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CHAPTER I

INTRODUCTION

The modern electronic digital computing machine owes its origin
to the concepts presented by Charles Babbage in 1855.(1) However, it was
not until 1946 that tgchnology reached a sufficiently advanced state to
rermit the development of a large scale digital electronic computer,
The ENIAOyﬁg) completed in 1946, consisted, in part, of 18,000 vacuum
tubes. Successful computation was performed on the ENTAC during an era
in which some difficulty was encountered in obtaining consistent opera-
tion of radar and communication circuitry consisting of two hundred or
sc vacuum tubes,

The state of the art in regard to computer reliability has
made tremendous advances in recent years. The efforts to obtain more
reliable computing systems have followed three general lines of attack.
(1) Tre past decade has witnessed the introduction of new devices
which offer increased component reliability. Furthermore, the opera-
tional comporients of a computer such as the flip-flops have been sub-
Jected to a thorough engineering study. The results of suchk detailed
engineering studies have led to optimal design technigues in terms of
known tolerancé levels, (2) A second basic approach to the problem
of increased reliability is through the uze of redundant components,
The work in tkis field ranges from consideration of increased relia-
bility obtained by duplication up to n-tuplication considered by Von
Neumanngi) The efforts in this area are divided roughly into two gen-

eral classes, those which employ circuit redundancy with no error

wle
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detection capabllity and those which use redundant circuitry employing
error detection schemes. The error detecting schemes frequently
utilize a majority element which must function perfectly. The majority
element determines the correct output on the basis of the majority
output of the redundant circuits. It has been shown that the redun-
dancy is most effective if applied at the lowest level. (3) The third
approach to increased computer relimbility is the utilization of redun-
dant codes. The subJject of redundant information coding has received
considerable attention in recent years.(u'9) However, most of the
effort in this field has been directed toward error detecting and
correcting schemes pertinent to communication systems. Error detec-
tion and correction for arithmetic operations in a digital computer
require a code which is arithmetically invariant. This is not a char-
acteristic of most of the error correcting and detecting codes devel-
oped for communication applications. One exception is the Hamming
code.(5) Error correction by means of the Hamming code for a general
purpose computer of the Princeton class has been: studied by RObertson.(lo)
Another class of arithmetically invariant codes, the residue codey was
used in the RAYDACQ* The checking procedure used in this machine has
been described by Blodi,(ll’lz) but. effectiveness of the check is not
considered in this paper. The material of this thesis provides further

information on the utility of the residue code.

* (RAYDAC) Raytheon Digital Automatic Computer.



There have been many computers which have incorporated a simple
parity checking system. Without exception the parity check has been
used only to determine the validity of the computer storage mechanism
and no attempts have been made to utilize the arithmetic invariant prop-
erties of the digital parity check, In fact, it appears that the true
nature of the digital parity check has not been clearly understood.

This is largely due to a cumbersome definition involving the oddness or
evenness of the number of one digits of the representation.

The main problem attacked in this thesis 1s concerned with
the effectiveness of parity checking procedures in the detection of
errors 1n the arithmetic operations of a binary computer. In the course
of the investigation certain topics pertinent to the process of binary
arithmetic were discovered and this material is also included. Partil-
cular emphasis is given to an extension of the numerical parity check
which leads to an arithmetic system without carry.

In Chapter II two types of parity checks are defined. The
checks are the digital check which 1s a function of the digit symbols
and the numerical check which may be a function of both the digit symbols
and the positional weilghts. In this chapter congruence notation is in-
troduced and the arithmetic invariance of the digital check 1s proved
for the operation of addition. The results are then extended to the
other arithmetic operations. The class of errors detectable by either
type of check 1s discussed and examples are presented., Also 1n Chapter
II congruences are used to generalize the concept of the digital parity

check to include non-base-two number systems,
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It is necessary to determine the error structure of the binary
addition process before the effectiveness of the parity checking schemes
can be evaluated. The binary addition process 1s complicated by the
fact that the sum digits are not 1ndependent. The lack of independence
is due to the propagated carry which is a feature of all weighted num-
ber systems. In Chapter IIT the structure of binary addition is inves-
tigated with particular emphasis given to the carry process., The mathe-
matics of vector spaces was found to be particularly appropriate to the
study of this problem. The general concept and properties of vector
spaces are introduced and the mechanisms of binary addition are defined
in terms of vector space concepts. Considerable use is made of matrix
notation. The carry process 1s completely defined by a particular
matrix. A study of the carry matrix is made and various circuits yield-
ing different degrees of carry element independence are presented.
Specific configurations are considered and it is shown that in general
the price that must be paid in terms of time and equlpment to obtain
independence of the carry digits is toeo high. All of the different
carry schemes which have been used in binary arithmetic units are de-
rivable from the carry matrix presented in this chapter. The use of
vector space concepts in connection with binary number representations
sheds new light on certain problems., In particular, the conversion
from one number code to another may be regarded simply as a change of
basis. The length of a vector in an n dimensional space which corres-
ponds to an n digit binery number is shown to be equivalent to the

magnitude of the digital parity check.



The concepts of dimensionality of vector spaces are used ex-
tensively to define possible checking procedures and also to provide
alternative definitions of the addition algorithm. In particular, it
is shown that identical sums are obtained from: (1) the binary
addition of two operands (2) the binary addition of the conjunction
of the two operands and the inclusive disjunction of the two operands.
(3) the binary addition of the exclusive disjunction of the two
operands and two times the conjunction of the two operands (4) the
binary subtraction of the exclusive disjunction of the two operands
from two times the inclusive disJunction of the two operands. It is
shown that the carry process assoeclated with the last two definitions
has different characteristics than the carry process assoclated with
the standard addition algorithm, but performance-wise the new algorithms
offer no advantages not assoclated with the standard algorithms.

In Chapter IV the results of Chapter III are applied to the
detailed error structure of the binary addition process. The error
structure is considered for the standard addition algorithm, The
effects of logical malfunctions of the components which comprise the
arithmetic cilrcuitry are considered and classified. The probability
of success of specific digital and nmumerical parity checks is determined
in respect to the different classes of errors due to circuit malfunctions.
It is found that the numerical check is 100% effective for single ad-
dition operations.

The concept of the numerical check is extended in Chapter V.

If a sufficient number of numerical parity checks are employed, it is



possible to obtain a representation consisting of the numerical parity
check digits which may be substituted for the original representation.
In fact, the use of an excess number of parity check digits leads to an
alternative representation containing redundancy. A number represen-
tation so derived is termed a residue code. The arithmetic properties
and the utilization of redundant information are considered.

In Chapter VI conclusions and recommendations are presented.
Appendix I is a description of a binary arithmetic sign and overflow

convention pertinent to the material of Chapter IV,



CHAPTER II

GENERALIZED PARITY CHECKING

Introduction

The concept of the parity check(S) is widely known and haé
frequently been used to detect and in some cases to correct errors in
digital systems. The parity check is obtained by associating with
each representation of information an auxiliary diglt or group of digits
known as the parity check digit(s). The proper choice of the relation-
ship between the check digits and the information digits permits the
esteblishment of mathematical operations; which may indicate erroneous
digits or provide correction data. Parity checking is usually defined
for the binary system in terms of the odd or evenness of the number of
ONE digits in a specified block of binary digits. If the number of ONE
digits is even the parity check digit ig a zero, If the number of ONE
digits is odd the parity check diglt ig a one., Thig definition is
sufficient for most prac¢tical applications of the parity cencept.
However, the definition gives no insight into the fundamental principles
of parity. A restatement of parity in terms of linear congruences pro-
vides a mathematical basis for the parity concept and permits a gener-
alization which includes number syetems of radix r # 2. Congruence
notation also provides the mathematical tool required to prove the
parity check invariant to addition feor any consistently weighted number

system 1f the carries are processed correctly.
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Congruences
The remainder of this paper will make considerable use of
congruence notation. A short presentation of pertinent concepts and
relationships is included at this peint., Additional material on the
subject may be found in any standard text on Number Theory.*
The congruence
A= (Mod b

is read "A is corgruent to < Modulo b." The congruence relationship

states that the equation

A=< + bt
is valid for some value of t, where A,X, b and t are integers. X is
called the residue and b the base or modulus of the number A.

As examples of congruences consider:

10 =7 Mod 3
10= 4 Mod 3
10 = 1 Mod 3

In these examples the integers 7, 4 and 1 form a residue
class of 10 Mod 3. Of particular importance is the least positive
residue of the class which in thkis example is one. The least positive

residue is that residue for which 0<e(<b.**

% Hardy and Wright(IB) gives an excellent presentation on congruences.
Y

**  The equality sign may exist on only one side of the inequality.



Unless otherwise specified the term residue as used in the remainder
of this paper will mean the least positive residue.

Congruences for the most part may be treated in the same
manner as the equality sign in ordinary arithmetic. The main excep-
tion pertains to division. The following properties of congruences
will be used in thils paper and are presented below without proof.

1. Congruences to the same modulus may be added and the

result is a valid congruence.

L n
S A= (20Xy) Mod b
i-1 =1

2. Congruences to the same modulus may be multiplied and
the result i1s a valid congruence,
n n
TTa = (TTeX,) Mod b
i=1 i=1
3. Congruencesg are transitive. If A= B and B = C then
A= C.
4, The following congruence relationships provide a basis
for numerical checking procedures
(a) bR = o Mod (b-1)
(b) OBLR=E +&Mod (b+l) n even

= -0Mod (b+l) n odd

Generalization of Parity

A parity check need not necessarily include every digit of

the number. In the general case multiple parity checks may be employed,
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each check concerning only specific digits. However, for purposes of
simplification, only the case of a single parity check over all digits
will be considered here, The parity of a number from a consistently

weighted number system is now defined. Comsider the-number

C%Sr1 .52 <1
This is the usual shorthand notation for the palynomial representation
of a number N in a consistently weighted number system, base b:

N = &p0-1 4 &y 1p224e4G bl + O10°

The parity check digit p associated with number N is defined by:
F(N) = p Mod m
where p 1s the least positive residue.
In this paper two different functions of N will be considered.
The first function is
F(N) = N
and the parity check digit p is given by
NEpModm mib
This type of check is based directly on the numerical properties of
linear congruences and the check digit is a function of the magnitude
of the number N, This type of check is called a numerical parity check.
If the check base m 1s identical to the number base b then
N = (51 Mod b
The check is unsatisfactory because it is a function of only the low
order digit of the number representation. This is due to the fact that

Cib™ = 0 Mod b n>o
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A check for the case m = b is obtained if
F(N) = Op+ Gpq + ..o + Op+ O
The parity check digit, p, for this type of check which is termed digital
checking is defined by the relation
n
> O,= pMadb
i=1
An equivalent definition may be given in terms of ring addition. Ring
addition modulo b is specified by the symbol ®. Ring addition is simply
normal addition without carry, for example
(b-1) 81 =0
In terms of ring addition modulo b the parity digit p is given as

P = GnGGn_l'e coe e 0-2 QG].

If the number system is binary, and the check base is two then
the previous definition for the digital check provides a parity digit
which makes the total number of one digits of the number plus check rep-
resentation even in correspondence with the usual parity procedures.

The definition is easily extended to an odd parity check. For this case
the parity check digit is given by P, the diminished radix complement of
p defined as

5 @p=b -1

As an example of the parity definition for m = b, consider
the following:

Given 12894, a number in base 10

then (L +2 + 8+ 9+ 4) = p Mod 10

orp=10206806906L4 =214

il



Both types of parity checks are restricted in application to
the detection of certaln classes of errors in the number representation.
Error correction is not possible unless multiple parity checks are em-
ployed. The digital parity check, m = b, detects all alterations except
the alterations in which the sum of the digit perturbations is congruent
to 0 modulo b, Let the decimal number of the previous example be cor-
rupted by 5 in the first colummn and by -5 in the third column. The
result 1s an erroneous representation but the error is obviously unde-
tectable,

1920309096 =p =21

A numerical parity check Mod m, m # b, is insensitive to an
error if the magnitude of the errer is congruent to zero Mod m, Thus
the error is detectable only if the check base m is not a divisor of
the magnitude of the error. The magnitude of the error in the previous
example 1s 495. The error is not detected by Mod 3, 5, 9 or 11 checks.

Parity checks are particularly effective in detecting errors
for which only one digit has been modified. For this class of errors
a parity check m = b is always effective, If m is less than b then

perturbations congruent to zere modulo m are undetectable.

Arithmetic Invariance eof the Digital Parity Check

In the arithmetic system employed in most digital machines a
one~-to-one correspondence is established between the machine digit repre-
sentation and a set of poesitive and negative fractions. The rules of

machine arithmetic operations are set up in such a way as to preserve
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this one-to one correspondence under the operation of addition. Addition
is the fundamental arithmetic operation of the machine and the other
arithmetic operations, subtraction, multiplication and division are de-
fined in terms of addition and the auxilliary operations, shift and com-
plement.

It is obvious that the digital parity check is invariant to the
shift operation if no digits are deleted or added to the representation.
This is true because the digital parity check is a check function of the
modulo sum of the individual digit rather than a function of magnitude.
Also, the parity check is independent of the position of the radix point.
For this reason the remaining discussion will not explicitly consider
whether the representations are in correspondence with fractions or
integers.

Consider now the addition of two consistently weighted numbers

in base be representation. The check base is, of course, also equal to b.

A+D=2S5
or

an na,l

+
d, .odl
Cn+lsn nsl

now

Si = ai ® dl ] Ci
and (a,i +d; + cy) = 85 + cyyqb

c{ =0orecy =1if i £ 1
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The parity check digit p for the sum is given as

cn+l 8y Osp.1 0...851=pg

or Che1 @8, 0d, ®cpy 6...862) 64y = Pq
but ap ® ... Ba] =D,y
and %@oon @dlzpD
therefore Cp+1®.00co ®p, ®p. =D
n+l 2 A D S

The last expression provides a means of checking the addition
operation in terms of the parity check digits of the sum, the addend,
ard bhe angend and the generated carries. Alternatively the parity cheak
may be in terms p', the radix complement or additive inverse of p de-
fined as

p' ®p =0

If p' is used as the check digit rather than p the check procedure
for addition is given as

¢y © «o. @y @p; = py Oy

The class of addition errors detected by the digital parity
check is the same as the.class of representation errors defined in the
previous section. However, it must be remembered that the logic of
the usual addition circuits is such that the various carry digits are
not independent. The parity checking procedure is valid only if the

carry digits are correct.
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Consider the decimal addition of the following numbers:

Due to the occurrence of one carry, the check of addition is
606501=2
2 =2
The check of the complement operation is straightforward.
The diminished radix complement of a representation”d'is obtained by
substituting for each digit Oy the diminished radix complement, G j.

(O] 961 = b-1

glven: 0.8 ... 80 = pg

then 6"n®GEIQD,OQGIGGl:pS@GnG...@Gl
let G'n000090’1®ps=p§®ps=f

then f = n(b-1) mod b

(f+n) = nb mod b

(f+n) = O med b
then Ps + P§s +tn=0mod b
or Ps ®pzg® nmod b =0
A check of the diminished radix complement consists of the
modulo b sum of the parity check of the normal representation, the
parity check of the complemented representation and the number of digits

comprising the representation. In the special case where b = 2, the
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check of the complemented representation is equal to the check of the
normal representation if n is even and opposite if n is odd.

