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The Sommerfeld Half-plane Problem Revisited, V 
The Bifurcated Guide with Mixed Boundary 
Conditions on the Septum* 

Albert E. Heins 

Departmen? of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. 

We discuss the solution of the boundary value problem in a duct with a centered septum [9]. On the lower 
wall of the duct a Neumann condition is applied while on the upper wall a Dirichlet condition is applied. On 
the septum we apply a Dirichlet condition on the lower side and a Neumann condition on the upper one. 
This problem is formulated as a pair of integral equations of the Wiener-Hopf type for which we supply 
solutions for two modes of excitation as well as real and complex wave number. A critical examination is 
made of the construction, which reduces the problem to one in complex analysis. For real wave number, the 
physical parameters are provided in very simple forms. 

1. Introduction 

We continue our studies of parallel plate media with a discussion of a bifurcated 
duct problem recently considered by Luneburg and Hurd [9]. They have studied 
problems for which the Neumann boundary condition was applied on the lower wall 
of a duct and the Dirichlet one on the upper wall. On the septum which is centred, the 
Dirichlet condition is applied on one side and the Neumann on the other. We note 
that there are two cases, and we shall only discuss one of them. In any event these 
problems lead to a coupled pair of Wiener-Hopf integral equations due to the 
conditions on the septum. 

Such boundary value problems can be formulated effectively as integral equations 
of the Wiener-Hopf type with the aid of a Green’s function whose boundary condi- 
tions are appropriate for the duct. But as we have long known, a Green’s function for 
a duct with the boundary conditions we have described for the walls has various forms 
for the ‘propagating terms’. Conventionally, we write a Green’s function for the 
Helmholtz wave equation with outward-going propagating terms and attenuated 
ones from the source. If the wave number k in the Helmholtz equation is real, the 
corresponding Green’s function cannot be used to form a representation for the 
solution of the wave equation in the duct with a septum because we cannot evaluate 
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some of the integrals which arise from the Green’s theorem. We have at this point two 
choices. One is to assume that the wave number k has a small positive imaginary part 
and the ‘propagating’ and ‘attenuated’ wave numbers in the duct have negative real 
parts. In this case it is possible to give a representation but we are still left with the 
question about its interpretation when the imaginary part of k vanishes. 

A modified Green’s function can be constructed by noting that a travelling wave 
term when k is real, contains a solution of the homogeneous wave equation. We may 
add or subtract such solutions to the conventional Green’s function and thereby only 
change its behaviour at  infinity. The need for such a modified Green’s function was 
noted by J. S. Schwinger in his study of duct problems in 1943 [ll]. There he found it 
necessary to modify the travelling wave component of the Green’s function when k is 
real in a rather circuitous manner, in order to formulate the boundary value problems 
which he was examining. The only published account of this early work appeared in 
1968 and it is woefully incomplete. 

There is a second reason why we require either a positive imaginary part for k in the 
conventional Green’s function or a modified Green’s function with appropriate 
conditions at infinity when k is real. We are ultimately required to calculate the 
bilateral Fourier transform of the Green’s function in order to apply the method of 
Wiener and Hopf. This transform should be analytic in the transform variable in some 
strip parallel to the real axis if we are to apply the method of Wiener and Hopf. When 
we use a complex k with Im k > 0 this is possible. We will show in Section 2 how it is 
also possible to modify the conventional Green’s function when k is real and obtain 
a strip of analyticity. This strip, however, is not the same one we obtain when k is 
complex. 

A third issue arises when we attempt to form the Fourier transform of the integral 
equations which represent the boundary value problem we described. The convol- 
ution theorem is not directly applicable to the terms in these equations which contain 
normal derivatives of the Green’s function which are evaluated on the septum. One 
way out of this difficulty is to find the Fourier transform of the representation which 
we give for k real in Section 2 and then apply the boundary conditions. We regret that 
we did not make this point clear in [4] and [S]. A similar method should have been 
applied by Luneburg and Hurd in [7]-[9]. 

We shall discuss the differences between the results in [9] and the present paper, 
noting among other matters, that we have found compact expressions for the magni- 
tudes of the transmission coefficients. We also correct one of the graphs in [9]. Some 
of our calculations are similar to those used in [4] and we shall make free use of them. 

2 The formulation of two bifurcated duct problems 

Here we shall formulate two boundary value problems for the bifurcated duct 
which have been studied by Luneburg and Hurd [9]. These boundary value problems 
will lead to coupled pairs of Wiener-Hopf integral equations and the solutions will be 
provided for k real. To this end we require a representation for the solution +(x, y )  of 
the two-dimensional Helmholtz equation 

4 x x  + +,, + k2+ = 0 
in the bifurcated duct with a centred septum which satisfies the following boundary 
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conditions (see Fig. 1): 

(i) ~ $ ~ = 0 ,  - c o < x < c o , y = O  
(ii) 4 = 0, - a3 < x < CCI, y = 2a 
(iii) 4 = 0 , O < x < o o , y = a - O  
(iv) 4y = 0,O < x <  00, y = a + 0. 

