configuration and they did not find the explicit magnitudes 
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of the specularly reflected or the transmitted waves. Since they had not taken into 
account all of the properties of the periodic Green’s function, they found it necessary 
to introduce a positive imaginary part for the wave number in order to carry out their 
analysis. 

The method which we employ to solve this problem depends on our ability to 
‘factor’ the matrix of the Fourier transforms of the kernels in the system of 
Wiener-Hopf integral equations which we shall derive. As we shall see in Section 4, it 
is possible to ‘factor’ the matrix in the present case, in the same sense that Wiener and 
Hopf did it for the scalar case. That it is possible, in this instance, is due to the fact that 
there is basically only one independent function to factor-a situation which does not 
occur very often. The method relies heavily on two basic ideas: (a) Sylvester’s theorem’ 
regarding the function of a matrix and (b) analytic continuation. 

2. Formulation of the problem 

We recall that if a monochromatic plane wave is incident upon an infinite stack of 
semi-infinite, equally spaced, staggered parallel plates with a Dirichlet boundary 
condition on the plates y = 2nb, n = 0, -t 1, + 2 ,  . . . and a Neumann boundary 
condition on the plates y = (2n + l)h,  n = 0, -t 1, 12 ,  . . . . (see Fig. 1) that 

?C(x, y ;  x’, b)  
dx‘ ad+’, O f )  

G(x, y; x’, 0) ~- ~ dx’ + [+] ~~ aY’ ay‘  

a$(X’,2h-) 
a y’ 

4(x, Y )  = - 

+ [l G(x, y ;  x’, 2h) dx’ + exp[i(wk, + y k , ) ]  

+ R exp[i(xk,* + yk , * ) ]  

4 

PL .ANE WAVE 

= o  

I 
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is a representation of a solution of the equation 

The notation 4(x, 0 + )  implies that lim $(x, y )  = 4(x, 0 + )  and aq5(x, O+) /ay ‘  im- 

plies that 
y - + o +  

a 4 w ,  Y ’ )  - 34(x’, O + )  lim - 
,’-o+ ay’ aY’ 

Similar interpretations are available for &x’, 2b -), etc. (2.1) incorporates the 
Sommerfeld radiation condition for plane waves, the incident wave exp[i(xk, + yk,)], 
the specularly reflected wave exp[i(xk:+yk,*)] and the periodic nature of the 
structure. Although we have assumed that there is only the specularly reflected wave, 
it is possible to include diffracted plane waves.3 The Green’s function G(x, y ;  x’, y ’ )  is a 
solution of the equation 

G,, + G,, + k2G = 0 

save at the point P(x, y )  = P’(x‘, y’) in the strip - m < x, x’ < + co, 0 I y, y’ < 2b 
where it has a logarithmic singularity. It is subject to the following periodic boundary 
conditions which will subsequently simplify our work: 

G(x. y ;  x’ + 2 4  2b)exp[2i(akX + bk,)] = G(x, y ;  x‘, 0),  

and there is a similar condition on the y’ derivative. The construction, of this Green’s 
function is to be found in Reference 3. The symbol [ 41 denotes the discontinuity of 4 
on the plate y = b. k, and k, are the x and y components of the propagation normal of 
the incident plane wave, whereas k: and.k: are the corresponding components for the 
propagation normal of the specularly reflected wave. 

In the view of the fact, in the present case, that aq5(x, 2b-)/ay=exp[2i(ukx 
+ bk,)]aq5(x, O-) /ay ,  the third integral in (2.1) may be rewritten as 

Hence (2.1) becomes 

+ exp[i(.uk, + yk,)] + R exp[i(xk,* + y k : ] ) ,  (2.3) 

where now [aqh/?y’] denotes the discontinuity of the y’ derivative of 4 on the sheet y’ 
=0, x‘>O. R is the reflection coefficient of the specularly reflected wave which we 
shall ultimately compute. 



306 A. E. Heins and J. M. Pond 

The Green’s function has the following integral representation: 

e~p[2i)~(w)]sin[(y’-y)o(w)] - sin[(y’-y + 2b)o(w)] 
2o(w)[cos 2,icWF- cos 2bo(w)] 

G(x, y ;  x’, y’) = ~ 

2n ‘ S  y, 

x exp[iw(x - x’)]dw, y > y’ 

- 1 sin[(y’-y- 2h)a(w)] -exp[-2il(w)]sin[(y’-y)o(w)] -2.ss - 2a(w)[cos 24w)  - cos 2ha(w)] 

xexp[iw(x-x’)]dw, y < y ‘  (2.4) 
where L(w) = ak, + bk, - aw. Now since tan M = b/a where M is the angle of stagger, we 
shall express k, = k cos f3 and k,, = k sin 0 (where 8 is the angle which the propagation 
normal of the incident plane wave makes with respect to the positive x-axis) and write 
2 = ck cos(f3 - M) - aw where c = J(a’ + b2). In view of the fact that the integrands in 
(2.4) are meromorphic functions of w, we shall take a(w) = J(k’ - w 2 )  to be real and 
positive for w = 0. 9 is a path of integration parallel to the real axis of the w-plane and 
it is drawn in the strip - E < Im w < 0. Here E is the imaginary part of that complex 
root of cos 21 - cos 2bo = 0 with the smallest imaginary part. That is,3 E is the smaller 
of h{  [ ~ - k c c o s ( 8 - ~ ) ] ~ - r ~ k ~ } / c ’  and b { [ ~ + k c c o s ( 8 - ~ ~ ) ] ’ - c ~ k ’ } / c ’ ,  both of 
which are real since we are only examining the case of specular reflection. 

Upon applying the boundary conditions on the plates y = 0, x > 0 and y = b, x > a, 
we obtain a system of two integral equations of the Wiener-Hopf type. That is 

aG(x, 0; x’, h )  
- G(x, 0; x’, 0) [ $1 dx‘ + [#I ----r d x’ 

+ exp [ixk,] + R exp [ixk;] = 0, ’ x > 0, y = 0 
and 

(2.5) 

+ ik,exp[i(xk,+ bk,)] + ik,* R exp[i(xk: + hk,*)] = 0, x > a, y = b. (2.6) 

Following Wiener and Hopf, we rewrite this system, valid for - co < x < co as 
follows. We put 

= 0, x < 0, 

= 0, x < a, 

x > u, - = 0, 
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$T(x) = exp(ixk,) + R exp(ixk,*), x > 0, 

= 0, x <o,  
4:(x) = ik, exp [i(xk, + bk,)] + ik: R exp [i(xk: + bk:) ] ,  x > a, 

= 0, x < a. 