A check of the radix complement operation is somewhat more
complex than that required for the diminished radix complement. The
complications are due to the definition of the radix complement rather
than to the nature of the parity check procedure. Two checking pro-
cedures are possible. The first is based on the fact that the radix
complement s' 1s obtained from the diminished radix complement § by
the addition of one to the lowest order digit. This method requires
cognizance of the carries produced when the one is added to the lowest

order digit. The check is given by the relationship
n+l

P =1@pg & cy Mod b
i=2

The second procedure for obtaining the radix complement check
is based upon the well-known rule for obtaining the digitwise radix
complement: "Starting with the low order digit, radix complement the
first non-zero digit; the remaining higher order digits are changed by
diminished radix complementation." This method requires a knowledge of
the number of zeros preceding the first non-zero digit. ILet this number
be q.

Given O’n ® ... & G"l = Py

then 5,05,0...00.,,0G, 90,0 ...=

pS G G-ne eoo 6 Gq‘+l



-17-

Pst = Op ® ... ©Tgqip ® Ohu1

Pg + Pg1 = [(n—q-l)(b—l) + b] Mod b

Pg + Pgr + (0 - @)= 1 Md b

or P 9D © (n-q) MdDd =1

Multiplication consists of repetitive addition with appro-
priate shift operations. The result is a double-length product. The
digital parity of the double-length product is found from consideration
of the addition operations since parity is not affected by the shift
operation. The linear congruence is multiplicative. The check pro-

cedure for the product P = A x D is

?P = (PA ® QD) 0:2:31 Mod b
or (PAXPD)+ZciEppMOdb

The symbol ©® indicates multiplication, modulo b. It is observed that
the digital parity check provides no protection against faulty shift
operations. Parity protection against this type of error is cobtained if
multiple checks are employed.

The division algorithm commanly employed is easily explained

in terms of the remainder theorem.

Consider X=Q+2

T Y

or X=Q +R
R=X- QY



-18-

O
|

where = qnbn‘l-k .o quj'l

then R=X- (gp*t+... quj'l) Y

The subtraction of Y from X, qj times 1s accomplished by the addition
of ¥, qi times. Carries which are generated must be considered. The

parity check expression is glven as

Pp =Py ® (0 ©P3) & 2 cy Mod b

This check may be employed for each division operatien or only as a
check of the overall division process. In any case the check is insen-

sitive te shift errors.

Examples of Arithmetic Checking (m = b = 10)

Addition

=
oo O

©) () the circled digits
8 are the check digits

Po®Pp® > i Modb =g

36702 =2

+
(0s ESuNAN |
o\

Check

Complement
nines complement

0345 @)
9654 ()

Check Pi ® Pp ®nModb =20

A

i

]

Le2ek=0
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ten's complement

A = 034500 (2)
A" = 965500 (B)

Check
pr @ pA @ (n'Q) Mod b = 1
50204 =1

Product
346
213
346
346
692
36
1038 5 carries
éﬁé_ generated
4508
346
39098
346
73698 (@

Check pp = (pp @ Pp) © 2 cy Mod b
3-(306) @5
3=885=3

Division

Q

073699 B _ X
o3 (B Y

the ten's complement of 0346 (z)is 9645 <:)
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Carries

073699 2
965h Carries
039099 2 — o2, z
965k 9Z5Z ’
00R%99 0001
969899 3655
04599 3 66%2
9654
01039
%651 Q=215 ©
97579 -
1039 1
9654 2o =1
0693 2 ¢ =15
965k

Check Pg =Py ® (Pg @ p7) @ 2_ ci Mod b

1=4o (60L) 03

Numerical Checking, Mod m (m # b), of Arithmetic Operations

The modulus of the numerical parity check is not the same
magnitude as the radix of the number representation. Congruence
relationships are valid for any modulus. However, only certain moduli
yield procedures which permit straightforward computation of the parity
digits. There exist in particular two interesting and useful checks
based on procedures congruent modulo (b-1) and congruent modulo (b+1).
These checks will be called the diminished base numerical check and
the augmented base numerical check respectively. The simplest checks
of the numerical class depend directly on certain congruence relation-
ships. Numerical checking has one very desirable feature not associ-
ated with digital checking procedures. Numerical checking procedures
do not require a tally or cognizance of the carries generated by the

addition process.
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The Diminished Base Numerical Check

The diminished base numerical check is dependent on the
following properties of linear congruences:
o 4b% G4 Mod (b-1)
This relationship permits parity calculation independent of the digit
position or weight. Consider the sum
X+Y=S

X = xpp® L+ o+ x; b°

Y =y p™ L+ Lo+ ypp°

1

S = cpp1b® + spb™ ™t + ... + 510°

Since congruences are additive we have

n 1 n
X = ;:1 x4b '15%: xq Mod' (b-1)
= =1

The parity check digit py associated with the representation X 1is

defined by the term igl x1 reduced to the least positive residue of

the class. The parity check digit py may also be defined by
px=xn0 le

for either definition

2 1-1
X =2 xb "= pyMod (b-1)
=1

The check digit Py is given as

n
Y = ?_‘_ yp e py Mod (b-1)
o1

Linear congruences are additive, therefore:

X+Y = é (xi + yi) bi'lg (pX + pY) Mod (b-1)

and ps=pxd;1:sY
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The modulo (b-1) check is numerical and hence does not require
cognizance of the generated carries. The check is, nevertheless, sensi-
tive to errors in carry generation and propagation. The check detects
all digit alterations for which the modulo (b-1) sum of the changes
does not equal zero. This is equivalent to the statement that an
alteration is detectable only if b-1 is not a factor of the magnitude
of the arithmetic error. A single carry failure causes an alteration
of minus one and is therefore detectable, However, the error is not
correctable on the basis of the parity information.

A check of the complement operation is obtained from the
basic definition of the complemented representation. The definitions
which follow are for representations of n + m + 1 digits. The repre-
sentation has n digits to the left of the radix point, m digits to the
right of the radix point and one sign digit. The diminished radix

complement of X is X where

The radix complement X' is given as
X + X' = bt

The usual congruence relationships are defined for integer values. It

is, therefore, convenient to consider the radix point on the extreme

right of the representation. The check is obtained by observing that

Pl 5 My = 0 Mod (b-1)

™ (b
and PP =1 Mod (b-1)
Then the check for the diminished radix complement is

pXGP‘}-(=O
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and the check for the radix complement is
Px ® Pyr =1

Congruences are multiplicative, Therefore, a check of the product
P=RxS
is given simply as

PP = PR ] PS

with no cognizance of carries required.

A check involving the division of congruences is not practical
since the correct division procedure is dependent upon whether the
divisor and (b-1) have any common factors. However, this is of little
consequence since machine division is usually obtained by a process
consisting of repetitive add and shift operations.

X

_ R
Tty
X

QY + R
The check of the division process 1s independent of carries and must

be true at every step in the division process. The check is

Py = (pg @ py) © py

The Augmented Base Numerical Check

The diminished base nmumerical check avoids the need for carry
cognizance and for that reason offers a simpler check procedure than is
obtainable by means of digital checking. However, for the binary number

system the diminished base check 1s meaningless. One solution is the
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augmented base check. This system is also carry independent and
parity check digits are relatively easy to obtain. The augmented
base check is dependent on the following property of congruences.

O'ibj = +0, Mod (b+l) if J is even
= -0, Mod (b+1) if j is odd

The check digit for representation A is given as

(... + ag=ay + az=-ap + a1) = p Mod (b+1)
where A=.,..+ a5bh + a)+b3 + a3b2 + aebl + alb°

The checking procedures employed for the arithmetic processes
are identical to the procedures for the diminished radix except that
ring addition @ and ring multiplication © are defined modulo (b+l).

In the binary case the number base is two and the check
base is three. The parity of a repfesentation A is given as

(G ag + 2a) + az + 2ap + a1 )i= p Mod 3
or e ® ag 629 © az ®2a, ®a) =p

Direct subtraction is aveided by using the radix complement of one
with respect to the base three.
Note that for the binary case the augmented base check is

identical to the diminished base check, base four.
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Examples of the Augmented Base Check

Iet b = 2 then check is modulo 3

Addition X + Y = S
00011101 8 Check
01010101 P, O R =DPg
01110 (%) 10 ® O1L = 00
Complement
A = ooo11101 (9
Diminished Radix Complement
A = 11100010 @) Check
PprO®PE =0
10 ® 01 = 00
Radix Complement
A' = 11100011 @9 Check
PA®pA|=l

10 8 10 = 01

Multiplication R x S = P

1011
x 1001 Check
1011 Pr@Fs =Pp
101100
1100011 @) 10 6 00 = 00
Division X = Q+ 2
Y Y
0 110011 Check
1 0101 Py = @QGPY)GPR
0 000111 00 = (01 © 10) & 01
=10 © 10 = 00

The above is a check of the
first step in the division

process.
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Conclusion

The congruence notation used in this paper provides a funda-
mental basis for the concept of both the digital and the numerical type
of parity check. Congruence notation also provides the mathematical
tools needed to conslider the arithmetic properties of the parity checks
and the extension of the parity check concept to non-binary systems.

In the final analysis the effectiveness of a parity check
is dependent upon the error structure of the carry process. It is
necessary to consider in detaill the mechanism of binary addition before
the effectiveness of the parity check may be evaluated. The process of
binary addition 1s investigated in the next chapter and the effective-

ness of the parity check is discussed in Chapter IV.



CHAPTER III

VECTOR SPACES AND BINARY ADDITION

Introduction

The concepts, representations and operations associated with
vector spaces are particularly appropriate to the study of the process:
of binary addition. Vectors or n-tuples correspond to binary numbers.
The vector addition of two vectors corresponds to the logical addition
of two binary numbers. The length of a vector is shown to correspond
to the digital definition (m=b) of parity. A study of the dimension-
ality properties of vectors facilitates the establishment of various
numerical relationships pertinent to checking procedures. These and
other relationships are discussed in the material which follows.

The application of the vector space concepts and the use of
matrix notation represent a basic and unified approach to the subject
of binary addition. The vector space approach to binary addition
shows clearly that the basic problem of binary addition from the view-
point of both error structure and speed of addition is the gemeratien
of the carry. The different logical configurations employed‘to generate
the carry may be obtained from the matrix representation of the carry
process. This particular approach also facilitates the study of the
differences in the expected performance of the various known methods
of carry generation.

The representation of binary numbers as vectors 1s not a

new concept. Extensive use of vector space concepts has been made by

-27-
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Muller(ze) in the problem of logical design and coding. Reed(8) has
used vector space concepts to discuss a particular code. More recently

Campeau(EI)

has made extensive use of Boolean matrices as a logical
design tool. The earliest application of matrices to the problem of
synthesis of different logic configurations is due to Iunts(l9>. The
study of binary addition by means of vector spaces presented in this
chapter is new as are the applications of the concepts of dimension-
ality and length.

In the next section the basic properties of vector spaces

are considered. The application of these concepts to the problem of

binary addition is considered in the remaining sections.

The Elementary Concepts of Vector Spaces

Ordered n-tuples of scalar functions, aj of a field F, are
termed vectors of n dimensions if the operations of scalar multipli-
cation and vector addition are closed. A set of n-tuples in which
vector addition and scalar multiplication are closed is called a vector
space. The dimension of the space is equal to the number of elements
of an n-tuple.

Given n-tuples oK and B and a scalar k

% = (a1, 8p, 83 ... ay)
B= by, by, b ... b))

keF

1]

Scalar multiplication is defined in terms of the multiplication
operation, @, of the field.

k 0% =(k®al,k®a2,kea3,r...k®an)
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In order to secure compactness of notation, multiplication appropriate
to the field under consideration will be assumed and the notation for
scalar multiplication abbreviated to the form

keoC =(kal, kay, kaz, ... kan)

Vector addition is defined in terms of the rules of addition of the

field elements (scalars).

XoB = (a; ®Dby, a5 ® by, ... a, b))

Algebraically the vectors and the scalars of a vector field are associ-
ative, commutative, and distributive with respect to the operations of
vector addition and scalar multiplication. This follows from the defi-
nition of the operations and the fact that the field has the associative,
commutative and distributive properties.

A vector of an n dimensional space 1s usually specified as s
function of the basis of the vector space. The basis may be any set of
n linearly independent vectors. A set of n vectorso(l, cosny is
linearly dependent if there exists in F, n scalars ky ... ky, not all
zerds such that:

k1K @ kpXp @ ... & kolp

Il
o

or
klall 9 k28-21 @ coo 6 knanl = 0

kija)p ® kyap,

ki85 ® kyanz

(]
o
°
°

®
|
o

0 knan§ =
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Note, in particular, that a suitable basis requires only linearly inde-
pendent base vectors. The base vectors need not be orthogonal.
If the inner product is defined, then the conditions for linear

dependence may be written in matrix notation as

[A] k =2 Z denotes the null vector
The convention used in this paper for matrices is as follows: Anm x n
matrix A is bracketed, [A]. A row or column matrix or vector is not
bracketed. This convention eliminates needless brackets and leads to
more .readable equations. The expression [A] k always represents a
matrix product and should not be taken as a scalar product. In general
vectors are represented by letters from the Greek alphabet. The inner
product of two vectors, & and 6, with respect to a basis X is defined

as

=(a¥;0...08¥ ) (b)f; @...00% ) =

n

2 aps(¥,Yy) = i a1b4gy 4
i,J= i, J=1

The result is a scalar function. If the basis is orthonormal then

313 =Sij

and

i

&lbl 0 e e 0 anbn

The inner product is assoclative, commutative and also distributive with
respect to addition.
The inner product of a vector o< with itself in vector space

spanned by an orthonormal basis defines the square of the vector length.
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The inner product gives the sum of each orthogonal component squared.

XX = aja] ® apap @ ... @ apa,

The basis may be changed by a not necessarily orthogonal linear trans-

formation.
;= [a]=¢
then & = [A-l_]ocl
£
ofoc = oct [a71] [a-f] <

t
o - [ o]
The square, of the vector length defined by the inner product remains

invariant if

AL = 123,1 8183 8134 where g4 4 € [G]

The length as such may not be obtalnable since this requires the inclusion
of the square root in the field.

The inner product may be used to determine the orthogonality
of a palr of vectors. A vector pair is orthogonal if and only 1f the
inner product vanishes. This follows from the definition of the Ilnner
product glven as

XB = || « |B| cos @

A theorem concerning the dimensienality of vector speces which
will be used later in thils paper is now considered. The dimension of a
vector space or subspace 1s equal the minimum number of base vectors re-

quired to span the space or subspace.