To these boundary conditions we add those conditions at infinity which pertain to 
the nature of the propagating modes which a duct can sustain. The first case we 
consider is the following. For x + - 00, 0 < y < 2a 

=Y 
4a 

4(x, y) -+ cos -[exp(iK1x) + R,exp[ - i ~ ~ x ] ,  

where K, = ,/kz - n2/16az > 0 and n/4 < ak < 3x14. That is, the larger duct can only 
sustain the lowest incident and reflected modes. For x -+ co , 0 < y < a 

AY 

2a 
4(x, y )  -, T, cos - exp ( ~ K ~ x ) ,  

whereas for x +a, a < y < 2a 

ZY 
2a 

4(x, y) -+ T, sin -exp(iK2x); 

that is, the lowest mode is transmitted in the small ducts. Here 
K, = ,/- > 0 and nf2 < ak < 3x12. Hence we have 4 2  < ak < 3nf4 in 
order that a single mode propagates in each duct. 

In order to find the representation we seek, we use a Green’s function for the duct 
- co < x < co, 0 < y < 2a which obeys the same boundary conditions as 4(x, y )  on 

the walls of the duct and which obeys the same differential equation given in [2] and 
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[3]. Such a Green’s function G(x, y; x’, y’) is given by the infinite series 

nY ny‘ 
4a 4a 

G(x, y; x’, y’) = i cos - cos - exp [iKl )x  - x’1/2a~,] 

o, (2n - 1)ny (2n - 1)ay’ 
cos 

4a + c cos 4a 
n = 2  

x exp[ - K ~ , , - ~ ( X  - x’ I /2a~~, , - ,  

when a14 < ak < 3x14 and K~,,-, = J[(2n - 1)2nz/16az] - k 2  > 0, n = 2,3, . . . , . 
Observe that this form of G(x, y; x’, y‘) is bounded when X’ or x -, k 00. It is possible 
to modify the bounded term by adding a solution of the homogeneous Helmholtz 
equation which satisfies the boundary conditions on the wall of the duct and only 
change the behaviour of this Green’s function at infinity. We add the term 

[ - icosIcl(x - x’) + sinK1(x’ - x)] a y  ay’ cos-cos-, 
2 a ~ ,  4a 4a 

which is a solution of the homogeneous wave equation, to obtain 

G(’)(x, y; x’, y‘) = [sin ~ , ( x ’  - x) - sin x1 Ix’ - X I ]  cos 

(2n - 1)ny (2n - 1)ay’ 
4a 

cos exp[ - K ~ , , - , ( X  - x ’ I / 2 a ~ ~ , - ~ ] .  + c cos 4a 
n = 2  

G“)(x, y; x’, y’) now has the property that it is bounded when x’+ - 00 and 
O[exp( - ti&)] when x’+co. In this form it is ideally suited to formulate the 
boundary value problem which we have described. The representation we now obtain 
by applying Green’s integral theorem is 

“Y 4(x, y) = [exp(iK,x) + R, exp( - ~ K ~ x ) ]  cos - 
4a 

Observe that we require G“’(x, y; x’, y’) in order to apply Green’s theorem to Figure 
1 with the behaviour of 4(x,y) at infinity which we have assumed. We cannot use 
G(x, y; x’, y’) when k is real to obtain a representation since 

does not exist. However, if k is complex, has a positive imaginary part, and the icZn- 1, 

n = 2,3, . . . have positive real parts, it is possible to formulate the problem with the 
aid of G(x, y; x’, y’). This however modifies the term exterior to the integral and the 
interpretation of the formulation is to be questioned when k is real. 

We have assumed that the integrals in (2.1) exist and therefore that the representa- 
tion is valid. We will show that it is possible to produce the functions a4/ayly=a-o, 
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and (b(y=, ,+o,  x > 0 which are bounded when x +cc and are otherwise integrable 
when we invoke the boundary conditions on the system and solve the resulting 
coupled pair of Wiener-Hopf integral equations. 