Hence (2.5) and (2.6) may now be rewritten as 

(2.5a) 
and 

2 r.0 
F ,  (x) = $F(x) - J a Y  - m  

G(x, y ;  x’, 0)fi (x’)dx’ 

(2.5b) 

3. The Fourier transform of the system (2.5) 

The determination of the Fourier transform of the system can be carried out 
without any difficulty. We know, for example, that F ,  (x) and F2(x) = 0 [exp(&x)], x + 

- 00 where --E < Im w < 0, as we can conclude directly from the system (2.5). We also 
assume thatfi(x) and F2(x) are integrable in the neighbourhood of the origin and that 
h ( x )  and F ,  (x) are integrable in the neighbourhood of x = a. Since the parallel plate 
region can sustain only one propagating mode for the values of ck which we consider 
here, we have that f i(x) and fi(x) = 0(1), x +  00. Hence the unilateral Fourier 
transforms of F , ( x )  and F2(x), that is 

exp[ - iwx] F ,  (x) dx = El (w) s I m  
and 

exp[-iwx]F,(x)dx = f 2 ( w )  

are analytic in the upper half-plane Tm w > -8. Furthermore, the Fourier transforms 
offi(x) andf,(x), that is 

[:exp(-iwx)/,(l)dx = ~ ( w )  

l“exp(-iax)l ,(x)dx =&(w) 

and 

are analytic in the lower half-plane Im w < 0. Notice that $,fw) and &(w) possess 
exponential behaviour in their respective half-planes of analyticity, which we shall 
have to eliminate in order to apply the Liouville theorem. 

We also require the Fourier transforms of C(x, 0; 0,O); aG(x, 0; 0, y’)/ay‘, y’ = b; 
dG(x, y; O,O)/ay, y = b and d2G(x, y; 0, y’)/ayay’, y = y’ = b. From (2.4) it follows that 
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G(x, 0; 0, y ' )  
cosab [ 1 - exp( - 2ii,)] 

exp(-iwx)dx = 
y ' = b  ~ [ C O S  21. - cos 2ab) ' 

cos ab[l -exp(2iR)] ?- 3( G(x, y ; 0,O)  1 ex p( - i wx)dx = 
3Y - - c c  y = h  ~ [ C O S  21, - cos 2ab] ' 

and 

- a sin 2ab 
~ [ C O S  2 i  - cos 2abl '  

exp( -iwx)dx = _____ 
y = y ' = b  

Here E. = k p c  - wu and cp = ak,  + bk, = kc cos(a - 0). These transforms are analytic in 
the strip - -c  < Im w < 0. The unilateral Fourier transforms of 4T(x) and 4T(x) are 
analytic in the lower half-plane Im w < 0. Hence we have in the strip --8 < Im w < 0 

+R]t sin 2obx(w) 
w - k :  ~ C T [ C O S ~ A - C O S ~ O ~ ]  

cos ab[1 -exp(-2ilb)],L(w) 
2[cos 21 - cos 2ab] ' + 

exp( -iaw) 1 bk,) Rk: exp[i(ak: + bk: + 
w - k,* 

cosab[l -exp(2iE.)]X(w) osin2ab&(w) 
( 3 4  - - 

~ [ C O S  21- - cos 20h) 2 [COS 21. - cos 20b] ' 

Now we note that both p,(w) and &(w) possess exponential behaviour. That is 

f2 (x) exp( - iwx)dx = exp[ - iw(t +a )] f, ( t  i- u)dt 

exp(-itw)f,(t + a)dt =$;(w)exp( -iaw). 

Similarly, E, (w) = exp( -iuw)ET(w), where 

exp[-itw]E,(t+a)dt. 

Hence in terms of PT(w) and f i (w)  we have 

R sin 2abf1 ( w )  

(3.1 a) 
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and 
Rk: i sin I cos a b x  (w) 

w - k: + [cos 21 - cos 2ob] 
P:(w)exp(-ikpc) = [ k, + -1 

w - k, 

- [T sin 2abfi(w)exp(-ikpc) 
’ 

~ [ C O S  22 - cos 2ab] 

In matrix notation we have 

i sin A - a sin ob 
cos a h  

[COS 22 - cos 2abl [ i sin I ] [ exp( - ikpc)J?S(w) 

309 

(3.2b) 

(3.3) 

where p = cos(8 - a )  since k,* = k cos(2a - 8) and k,* = k sin(2a - 8). We write hence- 
forth 

r sin 2 iosinab 1 
J(sin2 I - sin2 ob) J(sin’ A -  sin2 ab )  

sin ab sin I 
C(w) = 

L - 0 J(sin2 I - sin2 ab) J(sin2 1, - sin’ ab)] 

and 
cos ab - L(w) K(w) = - 

J(sin2 I - sin’ ab) M(w) 
where L(w) = cos a b  and M(w) = J(sin’ I - sin’ ab). The matrix C(w) has been 
written in the above form to make the determinant of C(w) equal to one. With this 
notation (3.3) becomes 

K(w)C(w)T(w)/2 = f$*(w) + P(w) 
where 

(3.4) 

and 

The equations in (3.4) are analytic in the strip - E  < Im w < 0 where the constant E has 
been defined in Section 2. That is, all the terms in this system are analytic in this strip. 