Theorem: If S and T are any two subspaces of a vector space
Q, then the subspace dimensions satisfy

D(s) + D(T) = D(seT) + D(svT)

Y47
N\ 8,
I s

Figure 1. Venn Diagram,
This theorem 1s readily verified. Consider the Venn Diagram shown in
Figure 1. The obJjects of class 55 are contained by the left-hand circle,
the objects of class tj by the right-hand circle. The objects common

to both classes are contained by the conjunction of 8 3 and tj designated

as sj (] tj. The objects of either class 85 Or tj’ written Sj v tj, and

called the inclusive disJjunction may be calculated by summing the number
of objects in class 8 3 and the number in class tj and subtracting the
number obJjects contained by the conjunction. The subtraction of the

conjunction is required since it has been summed twice. The result is

N(sj v tj) = N(sj) + N(tj) - N(sj 0 tj)

A formula of the above form could be written for every base vector under

consideration. A given base vector either spans or does not span a
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particular vector subspace. Therefore, N(x) may have only two values,
zero and one. If the resulting set of equations are summed the result

would be
m m m m
D_N(syvity) =2 N(sy) + b N(ty) - 2L N(sy O ty)
= =t = =T

The dimension of a vector subspace is defined as

D(x) = jfi N(xy)
J=1

so D(SvT) = D(8) + D(T) - D(ser)
A single vector is a vector subspace. Therefore, the fundamental
dimensionality relationship, which involves two vector subspaces, must
be valid for vector pairs. The dimension of a single vector, with ele-
ments from the binary field 1s equal to the number of elements
having the value one. The dimension concept can be extended to in-
clude the vector addition comnective
D(seT) = D(SvT) - D(ser)
A simple and rapid proof of the above relationship is obtained from
consideration of the definition of the connectives of the Venn diagram
and by virtue of the fact that the dimension relationships must be
valid for any set of bases including a single base. Two additienal
dimensional relationships are obtalned by linear combination of the
previous dimension formula.
D(s) + D(T) = D(S@T) + 2D(seT) = 2D(SvT) - D(Ser)
The preceding material has presented informally the concepts

of the vector spaces necessary for an understanding of the remainder of
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this paper. For a formal presentation of this material the readqf is

referred to any standard text on the subject of vector spaces.*

Vector Representation of Binary Numbers

The binary number system as employed in the digital computer
is closed. The digit symbols are the elements of the modulo two field.
Vector addition and scalar multiplication are obviguéiy closed. There-
fore, the closed set of binary numbers may be repgésented by a set of
vectors in a vector space of finite dimensions, |

The basis of the vector space may be any set of linearly in-
dependent vectors. The basis employed in the usual binary number repre-
sentation is orthogonal. The base vectors are the set of n-tuples or
binary numbers representing the powers of two from zero to m-1, where
m is the dimension of the vector space. The number of binary digits
is also equal to m. ILet the base vectors be designated.iLi. Then the
familiar polynomial representation of a binary number A

n-2

A=a2%tva 1272 4 L, o+ apbl + ap®

is in one to one correspondence to the vector

=aMy ®a w1 8 ... 0 apy & agly

See for example Birkhff and Mac:Lane.(lM
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where M (000 ...00001)

l=
M2=(OOO.°.OOOlO)
M3=(ooo.“001oo)
M,q1=(010...00000)
My, =(100...00000)

In both expressions the a; coefficients are elements of the modulo 2
field.
The cyclically permuted binary code is now considered as an

illustration of a non-orthogonal basis.

¢ = [1]

[(cp | [1100...0007] EN

co 0110...000 8y
0011...000 :

eno1 0000...011 an1

EN 0000 ...001 EN

Each column in the T matrix is one of the base vectors. The vector

representation of the cyclically permuted number is

C = ansn @ an-lén-l 9 e e o0 9 3282 9 al6l
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where §,=(0000...0001)
§,=(0000...0011)
8§3=(0000...0110)

8,0=(0011...0000)
§,.1= (0110 ... 0000)
&, =(1100...0000)

The conversion from a cyclically permuted code to a binary code is

¥y= [t c

1111...11

defined by

=

0111...111

where [T'q

Il

0011...111

0000...011

0000 ... 001

Thus the binary number A is also in one to one correspondence with

¥ = c,€,®c €, 79 ... BcE, & ciEg
where €, =(00...001)
€, =(000... 011)
€, 1=(011...111)
€, =(111...111)

The vector representation of the binary number is unique. Therefore,
A €& X

and A €> Y

X = ¥
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The o and ¥ vectors are identical and are representations of the same

number A with respect to different bases.

Vector Length and Parity

The square of the length of a vector &K is given by the inner
product of o with itself. Let us consider the vector representation,

o, of a binary number, A, with respect to an orthogonal set of bases,

M.
Iet A=a.n..- al
then =aM, & ... © ajlhy
2
and =L =a,8,® ... & aja)

The last equation expressed in congruence notation is
1 2

Z agaxy =L Mod 2

k=1
The only elements of the‘mod 2 field are zero and one. Therefore, the
length and the squére of the length are identical., The length, L, of
the vector repreéenting the binary number, A, is identical to the parity
of A modulo 2.

(<<) eq (I2) eq (L) eq D

The square of the length of a vec%or, X s with respect to a

non-orthogonal basis is
n

YY = asas g
i§=l 185 &1
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As an example the length of the vector with respect to the cyclic per-

muted code basis is determined.

[6]=[r] [z -

The G matrix® is symmetrical, 8ij = 831
of the G matrix and the identity
k®k=0
that the off diagonal matrix elements do
diagonal elements have a value
1=2g44 Mod 2
The length of the vector in terms of the

is

ﬁ
1

—c19c36c5®'0.

which must be equal to

L=a, ® 8, ®a, ®@... &

1 5

¥ The G matrix is the metric matrix. A

11111...

It follows from the symmetry

not contribute to I2. The

cyclically permuted code basis

good reference is Brillouiln L.(lB)
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The invariance of the length permits a check of the operation of con-
version from one number system to another. A check procedure involving
the even digits of the cyclically permut ed ¢ode may be obtained if ¢y
and a, are deleted from the respective representations by a replacement
of the form.

8 €« 2i4]

Ci < Ci43

a, and c, are the low order elements of A and C respectively. Therefore,
the following relations must be valid

L!

cop ®cy®cg® ...

Ll

ap ®az ®a, ®...0a,

The Vector Space of Binary Addition

The standard procedure for the addition of two m digit binary
numbers may be described in a vector space in terms of the vector addition
of three vectors. The three vectors are the augend vector, o, the
addend vector, A , and the carry vector, ¥ . The sum vector is denoted
by

o -«0B8 0¥ =0
If the basis of the vector space is orthogonal and in one to one
correspondence with the powers of two from zero to m + 1, then the carry

vector may be defined recursively as

Cl 0

]

co alb 1

Cyy1 = cj(aj ® bj) © ajby=cyrs & ky
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Where I'j &j ) bj

and kj aij

In column form the addition process is

rm coeveee r5r2rl

9 cm+l Cm eo0eeoce 030201

Sm+l Sm sescee Sasesl

Practical arithmetic circuitry is often designed to accept
a cy element of unity. For example the insertion of a one digit in
the low order column facilitates two complement arithmetic in a
parallel machine. However, the arithmetlic structures considered in
this paper will be the type for which cj is always equal to zero.

Iet the augend and the addend vectors have a maximum dimen-
sion of m., The vector addition of the addend and augend vector is
closed and the partial sum,e, has a meximum dimension of m. The carry
vector as defined above has m + 1 elements but the first element of the
carry vector, c,, is always equal to zero. Therefore, the maximum
dimension of the carry vector 1s m. The sum is obtained from the
vector addition of the partial sum vector and the carry vector. The
actual dimension of the vector addition of the partial sum vector and
the carry vector is at most m - 1 since c; = 0 and rp4y = 0. The sum

vector, & , has a maximum dimension of m + 1. The elements of the
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sum vector are

Sm.-i-l = Cm+l

i1
1 =1

JEAm+ 1
S =r, ®c
o 3°%

A vector space of dimensican m + 1 1s required if the auvugend vector,
the addend vector and the carry vector are to be considered simul-
taneously. It is seldom necessary to consider all three vectors at
once. The vector space usually considered in the remaining sections
will be a subspace and have a dimension of m or m - 1. The need for
a dimension of m + 1 to represent the sum is in exact correspondence
with the binary addition of two m digit binary numbers. The m + 1
dimension corresponds to the m + 1 digit which is the overflow digit.
The actual mechanization of the process of binary addition
is relatively straightforward except for the generation of the carry
vector. The logic required for the formation of the partial sum e
by the vector addition of the addend and augend vector, and the
vector addition of @ and the carry vector ¥ is essentially singular,
The absence of intercoordinate relationships is characteristic of
the procegs of vector addition, The carry vector elements on the
other hand have a high degree of intercoordinate dependence for

le_!_'l = F(aj, bj, cooy a-l, bl>

The lack of independence of the carry elements is the basic factor to

be considered in the design of a binary adder. The logic of various
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digital parallel adders differs only in the means used to generate the
carry. Furthermore, the error structure of the adder is determined

primarily by the characteristics of the carry vector.

The Carry Vector

The recursive definition of the carry vector is adequate for
many applications including the design of certain binary adders. How-
ever, for the purposes of this paper the expression of the carry vector
in matrix notation has considerable utility and constitutes a unified
approach to the problem of carry generation. In mé%rix notation the
carry vector ¥ is given as

¥=[n]x
The matrix equation in expanded form is shown in Figure 2.

The fact that the k vector and @ vector are always orthogonal
is an important characteristic of the process of carry vector gener-
ation. The proof of this orthogonality is as follows: By the defini-

tion of e and k we have

Il
o

I‘j :l:kj

ks j

I
[
v
2
Il
o

Both statements, by the definition of implication, are equivalent to,

rj v kj =1

The proof 1s completed by application of De Morgan's Theorem,



., | |
°3 | 2
C r~I
ilt 273
,CS r2r3ru

Cn I‘E...rn_l

cn_‘_l. re...rn
-

L. &9

where ry = aje bj

and _
Ky =2,
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1

r3 1

r3ru ru eo e
r3rhr5 rurs PP
r3...r6 rhr5r6 ceooe
r3...rn_l ru...rn_l cee 1
r3...rn ru...rn cee I'y

Figure 2., Carry Vector.
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Therefore:
e k=0

The form of Cys the jth element of the carry vector is

CJ = kj_l L) kj-Qr,j-’l o kjcérj_erj_l o kj_l“rj“Brj_arj_‘l 9 ...

It may be concluded from the orthogonality of the k and e'vectors that
at most only one term in the above expression for cjy may be different
from zero. This fact is seen immediately if ¢ is expressed in the

following form.
Gj = kj"l ] rj_l kj_2 ® rj_e [kj"‘3 @ I‘jgﬁ kjm)-l" ® ...

In addition to giving information of the structure of the carry vector,
the orthogonality of the @ and k vectors has very practical consequences.
In particular, since the conjunction of @ and k never occurs, the con-
venient mathematical connective, ring addition or exclusive disJjunction
®, may be replaced by the physically simpler connective, inclusive dis-
Jjunction. The recursive definition 1s then

Cy41 = (aj 9 bj) cy v asby

The recursive definition may be further simplified by the use of the
identities
and _
Xy vy =xXvVvy
The result is

Cy41 = (aj v bj) cy v ajbj
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The physical logic associated with this definition is somewhat simpler
than that associated with the definition of the carry using exclusive
disjunction connectives. 1In fact the carry definition in terms of the
inclusive disjunction is the most frequently used definition and might
have been chosen as the starting point for this work. This was not
done for two reasons. First the definition in terms of exclusive dis-
Junction is mathematically more convenient. The convenience is
primarily due to the fact that a variable is self inverse for the ex-
clusive disjunction connective. Secondly, the definition in terms of
the exclusive disjunction is more restrictive than the definition in
terms of inclusive disjunction. Thus, more is learned about the carry
vector structure if the most restricted case is considered first.
Later the restrictions may be removed one by one and the effects observed.
Let v, denote the inclusive disjunction of the jth augend and

J

addend elements. If rj is replaced by Vj then any particular row of

the carry matrix may contain more than one, ONE element since

Cj = kj—l N kj-EVj-l \A kj-3vj-2vj-l v JJ—-)-I- Vj-3vj—2vj-l V oo
and
In the discussion which follows €>and V may usually be used

interchangeably. Special note will be given to situations where inter-

changeability does not exist.
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Methods of Generation of the Carry Vector

The matrix relationship

¥- [0l

completely defines the generation of the carry vector in terms of the

k and the e or V vectors. Essentially lnstantaneous generation of the

carry vector is achieved if the elements of the physical logic corre-

spond one by one to the logical connectives found in the matrix defi-

nition of the carry vector. This particular realization of the carry

logic is characterized by the fact that the elements of the carry

vector are independent. The elements of the carry vectors are inde-

pendent in the sense that if k and(D or V are correct then a single
error in the structure of the carry logic will cause an error in at
most one element of § . Unfortunately, for all practical purposes

the number of logical elements required to realize an lnstantaneous
and independent type of carry is prohibitive. A study of the carry
vector reveals that, in addition to the logic required to generate

the elements of @ or V and k, the carry logic required of each c.

d
element is one OR gate and j-2 AND gates; jZB. Iet m be the number

elements comprising the augend and addend vectors then kj must drive

m+ 1 - J gate inputs and rj or v mst drive (3-1)* (m+1-j) inputs.

The last formula is not valid for j = 1. rj does not influence the

of

carry process and is not considered. rj is identical to the sum ele-

ment 9. The total carry logic of the instantaneous and independent

type of carry requires
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m - 1 OR gates

with m(mt+l) - 1 inputs
2
Eﬁg:;l AND gates
m+1 -
with %. 223 (3 -3-2)= (m+l)(m+2)-g - m inputs

The number of the logical elements required for the instantaneous-and
independent carry can best be illustrated by a numerical example, The
equipment needed for the carry logic of a 30 bit binary adder is

29 OR gates with 464 inputs

435 AND gates with 4930 inputs

kl drives 30 gate inputs

k, drives 29 gate inputs

°

o N

k50 drives 1 gate input

*rp drives 29 gate inputs

rg " 56 " "
r, " 8 " v
rs " 10k " "
SRS
Tig " 225 " B
r17 " 22y " "
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rpg drives 56 gate inputs

T 1" 29 1" n"
30

The independence of the elements of the carry vector may be
maintained and the number of loglcal elements reduced if the instan-
taneous feature of the previous carry logic is not required. The
elements of any row of the D matrix may be generated sequentially. The
logic for one carry digit cj is shown in Figure 3. The logic required
for each 3 1s 2 j-5 AND gates and one OR gate. For m digits the total
carry logic consists of m-1 OR gates with a total of Eigiil inputs and

m+1

>_23-5
3=3

(m+1) (m-3) +k

AND gates. Fach AND gate has exactly two inputs. An element of k, ij
and an element of e » rj, must each drive m-j+1 inputs. This scheme of
carry generation requires the following components if m is equal to
thirty as in the previous example.

29 OR gates with 464 inputs

841 AND gates with 1682 inputs

k) drives 30 gate inputs

.

k50 It 1 1 1
*;,2 1 29 " 1
’ " 1" "
ry or vj rz0 1
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V; may
replace

Cisi

Figure 3. Logic for Independent, Sequential Generation
of One Carry Element.

It is observed that realization of a carry, with independent elements,
by the above procedure is by no means economical. Furthermore, the
method suffers considerable time -delay due to the sequential method
employed to generate the elements of the D matrix. The sacrifice in
time does permit a significant reduction in the required drive cap-
abilities of the r; or v; elements. All in all a high price is paid
in terms of either components, or time, or both, to achieve independ-
ence of the carry elements.