For a second example, we assume that for x + - o0,O < y < 2a 

nY 3AY 4(x, y)+cos-[exp(i~~x)  + R;exp( - i ~ ~ x ) ]  + R,cos---exp( - iK;x), 4a 4a 

where now K~ = J k v  > 0 and K ;  = ,/k2 - 9n2/16a2 > 0 and 
3x14 < ak < 5n/4. That is, the next reflected mode in the larger duct has been excited. 
For x + o 0 , O  < y < a 

*Y 
2a 

4(x, y) -+ T; cos-exp(iK,x), 

whereas for x -, co, a < y < 2a 

ZY 

2a 
(b(x, y) + T; sin - exp(iKZx), 

with n/2 < ak < 3x12. Hence we have the inequality 3n/4 c ak c 5 4 4  for which there 
are two propagating modes in the large duct and one propagating mode in each of the 
smaller ducts. The formulation of this problem now entails a modification of 
G(”(x, y; x’, y‘) to G(’)(x, y; x’, y’). Here we have that 

G ( 2 ) ( ~ ,  y; x’, y’) = [sinrc,(x‘ - x) - sinK1 Ix‘ - X I ]  

+ [sin ~ ; ( x ’  - x) - sinK3 Ix’ - X I ]  cos- cos - 2 a ~ ;  3ny 4a 3ny11 4a 
OD cos(2n - 1)ny cos(2n - 1)ny’ + c  n = 3  4a 4a 

x ~ X P  [ - K t n -  1 I x’ - x1/2a~2n- I I, 

where now uZn- > 0, n = 3,4, . . . , d3 = ,/k2 - 9n2/16a2 > 0 and G(’)(x, y; x‘, y’) = 
0 [exp( - K~X’)] when x’ + 0 0 .  Hence the representation for 3n/4 < ak < 5x14 is 

ZY 3nY 4(x, y) = cos-[exp(irc,x) + Rlexp( - i ~ , x ) ]  + R,cos-exp( - iKjx) 
4a 4a 

When we invoke the boundary conditions on the septum, we produce another 
coupled pair of integral equations of the Wiener-Hopf type. 

If k has a positive imaginary root as in [9], a representation similar to (2.1) and (2.2) 
can be obtained, save for the facts that there will be a different non-homogeneous term 
and G“)(x, y; x‘, y’) and G(2)(x, y; x’, y‘) will be replaced by C(x, y; x’, y’). 
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3. The solution of the first problem 

The boundary conditions on the septum applied to (2.1) provide us with a coupled 
pair of Wiener-Hopf integral equations. We cannot, however, apply the convolution 
theorem directly to this system. This is due to the fact that we would be required to 
calculate the Fourier transforms of the y and yy' derivatives of G(')(x,y;x',y') at 
y = y' = a, which do not exist. We circumvent this difficulty by considering 

ll/(x, y )  = 4*(x, y )  + 

(3.1) 

and its y derivative for y # a. We define 

nY 
4a 

4*(x, y) = cos-[exp(iK,x) + R ,  exp( - ~ K ~ x ] ,  x > 0, 

= 0, x < 0, 

4(x, a - 0) = 0, x > 0, 

Equation (3.1) contains the original problem for x > 0 and therefore $(x, a - 0) = 
a$(x, y) /ayly=.+o = 0 there. Now $(x, y )  and a$(x, y)/ay are O[exp(~,x)], x -, - CO. 

As we have noted, we seek a 4(x, y) and a a+(x, y)/ay which are integrable for x 2 0 
and O[exp(i~,x)], x -+ 00. Wiener-Hopf theory should now provide us with the 
unilateral Fourier transforms of 4(x, a + 0) and +y(x, y) ly=p-o ,  which should be 
analytic in the lower half-plane Im w < 0 and satisfy the Riemann-Lebesgue lemma. It 
should also give us the unilateral Fourier transforms of $(x, a) and a$(x, y)/ay(y=a, 
x < 0, which should be analytic in the upper half-plane Im w > - K ,  and satisfy the 
Riemann-Lebesgue lemma there also. 

The bilateral Fourier transform of G(')(x, y; 0, y') is 

cos ay sin a(2a - y') 
a cos 2aa exp( - iwx)G(')(x, y; 0, y')dx = , Y <Y', 

cos oy' sin a(2a - y) 
u cos 2aa , y > Y'. - - 

Since G(')(x, y; 0, y') = O[sin K~x] ,  x -+ rx) and O[exp(~~x)] ,  x -+ - m,J (')(w; y, y') is 
analytic in the strip - K ,  < Im w < 0 and obeys the Riemann-Lebesgue lemma there. 
For y # y', the y and yy' derivatives also satisfy this lemma. Now, based upon the 
expected behaviour of 4(x, a + 0) and a4/ayly=.-0, these functions should have 
unilateral Fourier transforms, analytic in the lower half-plane Im w < 0, whereas 
$(x, a) and a$(x, y)/ayl,=, should have unilateral Fourier transforms analytic in the 
upper half-plane Im w > - K ~ .  