4. The factoring of the matrix C ( w )  and the scalar functions L(w) and M(w) 

Let us suppose that we can factor the matrix C(w) into two matrices C+(w) and 
C - (w) where C + (w) and its inverse are analytic in the upper half-plane Im w > - E and 
E is the smaller of the two quantities b[(n- kcp)2 - c ’ ~ ~ ] ~ ‘ ’ / c ~  > 0 or h[(n  + kcp)2 
- c2k2]”2/c2 > 0 while C- (w)  and its inverse are analytic in the lower half-plane 
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Im w < 0. If this is the case and C+ (w)C-  (w)= C(w) we will be in a position to apply 
the original argument of Wiener and Hopf to the system of equations (3.3). We will 
show that this decomposition of C ( w )  can be accomplished with Sylvester's t h e ~ r e m . ~  

To start with we write the matrix C ( w )  = exp[B(w)] and decompose B(w) additively 
into B, ( w )  + B- (w), where B, (w) possess the same half-planes of analyticity which 
are required of C + ( w )  and C - ( w )  and furthermore commute. We have from 
Sylvester's theorem 

1 ia 
1 (sin A + sin oh)  

B(w) = In C ( w )  = 

+-In- 1 (sin A-sinob) [I pliG] 

2 ,/(sin2 A - sin2 ob) 
CJ 

=In{ sinA+sinob]1/2[ _ -  O i  
sin A - sin ob 

o 

Hence 

It therefore remains to decompose the elements of the matrix 

additively. As we shall see in the Appendix this may be rewritten as 

where ag,(w) and g + ( w ) / o  have the same half-plane of analyticity which C + ( w )  
possesses, whereas og- (w) and g -  (w)/o have the same half-plane of analyticity which 
C- (w) possesses. This last reduction is what makes it possible to produce explicit 
results, in part due to the matrix factors and in part due to the relatively simple form of 
y + ( w )  and g-(w).  We note that 

O io [ -; .]-I. 
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We shall derive g-  (w), g+ (w) in the Appendix and, for the time being, we merely 
present g + (w) for which we have immediate use. We have that 

k 2  - ww ln + a (w ) a  (w ln) w - w 2, 
g + ( w ) = - l n  2 n = l  fl “i k2-ww;n+a(w)(w;n) -1 W - W i n  

k 2  - WW, + o ( w ) ~ ( w ~ - )  w - W: { k 2  - WW,’ + a(w)a(w,’) w-w, 1 7  

where 
a(nn:-kpc)+ibJ[(nn-kpc) ’  -c2k2] 

c2 
w, = - 

and 
a(nn:+kpc)-ibJ[(nn:+ k p ~ ) ~ - c ~ k ~ ]  

C2 
w,’ = , n = l , 2 ,  . . .  

The need for the restriction that A( _+p, 1 )  = [(n: _+ pc)’ - c 2 k 2 ] ” 2  is real, is now clear. 
This condition precludes the presence of diffracted plane waves from the structure in 
Figure 1. We note at this point, and shall show in the Appendix that g + ( w )  is single 
valued in the smaller of the half-planes Im w > -b[(n + kpc)’ - c 2 k 2 ] 1 i 2 / ~ 2  or 

The scalar factor [cos 2ab - cos 2A]”2/J2 was encountered in Reference 1, and it is 
known how to decompose it into a product representation M - (w) /M+ (w). This 
expression has been chosen to have a positive square root in the interval k: < u < 
k,(w =u+iu).  The factor M - ( w )  is free of branch points in the lower half-plane 
Im w < 0 and the factor 1/M+ ( w )  is free of branch points in the upper half-plane 
Im w > - E .  

The factor L ( w )  = cos a b  has no zeros or poles in the strip - E < Im w < 0, if the 
parameter kb is properly restricted. The zeros of cos a b  are related to the propagation 
constants in the ducts, and since we only want one mode to propagate, we have 
4 2 b  < k < 3n:/2b. On the other hand, since there are no diffracted plane waves, [(n: 
- +kpc)’ -c2k2] is positive. Upon taking into account all of these conditions, we see 
that a diffracted plane wave can occur before the propagation interval in the duct is 
completed. Hence the factors of L ( w )  which we require are L - ( w )  and L+(w) ,  where 
L ( w )  is free of zeros in the lower half-plane Im w < 0 and l/L,(w) is free of poles in 
the upper half-plane 

- b[(R - kpc)’ - c2 k 2 ] 1 i 2 / ~ 2 .  

5. The solution of the system (3.4) 

We can now write the system (3.4) as 

which is analytic in the strip - E < Im w < 0. This in turn can be rewritten as 
1 
- K - ( w ) C -  (w)T(w) = K +(w)C; ‘(w)+*(w) + K+(w)C;’(w)P(w),  
2 
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where now the left side of this matrix equation is analytic in the lower half-plane? 
Im w < 0 and the extreme right term is analytic in the upper half-plane Im w > --E. 
Owing to the simplicity of Cp*(w), it is possible to decompose the middle term explicitly 
into two terms with half-planes of analyticity Im w < 0 and Im w > --E. Hence we 
obtain 

( 5 4  
Now the original argument of Wiener and Hopf may be invoked. That is, the left and 
right sides are analytic in a common strip, with the left side analytic in the lower half 
plane Im w < 0 and the right sides analytic in the upper half-plane Im w > --E. The 
right side is therefore the analytic continuation of the left side and is analytic 
everywhere. We have therefore 

and 

-R-  CK + ( w ) c ;  (w) - K + (k,* )c;  ' (k,X)l[ i:" ] = [El (w)] 
(W-k:) E*(w) ' 

(5.4) 

where E l ( w )  and E,(w) are entire functions of w. 
In order to determine these entire functions, we note that fi(x) = O(x-'") and 

f ; ( x )  = O(1), x+O+. Upon taking into account the properties of h(x) and L(x) for 
0 < x < co, we find that x ( w )  = O ( W - ~ ' ~ )  and f;(w) = O(w-') ,  IwJ -+ co, Im w < 0. 
Furthermore (see Appendix B) 

Iw/ -+ 00, Im w < 0, and K - ( w )  = O ( W ~ ' ~ ) ,  / w /  -+ 00, Im w < 0. Hence from (5.3) we see 
that E l ( w )  is bounded at infinity in the lower half-plane Im w < 0, whereas E 2 ( w )  
vanishes there. Upon examining equation (5.4) we find that E,(w) is bounded at 

tWhen we say that such a matrix is analytic in some half-plane, we mean that its elements, its 
determinant and the reciprocal of the determinant are analytic there. 
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infinity in the upper half-plane Im w > --E whereas E,(w) vanishes there. Hence by 
Liouville's theorem El (w) is a constant 6 and E ,  E 0. 