The generation of the carry vector in a synchronous logical
structure in general leads to more extensive logic or requires more

time than a corresponding asynchronous circuit which permits carry
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rippling. This problem of carry generation for synchronous circuity
has been studied by Weinberger and Smith.(l6) The paper details a
particular technique used to simplify the logical configuration of
the D matrix. There is no indication that the technique used by
Weinberger and Smith is optimal though the results are reasonable.
The carry vector may be considered to be composed of a set

of sub-carry vectors according to the following relationship

Y=Ym®Y¥p1®... 08,0Y;

In particular let Xj be chosen as the jth set of diagonal elements

from the matrix definition of the carry. Then

LB

(k-m) k‘m.—l’ ©o0eeo0e00000e0000606008000s k.2, kl, O)
¥o = (ky 1Tpy Ky oTp 15 ceeecocosceeees kiry, 0, 0)

¥5 = (kpy prp g7y Ky sTy oy 15 kqTprs, O, 0, 0)

b1 (k 5 0y Oy veseceeecs O, 0, O)

m lr2r5..,..., I‘m
The set of carry sub-vectors as defined above form an orthogonal set

and therefore the sum of the sub-vector may be obtained by the inclusive

disjunction connective.

x= Ymvym_lv PRPEPY VXQ v Yl

e is replaceable by V if.and only if the inclusive disjunctive connec-
tive is used to sum the sub-carry vectors. The sub-carry vectors may

be defined recursively. The recursive definition of the sub-carry
vectors corresponds to a carry realization procedure economically feasible

in equipment but time consuming. The recursive definition is
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¥, =[2) x
y, = 2] ([2] x) =121 (o)

]

Y3

]

(2] (¥, .0)

The notation, [2] , corresponds to a left shift of one element. In

matrix notation

(o . |
10 ..
01 0
[2] -
01 0
. . 010

The multiplications specified in the recursive definition of the sub-
carry vectors are non-assoclative. The product Uj—l is formed first,
followed by the left shift of one element. An addition process which
obtains a carry vector by means of operations utilizing the sub-vectors
is sometimes termed "programmed addition" because the process can
easlly be executed on a basic automatic computer in the absence of an
addition instruction. The generation of the carry vector from the
sub-vectors was employed by Robertson(lo) as a means of preventing the
propagation of errors. Error propagation is prevented if suitable

error detection and correction procedures are applied after the creation

of each partial sum of the carry vector. Robertson employed a Hamming
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Code(B) to obtaln the redundancy needed to detect and correct single
errors which might occur at each step in the carry generation proce-
dure.,
The simplest logic which generates the carry vector is obtained
if the logic corresponds to the recursive definition of the carry vector,
ep = Ky
€57 -1 51V Ky

or C’j == cj'lv.j'l v kj'l

This definition may be represented by the matrix equation

K = [D'l] Y
p-t 1s the inverse of the D matrix which has been used previously to
define the carry procesg. The inverse matrix exists only for the defi-

tion of D in terms of e.

—

1 0 . . o

rg l O o o

[D"l]: 0 rz 1 0 .

o o 0 r5

° 3 °

- —
The logic of this type of carry generation is shown in Figure 4, The

logic is characterized by the interdependence of the carry digits and
by the fact that different carry sequences may propagate simultaneously.

The carry digit interdependence is completely characterized by the k and



Q vectors. In all cases a propagation of carries is triggered by a kj
element equal to one. The carry is propagated through the successive

elements only if successive elements of ? are equal to one. The carry
propagation sequence stops at rj+n’ the first non-unity element of the

Q vector succeeding r Of course, a carry sequence may have been

j°
initiated by kj+n but this constitutes a new carry sequence and not a
continued propagation of a carry sequence. Due to the orthogonality
of the e and k vectors no carry sequences overlap. If ki initiates

a carry then r; must stop the propagation of any previous sequence.
If V is substituted for Q then the sequence may propagate through
points of carry generation. This will affect the error structure of
the adder but will not affect the ordinary addition process. It has
been shown in Burks et al.(l7) that if m is equal to 40 then the

average length of the maximum carry propagation is 4.62 elements.

The characteristics of the carry propagation and generation is con-

sidered in a later section.

v, may
replace r,

Figure 4., Standard Carry lLogic.
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Synthesis by Vector Space Operations

The process of binary addition for all sum digits except the

first is completely defined by the matrix equation

- po[v]k
In the language of vector spaces the binary addition process consists
of an affine transformation of the vector k. The vector k is rotated
as a result of the multiplication of k by the D matrix. The result
of the multiplication is then translated by the vector addition of the
e vector. The whole process 1is complicated by the fact that the D
matrix is a function of the @ vector.

New logical configurations for the process of binary addition
may be synthesised by either of two procedures: (1) by the factor-
ization of the D matrix and (2) by a change of basis transformation
over the whole addition process. Tne different logical configuratiomns
discussed in the previous section were obtained as a result of different
factorizations of the D matrix,

One factorization of the D matrix follows from the definition
of the D matrix as :

n-1 n
o= |p1] {DJ
The resulting carry logic has a logical circuit depth of two. If a
~value of n equal to 5 is chosen the resulting logic is considerably
simpler than instantaneous carry logic but not as simple as the multi-
depth logic proposed by Weinberger and Smitho(l6) A factorization in

this manner can lead to fast carry logic which is economical in terms
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of the number of logical components. However, the factorlzation does
not lead to a carry loglc particularly appropriate for error checking.

The difficulties encountered when a change of basis trans-
formation on the whole addition process 1s attempted is due to the
fact that the D matrix is a function of the e vector. Consider the
following transformatiﬁn

[1]o = (T]le e LT] .[D] X
While G, e and k may be considered in ter;ns of a new basis the elements
of the D matrix are given with respect to the original basis. Thus the
transformed addition process defined as ~-
g = ¢ &[r] K
cannot be expected to lead to a simpler definition of the carry process
because of the functional dependence of the D matrix eon the e vector.
Thus the transformed addition process is to be regarded in terms of
the original basis. A simple transformation of this type and in all
probabllity the only practical transformastion of this type is obtained
if the transformation matrix is identical to the inverse D matrix. The
multiplication of the matrix definition of the sum by the inverse D
matrix yields
(06 - [pile ox

The indices have the same range as specified above. The matrix equation
involving the inverse D matrix specifies a recursive definition for the

sum elements.
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Sy, = Tp ® kl
55 = Tp (19s2)0r30k2
Sy =Ty.1 (1o sj_l) ©ry ®ky,

As a result of the orthogonality of k and E)the equations are reduced

to the form

sy = (rJ-léj-l v kj-l) o ry

The logic corresponding to this particular method is shown in Figure 5.
The circuit has a very prominent weeskness. A propagated carry must

pass through four logical elements per stage rather than the two elements
per stage required in the conventional scheme of Figure 4, The count

igs four loglical elements per stage rather than three because the usual
realization of the exclusive disjunction requires a cascade of two
logical elements. The circuit was included here to illustrate a par-

ticular method of generating alternative logical structures by matrix

manipulation.
r; f P
k,

Figure 5. Sum Dependent Carry Logic.
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Numerical Relationships

In this section the dimensionality concept is used to estab-
lish particular numerical relationships which exist between the results
of specific logical operations. One important consequence of the
existence of the numerical relationships is the feasibility of using
numerical checking and correcting procedures to control the errors
produced by faulty elements in a logical structure. The numerical
relationships will be used in the next sectlion to specify alternate
algorithms of the addition process.

Consider the dimensionality relationship

D(<) + D(B) = D(V) + D(k)
where V=Xv R

and k=R

The dimensionality relationship must’ be valid for any set of coordi-
nates. If a single coordinate is considered then the following re-

lationships exist between the values of aj, b, and vj, kj’

J
TABLE T
RELATION BETWEEN ay bj and AL kj
0 o) 0 0
0 1 1 0
1 o} 1 0
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Digitally the difference between aj, bi and vy, ki is a possible zero
and one interchange between columns as shown in row two of Table I.
The interchange occurs if Vj and kj are substituted for aj and bj but
there 1s no numerical effect since

O+1=1+0
Therefore, the dimensionality relationship implies the numerical re-
lationship

C=K+R =V + k
A second numerical relationship is obtained from the dimensionality
equation.

p(e) + D(x) = D(V)
wWhere g=«x80 <]
The numerical relationship is

e+k =V
The validity of this equation 1s established by the following argu-
ment. The e and k vectors are orthogonal and therefore the magnitude
of the sum of a particular coordinate, rj + kj, cannot exceed unity.
The addition of e and k can never produce a carry. This fact and the
implication

k327
assure the validity of the numerical relationship between e , k and v.

The dimension relationships may be expanded to include more

than a pair of variables. In particular, the following dimension
equation is obtained by considering a Venn diagram with three over-

lapping classes or by application of the previously derived dimension
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formula of two variables.

DE¢vAVY) = D(X) + D(B) + D(¥) - D(xB) - DEtd) - D(BS) + DXBE
The corresponding numerical relationship is

®VvBVS) = A+ B+ 8 - XB -AE -BS + XBS

The following examples are given to illustrate the numerical

relationship previously described.

Let < =(101101) =145
and BA=(111001) =57
then V=(111101) =61

k=(101001) =4
@=(010100) =20
now L +p=V+k
L5 + 57 = 61 + 41 = 102
and e +k =V

20 + 41 =61
Now let us donsider the extension to three variables.
et &= (11001 0) = 50
then (vB vE) =X+B +§ -oAB -x§ - B8 +xXBE
63
63 = 63

il

45 + 57 + 50 - k1 - 32'- 48 + 32

In this section we have shown the existence of two relation-
ships which can be employéd to check the generation of the @ , kand V
elements which are functions of the addend and augend elements. The

most important characteristic of the derived checks is the fact that
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the checks are numerical. This means that the checks may be applied
on a digit by digit basis, as a check on certain parts of a represen-
tation or as a check of all elements of the representation. Both
check processes are of the type which detect the occurrence of a
single error. The check

L +B =V+k
will detect malfunctions in the V and the k elements if the oC and B
elements are correct. ILikewise the check

(3+k=V

may be used to check errors in the e elements only when the k and
the V elements are correct.

It is logical to ask whether similar check procedures exist
for the carry generation process. Unfortunately the answer is no. The
checks given above owe their existence to either the absence of carries
or the presence of identical carry processes appearing on opposite
sides of the equality sign. The carry generation process is charac-
terized by the presence of constraints and the dependent nature of
the elements of the carry vector. A check of the carry generation
process can only be made by either duplicating the carry generation or
by partitioning the carry generation process into checkable parts as

is done for the carry generation process used in programmed addition.

Addition Algorithms

The numerical relationships derived from the dimension concept
in the previous section may be used to obtain alternate algorithms for

binary addition.
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The relationship
6 =(+B=V+k
V=ocv B
k = B
states that the sum of the augend and addend is identical to the sum
of the disjunction and the conjunction of the augend and the addend.
The same carry vector is associated with either algorithm for
e=xXx6eB=-Vveok
k =P = kv
The numerical relationships

G:""’B:V"‘k

and (3 +k =V
e-xo B
may be combined linearly to give two binary addition algorithms of
the form
0‘=k+k+e=2k+p
0‘=V+V-€=2V-€

In the remaining part of this paper the following terminology is

adopted. The addition algorithm described by the first equation

above is called ke addition., The second process is called ve

addition. The usual addition procedure is called standard addition

and defined by & = &+ B . The process 0=V + k is termed Vk addition.
The concept of dimensionality has led to the definition of

alternative algorithms for addition. The important aspect of the k(a
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and Vé) algorithms is that the carry or borrow vectors associated with
these processes differ from the carry vector associated with the
standard and the Vk addition processes. The fact that the]&e carry
vector and the VF borrow vector are different from the standard carry
vector is sufficient reason to investigate in detail the addition
algorithms. The characteristics of the carry or borrow vector determine
both the propagation of errors and the average addition time of a

parallel type binary adder with asynchronous carry.

Constraints and Some Properties of the Addition Algorithms

Constraints play an important role in the determination of
the characteristics of the k:e and V€> addition processes. The con-
straints and some of the effects of the constraints are discussed in
this section.

The constraint of the kf) addition process is

Consider the addition process as expressed in column form

cessesses k3 k2 kl

+ sseocsocse ru r5 r2 rl

so00eeseee Su S3 S2 Sl

The sum of any column 1s given by the vector sum of the k,
and carry elements.

S=2k0Q 63
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The effect of the constraint is to limit the number of elements with a
value of one in any column. The number of ones in any column cannot
exceed two. The proof of this statement is obtained by considering the
following situation. Let kj-l and Ty both have a value of one so that
a carry is generated. Then rj-1 must be equal to zero and no carry
from a coordinate or column less than j-1 is propagated through j-1.

It is also obvious that a carry cannot be generated at column Jj-1. The
number of ones in columns Jj-1 and j is at most two. In column Jj+1, kJ
is constralned to a value of zero and Ci+1 the carry element of the
column has a value of one, If Ty41 is equal to zero the J+1 column

has only one digit of value one. If Tyl is equal to one there are

two one digits in the column. Thus, three one digits never occur in
any column and a two input type of adder is sufficient.A However, no
overall saving of components results since a two input adder is re-
quired to form each P , k element palr. One other effect of the con-
straint in L P.type addition is that carry propagation is determined
solely by the elements cﬁ‘e . If the carry is propagated then rJ+l must
be equal to one. But if this 1s true, then kj+l is equal to zero and
T2 must equal one to propagate the carry. The carry continues to pro-

pagate until r, is equal zero.
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The following example is presented as an illustration of the

k_e algorithm

Given: =(110 011 101)
B=(110 000 1001)

then P=(0o0o0 011 0 0 0)
k=(1L10 000 101)

the sum is obtained by the addition
g =2k +Q
000 011 000

1 100 001 01
1 100 100 010

the carry vector of the process is
¥ = (0 000 110 00)
For this example the carry vector associated with standard addition is
(1 100 111 01)

The Ve algorithm uses subtraction to obtain the sum. It is
therefore appropriate to discuss the generation and propagation of
borrows rather than carries., A borrow is generated only if the minuend
element has a value zero and the corresponding subtrahend element a
value one. The borrow propagates through succeeding elements if the
subtrahend and minuend elements have identical values., The borrow hj

is given the equation

h, = (Xj_l eq yj~l) hj-l v Ry Vi
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The above form of the equation is appropriate for probabilistic con-
sideration since the causes of the propagation and the generation of

the borrows are separated. In practice a more convenient logic is

hy = (kg vyyaa) Byoy v %5 g

The'Ve addition process is constrained by the relations:

or rj v vj =1

In column form the addition process is represented by

600000 VB V2 Vl

ceoooe rh r5 r2 rl

600000 Su 55 S2 Sl

The constraint has the following effects. A borrow is generated if

;. r, =1
J=1 "]

The borrow propagates the succeeding column if r. . is of value unity.