It follows that since the transforms of 4(x, a + 0), a4(x, y)/ay]y=,-o, $(x, a), 
all/(x, y)/ay]y=a, 4*(x, y) and G")(x, y; 0, y') would have a common strip of analyticity, 
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that is - K~ < Im w < 0, we have for y # a 

+ i(w + K ~ )  4a 

d ( w )  cosoy, 0 < y  < a 1 + [ a cos 2oa WW) - cos2aa 
sinaa - cosaa - 

and 

1 + 

4 ( w )  sina(2a - y), a < y < 2a. 1 cos aa sinaa - 
acos 2aa dY(W) - & 

Here a = (k2  - w2)'I2 and is taken to be real and positive when IRe wI < k, Im w = 0, 
and 

4 (w) = [: exp( - iwx)4(x, a + O)dx, 

and 
0 

$ (w, Y )  = [ exp( - iwxM(x, y) dx. 
-a 

We note that as a consequence of the edge condition that 4(x, a + 0) should be 
O(x114), x -, 0 + and a4(x, a - O)/ay should be O ( X - ~ / ~ ) ,  x -+ 0 + and therefore 
$ ( w )  = 0 (,-'I4) and JY(w) = 0 (w-lI4), IwI -+ 00, Im w < 0. Hence $(w, a) would 
then be O(w-'), Imw > - K ~ ,  Iw[  -+ % and therefore would obey the 
Riemann-Lebesgue lemma, and so would 3 9  (w, y)/ay. However, we do not require 
these facts since they are derivable from our analysis. 

Now it is possible to take the limit y -+ a - 0 in (3.2) and y - +  a + 0 for the 
y derivative of (3.3). We have in matrix notation 

a sin aa cos aa - cos' aa 
cos 2oa cos 2aa 

sin aa cos aa cos2 aa i c cos 2aa cos 2aa 
- 

A(w) = 

(3.4a) 

From this point onward, we have a function-theoretic problem whose general 
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features we have described in [2] and [3]-[S]. We write 

I cosaa asinoa \ - 

cos aa 
cos aa  
cos 2aa sin aa 

A(w) = (3.4b) 

\ aJcos2aa Jcos2aa I 
The scalar factor can be rewritten as 

cosaa K-(w) 
& z z = K + o ’  

where K-(w) and its reciprocal are analytic in the lower half-plane Im w < 0 and have 
algebraic behaviour at infinity in this half-plane, whereas K+(w) has the same 
properties in the upper half-plane Im w > - x3. 

We have discussed the factorization of scalar terms of this type on several occasions 
([2], [4], [S]). Here we give the final result for the case at hand. 

a (w2 - K : )  iaw In 2 
K-(w) = - .Jm [JI-r + 2iaw 1 

n(2n - 1) 

nZ(2n - 1)2 n(2n - 1) m 

+ 
n2(2n - 1)2 

and 

1 

- 
nZ(2n - 1)2 n(2n - 1) 

The factors exp( f (iaw In 2/n)) have been inserted to render the terms K - ( w )  and 
K+(w) of algebraic growth. Indeed K - ( w )  and K+(w) are O ( W ” ~ ) ,  ( w J  + co in their 
respective half-planes of analyticity [lo]. The corresponding terms in [9] have to be 
modified with terms exp( f (iawln 2/n)) or it will not be possible to apply the Liouville 
theorem. 

The matrix in (3.4b) can be rewritten as 

a sin aa - cos aa 

cos aa 
JZz 

O J Z z  

sin aa  - 
B(w) = 
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We require the additive decomposition of the matrix in the exponent such that one 
term is analytic in the lower half-plane Im w < 0, whereas the other is analytic in the 
upper half-plane Im w > - K ~ .  We note that cos (aa + (n/4)) has two real zeros at 
w = k K ~ ,  whereas cos(oa - (n/4)) has two imaginary zeros at w = f iK3. We 
accomplish this decomposition as we did in [4] and [ S ]  with the aid of Cauchy's 
integral theorem with a path of integration drawn parallel to the real axis in the strip 
of analyticity. This then gives 

ex,( l/o O ')lnh+(w)exp( 0 l/o O O)lnh-(w), 0 (3.5) 

which is possible since the matrices obviously commute. [ln h-(w)]/a(w) is analytic in 
the lower half-plane Im w < 0, whereas [lnh+(w)]/o(w) is analytic in the upper 
half-plane Im w > - K ~ .  Thus the component of (3.5) which is analytic in the upper 
half-plane Im w > - K~ is 

and 

has entries which are analytic in the lower half-plane Im w < 0. We shall give the 
explicit form of h+(w) since this is the only term we use. We have 

wi - u(w) k2 + wiK3 + a ( w ) a ( i ~ ~ )  
wi + o(w) k2 + w i K 3  - o(w)a(iK3) 

k2 + wiK4n-3 - o(w)a(iK4n-3) x f i  n = 2  k 2 + w ~ K ~ ~ - ~  + a ( w ) o ( i ~ ~ ~ - ~ )  