It remains to evaluate the constant 6. We recall that the structure in Fig. 1 has been 
excited by a plane wave. The ducts therefore sustain waves propagating to the right. 
The solution for the vector T(w) contains terms which account for waves propagating 
to the right and left and are due to the real zeros in K ( w )  at w = &ti = { k 2  
- (x/2b)'} l i Z .  In order to eliminate the possibility of waves from the right in the duct, 
we require that 

That is, the residue of the vector i(w) at w = - K vanishes. Equation (5.5) enables us to 
evaluate the reflection coefficient R and the constant 6. We have 

6. The determination of the reflection and transmission coefficients 

The determination of the reflection coefficient is immediate. We obtain in the 
Appendix explicit forms of the various terms in the formula (5.6) for R. Here we shall 
give its magnitude and although it is possible to write its argument, we will not do it 
since we have no direct use for it. We have then 

(# - k , ) ( K  + k:) '" 1 [ ( K + k , ) ( K - k , * )  
IRI= ~ 

The determination of the transmission coefficients in the ducts requires much more 
effort. We note that because of the periodic nature of the structure, we need only 
examine the region - cc < x < a, 0 I y I 2b. The transmission coefficient in the duct 
x > a, 0 I y I b is different from one in the duct x > 2a, b 2 y I 2b for we have two 
different forms for the representation (2.3) based upon (2.4). For example, for 
0 5 y I b, we have from (2.3) and (2.4) the Fourier integral representation 

(p(x, y) = exp[i(xk, + yk,)] + R exp[i(xk,* + yk?] 

1 

+ % lP fexp[2iib(w)sin ay + sin a(2b - y)} A fi (w)exp(iwx)dw 
2o[cos 24w) - cos 2obl 

y )  - exp[ - 2il.(w)]cos o(b'- y)} 

x L(w)exp(iwx)dw , (6.1) 

~ [ C O S  2 i ( w )  - cos 20bl 

where 9 is a line drawn in the strip --E < Im w < 0, parallel to the real axis of the w 
plane and where E has been defined in Section 2. For b I y 5 2b, we have 
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d(x, y )  = exp[i(xk, +yk,) ]  + R exp[i(xk,* + yk?) 

{exp[2iA(w)]cos a@ - y )  - cos o(3b - y ) }  
2[cos 21(w) - c i s  2ob] 

xL(w)exp(i wx)dw. (6.2) 

In order to examine (6.1) and (6.2) in more detail, we need the explicit forms of 
1, so that x ( w )  andX(w) may be determined. Here C+(w) and C-0 

C+(w) = 

and therefore 

coshg+(w) iasinhg+(w) 
1 

a 
- --sinhg+(w) coshg+(w) 

r cosh g + (w) - ia sinh g+ (w)  1 

where g+(w)  is given in the Appendix. It follows that 

and 

Hence 

[ K - (W)C- ( w ) b )  - _ -  K +  (k,)expC - Y +  @,)I 
2 w-k,  

- R K  + (k,*)exp[ -9+ (k31 __ [ iy] + [ ;]. 
w - k: 

With our knowledge of R and 6, the right side of (6.3) can be rewritten as 

K + (k,)(w + K)expC -g + (k,)l iCw(k, - k,*) + (k,k: - k,k,* )I 
( k x  - k,* 1 (w - k,)(w - + k,) L - 

but the column matrix may be simplified to 

C 

and therefore 

4K + (k,)(w + ic)k sin(oc - 8)expC-g. (k , ) ]  iA(w) f(w)= - CK- (w)(w - k,)(w - k , * ) ( K  + k,) CI'(w)[ 1. (6.4) 



The Sommerfeld Half-plane Problem Revisited, IV 31 5 

This incidently shows that f i  (x) and .fi(x) are integrable in the neighbourhood of the 
origin. Upon using the fact that 

61 ~ (w ) + (1 + (w ) = In 
sin A(w) + sin a b  I / ’  c sin A(w) - sin a h  1 

we may rewrite (6.4) in component form as 

. iA(\ti)[sin2 A(w) - sin2 ah]”2 sin A(w) + sin ah 1 1 2  ic sin A(w) - sin ah 1 f, (W) = 
cos ah 

sin i ( w )  -sin ah 

sin I(w) + sin a b  1 x C i ( 4  - oh ]  expC - y +  (w)] + 

and 
sin A ( w )  +sin ah ‘ I2  i- c sin %(w) - sin a b  1 

1 
exp(ikpc)A(w)[sin2 A(w) - sin2 ah] ’/’ 

cos a b  
f;(u?) = ~___  .______. - 

sin A(w) - sin a b  l i 2  

sin A(w) + sin ah 
;.(MI) - ah 

a 

_____ 

These forms exhibit explicitly the dependence of x ( w )  and h ( w )  on the poles 
w = 5 K.  Here 

2k(w + k-)sin(r - O ) K  + (k,)exp[ -g+ (k,)] A( W’j = 
C K  + (w)(w - k,) (W - k,*)(K + k,) 

and 
cos ab  

[sin2 A(w) - sin’ ah] ‘ j 2  ’ 

- ~ ~ . _ _ _ _ _ _ _  - 
K - (w  ) 

K + (w) 
- ____ 

Upon substituting x ( w )  andx(w) = exp(-iwu)h(w) into (6.1) we observe that the 
integrand is a single-valued function of w, a fact which we shall discuss in the 
Appendix. For x < 0,O I y I 2b we may close 6 p  in the lower half-plane by a sequence 
of semicircular arcs which pass between the double set of poles of the integrand. Since 
there are no real poles in this half-plane, it follows that $(x, y )  is asymptotic to 

(6.5) 
If we close 9 in the upper half-plane by a sequence of semicircular arcs which pass 
between the double set of poles of the integrand, we obtain residues from the complex 
poles as well as from three real ones, namely k,, k: and K .  The residues from the 
complex poles give rise to terms which vanish exponentially when x -+ 00. The residues 
from the poles at k, and k: give rise to terms which cancel the term (6.5), whereas the 
residue from the pole at K enables us to determine the amplitudes (not the transmis- 
sion coefficients) of the propagating waves in the ducts x > 2a, 0 5 y I 2b. A residue 

exp[i(xk, + yk,)] + R exp[i(xk: + yk:)]. 
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calculation gives us for x -+ a, 0 5 y 5 b 
“Y 

W = K  2h +i{b[l +exp(2i%(ti))Resx(w) sin - exp(itix)) 