J+
V3 does not influence the borrow propagations since the value of V3 is

constrained to one if ry is equal to one. Thus the constraining re-
lationship propagates with the carry. In the normal subtraction

process the borrow is propagated if equality exists between the minuend
and the subtrahend elements. In the Wnalgorithm a borrow is propa-
gated only if both the minuend and the subtrahend are unity. In practice

only a two input subtractor is required but a two input adder is re-

quired to generate each pair of fD and V elements.
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The previous example is considered in terms of the V‘D

algorithm.
o=(110 011 101)
A=(110 000 101)
p=(000 011 0 0 0)
v=(110 011 101)
1 100 111 01

- 000 011 000

1 100 100 010

In this example the borrow vector was the null vector. Consider as

a second example

o =(111 110)
A=(0o01 001)
pP=(110 111)
v=1(111 111)
1 111 11
- 110 111
1 000 111
The borrow vector H is
H= (000 111)

An additional algorithm for binary addition consisting of

both kF and V/D addition processes may be verified by the comparing
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of the carry and borrow characteristics of kfo and V(o addition re-
spectively. The new algorithm will be called k(? V addition and is
now described. The process requires the generation of vectors e >

2k and 2V. The addition process is started with the kfp algorithm

at the low order column. The k ¢ algorithm is applied to succeed-

ing columns until a column is found which would generate a carry.
Either the k:e sum or the V@ sum is recorded for the carry generating
column but the next column is summed using the V o algorithm. The V¢
algorithm is used until a column is found which generates a borrow.
The k ¢ or the Ve sum is recorded for this column but the sum for

all succeeding columns, until a carry 'is generated, 1s found by the

k € algorithm. At the columns which generate a carry or a borrow both
ke and Ve addition give the same result. The procedure is continued
until the final digit 1s summed. The validity of the algorithm is
seen in terms of the constraints of the kfa and Ve addition processes.
The first column never generates a carry for the k¢ algorithm since
no element of 2k corresponds to T Thel;e algorithm is then applied
to the second column. ILet us assume that column J will generate a
carry, i.e., (rj =1, kj—l = 1). The constraints dictate that Vil = 1,
rj-l = 0 and vy = 1l. For column j the k.e and Ve algorithms give the
‘same sums since

rJ ] kj-l = rj ) Vj_l =0

The Ve algorithm may be substituted for the k g algorithm at the Jjth

column only if there is no borrow propagation into the jth column.
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This is assured since ry.l = 0 and Vyp = 0 if no borrow 1is propa-
gated from the j-2 column and Vj-2 = 1 if a borrow is propagated
from the j-2 column. The kuP algorithm may be substituted for the
\IP algorithm when a borrow occurs at the pth column if there is
no carry propagation into the pth column. The borrow occurs when
r =1 and v 1= 0. Therefore, kp—l =0, and r = 0, If

P p p-1
k = 1 there can be no carry sequence into the p-1 or the p column.

b2
Thus it has been shown that due to the constraint the specified
algorithm change 1s wvalid.

At the moment the k P V algorithm is only of academic
interest. No practical logical configuration has been found for the
k P V algorithm which is not identical to some simpler algorithm.

In fact the circults examined contained unnecessary redundancy.

However, the k e V algorithm does constitute an interesting descrip-

tion of the addition process. An example of the k e V algorithm is

now given
Let «=(110001011)
B=(011101110)
then k=(010001010)
V=(111101110)

(L0O01100101)

)
I

101 100 101 @

1001 111 001 kP
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Evaluation of the k@ and the V@ Logic

The generation of the k, V or e elements required by the k@
or the V@ addition processes can easily be realized by the conventional
half adder circuitry shown in Figure 6. Additional loglic must be
provided to generate and propagate carries or borrows and also to
perform the vector addition of the k, € , and carry elements or the
vector subtraction of the V, p , and the borrow elements. Due to the
effect of the constraints the vector addition or subtraction operations
require only one modified half adder or modified half subtractor per
adder stage. The logic required for the kP algorithm is shown in
Figure 7. The logic required for the V‘D algorithm is shown in Figure
9.

It is necessary to compare the kp and the VF logical config-
urations with the standard adder configurations in order to determine
whether the new algorithms have any merit. The logic of a standard
adder configuration is shown in Figure 8. A comparison of the logic
shown in Figure 8 and that of Figure T reveals immediately the minor
differences between the kp logic and the standard logic. The difference
is in the point at which the carry is obtained from the carry logic. For
the kp logic the carry is obtained from the output of an AND gate ,
For the standard logic the carry is obtained from the output of an
OR gate’'. The change in the point at which the carry is derived has
no effect on the performance of the adder circuit. We conclude there-

fore that the k P adder offers no advantage over the standard adder
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xi .{/"\\47 k
[ ] . j
yj U
X; r,
Y
— Vj
Figure 6. Half Adder.
2 ke f3 ks
k, Cz . G Cq

Sz T3 S3

Figure 7. Realization of the kp Addition Algorithm.
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Figure 8. Logic for the Standard Addition Algorithm,

Figure 9. Logic for the vp Addition Algorithm.
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configurations. The same is true of the Vg adder when compared

against standard half adder - half subtractor configurations. However,
the change in the point of carry derivation does change the statistics
of the carry generation process. An analysis of the statistics of the
carry process for kP or'Vf addition would reveal that the probability
of carry initiation is equal to 1/8 and the probability of carry propa-
gation is equal to 1/2° For the standard addition algorithm the prob-
ability of carry initiation 1is 1/4 and the probability of carry propa-
gation is equal to 1/2. However, these statistics can be very mis-
leading. The probabilities associated with the inputs to the AND gate
from which the sum element is obtained are identical for all the addition
algorithms. In view of this we must conclude that the new addition
algorithms presented here form interesting alternate discriptions of the
addition process. But no logical configurations have been found which
differ substantially from the standard logical configurations. In view
of this the discussion in the next chapter is restricted to the standard

addition algorithm,



CHAPTER IV

THE ERROR STRUCTURE OF BINARY ADDITION AND
THE EFFECTIVENESS OF THE PARITY CHECK

Introduction

The sections which follow contain a detailed investigation
of the effects of logical malfunctions on the correct sum repre-
sentation for standard binary addition. The carry logic is the most
important single factor which determines the error structure., If it
were not for the carry process, the sum elements could be completely
independent and the error structure of the addition process would
be extremely simple.

The logic of binary addition is divided into three parts.
The first part consists of a half adder circuit which obtains the k,

r and v elements from the addend and augend elements. This logic

will be referred to as the generating logic. The second part of the
logic of the adder is the carry logico‘ A standard carry logic will be
considered. ~The carry logic requires one AND gate and one OR gate per
digit. Initially the carry logic is assumed to have no logical
elements in common with any other part of the adder logic. The third
part of the adder logic performs the vector addition of a carry element
and an element of the €> vector to produce the sum element and is
called the rc sum logic.

The form of the standard adder logic under consideration is

shown in Figure 10. Conventionally gates 85 and gg are combined since

=73-
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the output of gate gg provides the required input to gate 8y, -

In the

immediate discussion which follows the separation of g5 and 8¢ will be

assumed, though consideration will be given to the possibility that

the input of 85 is either ry or vy.

In the last sections of this chapter the effectiveness of

both digital and numerical error detecting methods is considered for

the different error structures associated with particular malfunctions

of egircuit components.

q, b| q; bi

CI ] \¥) 94 /. g‘

Figure 10. Adder logic.

GENERATION
LOGIC
CARRY
C LOGIC
rc SUM
LOGIC
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The Error Structure of the Carry Logic of Standard Addition

In this section the effects of various malfunctions in the
standard carry logic are considered. The matrix representation of the
carry logic is particularly appropriate for the study of the carry error
structure., The elements of the vectors of the addition process are con-
sidered as random variables. The probability that\an element ki of the k
vector equals one is l/br° The probability that an element ry of the ﬁD
vector equals one is 1/2, If these values are substituted into the carry
matrix shown in Figure 2 the result will be the matrix shown in Figure 11,
The matrix defines the probability p(ci) that a given element c; of the
carry vector has a value of unity. The matrix representation of the carry
vector in terms of the k and fjelements is particularly appropriate for
probabilistic studies since the elements of any row of the carry matrix
are mutually exclusive. The probability that a given carry element is
of value unity is obtained simply by summing the corresponding row
elements and multiplying the sum by l/h, If the carry matrix were de-
fined in terms of the k and V elements it would be necessary to consider
the fact that the matrix elements in terms of k and V vector elements
are not mutually exclusive. However, the values feor p(ci) would be
identical, since the same carry vector must be obtained regardless of
whether the carry matrix is defined in terms of'f)and k or V and k vector
elements.., It is simpler to use the carry matrix in terms of k and fj

vector elements because of the mutually exclusive properties. However,
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the carry vector determined by k and P vector elements will have a
different error structure from the carry vector defined in terms of k
and V vector elements. Both definitions provide the same results if
there are no logical malfunctions. It is only when circult malfunctions
are present that the difference in the error structure of the two
schemes becomes apparent. For reasons of mathematical convenience

the present studies of the error structure of the carry vector are
continued in terms of elements of the @ and k vectors. p(cq), the
probability that c; = 1, obtained from the matrix representation of

1

Figure 11, is

1l

p(e,) = 1/4 (2 - p1%2)

1/2 - 2= 24 1< mHl

]

Consider the carry logic shown in Figure 12. The logic repre-
sents that required for standard addition. The logic 1s implemented
using semi-conductor diodes. A study of the circuit will reveal that

the following correspondences exist between open diodes and ky or ry

constraints
dho corresponds to ki =0
doo " ry =1
1" —
d30 ry = 0
le cy = 1

But c¢; =1 if ki—l =1
Thus the effect of a certain dipde malfunction may be analyzed by a

constraint on the ki or rj elements.
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The result of diode shorts is now determined for the carry
logic of Figure 12. In the practical circuiltry the parameters ky and
r; are usually derived from voltage sources. The effect of a short
is, therefore, somewhat dependent on clipping levels, If d) 1is shorted
the effect is the same as obtained for d3 open., If d3 is shorted, the
result is indeterminate since the circuit will probably continue to
function until d2 or dh malfunctions. A short in d2 renders the
succeeding carry elements independent of the previous carry elements
and Ci41 becomes a function of only Ty and ki which are orthogonal or
mutually exclusive, The same effect is obtained if d; has an open.

If dl shorts, the carry propagation of the ith stage in the carry logic
is independent of ry and is equivalent to d2 open., The effects of

shorted diodes are now summarized.

dyg corresponds tory = 0O

d3s indeterminate
drg corresponds to ky 4 =1
da =1

1s corresponds to Ty

Let the probability of a short or an open be identical and neglect the
inferred result of a short in d3. The frequency of occurrence of parti-
cular values of k;_;, k; and ry; in correspondence with the diode mal-

functions is shown in Table II.
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1
1/2 1
1/4 1/2 1

o-nth o-n+5 o-n+6

5 -m+3 o=+t P

Figure 11. Probability that cy = 1.

1/k4
1/k
1/h
1/k4
1/k
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TABIE II

FREQUENCY OF OCCURRENCE OF DIFFERENT
TYPES OF CARRY LOGIC MALFUNCTIONS

Element Value Frequency
ky =0 1/8
ki 1 =1 1/4
r; =0 1/4
r, =1 1/4

no effect 1/8

The changes in the carry error structure if V is substituted
ftn-e are simple. In reference to the diode logic of Figure 12 only one
circuit malfunction is sensitive to the replacement of e by V. If diode
d4 is open, 1/8 of the time an error will not be observed. This is due
to the fact that if ¢y = 1 and ki = 1 then vi = 1 but ry = 0. The
value of p(cy) = 1/2 and p(k;) = 1/4. The probability that the mal-
function does not cause an error is the product p(k;) p(cy) and is
equal to 1/8. The result of the substitution of V for P is a change
in the frequency of occurrence of the k; = O and the "no effect" type
of error. The frequency of k; = 0 is 7/64 and the frequency of the

"no effect" condition is given as 9/6k.,
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Figure 12. Carry Logic.

A malfunction in the carry logic does not necessarily cause
an error in the element of the carry representation. A malfunction
which does produce at least one error is termed effective. We now
proceed to calculate the effectiveness of the various logical mal-
functions in terms of the ki or ri constraints. In the following
equations p(zxci+l) denotes the probability that the i + 1lth element
of the carry vector is changed due to a malfunction represented by

some constraint.
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ry = 1 type of malfunction

pley,y) = plky) + p(ry) pley)
r; = 1 then

p (cer1) = p(ky) + pley) - plky) p(cy)
rial'

p (Aciry) = pleg) - plky) pley) - plry) pley)
ri=l

= oey) {1 - Bl - B(ry)]
= pley) {1 -[ply) + 2(xy))]
= 1/% p(e;) = 272(271 - 2-1y /8
r, = 0 type of malfunction
p(ey,,) = plky) + p(ry) »ley)
ry = 0 then

p (eg41) = p(ky)
ry =0

p (Bcy,y) = plry) pley) = 2% - 277 21
ri =0

k;j = 1 type of malfunction
p(ey,;) = plky) + p(ry) pley)

p (c34) =1
k=1
p (Acy 1) =1 - p(k) - P(ry) pley)
ki‘ =1
=ty 2ty v

ki = 0 type of malfunction

P (ci+l) = P(ri) P(Ci)
ky =0

P <Aci+1) = P(ki) = 1/4
ki=0



The Nature of the Propagated Error

In the remaining sections of this chapter a number of different
logical malfunctions will be considered. All.maifunctions of the
adder logic may result in a propagated error. We shall at this time
investigate the characteristics of the propagated error.

The mechanism for the propagation of an error is independent of
the cause of the error. The type of malfunction does determine whether
a zero or a one 1s propagated. Constraints of the type ry = 1 and ki =1
may initiate erroneous one elements while the constraints ri = O and
k4 = O initiate erroneous zero elements in the carry vector representa-
tion. An element cy .o of the carry vector succeeding an erroneous
element cy,; is also in error, if ry,; = 1 and no carry is initiated
by ky4y. If i = 1 then ki+l is constrained to zero. Hence, propa-
gation and initiation never occur simultaneously at the same element.
The condition for error propagation is simply ry,, = 1 and the proba-
bility of propagetion is one half. The probability of not propagating
is also equal to one half. The probability that an error initiated at
the 1+1th element by a r; or k; type malfunction propagates to the jth
element of the carry vector and no further is

p(i+l........d) =279 52 44
An error in the jth element of the carry vector caused by a malfunction
of the ki or ry type implies an error in all carry elements between
and including i+lth element and the jth element. Thus

p (&ey) = ploey,;) 2 y2zan
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The asterisk is used to indicate that the propagation of the error
stopped at the jth element. The probability that the error includes

the J element is

p@&cj) = p@hcj+1) 2_J+i+l

If only effective malfunctions are considered the expected
number of carry elements in error is a function of the mechanism of
carry propagation and is independent of the frequency of occurrence
of effective errors of each type. Then

P(A*CJ' ) = 2-J+

Consider an effective malfunction in the ith stage of the
carry logic. The carry element cy,, 1s then in error. The error
propagates only if ry,q = 1 regardless of whether the erroneous
ci+] €lement has a value of one or zero. The propagation of the error
is halted if Tign = 0. This situation is illustrated below. An
erroneous carry element is denoted by ¢ and an erroneous sum element
by s.

I'i+5 0 1 1 1 I’i

Ci45 Civh G143 S14p Ci4q ©4

5145 5144 5143 B14p 8147 84

The sum elements in question may assume one of two representations
where one representation is correct and the other is erroneous. Which
is erroneous and which is correct depends on the correct value of the
cj4+] element. For our purposes the question of which representation

is correct is of no importance. The two representations are
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e 8445 01l1l1lsy ... Type A error

e Bi45 1000s; -.. Type B error

If the error doesn't propagate then Tipl = 0 and only one element of
the sum is changed.