X k2 + ~ i k . 4 ~ -  1 - a ( ~ ) a ( i ~ 4 ~ -  1)  I -  kZ + W ~ K ~ , , - ~  + O ( W ) O ( ~ K ~ , - ~ )  

In a fashion which we have made familiar in [1]-[5], we can derive two relations by 
a Wiener-Hopf separation from (3.4), that is 
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and 

{K+(w)B;'(w)- K + ( -  Ki)B;'( - xi)} 
w + K1 + R l  

where E,(w) and c2(w) are entire functions. Now we know that h+(w) = O(w'I4), 
IwI+m,Imw> - ~ ~ a n d h - ( w ) =  O ( ~ - ' ~ ~ ) , I w I + m , I r n w  <O.Weknowthatthe 
scalar factors are both O(w'"), IwI + co in their half-planes of regularity upon using 
familiar methods [lo]. Hence, since we seek a @(w) and a V(W) which obey the 
Riemann-Lebesgue lemma in their respective half-planes of analyticity, we find that 
I E , ( w ) [  < M,IWI' /~ + and Is,(w)l < M , I w ~ ~ / ~  for fixed M,, M, and M, 
when IwI + a. This implies [6, p. 2041 that sI(w) = a + /?w and E ~ ( w )  = y where a, /? 
and y are constants. When we solve for @(w) in (3.8), we find two terms which are of 
the order w5/4 and w ' / ~  when IwI + co, Im w < 0. In order that @(w) obey the 
Riemann-Lebesgue lemma we are required to choose fi  = y = 0 and hence E,(w) = a 
and E,(w) = 0. Notice that we have not employed the edge condition. Now 
$(w) = 0 ( w - ~ / ~ )  and $y = O(w-'I4) when JwI + co, Imw < 0 while $,, = O ( W - ' / ~ )  
and $,, = O(w-') when IwI + co, Im w > - K ~ .  

The arbitrary constant a is eliminated on physical grounds. We have formulated the 
duct problem under the assumption that there are no incident duct modes from the 
right upon the discontinuity due to the presence of the semi-infinite septum. Hence 
K-(w), which has a zero at w = - K,, would produce such a wave unless there is 
a zero on the right-hand side of (3.7). This gives us 

Yt 

"- i J z  K + ( K l ) h + ( K l )  K1 + K 2  + R I K + ( - K l ) h + ' - K l ) ] [  K1 - K 2  

+ (x> = 0. 

It follows that 01 = 0 and 

K l  - K ,  K+(h.l)h+(KI) R ,  =--- 
K 1  + K 2  K + (  - K l ) h + (  - K 1 ) '  

But K + ( K , ) ~ + ( K , )  is conjugate to K + (  - ~ ] ) h + (  - K ~ )  and therefore 

K1 - K 2  71 3Yt 
l R l l  = -, - < ak < -. 

K1 + K, 2 4 

In order to determine T, and T,, the amplitudes of the transmitted waves in the 
small ducts, we write (3.1) as a Fourier integral and note that it is necessary to 
distinguish the cases y < a and y > a. For y < a 

where Y is a path drawn parallel to the real axis in the strip - K~ < Im w < 0. Upon 
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inserting the expressions we have derived for $,(w) and $ (w), we obtain 

1 cos ayexp(iwx)dw 
cos au K + (w) $(x, Y) = 4*(x, Y) - - 

4 X 4 s y  

I- K + ( K , ) h + ( K , )  + R l K + (  - K l ) h + (  - K 1 )  ‘ [  W - K l  W K 1  

We have expressed the integrand in terms of h+(w) and K +(w) since we shall close the 
path Y with a sequence of semicircles which pass between the zeros of cos aa in the 
upper half-plane Im w > - K~ when x > 0. Under these circumstances, h +  (w) and 
K + ( w )  can be evaluated directly and the only residues which arise come from 
K ~ ,  - K~ and the zeros of COSBU. In view of the fact that h+(w) + l / h + ( w )  and 
[ h +  (w) - l / h +  (w)]/a(w) are single-valued analytic functions of w in the upper 
half-plane Im w > - K ~ ,  we may close the path Y as we have just described it and 
obtain for x + co, 0 < y < a 

Upon noting that l h + ( ~ ~ ) l  = ( ~ / 2 ) , / ~ ,  I ~ + ( K J ~  = 31/4,  IK+(K,)I  = 3 1 / 2 n 1 / 4 / 2 5 / 4  and 
I K + ( K ~ ) (  = 31/4(2/.n)”2, the magnitude of T, which is the coefficient of 

cos - exp (iKZx) in (3.8) reduces to XY 

2 a  

K l  [4 + 2,/3 COS 2V] ’” 
( K *  + Kz)  