4k Y )  = “[l +cos2A(ti)] 

=Y 
W = K  2h 

-i{ [l + exp( -2i%(ti))] Resg(w) sin - exp(itix)} 
(6.6) X 

2[ 1 + COS 2A(K)] 

x [(lr/2)-~~(ti)]’’2exp[-i~(ti)] + [iexpiA(ti)- 1][1 - s i n A ( ~ ) ] ~ ‘ ~  

x [(n/2)+ A(ti)]”’exp[iv(ti)]) sin - exp[iti(x)]. “Y 
2b 

As we shall see in the Appendix 

4cIi’k~ sin a sin(a - 0) 
n”2[~~~A(t i ) ]1 /Z[kx-  ti]i’4[k,+ K]”2[ti-kk,*]314‘ 

Hence the magnitude of the amplitude of the propagating mode in the duct x > a, 
O s v i h i s  

8{” - 2[(d/4) - A’(ti)]’/’ sin ~ V ( K ) }  ‘1’ 

[1 n(k, + K ) ( K  - k:)  1 I T ,  I = k sin(cr - 0) 

In a similar fashion, using the representation (6.2), we find that the magnitude of the 
amplitude of the propagating mode in the duct x > 2 4  b 5 y 5 2b is 

8{” + 2[(~2/4) - A2(K)]’/’sin 2V(K)} 
R ( k ,  + K ) ( K  - k:) 

1 T,/ = ksin(cr - 0) 

Now we recall3 that IRI, IT,] and IT2[ are related by a conservation condition, 
namely 

2kcsin(a - 0)[1 - 1R12] = bti[l TI 1 2 +  lT212] /2, 

which is indeed the case here. Hence the transmission coefficients are 

respectively. Observe also that IRI < 1 since 1 - IR)’ > 0, and therefore the transmis- 
sion coefficients are less than one. We also note that 

(7t2/4)-A2(K) =C2[k,-K][K-kk,*], 

which is now expressed in terms of physical parameters. The V ( K )  in (6.6) is the 
argument of g + (t i) .  

Appendix 

As we have noted in Section 4, we need a usable form of the factors L-  (w), L ,  (w), 
M - (w) and M + (w)  in order to obtain K - (w) and K + (w). By this we mean that not 
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only can we display these terms, but we can also find their asymptotic forms for 
IwI -+ co in their respective half-planes of analyticity. In Section 6 we saw that we also 
had need for K + ( k x ) ,  K, (k:) and K + ( K )  in a reduced form in order to calculate the 
far-field parameters. The same remarks may be addressed to g + (w) and g - (w) and it is 
to these issues that we devote our attention here. 

A .  The decomposition of K(w) 

To begin with we require the factors of 

cos ob K-(w) - 
K +(w)  [sin2A - ~ i n ~ a b ] ’ ~ ~ ’  

where K -  (w) and its reciprocal are analytic in the lower half-plane Im w < 0 and 
K + (w) and its reciprocal are analytic in the upper half-plane Im w > - E where E has 
been defined in Section 4. 

The factoring of the numerator is immediate since it has been encountered in many 
scalar Wiener-Hopf problems in the past. It is well known that we can write the 
absolutely convergent Weierstrass product for cos ab as 

4b2W2 1 = fi [ I -  4b2 k 2  
n = O  (2n+ 1 ) * d  + (2n+ 1 ) 2 d  . 

In view of the fact that only the lowest mode will be permitted to propagate in the 
ducts, we have that 

K = [k2 - 7 ~ ~ / 4 b ~ ] ~ / ~  > 0, 

1 -4b2k2/(2n+ 1 ) ’ ~ ~  > O ,  

We then rewrite the second product as 

7[: < 2bk < 371 

and 
n = 1,2, . . . . 

n = l  (2n + 1)2n2 

4b2 k2 2ibw 

The exponential factors have been inserted into these products to render them 
convergent. Hence 

has no zeros in the lower half-plane Im w < 0 and its reciprocal is analytic in this half- 
plane. Similarly the second product is free of zeros in the upper half-plane Im w > - E 
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and its reciprocal is analytic there. Hence we write cos a b  = L-(w)/L+(w) where 

4b2 
L_(w)=-(w2-K2) n 

n2 n = l  

2ibw 
(2n + 1)n 

+ ] exp[ - 2ibw/(2n + 1)nI 

and 

Now as for the asymptotic behaviour of L-(w) and L+(w), we recall’.’ that it is 
equivalent to considering the asymptotic behaviour of 

n 

w2 n [l + 2ibw/(2n + 1)n] exp[ - 2ibw/(2n + l)n] 
n =  1 

in the lower half-plane Im w < 0, Jw 1 -+ m and 

a, n [I - 2ibw/(2n + l)n] exp[2ihw/(2n + 1)n] 
11+ 1 

in the upper half-plane Im w > -8, (w( -+ a. These last two products may be expres- 
sed in terms of the gamma function. That is, up to a constant 

L -  (w)  - wr(iwb/n) exp[(2 - y)iwh/n]/r(2iwb/n) 

I/L+(w) - r(-iwb/n)exp[-(2-y)iwb/x]/~T(-2iwb/n), 
and 

where y is the Euler-Mascheroni constant. 

sin()* + ab)  sin(i - ob) and has the convergent infinite representation 
We now turn to the factors of sin’,? - sin’ob. This expression may be rewritten as 

which appears to be valid in the w plane cut from - cc to - k and k to co. But these 
cuts are illusory since the original expression is single valued and we therefore expect 
that we can rewrite this last term so that the apparent multivaluedness does not 
appear. To this end, we may rewrite the last product as 

Since 0’ = k Z  - w2 and )u = kc cos(8 - a) - aw = kpc - aw, we observe that the infinite 
products only have complex roots since we have assumed that there is only specular 
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reflection of the incident plane wave. Therefore the last display may be rewritten as 
sl 

[ M - ( w ) / M + ( ~ ) ] ~ = c ~ ( w - k ~ ) ( w - k : ) ~  
n =  1 

x [: + z ( 1  - $) - :A( - p ,  n)]exp(2i/rtn) 

cw 

-21/7rn), (Al )  

where 

In order to have the products in ( A l )  in a more usable form so that we may 
determine their asymptotic behaviour, we cast (A 1)  into the form 

c2(w - k,)(w - k : )  

x “Dl {[ + ;( 1 - “,9f) + ?A(-p, c n)][ 91 
x [ + :( 1 - g ) - :A( - p ,  n ) ]  [ T]}exp(21./rtn) a + ib 

x {[ -: + :( 1 + $) - :A(p. n ) ] [ q ]  

x [ - + z ( 1 + g) + :A(p, n ) ]  [ G]} exp( - 21/xn). 