One other situation must be considered. This 1s the case
where the error propagates to the last element of the representation.
There exist only certain conditions for which an error may propagate
to Cp+1? the last element of the sum representation. The element

c is usually ignored if negative numbers are represented in two's

n+l
complement notation but the cpyq digit may not be ignored if a numeri-
cal check is used. If the negative numbers are represented in one's
complement notation, then cp,; indicates the need of the end around
carry assoclated with the oneé complement addition 6f two negative
numbers or with the addition of positive and negative operands which
produce a positive sum. The nth element of the representation is

the sign element. An overflow may be detected for either system of
negative number representation by an examination of the sign digit

of the sum. The details of the problem of an overflow representation
are not elaborated at this time but are presented in Appendix T. In

regard to the addition of two numbers the following obtains for two's

complement arithmetic.
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addition of two positive operands

normal rn=0 overflow rn=0
cn=0 cn-.-_l
cn+l=O Cn+1=0

addition of two negative operands

normal rn=0 overflow rn=0
cn=l cn=0
cn+l=l cn+l=l

addition of a positive and a negative operand
positive sum rp=1 overflow cannot occur

cn=l

cp+1=1

negative sum r_ =

For one's complement arithmetic the followlng situations obtain before
the end-around carry correction. The addition of two positive operands

results in the same value of r,, c and Cpyl 88 specified above for two's

n

complement arithmetic.

addition of two negative operands

normal rn=0 overflow rn=0
n=0 or 1 cn=0
dpip=t Ch+1=t
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addition of a positive and a negative operand
positive sum rp=1

cp=1

cp+1=1
negative sum rp=1

cn=0

Cp+1=0

If an effective malfunction in the carry logic occurs in the
nth stage a single carry digit cp,; will be in error. A malfunction
which occurs prior to the nth stage cannot propagate an error to the
n+l carry element unless rp=l. The only time the element r =1 is for
the addition of a negative and a positive palr of operands. This is
true for both ones complement and twos complement addition. For this
special case where the error may propagate to the end of the repre-
sentation the resulting erroneous representation 1s either a Type A
or Type B error. In short, if the cp;j element is considered as part
of the sum representation it is impossible to propagate an error con-
sisting of all ones or zeros to the end of the representation. This
fact is of little significance for the digital check but is of para-

mount importance for the numerical check.

The Average Length of Carry Propagation

In order to indicate the general range of effect of a propa-

gated error we shall consider here the average length of the propagated
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carries resulting from the addition of two m digit blnary numbers.
The carry sequence is initiated by a unity element of the k vector
and 1s propagated if the successive e vector elements are equal to
unity. The average length of carry bropagation is defined by the
total number of digits involved in the propagation divided by the
total number of propagation sequences. Note 1n particular that a
carry initiation not followed by propagation is not counted as
elther a propagation sequence or as a propagation digit. A carry
initiation followed by propagation is counted as a propagating se-
quence, but the carry initiation digit is not counted as a propa-
gating digit.

The calculation of the average length of carry propagation
involves the consideration of various conditional probabilities. The
problem is easily described in terms of a flow diagram such as that
shown in Figure 13. The flow diagram may be considered as a repre-
sentation of the process of examination of m augend and addend digit
pairs. The examination procedure starts with the lowest order digit
and proceeds consecutively toward the higher order digits. State I
corresponds to carry initiation. State P corresponds to carry propa-
gation. State O corresponds to diglt pairs which are not a part of
either the carry initiation or propagation process. The square boxes
on the flow diagram which have been labeled A and B are counters.

The counter A indicates the total number of propagation sequences

while the counter B indicates the total number of digit places involved
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in the propagation minus the total number of propagating sequences. Thus

the ratio é%; is the average length of carry propagation.

Figure 13. Flow Diagram for the Average Length of Carry Propagation.
The calculation of the average length of carry from the flow
diagram is complicated by the fact that the sequence of digit pairs under
consideration is finite rather than infinite. It is readily seen for
an infinite sequence that the expected value of B for each unit of A is
one half. Thus for infinite sequences é%g = }i%Li = 1.5. One would
expect the truncation of the sequenece to have fery little effect on

the value of the average length of carry propagation. This is indeed

the case. All possible propagating sequences for m digit pairs, for m
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equal to 3 and m equal to 4 were examined and the average propagation
length was computed. For m equal to 3 the average propagation length
is 1.33. For m equal to 4 the average propagation length is 1.43.
For computer applications the range of m 1s typically 30 to 50 digits.
The effects of truncation are certainly negligible and the average

length of carry propagation is very nearly 1.5 digits.

The Error Structure of the k, p and V
Generating Logic for Standard Addition.

In the previous sections the effect of malfunctions in the
carry logic has been considered in detail. The analysis is now ex-
tended to consider the effects of errors in the logic which generate
the ky and ry or vy elements. The input to the generating logic is,
of course, the addend and augend elements. The generating logic 1s
implemented with a basic half adder circuit. Each stage of the gener-
ating logic is independent of every other stage and the dependence of
the sum elements is a function of only the carry logic. However, the
various outputs of one stage of the generating logic are not necessarily
independent. The generating logic may produce rj, vy and ki and the
exact dependence of the e , k and V elements is a function of the type
of half adder circuilt employed.

For the moment, the possible dependence of the outputs of
the generating logic is ignored and the effect of single e or k mal-
functions on the sum representation is considered. An error in a

particular ki element can disturb only the carry vector. Therefore,
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the sum error structure resulting from a faulty ki element is identical
to the sum error structure previously associated with a malfunction in
the carry logic of the k; type. If the carry logic is a function of e
and k then an error in a ry element can yield an erroneous e vector and
may also cause an error in the carry vector. An effective r; element
error results in at least one erroneous sum element s; and the error
may propagate to element 1i+n in precisely the same manner as the error
due to a rjy type of carry logic malfunction. The sum element s; is the

1

vector sum of r;

1

and ¢y while c; is a function of ry q, k;_y and cy_j.

If ¢y = O the error in ry affects only s;j. If ¢y = 1 the error affects
si and also propagates. The propagation of an erroneous one requires
ry = O & r; = 1. The erroneous sum element s; is then zero and if
error propagation occurs it is of Type B. The propagation of an errone-
ous zero requires rij = 1 «—ry = O and the erroneous sum element 85 is
a one. The propagated error is of Type A. The probability that an
ry = O element type of malfunction is effective 1s one half. The proba-
bility that the rj = O malfunction changes s;,, 1s given by the proba-
bility that cqy = 1, which is approximately equal to one half.

p(Asi) = p(ry) = 1/2

P([féi) = P(ri) P(Ei) ¥ 1/)+

p(Asj41) = pry) ples) ¥ 1/4

p(Rs,,,) = p(r;) ple;) p(Fy, ) ¢ 1/8
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The following probabilities are obtained for an element malfunction
of the type ry = 1.

P(Asi) = P(f'i) = 1/2

p(N's1)

Il

p(ri) p(ci) + pley) plki)
= 1/2 [1/2 + 1/2 (1/1;)] ¥ 5/16
p(Asy, ) = p(ry) pley) p(ky) ¥ 3/16

There exist half adder circuits which yield independent 6)
and k elements. However, typical of the nalf adder circuits used to

generate the ry, v; and k; element is the circuit shown in Figure 6.

1

For this circuit, errors in the v; and ky elements are independent of
the r; element but the rj element is dependent on both vy and kio If

Vi is erroneous then r; is erroneous unless ky = 1. The probability

that k; = 1 is 1/4 so 3/4 of the time an errorin vy will also give

rise to a ry element error. Similarly, if ki is in error r; will be
in error unless vy = 0. p(?r‘i) = l/lh, The error in k; affects the ry
element three fourths of the time. The constraining relationships

associated with the particular half adder under discussion are described

by the following relationships.

(1) ki =1>r; =0andcy ;=1
(@) ki =0>or; = vy
(3) vi=1lor; =k
(%) v; =02r, =0



We consider first an adder which employs only P and k
elements. The form of the sum errors resulting from an element error

. to a value of zero is now determined. An

ki = 1 which constrains ry

error occurs if the correct ry element has a value of one, p(ri) = 1/2.

If cy = 1, p(ci)'¥ 1/2, the result 1is an erroneous sum representa-
tion in which only one element ch is in error. For this situation the
ky = 1 constraint initiates the proper carry element at c;,q and hence
corrects the error in the carry vector due tor; =0, If ¢c; =0,
p(T) = 1/2, then an error s; = O occurs and a faulty carry sequence is
initiated at Ciye Error propagation,if present,is Type B. If the
correct value of ry is zero the effect of a type k; = 1 malfunction is
the same as that associated with a k; = 1 malfunction for the carry.
The following probabilities are associated with an element generating
malfunction of the type k; = 1 which constrains r; to a value of zero.

p(As,) = plry) = 1/2

p(A's;) = p(ry) pley) ¥ 1/4

p(fsyy) =1 - pleg ) ¥1/2

p(f8sy,) ¥ 1/4

i

The malfunction of type k, = 0 = r:,L = vi will result in an
error only when the correct value for ki is unity. ry will then have
an erroneous value of unity since k; > v;. The carry cy 4 which is
required will not be initiated unless cy = 1. So 1f ¢y = 1 only one
sum element, sj, is in error. If c; = O then sy is erroneous with a
value of one and the required carry is not initiated at Cit1e Error

‘propagation if present, is Type A,
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The error probabilities associated with the ki =0> ry = vy
type of constraint are
p(As;) = p(k;) = 1/4
p(&s;) = p(ky) pley) = 1/8
P(ki) P(Ei) = 1/8
1/16

I

P(Asi+l)
)

1rd

%
p(&s,

The form of the errors resulting from a malfunction of the
type vy =12 1r; = Ei may be described in terms of a single ry =1
element error though the probabilities associated with the error are
changed. The constraint results in an error whenever the correct value
of both r; and ki_is ZEero,

p(As;) = p(ry) p(ky) = 1/4

p(A%s;) = p(ry) pz (k;) p(cy) = 1/8

p(As;,) =
p(cfsi+l)'§ 1/16

The errors due to the constraint vy = 0 ory = 0 are identical
with the errors resulting from a generating element malfunction of the
type ry = o.

The preceding discussion of constraints has been in terms of
an adder logic employing only k and e elements. However, if the four
constraining relationships are considered in terms of an adder employing

k, P and V elements the same error structure will be obtained.
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One aspect of the structure of the errors associated with
the generating logic must yet be investigated. This 1s the error
structure due to malfunctions in the input logic of the generating
circuits. The input logic is identified in Figure 10 as gates g;
and go. The input logic is symmetrical with respect to the input
addend and augend elements a; and by. It is therefore sufficient to
consider the results of constraints applied to only one of the
variables, The results obtained apply equally well to the other
varieble. The input logic in terms of the addend and augend elements

is described by the following equations:

(agvby) (21b1)

]

ri

a.b =k

i~“i i

If ai is constrained to one then

ry by

k. =D

i i

and if ay is constrained to zero

Ir.

i = by

kj = O

The malfunction of type a; = 1 1s effective only when the
correct value of the element ay is zero. Two different types of error
result. The type of error 1s determined by the value of by. If
bi = O then the correct value of k; 1s obtained but the result ryj =1

is in error. The resulting error in the sum representation consists
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of only one altered element if c; = O. If ¢4 = 1 the error may propa-
gate. If propagation occurs the error is Type B. The probabilities
of the error process are

p(a;) p(by) = /b

1/8

p(Asy)

IR

p(As;) = p(Asy) plcy)
10p) = P(Asy) pley) 2 1/8

p(&s,;,;) = p(As;, ) p(T,,) ¥ 1/16

p(As

If bj = 1 then both k; and r; assume erroneous values, kj = 1 and

r; = 0. When ci = 1 only one element s; is changed. When cy = O the

malfunction may p ropagate an error of -Type B. The probabilities
assoclated with the error process are
p(As;) = p(a;) p(by) = 1/4
p(ANs;) = p(As;) pley) ® 1/8
p(As;) pley) = 1/8
p(As ) = 1/16

p(Asiy)

)

) p(r

1

(K5, i+1 141
The malfunction of the type a; = 0 is effective only when
the correct value of a; is one. If at the time of the constraint the
value of bi is zero the resulting error is the generating element type
ry = 0. If b; =1 both the ky and the r; outputs will be in error.
The erroneous outputs are ky = 0 and ry = 1. The resulting error may

be described completely in terms of the constraint k; =0 D ry =v

which has already been discussed.
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The Error Structure of the rc Sum Logic

In reference to Figure 10 the rc sum generating logic consists
of gates 86» 87 and gg- The error structure of the rc sum logic is per-
fectly straightforward if the carry logic and the rc sum logic are sepa-
rated as shown in Figure 10. For this configuration a malfunction in the
rc sum logic may cause at most one error in the sum representation. The
propagation of errors is determined only by the carry logic and this
preceeds the rc sum logic.

In the usual logic of the binary adder the rc sum logic and
the carry logic are not independent. In Figure 10 both gates g5 and 8¢
generate the conjunctive function needed for the carry logic. Thus g5
may be eliminated and gg is then part of both the carry logic and the
rc sum logic. Malfunctions in gg may affect both the carry vector and
the rc sum process. The effect of a malfunction of the gate g6 on the
carry vector is completely described in terms of the results of carry
logic malfunctions. We shall now consider the possible carry vector
errors due to malfunctions of the components of gate 8g- The carry
vector error and the rc sum process error combined determine the sum
error.

The diodes assoclated with gate g¢ are diodes dl and d2 shown
in Figure 12. 1In a previous section the following correspondences were
obtained between diode malfunctions and representative constraints of

the carry logic inputs
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dls e o0 0 I‘i = l
d.2s ooee ci =1
le ceoe ci =1

dgo eoo0 e ri = 0

The malfunction represented by r; = 1 applied only to gate 8¢ is
effective only if ry = 0 and cy = 1. The resulting sum error is
Type B, If cy = 0 no error is produced.
p(Asy) = p(ry) pley) ¥ 1/b
p(A's;) = 0
p(As,,,) = p(As,)
p(As;,,) = p(As,)

e

/4
1/8

lie

Malfunctions corresponding to the constraint cy = 1 result in one

erroneous sum element 54 if ry =c¢y = 0. If cy O and ry = 1 a Type

B error is produced by the constraint cy = 1.
P(Aksi) P(ri) P(Ei) g l/lL
p(A's;) = 0
p(ASi+l) = P(Asi) = l/}"‘

p(A's;,1) = p(Asy) p(ry,,) T 1/8

The malfunction represented by the constraint r; = O produces an error

only when ry = 1 and c; = 1. The resulting propagated error is Type A.
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The Effectiveness of Parity Checking

The effectiveness of the digital and numerical parity checks
is found by considering the probability that a logical malfunction will
cause an undetectable change in the sum representation. The effective-
ness of a checking procedure can best be evaluated in terms of effective
malfunctions. In this case only the form and the propagation of errors
are considered and the rate of initiation of errors is ignored.