1 

where v = arg h + ( K ~ ) .  In a similar fashion 

K 1 [ 4  - 2 3  COS 2V]”’ 
K 1  + K z  

IT21 = 

We note that I R, 1, I T ,  I and 1 Tz  I satisfy the conservation condition 

( 1  - lR,12)K, =Kz[ITiIZ + lT~1~1/2. 
This then gives us the reflection coefficient 

K1 - K z  IR l I  = ___ 
K l  + K 2  

and the two transmission coefficients 

and 
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4. The solution of the second problem 

Upon following the ideas developed in Section 3, we now obtain for the second 
problem in Section 2, the counterpart to equation (3.4): 

/ a \  

Now G(x, y; x', y') has been modified to G'2'(x, y; x', y'), and the bilateral Fourier 
transform of the latter is now valid in the strip - tc5 < Im w < 0 and therefore "'(w) 
will be analytic in the upper half-plane Im w =- - K ~ .  Although K; is real we can still 
write A(w) = K'(w)B(w). The Wiener-Hopf factors of the scalar term K(w) and the 
matrix B(w) are now modified. In this case we have that 

[Jr + 2iaw ] 
(2n - 1yn2 

n2(2n - 

742n - 1 )  

and its reciprocal are analytic in the lower half-plane Im w < 0. Further 

r r. 4a2k2 2iaw 1 - 
no L\I' - nZ(2n - 1)2 n(2n - l ) ]  

n = 3  / 1. 16a2k2 4iaw - .I ' - nq2n - 1)2 n(2n - 1 )  
and its reciprocal are analytic in the upper half-plane Im w > - K ~ .  K'+(w) = 0(1) 
when 1 w l +  00 in their respective half-planes of analyticity. 

Now, as for the factorizing of B(w), we obtain in this case matrices of the form (3.6) 
and (3.7), but their elements h,(w) are now replaced by h;(w), where 

k2 + w i ~ ~ , , - ~  - a ( w ) a ( i ~ ~ , , - ~ )  
n = 2  k2 + w ~ K ~ ~ - ~  + a ( w ) c ( i ~ ~ , - ~ )  

k2 + wiK4,,- + a(w)c(iK4,,- 1) 

k2 + W ~ K ~ , , - ~  - a ( w ) c ( i ~ ~ , , - ~ )  

h',(w)= [ f 
X 
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This has been derived by the method employed in [4] and [ S ] ,  and it is analytic in the 
upper half-plane Im w > - K~ where we have chosen the branch which is 1 when 
w = f k. We do not require h’- (w) explicitly. We also have h‘+ ( w )  = O ( W ~ / ~ ) ,  I wI -, 00, 

Im w < - K~ and hL(w) = 0(w-’l4), IwI -, 00, Im w < 0. 
We now apply the method of Wiener and Hopf to equation (4.1) to obtain 

\ I  /3n\  

. .  
where E; (w)  and E;(w) are entire functions. 

We have seen in Section 3 that an application of the Liouville extended theorem 
[6, p. 2041 gives us E; (w) = a’ + p w  and E;(w) = y’ where a’, /3’ and y’ are constants. If 
we solve for W(w)  we find that there are terms O(w5I4), O(w3l4) and O(w1I4), IwI -, co, 
Im w < 0. We can eliminate those terms of order w5/4 and w3/4 by choosing 

= y‘ = 0. In order to eliminate those of order 1/4, we find that 

+ at$ = 0. R,K’+( - 4) K ’ + ( K ~ ) ~ ’ + ( K ~ )  + R;K’+(  - ~ ~ ) h ’ (  - xl) - I+ ( - K ; )  

The requirement that there be no waves in the smaller ducts from the right leads to the 
following two conditions: 

- 4ai$a’ R; K+( - K l ) h ’ + (  - K J  

Kl - K 2  
+ 

3R, K’+ ( - K ; )  

n 

- K’+ (xl)h’+ (xl)  - + 
h’+ ( - K ; ) ( K ;  - K 2 )  K 2  + K1 

R,K’+(  - 4) 
h’+( - K ; ) ( K ;  - K 2 )  

and 
R;K’+(  - ~ ~ ) h ; (  - K ~ )  - - K’+ (Kl)h’+ ( K 1 )  - 

K1 - K 2  K 2  + K1 
Upon solving for R ; ,  R, and a’ we obtain 

K ’ + ( K ~ ) ~ ’ + ( K ~ ) ( K ~  - rc2) 1 - ai(ic; + xl)/n 
K’+( - ~ ~ ) h ’ + (  - K ~ ) ( K ~  + K ~ )  1 - ai(K; - K~)/X’ 