Hence as n + GO, the terms in the products have the following forms in the order in 
which they appear: 

A+ibw 1 - ibw I----- 
rtn 

2 - ibw 2 + ibw 
+O(;) and 1+- 

l + x n  rtn 

From this last display we can extract terms which are free of zeros in the lower half- 
plane Im w < 0, that is 

[ M - ( w ) ] 2  = c2(w - k,)(w - k:)  

x fil{[~+~(l-g) - I h A ( - p , n ~ l [ ~ ] } e x p l ( L i h n ) n n l  c 

x n =  fi 1 { [ - + :( 1 + g) + :A(p, n ) ] [  q ] } e x p [ (  - i. + ibw)/nn]. 
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Similarly 

[ M + ( w ) ] - 2  = fi { [E + ;( 1 - g) + % ( - p ,  C n )  ][‘?I} exp[ (1. + ibw)/nn] 
n =  1 

x n = l  fi i [ - ~ + ~ ( * - ~ ) - i b ~ ( - p , n ) ] ~ ~ ] } e x p [ ( - i i h w ) / n n ]  C 

is free of zeros in the smaller of the upper half-planes 

The asymptotic behaviour of [ M -  ( I Y ) ] ~  for I w J  -, co, Im u’ < 0 is now equivalent to 
considering the asymptotic behaviour of 

A - iwb 
[ M - ( W ) ] 2  - c2w2 fi [ 1 - -1 exp[(1- iwb)/nn] 

n = l  

rc2 exp( - 2ibwy/n) 
r[(A+ihw)/n]r[( -1+ibw)/n] 

- 
Similarly 

exp[(A + ibw)/nn] 1 (2 + ihw) 
nn CM+(w)1-2- fi [ I  - 

n =  1 

x n =  fi 1 [ 1 + =]expc-(n-iwb)/nn-j 

when jw l -  co, Im w > - E ,  or  in terms of the gamma function 

- n2 exp [2ibwy/n] 
c2w2 r[ - (1. + iwb)/n] r[(A - iwb)/n] ’ 

-- 
i t  now follows from the Stirling expansion that 

up to a constant factor when IwI -+ co, Im w < 0. In a similar manner, we find that 

up to a constant factor when IwI + 03, Im w > -6 .  Hence, in order to construct a 
K - ( w )  and K + ( w )  of algebraic order at infinity?, we define 

+Recall that we need this behaviour in order to apply the Liouville theorem referred to in Section 5. We 
note that for a=a/2,  the case which Luneburg and Hurd6 considered, the factor [ ~ ( w ) ]  does not occur 
explicitly, but appears implicitly in their discussion. 
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cosab 
= I 1 - 4b202/n2 

and 

l i 2  

where we have chosen 

I L + ( k X 1  = 

lL+(k:) l -1= 

1 x(w)= -~ 2-2ln2-  - - - a  cota-lnsincc 
iwb[ n (1 ) 

n2 cosbk, l i 2  
~ 

4bZ [ ( k , ) 2  - ti2] 

n2 cosbk? ' I 2  

4b2 [ (k: )2  - ti2] 
~ 

As we have observed in Section 6, we have need of I K + ( k x ) l ,  IK+ (k:)l and IK+ ( t i ) I  

in order to determine the magnitudes of the far-field parameters. The determination of 
I L ,  (kJ1,I L ,  fk:) \  and I L+ (ti)I is immediate because k is real. For w real, positive and 
less than k 

sin2)" - sin2brJ = I  c 2 ( w  - kJ(w - k:) 

l I 2  

Therefore 

sin bk,* cos bk; 1/2  

and 
IL+(iC)l-' = n"2/2. 

For the determination of [M+(kx)l, lM+(k:)l and IM+(ti)l we have that 

when - k < w < k .  Hence 

and 
Icos(kpc - ati)l 

I M ,  (.)I - 2  = 
I C 2 ( k , -  ti)(k,* - 
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B. The decomposition of h(w, c )  = g(w)/o(w) 

We are now left with the task of decomposing 

h(w,c) = g(w) /a (w)  = 
i ( w )  - sin ba(w) 

additively, so that one term will be analytic in the smaller of the two upper half-planes 
Im w > - hnA( p, 1)/c2 or - h A (  - p, 1)/c2, whereas the other is analytic in the lower 
half-plane Im MI < 0. We label the first term h + ( w )  and the second one h-(w). Each of 
these terms has two representations, one of which is valid when I \ * /  < k and the other 
when I N J I  > k .  The representation which is valid when IwI < k is needed to calculate the 
far-field parameters, whereas the one which is valid for IwI > k is needed to determine 
the necessary asymptotic forms which are required to find the entire functions E ,  ( w )  
and E,(w),  [see Section V]. With the branch of the logarithm in (Bl) chosen to be zero 
when MI = k and ( ~ ( w )  to be real and positive when w is real and - k < w < k ,  h(w, c)  is a 
single-valued analytic function in the smaller of the strips - hnA(p, l)/cz < Im w < 0 
or -n:hA(-p, l)/c2 < lm w < 0. An elementary calculation enables us to write (BI) 
additively as a term which is immediately analytic in the lower half-plane Im w < 0 
and one which is analytic in the smaller of the strips just described. An application of 
the Cauchy integral theorem to this last term will complete the decomposition we 
seek. 