A summary of the characteristics of the logical malfunctions
associated with the logic of é binary adder is given in Table III. The
table was compiled from the information derived in the previous sections.
The information needed to study the effectiveness of the various parity
checks is the normalized error distribution. The error distribution
A*si+n 1s the probability that the sum elements s; to sy, have been
modified due to some effective error. For our purposes the important
aspect of the error distribution is the ratio of the various A*Si+n

values. It 1s convenient to normalize the error distribution so that
t

g;o: OA¥g in = 1. Then A¥sy is the probability that the malfunction
produces an error in only one element. Afnsi+l is the probability
that the resulting error disturbs two and only two successive elements
of the sum. Afnsi+2 corresponds to only three successive‘errors, etc.
Four different error distributions have been found. The different

" distributions shown in.Table IV are designated E.D, 1, E.D. 2, E.D. 3
and E.D. k&,

In the calculations which follow the error distribution series

are considered infinite in length. The approximation is valid since the



TABLE ITI

SUMMARY OF ERRORS

Other Error
Constraint Conditions Error Type Distribution
GEM v =0 or CIMxr; = 0 A 1
GEM vy = 1 or CIM ry = 1 B 1
GEM or CIM k; = 0 A 1
GEM or CIM k; =1 B 1
GEM ry =0 or ¢y =1, ky =0 Aandsy =1 1
GEM vy = O>ry =0* ¢4 =0 s, =0 -
GEMr; =1 ¢y =1,k =0 Bands =0 2
ci=l,k1=l -gi-o —
ci=0 Ei'_'l —
GEMk; =1Dr; =0 ry=cy =1 sy =1
ry =Lc; =0  Bands; =0 4
GEMky = O>ry =vy ky =cy =1 51 =0
kj =1, ¢; =0 Aandsy =1 1
GEMVi=l:ri=Ei ki=°1=° §1=l
k; =0, ¢y =1 BandEi=0 1
GEMa; =1 ¢; =0 5y =1
ey =1 Band 5; =0 1
GEMae; =0 by =0 same -as GEM ry=0
Wi‘bhkiso 1
bi=l. same as GEM
ki=0=ri=v 1
CGMry =1 cqy =1 Bands; =0 3
CGMey =1 ry =0 5y =1
ry = 1 B and By = 0 3
CGMry =0 cy =1 Aand 8y =1 3

GEM

CIM

CGM

generating element malfunction

carry logic malfunction

common gate malfunction
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TABLE IV
ERROR TYPE
Si4n Sitn-1,...°142 Si+1 - sum element
A 0 loccocoooo 1 1
B 1 Oivoosaasl 0
TABLE V

1 1/2 1/4 1/8 1/16
2 5/8 3/16 3/32 3/6k
3 0 1/2 1/k 1/8

4 1/3 1/3 1/6 1/12
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number of elements usually involved in computer arithmetic operations

is thirty to forty bits. The fact that the series is not truncated will
affect most severely the error distributions resulting from the initi-
ation of errors in the first few high order elements. The number of
elements so affected is small compared to the total number of elements
involved.

The effectiveness of a simple digital parity check employing
one check digit is dependent on the probability that the error in the
sum representation involves an odd or an even number of elements. If
the number of erroneous sum digits is even the check fails. The check
is successful if the number of erroneous sum digits is odd. The proba-
bility that the check succeeds p(S) or fails p(F) for each of the four

error distributions is

p(8) =1/2+1/8+1/32 + .... =2/3

pl(F) =1/% + 1/16 + 1/64 + ... = 1/3
py(8) = 5/8 + 3/32 + 3/128 + .. = 3/h
pE(F) = 3/16 + 3/64 + 3/256 + ., = 1/b
p3(s) =1/h + 1/16 + 1/6k + ... = 1/3
p3(F) =1/2 + 1/8 + 1/ + ..00 = 2/3
pn(S) =1/3 + 1/6 + 1/24 + .... = 5/9
pu(F) = 1/3 + 1/12 + 1/k8 + ... = 4/9

The effectiveness of a digital parity check consisting of
two digits is now determined. The check is constructed so that elements
in odd positions are incorporated in one check and the elements in the
even positions in the other check, The check is judged successful if

as a result of an effective error either check fails.
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pl(S) =1/2 + /% + 1/8 + 1/32 + 1/6k + ... = 14/15 ¥ .
pi(F)“=‘1/16 + 1/256 + 1/4096 + ... = 1/15 °

p,(8) = 5/8 + 3/16 + 3/32 + 3/128 + 3/256 + 3/512 + ... = 19/20 = .95
p,(F) = 3/64 + 3/1024 + ... = 1/20

p3(S) =0+ 1/2 + 1/h + 1/16 + 1/32 + 1/64 + ... = 13/15 = .87

p3(F) =1/8 + 1/128 + ... = 2/15

p, (8) = 1/3 +1/3 +1/6 + ... = k1/45 % .91

=1/12 + 1/192 + ... = 4/45

a3
=
—~
=i
N’
I

The effectiveness of any simple digital parity check con-
structed as above and consisting of n check digits may be found by
evaluating a recurring binary fraction consisting of repeated groups
of 22n-l one digits and one zero digit. The magnitude of the non
terminated fraction is pj(S). p1(8) for a representation of the type

.1111 .., 10 1111 ... 10 1111 ... 10 ...

1s o1
2772
pl(S) = ~€ for n check digits

220_j

pa(S), pB(S) and pu(S) are obtalnable if py(S) is known.

py(8) = 1/ + 3/k p, (8)
p4(8) =2 p(8) -1
p,(8) =43 1 (8) - 1/h

Numerical checking requires the residue of the sum repre-
sentation with respect to the check base. Check hasesof magnitude

on -1, n»0, are particularly appropriate for binary representations.
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The process of numerical checking requires the assignment of a check
weight associated with each element of a representation. The check
weight is the least positive residue of the normal element welght with
respect to the check base. The following examples illustrate the

welghting scheme for several possible check bases.

i e . .212121 m=3
s e o s 21421 m=7
s e s o218 Lh21 m=15

It is observed that an error in a single digit is detectable
by any numerical check., Furthermore, it has been shown that the errors
due to logical malfunctions which change more than one sum element are
restricted in form. The permitted error forms consist of all zeros
except the last erroneous cum digit which is a one, Type B, or an
erroneous representation consisting of all ones except the last digit
which 1s a zero, Type A. The permitted error forms are always detec-
table by a numerical check with a check base of 2%-1,

Consider the following example which employs a modulo 3
numerical check.

S =11 00 01 - 10 11 10 = X~y = Xx+y'

0 11 00 01 x parity
101 00 10 y! digit
11000 11 p

11 10 00 0 c
10 00 00 11 S @

Consider now an error in the carry logic such that the error propa-

gates to c, .1, for example, an effective malfunction which changes cp.
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It follows then that Cp41 1s also changed since in this example r, = 1.
The erroneous carry representation is 00 10 00 O and the erroneous sum
is 01 00 00 11. The modulo 3 parity check bit associated with the
erroneous sum is clearly one and the error 1s detected.

As a result of the various constraints which exist in the
process of binary addition the simple modulo 3 numerical parity check
is 100% effective if the Cp+] €lement of the sum is considered. The
check requires only two bits. For operations consisting of repetitive
addition such as multiplication or subtraction, the numerical parity
check is 100% effective only if applied at each addition step. It is

possible to obtain an accumulated error due to several addition opera-

tions which is undetectable by the numerical check,



CHAPTER V

THE RESIDUE CODE

An Extension of Numerical Checking

If a sufficient number of numerical parity checks are em-
ployed in a number system the parity check representation may ulti-
mately contain as much information as that possessed by the number
system being checked. If this is the case it then is possible to re-
place the original number representation by the check representation.
The extended check representation is termed a residue number system.
We shall now proceed to study the construction and properties of the
residue number system.

The first requirement for a residue ‘number system is that
the bases of the different elements of the representation must be rela-
tively prime. If the residue number system is considered as an evo-
lution of the numerical checking procedures the above statement may be
feinterpreted as a requirement that the different check bases be rela-
tively prime to each other. If a pair of bases are not relatively
prime the effect is the introduction of redundancy. The following
example will iliustrate this fact. Contrast the combination of a
modulo 2 and a modulo 6 check against the combination of a modulo 3
and a modulo 4 check. 1In the first case the two check bases are not
relatively prime while in the second case the check bases are rela-
tively prime. The combination of a modulec 2 and a modulo 6 check is
unique for only 6 states while the combination of the modulo 3 and
moldulo 4 check provides a unique residue representation for 12 states.

This is further clarified by Table VI.
-105-
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TABLE VI

REDUNDANCY OF A NON-RELATIVELY PRIMED BASE REPRESENTATION

Ieast Positive Residue

Number Mod 2 Mod 6 Mod 3 Mod k4
0 0 0 0 0
1 1 1 1 1
2 0 2 2 2
3 1 3 0 3
N 0 in 1 0
5 1 5 2 1
6 0 0 0 2
7 1 1 1 3
8 0 2 2 0
9 1 3 0 1

10 0 L 1 2
11 1 5 2 3
12 0 0 0 0
13 1 1 1 1

1k 0] 2 2 2
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If the bases of the residue number system are relatively
prime then the number of states uniquely represented without redun-
dancy 1s equal to the product of the magnitude of the bases. The
most efficient residue number system representation is obtained by
a consecutive sequence of prime numbers starting with the integer two.
Since only a relatively prime relationship is desired between the
bases it would be possible to employ one base equal to a non-prime
integer as long as this base 1s relatively prime to the other bases.
However, there are certain advantages which are associated with the
prime number base but are not associated with the non-prime base.

In particular, the residues with respect to a non-prime base form

a ring, while the residues with respect to a prime base form a field.
The characteristics of rings and fields which are important to the
present discussion are the following: Two operations, multiplication
and addition are defined for both rings and fields. Also an additive
inverse exists for both rings and fields. This means that subtraction
is possible as well as the defined operations of addition and multipli-
cation. The ring does not require a multiplicative inverse. The
field must contain a unique multiplicative inverse for every element.
Furthermore, the field admits the solution to linear algebraic equa-
tions.

The residue number system differs from the standard consist-
ently weighted number systems in many ways. The most important differ-

ence is that the residue number system, being based upon a number of
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fields or rings, has two defined operations. It will be recalled that
arithmetic operations in the consistently based number system usually
employed in the digital computer are based upon the definition of one
operation, that operation being addition. The other difference is that
the residue representation possesses digital independence of the
elements comprising the representation. There exists no carry to
constrain the elements. The absence of a carry plus the fact that
multiplication is defined gives rise to the expectation that the resi-
due number system should be amenable to simple error detecting and
correcting schemes. It should also be possible to execute rapid addi-
tion and multiplication.

An example of a residue number system is presented in Table
VII. The number system shown in Table VII uses the prime bases 2,3,5
and 7. The number system therefore contains 210 states. The 210 states
may correspond to the positive integers 0 to 209. Table VII shows the
residue number representation corresponding to the positive integers

0 to 29. Additional integers of the number system may be found by

TABLE VII

NATURAL NUMBERS AND CORRESPONDING RESIDUE NUMBERS

N.N. 2357 N.N. 2357 N.N. 2357
0 0000 10 0103 20 0206
1 1111 11 1214 21 1010
2 0222 12 0025 22 0121
3 1033 13 1136 23 1232
L Olhk 14 0240 24 0043
5 1205 15 1001 25 1104
6 0016 16 0112 26 0215
7 1120 17 1223 27 1026
8 0231 18 0034 28 0130
9 1042 19 1145 29 1241
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congruence operations. Let a,b,c and d be the digits associated with
the bases 2,3,5 and 7 respectively. The following congruences define

a,b,c and d for the residue representation of the number N:

N = a Mod 2
N =b Mod 3
‘N =c Mod 5
N=d Mod 7

The residue number system is readily extended to include
more states. For example, if a basell is added to the representation
it is then possible to represent 2310 states. Table VIII shows the
product and sum of the first ten consecutive primes greater than or
equal to 2. The product of the primes indicates the number of states
of the number system while the sum of the primes is a measure of the
size of the representation in terms of digits. Table VIII also in-
cludes the number of bits required to represent each prime base in
the binary number system.

TABLE VIIT

NUMBER OF STATES AND DIGITS ASSOCIATED
WITH A RESIDUE REPRESENTATION

pal n
i p 2. D T D Spg
oAt =11 bits  Biks
1 2 2 2 1 1
2 3 5 6 2 3
3 5 10 30 3 6
N 7 17 210 3 9
5 11 28 2,310 L 13
6 13 41 30,030 L 17
7 17 58 510,510 5 22
8 19 7 9,699,699 5 27
9 23 103 223,092,670 5 32
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Residue Addition and Multiplication

The residue number representation consists of several elements
and is assumed to be in one to one correspondence with some positive
integers of the real number system. The elements of the residue repre-
sentation are the least positive residues of these real positive inte-
gers with fespect to the different moduli which form the bases of the
residue representation. It follows as a direct consequence of the
structure of the residue number system and the properties of linear
congruences that the operations of addition and multiplication are
valid in the residue number system subject to one proviso. The proviso
is that the residue system must possess a number of states sufficient
to represent the generated sum or product. If the residue number system
does not have a sufficient number of states to represent the sums and
the products generated by a particular finite set of real integers
then the residue system will overflow and more than one sum or product
of the real number system may correspond to one residue representation.
For a residue number with a sufficient number of states an isomorphic
relation exists with respect to the operations of addition and multi-
plication in the residue system and a finite system of real positive
integers.

Each elemeﬁf of the residue number system is obtained with
respect to a different base or modulus. It follows therefore, that the
rules of arithmetic associated with each element will be different.

For example, the addition and multiplication of the elements associated

with the moduli -2 and 3 follow rules specified in Table IX.
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TABLE IX

MOD 2 AND MOD 3 SUMS AND PRODUCTS

H
o I-lm

e

g

-
¥
(ol | Ne)
f

-
ollw

olfol1r]2
sum Mod 2 1flel2lo 1fof1r]2
2ll2z]lol1 2lol2]1
| N
0 sum Mod 3 product Mod 3
1

product Mod 2

~

No carry tables are necessary since the residue number system does not
have a carry mechanism. Addition of two residue representations is
effected by the modulo addition of corresponding elements of the two
representations. Corresponding elements must have the same base or
modulus. Modulo addition of elements which have different bases is not
defined. Multiplication in the residue system is effected by obtaining
the modulo product of corresponding elements. The operations of addi-
tion and multiplication of two residue numbers are indicated by the
following notation:

S

A®B

A®B

P

Consider a residue number representation with base 2,3,5 and

T. We assume an isomorphic relation between the residue number system
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and the real positive numbers O to 209. An isomorphic relation then
exists for the operations of multiplication and addition only if the
product or sum is less than 209. The following examples employing
residue numbers illustrate the addition and multiplication operations
and the presence of an isomorphism or the lack of isomorphism in the
case of overflow. Residue numbers will be distinguished by the use
of parentheses.
29 + 27 =8 = 56
29 <> (124 1)
27 < (L 02 6)
56 <> (021 0)
(12k1)
e (Lo26)
(021 o)

The following operations are considered in performing the addition of

the two residue representations.

1+1=0Mod?2
2 +0=2 Mod 3
b +2 =1 Mod 5
1+6=0Mod T

Consider the addition of two numbers which produce a sum greater than

209.
= 100 + 200
(0102)
® (02 0k)
(0 0 06)
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The residue representation (0006)corresponds to the real positive
number 90. In this particular example the sum has overflowed the
residue representation. The resulting sum is the correct sum modulo
210.
300 = 90 Modulo 210
Finite real number systems and residue number systems have the same
overflow characteristics. The sum which remains after the overflow
is the correct sum with respect to a modulus numerically equal to
the number of states in the finite number system.
The following is presented as an example pf the process of
residue multiplication.
p =10 x 17 = 170
10 <»(0 1 0 3)
17 «»(1223)

170 <>(0 2 0 2)

(010 3)
e (122 3)
(0202)

The process of multiplication involved consideration of the following

relations for each element.

1x0 E'O Mod 2
lx2 =2 Mod 3
0x2=0Mod5
3x3=2Mod T
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An overflow resulting from a multiplication is no different
than the overflow resulting from an addition. Consider the product
obtained from the residue multiplication of the real numbers 10 and
100. The result in the modulo 210 number system corresponds to the

real number 160 which is 1000 modulo 210.

Subtraction and the Representation of Negative Numbers

The process of subtraction is obtainable in the residue num-
ber system by employing a complement representation consisting of the
additive inverses of the positive residue representation. Since the
elements of the residue representation are elements of a field, the
additive inverse always exists. There is no basic problem associated
with the subtraction operation. There is, however, a problem associ-
ated with the representation of negative numbers. In particular, some
mechanism must be included in the number system which will distinguish
positive and negative differences. This problem will be discussed in
detail in a later section.