2 i a ~ , ( ~ ;  - ~ ~ ) h ’ + (  - K ; ) ~ ’ + ( K ~ ) K ‘ + ( K ~ )  

R; = 

R 3  = - I I ( K ~  + x 2 ) K ‘ + (  - ~ ; ) [ 1  - ai(K; - ~ ~ ) / 7 1 ] ’  

a‘ = $KI K’+ ( K l ) h ‘ +  (K 1) 

( K ~  + K ~ ) [ I  - ai(K; - ~ ~ ) / n ] .  
It is a simple task to calculate IR;I and lR31. For since K ’ + ( K ~ ) ~ ’ + ( K ~ )  is the 

conjugate of K’+( - ~ ~ ) h ’ + (  - K ~ )  and K :  - (K; ) ’  = n2/2a2 we have 
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Similarly, since Jh'+(Kl)K'+(Kl)I  = (3/4)(x/2)'I2 and lh'+( - K ; ) / K ' + (  - K;)I 
= 4&@, we find that 

It should be remarked that although I R, I is the amplitude of the reflected wave of the 
second mode in the larger duct, it is not a reflection coefficient. To find the reflection 
coefficient of this mode, we recall the conservation relation 

K l [ l  - l R ; ( 2 ] - K K ; I R 3 1 2 = K 2 [ I T ; 1 2 +  IT;l2]/2. (4.3) 
It follows that the reflection coefficient for the first mode is IR; 1, whereas that 
coefficient for the second mode is I R, 1 ,/=. 

In order to determine the transmission coefficients, we are required to examine the 
representations of Cp(x, y) for 0 < y < a and a < y < 2a separately. For 0 < y < a we 
have 

cos ny 3nY [exp(iK1x) + R;exp( - iK1x) + R,cos-exp( - ixjx)] 
4a 4(x9 Y) = ___ 4a 

cos a(w)y 
[$,(w) sin ao(w) 

1 
+ Iy o(w) cos 2oa 

- o(w)$ (w)cosuo(w)]exp(iwx)dx, (4.4) 

where Y is a path drawn parallel to the real axis and inside the strip 
- K~ < Im w < 0. Since we now know a', p' and y', and therefore E', (w) and E;(w), (4.2) 

supplies us with 6 (w) and $,(w), and (4.4) may be written as 

nY 3RY d(x, y )  = cos-[exp(iK,x) + R;exp( - i q x ) ]  + R, cos-exp( - i q x )  
4a 4a 

1 
4ao 

+ 

iu+( - K;)(w + Kj) 
cos ay exp(iwx) + G[h:U o - dw. 

The integrand is single valued since h; ( w )  + l/W+ (w) and [hft (w) - l/h'+ (w)]/o(w) 
are single valued, and the remaining functions are obviously so. 

We may now close the path Y by a semicircle in the upper half-plane which passes 
between the zeros of cos oa to obtain the dominant term, that is the wave transmitted 
in the lower duct. When x -, o0,O -= y c n this gives us 
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cos 71y exp ( ~ K ~ x )  
2a 

71 K + ( K 2 )  

ICY = T; cos - exp (iK2x). 
2a 

Tl  may be simplified considerably by using the expressions we have found for R;,  R ,  
and a', and we obtain 

~ K l K ' + ( K l ) h + ( K ~ ) { ~ ( K z  4- K; )  + 5"]h-(Kz)  a + [ * 2 ( K z  4- K ; )  4- "]/K+(Kz)[ a 
T; = 

For the case in which x > 0, a < y < 2a, cos ay in (4.4) is replaced by sin a(2a - y) 
and the terms in the square brackets by [cos aaq$ y - CT sin am$]. Upon repeating the 
steps in the previous two paragraphs we obtain 

s J z a ' ( K :  - K : ) ( K ,  + K J ( K ~  + K;)CI  - a i ( K ;  - K ~ ) / ~ z I K + ( K ~ )  

1 2 ( K z  + K ; )  + " ] / " : ( K Z ) }  a 
T i  = 

8 @ ( ~ :  - K:)(Kl 4- Kz)(Kz + K ; ) [ 1  - a i ( K ;  - K I ) / x I K + ( K ~ )  

That is, T; and T i  differ by the algebraic sign before the term containing 1/h'+(rc2). 
From T i  and T i  it is a simple task to determine their magnitudes and we obtain 

X 4(3K2 [ 
where v' = argh; ( K ~ ) .  