To this end we write 

h(w, c )  = - In . 
sin(). + ho)/2 cos(i  - ha)/2 

2 ? sin@. - hcr)/2 cos(3, + h ) / 2  ____- ]/44 

and upon noting the product representation of the various trigonometric functions, 
we obtain 

x f i  
n = 1  

- 21Inn I 
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r .  1" l2 b2a2 

The first term inside the braces and the first and third products are analytic in the 
lower half-plane Im w < 0. For later use we note that (B2) can be rewritten as 

ba+A 1 4  

1 2  

2nn 

r 1' f 1 \ 2  b2a2 

I nn 

Now we observe that the third and fourth products in (B3) have zeros and poles in 
the upper and lower half-planes. The factor (1 - R/nx)2 - b2a2/n2n2, n = 1,2, . . . has 
zeros in the lower half-plane at wn- = [ - a(nx - k p c )  - ibnnA( - p ,  n ) ] / c 2  where 
A( - p ,  n) = [( 1 - kpc/nn)2 - > 0, while the factor (1 + i /nn)2 - b202/n2n2 
has zeros in the lower half-plane at w,' = [a(nn + k p c )  - ibnnA(p,n)]/c2. The zeros of 
these factors in the upper half-plane are at W', the complex conjugate of w: 
and A(p, n)>O. We shall ultimately need a(wz)  which may be calculated from 
1 -i(w:)/nn = bo(w:)/nn. These as are 

and 
a(wn-) = [b(nn - k p c )  - iannA( - p ,  n)]/c2 

a(w,') = [b(nn + k p c )  + iunnA(p, n)]/c2. 

The last two products in (B3) can therefore be written in terms of w: and W' as 

(B4) 
= [(a+ib)(w,+ -w)/nnlC(a-ib)(w,+ -w)/nnl e-42,nrr ,,ZL [(-a+ib)(w, -w)/ni~][(-a-ib)(W, -w)/nx] 

The role of the expressions (a ib)/c2 is to arrange the factors in the product so that 
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when n is sufficiently large, the terms will be 1 +O(l/n). Now (B4) can be rewritten as 

035) 

1 
1. 

(a + ib)( w,' - w ) / m  
(-a + ib)(w,,- - w)/nn 

(a - ib)(*,+ - w)/nn 
-IT fi [ (-a + ih)(w;,, - w)/2nn 

f l= 

xfi[ It= (a - ib)(w:, - w)/2nn 1"- (-a - ib)(wfl- - w)/nz 

(a + ib)(wl,, - w)/2nn 

(-a-ib)(wYn- w)/2n.n 

Observe that there are no convergence factors in the last display. Of these two 
products, the first one is free of zeros and poles in the upper half-plane Im w > - c l  , 
whereas the second one is free of zeros and poles in the lower half-plane Tm w < -ez.  
We have then that {In(sin A + sin ba)/(sin 3, - sin ba)} /o(w)  is composed of four pro- 
ducts and the term (A+ba)/(A-ba). Only the term 

(a + ib)( w,' - w)/nz [ (a + ib)(w;,, - w)/2nn (-a + ib)(w, - w)/nn -1 ]/o(w) I" (-a + ib)(w;,, - w)/2nn 

is analytic in the strip -el  < Im w < - E ~  owing to the branch points of a(w),  whereas 
the others are analytic in the lower half-plane Im w < - E ~ .  

We can therefore determine h ,  (w, c), the part of h(w, c) which is analytic in the 
upper half-plane Im w > - E ~  by evaluating the Cauchy integral 

's"""' 2ni t - w  
along a rectangle whose sides are straight lines which run from -L-icZ to L-ie,, 
L-iE2 to L-iEl L-iel to -L-iE1 and -L-iE1 to -L-iEz. In thelimit L + m ,  
the integrals along the vertical segments make no contributions. The integral 

provides the term which is analytic in the upper half-plane Im w > -cl by analytic 
continuation. The integral 

h(t ,  c)dt - I;C - iaz 

= h - (w, c)  

now determines the term which is analytic in the lower half-plane. 
The integrand in (B6) has logarithmic branch point singularities in the lower half- 

plane Im w < - eZ at w' , n = 1,2,  . . . This integral may be evaluated by first drawing 
branch cuts from w: to cc exp[i arg w: 1. We then choose a line segment which runs 
from - R - iel to R - ie, and a semicircular path of radius R in the lower half-plane, 
of centre (0, - c l )  which is deformed to pass about these branch cuts for each n. By 
Cauchy's theorem, this integral vanishes, and when R + cc there are no contributions 
from the integral along the circular arcs. We are then left with the integrals along the 
cuts which arise from the change of phase of h(t, c) along the cuts. After this operation 
is completed, we have that (B6) reduces to 
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This in turn may be simplified to 

and this reduces to 

J (k  - w)J (k  + W;n) + J (k  + w)J (k  - win) 
W )  J (k + w:n) - J ( k  + w ) J  ( k  - wln)  2 4 ~ )  n = l  f 

J ( k  - w >J ( k  + WTn > - J (k  + w)J  (k - WZn)  

J ( k - w ) J ( k  +w;n) + J ( k + w ) J ( k - w ~ n )  1 
L k -  4 J ( k  + w, 1 - J (k  + w ) J ( k  - w,) 

11. (B9) 

1 
11. (B10) 

1 I)= !kg 

X 

J (k  - w ) J ( k  + w,) + J ( k  + w ) J ( k  - w,') 

X J (k -w)J (k+w,+ ) -J (k+w)J (k -w , ' )  
J (k  - N J ( k  + w: 1 + J(k + w)J (k  - w,+) 

There are two alternative forms for (B9) which are useful. The first one is obtained by 
squaring the argument of the logarithm and dividing the logarithm by 2. In this case 
we obtain 

k 2  - WW;, + o(w)cT(w,,) k 2  - W W ,  - CT(W)O(W&) 

4a(w) { lnnD1 [ k 2  - WW;,, - D ( W ) G ( W , , )  k 2  - W W ,  + G(W)O(W;,,) 

x [  k 2  - W W ,  - o(w)o(w~-) k 2  - WW,' + o(w)cT(w,') 

1 
k+(w,  c ) =  ~ 

k 2  - wwn- + o(w)o(wn-) k2 - ww,' - a(w)o(w,') 

The second form is obtained from the last one upon noting that [k2-ww' 
+ a ( w ) a ( w i ) ]  [ k 2  -ww' - a(w)o(w:)] = k2(w - w')'. Here we obtain 

k2 - WW:, + C J ( W ) ~ ( W , ' , )  (W - w;,,) 

(B11) 

k+(w,  c)  = --In n 
2a(w) n =  1 k 2  - W W ,  + IT(w)o(w~, , )  ( w -  w;,,) " i i  

k2 - wwn- + a(w)o(wn-) (w - w,' ) [- k2-ww;  +cT(w)o(w, ' ) (w-w~-)  

(B1 1 )  displays the branch points in the lower half-plane explicitly. 
We now show that k+(w,  c) as given by (B10) is a single-valued function in the 

smaller of the upper half-plane Im w > - xbA( p, 1)/c2 or - xbA( - p, 1)/c2. In order to 
see this, we note the only possible singularities of h + (w, c )  in these half-planes are the 
branch points at w = f k .  We draw straight line branch cuts from - a3 to - k and k to 
m. Then a(w) = i(w2 - k2)1'z on the lower side of the cut from k to cc if we take 
a(w) > 0 on - k < w < k.  On the other hand a(w) = - i(w2 - k 2 ) 1 / 2  on the upper side of 
this cut. Hence, since there are no zeros in the products in (B10) in the upper half- 
plane, k + ( w ,  c) remains unchanged. The same remarks may be made about the cut 
from - x to - k .  

Clearly k+(w,  c )  has only branch points at w', n = 1,2, . . . which lie in the lower 
half-plane lm w <  - c l .  I t  is also clear that the infinite product converges and is an 
analytic function in the upper half-plane which we described since it is an alternative 
representation of the integral which defines k + ( w ,  c) in that half-plane. In order to 
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verify directly that the product in (B10) does not require convergence factors we divide 
all factors in the product containing the index n by nn and those containing the index 
2n by 2nn. Then for n sufficiently large, we have for a w,' term 

k2/nn  -(w - io)(a - ih ) ( l  + kpc/nn)/c2 
k 2 / m  - (w + io)(a - ih)( 1 + kpc/nn)/c2 

~ 

w - io 1 + [ k p t  - (a  + ih)(w + io)]/nn 
w + io 1 + [kpc - (u  + ih)(w - io)]/nn' 

- ~ ___... ___ - 

A product with such a term requires a convergence factor exp[2io(a + ib)/nn]. On the 
other hand for n sufficiently large, we have for a wn- term 

w + io 1 + [(a - ib)(w - ia) - kpcl/nn 
w - io 1 + [ ( a  - ih)(w + io) - kpc]/nn' 

This term now requires a convergence factor exp[2ia(a - ib)/nn]. Hence for the 
product with index n, we only require a convergence factor exp[4iao/xn] and the 
external terms (w - io)/(w + io) and (w + io)/(w - io) cancel. For the terms containing 
the index 2n, we require a convergence factor exp[ - 2iao/nn] and this in turn has to 
be squared. Hence no convergence factor is required in (Bl0). 

In order to  calculate h - (w, c) we write 

1 
2o(w) 

sin i + sin ha 
sin A - sin bo h - ( w , c ) =  --ln7-- h + ( w ,  c )  

rather than attempting to evaluate the integral for h-  (w, c). The following identities 
will be useful in simplifying the right side of (B12). We have 

[ k 2  - wwn- + o(w)o(w,-)] [k2 - wWn- + o(w)a(G,,-)] 
= k2n2n2 [ l  + (bo - j.)/nn12/c2, 

[ k 2  - ww,' + o ( w ) r ~ ( w , ' ) ]  [ k 2  - ww,' + o(w)a(w,')] 

= k2n2n2 [ t + (ho + E . ) / n ~ ] ~ / c ' ,  

and 

Upon simplifying (B12) with the aid of these identities, we obtain 

1 i + b a  k2-ww,'-o(w)o(W,') 
2 - ba ,,= 1 k 2  - we,' + o ( w ) o ( ~ , ' )  

h - ( w , c ) =  -In- ~ n 
k 2  - wWn- + a(w)o(w,) 

n a(w)o(*n-)  

20(w) 

x-- 
k2 - wW- - 

k2 - WIG;,, + ~ ( W ) C ( * : , )  k2  - wW, - o(w)o(W~, , )  
x {-- 

k' - we:, - o(w)o(W&) k 2  - we, + a(w)o(wy,,) 
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and 12- (w,  c )  is analytic in the lower half-plane lm w < 0. There is an alternative form 
of (B13) which displays the branch points of h -  ( w ,  c)  at Wn- and W,’, n = 1,2, . . . 

We can now determine lexp[g+(w)I, where g+(w) = cr(w)h+(w, c)  for -k < w < k 
following the method which we employed in Section A. We have here 

lexp[y+(w)I = ~[A-ba][~ot(R-ba)/2][ tan( i+bo)/2] / [ i~+ba]~”~ 

and therefore 

lexpg+(k,)( = Itanbk,/2bk,1”4, 

lexp g + (k,*)l = I tan bk,*/2bk: 
and 

1 +sini.(K) 7~/2-- i . (~)  
Iexpg+(k.)l= ____- c I - sinE-(k-) n/2 + A ( K )  

C. The asymptotic hehauiour q f g +  ( w )  und ~ - ( M J )  

In order to apply the ideas of Wiener and Hopf in the present case, it is essential that 
y+(w) and g - (w)  be bounded at infinity in their respective half-planes of analyticity 
(see Section 5, where these facts are needed). We shall find that g + ( w )  and g - ( w )  are 
bounded at infinity in their respective half-planes of analyticity and therefore so are 
cosh[g+(w)], sinh[g+(w)], cosh[g_(w] and sinh[g-(w)] at infinity in those half- 
planes. 

The integral (B8) has been evaluated on the premise that IwI < k.  We now need a 
form which is useful when IwJ > k . In this case (B8) takes the form 

where C(w) = (w2 - k2)lI2 and is positive when Rew > k, Im w = 0. (Cl) in turn, may be 
rewritten with the aid of the double angle formula for the tangent function as 

This last expression shows that there are no branch points at w = f k for the function 
g+(w)/6(w). On the other hand when IwI-+oo, Imw > - E ~ ,  g + ( w )  reduces to 

Upon examining the expressions which we found for w’ and a(w:) when n is 
sufficiently large, we observe that the terms in the bracket are O(l/n2)  and therefore 
the series converges. Hence g+  ( w )  is bounded when Iw1-+  oo, Im w > - E ~ .  A similar 
remark is available for g-  ( w )  in the lower half-plane. 
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