We can now verify the conservation condition (4.3) and observe that 

are the transmission coefficients in the small ducts. We further note that for ak = 344, 
that is the cut-off for the second mode in the left duct, x 2  = 71>/4a, and hence 
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Hence for ak = 344,  1 T,  1 = 1 T', 1 and 1 T, 1 = 1 T i  I upon comparing and simplifying 
T,, T; ,  T2, T i .  Further without the need for v and v', we can show directly that 
1 R,  1 = I R', 1 at ak = 3n/4. However, the slopes of I R ,  1 = 1 R', 1 at ak = 3n/4 are not 
continuous and in fact the slope of IR', 1 is vertical when ak -+ 3n/4 + 0, whereas the 
slope of R ,  is not. The same is true also for I T, 1 and I T', I as well as 1 T, I = 1 T i  1. Figure 
2 is a graph of 1 R, 1 and Fig. 3 is a graph of J R', I. These graphs do not agree with those 
in [9] .  

0.2 - 

0.1 
ak 
I 

0.5 0.55 0.6 0.65 0.7 0.75 

ak 
0.07 -7 0.75 0 . X  0.85 0.9 0.95 1 1.09 1.1 1.15 1.2 1.25 

Fig. 3 
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5. The case k complex 

We have solved the two problems which we described in Section 2 when k is real 
and positive. At this point we wish to note the modifications which are necessary when 
k is complex with Im k > 0. We find that the solutions are of the same respective forms 
if we employ G(’)(x, y; x’, y’) or G(’)(x, y; x’, y’) for the two cases at hand. However, 
some Wiener-Hopf aspects are modified for the case which employs G(’)(x, y; x’, y’). - -  - .  

We shall see that we are required to work in the strip - Re,/(9n2/16a2) - k2 
< Im w < - Im,/-, where both R L , / m  and 

Im , /k2 - (nz/4a2) are positive. For the case which employs G(’)(x, y; x’, y’) we are - .  

required to work in the strip - Re ,/(25nz/16az) -k2 < Im w < . .  
--Im ,/k2 - (9n2/16a2), where now Re ,/(25n2/16a2) - k Z  and Im ,/(9nZ/16a2) - k2 

are positive. 
In order to see how these inequalities are derived, we note that the unilateral 

Fourier transforms of 4(x, a - 0) and 4 (x, y)l = a + o ,  x > 0 are now analytic in the 
lower half-plane Im w < - Im,/-. In the case that we employ the 
Green’s function G(’)(x, y; x’, y’) we find that its bilateral Fourier transform is analytic 
in the strip - Re J(9n2/ 1 6a2) - k2 < Im w < - IrnJk2 - (n2/1 6a2), whereas the 
unilateral Fourier transforms of $(x, a) and $y(x, y)l,,=. are analytic in the upper 
half-plane - Re,/(9n2/16a2) - k2.  This provides us with analyticity in the strip 
- Re,/(9nZ/16a2) - k Z  < Im w < - I m , / m .  The case for which we em- 

ploy G@)(x, y; x‘, y’) gives us a similar inequality. 
In the formulation used by Luneburg and Hurd [9], there is a strip 

- Im , / k z  - ( ~ ~ / 1 6 a ~ )  < Im w < Im ,/k2 - (n2/16a2) (which they do not mention). 
That is, their Green’s function C(x, y; x’, y‘) now has a bilateral Fourier transform 
analytic in the above strip, whereas the unilateral Fourier transforms of 4(x, a - 0) 
and 4y(x* Y)I =a+o,  are analytic in the lower half-plane 

lytic in the upper half-plane Im w > - Im J- and hence there is a com- 
mon strip of analyticity in their development, namely - Im ,/kz - (nz/16a2) 
< Im w < Im J k 2  - (n2/16a2) where Im J k 2  - (n2/16a2) > 0. The meaning of their 

expressions ‘upper and lower half-planes’ is not clear. The limits in their integral in 
equation (1.10) of their paper [9] should be replaced by a path P which is a line 
parallel to the real axis of the w plane, drawn in the strip which we have described 
here. What we have called h(w) and they call t ( w )  differ by some factors which appear 
in some other parts of our development. Finally, the incident field has been omitted in 
(1.32~) and (1.32d) since they had made the tacit assumption that their a, (our 
,/kz - (n2/16a2)) is real. Upon taking advantage of the strip of analyticity which is 
now available in their development, their limits ( - 00, co) should now be replaced by 
P in (1.32a, b, c, d). 

The magnitudes of the reflection coefficients calculated in [9] are based on the tacit 
assumption that k is real, although their formulation of the problem relies on the fact 
that k has a positive imaginary part. These magnitudes, however, agree with our 
results when k is real. Our transmission coefficients are expressed in considerably 
simpler form and only require the numerical calculation of the phase angles v and v’. 

Im w < Im J&-’O k - (n2/16az). The truncated 4(x, a) and 4 (x, a), x < 0 are now ana- 
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