The additive inverse of a residue number is defined by the
following:

a®a' =0
The formula may be considered to apply to an element of the residue
system or equally well to the whole residue representation. Consider
the following examples with reference to the modulo 210 residue number

system.

o
l
—
|_—l
V)
=
[

then a'

l}
—~
'._l
=
[
(0))

)
)
since (L241)
)
)
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The following examples have been chosen to illustrate the
subtraction process and to some extent the difficulties associlated
with the sign of the difference.

D=A&B=A@8B'
We consider first the case where the magnitude of A is greater than B.
Let A = 200 B = 100

In residue representation

then B' = (02 05)
and (02 0k4)
® (0205)
(0102)

The residue representation of the difference corresponds to positive
100 in the real number domain. We consider next the cdse where the

magnitude of B 1s greater than the magnitude of A.

A' = (010 3)
then D =A'" @B
and (010 3)
' & (0102)
(020 5)

The difference (0 2 0 5) is the additive inverse of (0 1 0 2). Unless
additional information is supplied the correct interpretation of the
representation (0 2 0 5) is in doubt. (0 2 O 5) may correspond to
either +110 or -100.

The difficulties associated with whether a residue represen-

tation corresponds to positive or negative integer can be partially
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removed by the division of the residue number range into two parts.
This is exactly the scheme that is employed to obtain a machine repre-
sentation of positive and negative natural numbers. For the system
of natural numbers two different machine representations of the nega-
tive numbers may be obtained and are commonly designated the radix
complement representation of negative numbers and the diminished radix
complement representation of negative numbers.

The complement representation for a residue code is defined
in terms of the additive inverse. Thus the representation of negative
A is A' where A ® A' = 0, and the range of A is restricted to approxi-
mately one half of the total possible range of the residue representa-
tion. This can be illustrated by consideration of a specific residue
code. The residue representation employing bases of magnitude 2,3,5,
and T, is divided into two parts. The residue representations corre-
sponding to the natural numbers O to 104 are considered positive. The
residue representations corresponding to the natural numbers 105 to
209 are considered negative. The range of this particular number
system is from -105 to +104. The arithmetic rules pertalning to sign
and overflow conventions for this particulaf number system are the
same rules normally associated with radix complement arithmetic.,

The complement representatlion does eliminate in principle any
ambiguity concerning the sign of the result of an arithmetic operation.
However, there is a practical difficulty. The determination of the

sign of a residue representation requires the determination of the
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magnitude of the representation relative to the magnitude of the repre-
sentation which separates the positive and negative representatlons.

The determination of relative magnitude for a residue representation is
discussed in a later section. It will be shown that the determination

of relative magnitude is not a simple problem.

Conversion From a Residue Code to a Normal Number Representation

It is frequently desirable to determine the natural number
assoclated with a particular residue representation. The need for this
conversion occurs frequently when investigating the properties of the
residue system. The residue representation is constructed in such a
manner that magnitude is not readily obtainable. The presence of
column weights in the normal number representation greatly facilitates
the determination of magnitude. It i1s possible to assign a weight to
each diglt of the residue representation in such a manner that the
modulo m sum of the digit-weight products is the real natural number
in consistently weighted representation. m is the product of all the
bases employed in the residue representation. The conversion technique
is known as "The Chinese Remainder Theorem". The material which follows
describes the conversion technique but omits the proof. A simple and
straightforward proof is found in Dickson.(ao) The proof does not
refer specifically to residue number systems but rather to a system of
linear congruences. If so regarded, a system of congruences defines a

component of a residue number system.
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Consider a residue number system with bases m .... m, . The
corresponding digits are labeled 81 eoe. B The following equations
define the conversion process.

ay A B 4+ ., 4+ m =738 Mod m
llfﬁl atAtmt

where A,

m =
i = 1 Mod my

i

t
and m = _ mj
J=1

The conversion formula for a particular residue number system is now

obtained.
m, = 2 m, = 3‘ my = 5 my =7
105 Al = 1 Mod 2 so Al =1
70 A2 = 1 Mod 3 so A2 =1
4o A3 =1 Mod 5
2 A3 =1 Mod 5 S0 A3 =3
30 Ah =1 Mod 7
2 Ay =1Mod 7 so A =k

105 a; + 70 ay + 126 ag + 120 a) = S Mod 210

The conversion formula is now used to determine the natural number

corresponding to the residue representation (1 2 O 4).

105 (1) + 70 (2) + 126 (0) + 120 (%) = 725

725 = S Mod 210

S =9
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Other conversion techniques exist. In particular it is possi-
ble by means of a deductive process to determine the magnitude of a par-
ticular residue representation. This requires both a knowledge of the
nature of the residue system and the natural number representation
assoclated with at least one residue representation.

Due to the deductive nature of the process it 1s more suitable
for human computation than for machine computation. The process is ex-
plained using the residue number of the previous example (1L 2 O 4). The
knowledge of the residue representation for unity which 1is (L111) is
assumed. Consider theleffect of changing the second digit from one to
two. The change adds the product my mam), =70 to the number since 70 is
congruent 1 modulo 3. The resulting residue representation(l 2 1 1)
corresponds to 7Tl. The effect of changing the third digit is to

change the magnitude by some multiple of the product mjmpm) = 42, The
8k

I

correct change in magnitude is 42x where 42x = 4 Mod 5. So 42x
and the residue representation 1 2 O 1 corresponds to 155. The fourth
digit is modified by the addition of a three. The effect of this

change is determined by 30x = 3 Mod 7. The magnitude change is 150.

The sum of 150 and 155 modulo 210 yields the correct result 95, in
correspondence with (1 2 0 L4).

The conversion formulae provide a possible means of achieving
conversion from a residue code to an analog representation. The conver-
sion would involve first the transformation of the residue code to a
normal weighted representation and then a transformation to analog repre-

sention by means of standard techniques. Alternatively the conversion
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process need not involve the normal representation if the analog
equipment were capable of precise subtraction of multiples of m where
m is the product of the bases. A third conversion process would employ
counters for both the residue system and the normal number system.
Comparison would be employed to determine the accumulation of the
desired number of counts. At the time of comparison one set of
counters would contain the residue representation and the other the

desired normal representation.

Greater Than or Less Than Relations for Residue Codes

Some of the arithmetic operations for the residue code are

dependent on the determination of a greater than or less than relation-

i
L A

shiﬁl A possible technique might involve the conversion techniques
described in the previous section. Such a scheme would involve the
standard comparison techniques associated with the determination of
the relative magnitude of two numbers represented in a weighted
representation. The procedure described in this section does not
require an explicit conversion from residue code to normal repre-
sentation. Consider a residue code consisting of t digits. The t
digits of the residue code are associated with t congruence relation-
ships as follows:

= < ;<
S = aq Mod my 1=1i>t
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S 1s the magnitude of the number expressed in normal representation.
It is also possible to express the number S as

S=ai+Aimi

A; 1is the integer part of the quotient of S divided by m;. In regard
to a greater or less than relationship, the determination of Ai divides
the range of the residue representation inteo m/mi parts. We proceed

to calculate Ai from the set of t equations glven above.

Let § =2y + Ay mg b < g,

This equation is then used to replace S in the remaining t-1 equations,
yielding t-1 equations of the form

Agmg = (ay + af ) Mod my 1€1< t-1
or A (ai+a{)/miModmi

A.t di Mod my

where /m% is the multiplicative inverse of my with respect to base my.
The multiplicative inverse 1s defined as

i_
Xy /¥y = 1 Mod my

i
dt is the least positive residue of (ai + a% )/mt with respect to base i,
at 1s the additive inverse of y o

Tet At be expressed as

£-1
Ay = dp  + Agg my g Apop < ——
memg
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If this expression is substituted for Ay a set of t-2 equations remain.

The equations are of the form

i t-1 <34 _
At_IE[dt+(dt )'] /mt_l Mdm 1%1%¢t-2

_ i
Apy = dg_y Mod my

The system of equations shown below is generated by repetition

of the above substitution process until no equations remain.

Sza.t+A.tm,t

agt 4 Ag_qm )

ct
1l

-2
Aplp = G + A oMy o

°

2

A3 = d3 + A2m2
= gl

A2 = d2 Mod ml

The equation are combired to yield:



S = ay +mg {d%‘l-*mt-l[d%_%’fmt-e (a3 + .-
=ag + m‘tdz“l + mtmt_ldg:i + mtmt-lmt—QdE:g + .o + %l dé
where A“t<mt
dt-n—l

Therefore, S is never equal to or greater than m and dé divides

parts into m, parts,

2
the range into my parts, d3 divides each of the ml

di divides each of the my parts into L) parts, etc.

The determination of the less than or greater than relation-
ship consists of the successive comparison of the dz:ﬁ-l constants corre-
sponding to two residue representations. Iet the represgntations be
designated E and F. The first step of the greater than or less than
determination is the comparison of d%(E) and d%‘(F)o If the two con-
stants are different the process may be terminated and the larger number
is associated with the larger constant. If the constants are equal in
value the comparison process must consider the pair of constants dg(E)
and d%(F)° The process is continued in this manner until a set of non-
identical constants are found. If all of the d constants are identical
a final comparison is made on the basis of the pair of t th digits of
the two residue representations.

The formulae which define the greater than, less than process
may be applied recursively to obtain a formula for a greater number of
digits. The process has been extended to five variables and the results

are shown in Figure 14.
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Figure 14. Logic for the Determination of the
Greater or less Than Relationship.
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Admittedly the process required to obtain a greater than or
less than relationship leaves much to be desired. One presumed advan-
tage of the residue number was the absence of a carry process. The
greater or less than process is essentially sequential and is in many

ways similar to the carry process.

Redundancy

A residue code contains redundant information if the product
of the bases exceeds the number of states required to represent a
specific range of numbers. In particular, if sufficient redundancy
is introduced the residue code may be made independent of one or more
digits. Redundancy is obtained by adding one or more additional digits
to the structure of a residue code sufficient to represent the desired
number range. Consider the addition of a prime base m, to a residue
code with bases mj.....my. The resulting code is redundant. Any one
digit of the code may be deleted and the code will still contain the
required amount of information. Furthermore, any number of digits may
be deleted if the product of the remaining bases is greater than the
magnitude of the represented number. This means that normally it is
possible to delete more than one low order digit but in general only
one high order digit may be deleted. Any degree of redundancy is ob-
tainable by the addition of more redundant digits.

Redundancy in the residue code is easily obtained. The real
problem concerns the realization of the procedures for error correction

and detection. This problem may be considered from the viewpoint of
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the Chinese Remainder Theorem. A residue representation of t+1 digits
has one redundant digit. The Chinese Remainder Theorem may be applied
using only t digits of the residue representation. In fact the theorem
may be applied once for each of the t+1 combinations. Each combination
consists of t digits. t+1 solutions are obtained and if the redundant
residue representation contains one erroneous digit then only one of
the t+1 solutions is correct. The correct solution is, of course, the
solution which does not involve the erroneous digit. Unfortunately,
there is no way in which the correct and the incorrect solution may be
distinguished within the framework of the residue code with a single
redundant digit. We now consider the question of whether two of the
incorrect solutions may be identical. Given a residue code with bases
my....Mge), We assume the jth digit aj is erroneous by 4 units. The t
erroneous solutions obtained by means of the Chinese Remainder Theorem

deviate from the correct solution by’ﬁ&Where

A'——'dModmj
X4m

Ai =g
JH

Iet the correct solution be S and a palr of erroneous solutions Sy and

Sy, then

S + = Sl Mod ——
mjmi my
Xy M

S+ X _ =5 Mod B
3k e

E

Xsm

s+ 1 - Sy + a s ¢«
Tyt i h
X,

S + = S + b= s < &
mjmk mk mk



-127-

a<?2; b2

a=0,1; b=0,1
Assume S; = Sk then

i _X_ a2 _b] n

my me o |my my J

X X
(1) 2-_=-= ip 1= mf
i k Xp = myf
f is an integer
m
(2) # 3
my
mes
-d
(3) o a
ple X my ms
O . S
my MWy my My
Xym - X mg = Wy - Mamy
m.k(xi - mj) = my (%, -mj)
The equality is satisfied if
Xy = my + myf f is an integer
Xk = mj + mkf
s 4+ myf
m(?g_ﬁz_) = d Mod m;
m jmy
ms + mf
m (J_k_) = d Mod my
mjmk
= =0 Mod my
my
m
— = 0 Mod m;
m J
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Thus both equations reduce to

nf =d Mod m
mj j

The same solution is obtalned for xj = myf and xy = myf (combination one)

therefore:

my Wy my o MWy

implies a single value of d and hence 5S4 = Sy only if 4 = d. It
follows that none of the solutions are identical. However, unless
some auxiliary error detecting scheme is employed it is impossible to
separate the correct from the incorrect solutions.

If two redundant digits are employed it becomes possible to
distinguish between the correct and the incorrect solutions. The repre-
sentation consists of t+2 digits and the number of solutions is the
number of combinations of t+2 digits taken t at a time. When only one
digit is in error the number of correct solutions will be equal to the
number of combinations of t+1 things taken t at a time. The number of
correct solutions is t+l. ©Since the total number of solutions is

ini%ggﬁal the ratio of correct to incorrect solutions is given as

E%E‘ We shall now show for a residue code with two redundant digits
"that none of the erroneous solutions are identical. Typically A is

of the form
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A pair of erroneous solutions Sjy and Sp.g are defined by

xikm
S+—————-—mmm=sik+amm
Ji7k ik
s+ 28T - g, +b D
M Il myMg

a=0,l;b=0,'l
Let us assume S = Spg then

Xik Xprs am bmj

mymg  Oplg  Mime Tyl

If 1 = r then the relationship becomes

Xi} Xpg _8&m;  bmy

- ———

Mye Mg my Mg

This situation has already been considered for the case of one redun-
dant digit. We need, therefore, only consider the case where 1 #-r.
Four combinations exist since the possible values of a and b are zero

and one,

(1) Xix Xrs

mym  mmg
() T
i
m
(3) S
7 Myl
m m
) T
imk r s

The first combination is satisfied only 1if
Xy = T Wyl

er =T mymy
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The fourth combination is satisfied only if

X

rs mj + f mm.

The results indicate that identical erroneous solutions must corre-
spond to the same d. Erroneous solutions are not identical.

Since the erroneous solutions are not identical, the pres-
ence of two identical solutions is sufficient to indicate the correct
solution. It is then possible to use a smaller set of solutions
involving less computation. The set of solutions is chosen so that
for every base there exist at leasgt two solutions which are not func-
tions of that base. Iet the total number of digits of a residue
code be designated as n. This includes both information and redun-
dant digits. If n is even the above requirement may be met with n
properly chosen solutions. If n is odd then n+l solutions are re-
quired. There exists considerable flexibility in the choice of the
solutions. If the number of solutions used 1is somewhat more than the
required minimum the range of the representation is extended. This
fact may be illustrated by an example. Consider a residue repre-
sentation of six digits. The bases are consecutive primes, The
lowest base is two. Six solutions are chosen with the following
base pairs deleted: ala6,a2a6,ala5,a2a4,33a5,a3a4. The range of the
representation is given by the expression

O SR< 7
i™J
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where mymy is the largest product of bases corresponding to the deleted
palrs of digits. For this example the largest product of deleted base
digits corresponds to mamg and is equal to 55. The range of the repre-
sentation if six solutions are used is zero to 551. If the code does
not have the property of single error correction the largest number
represented is 30030, The range of the representation can easily be
extended by the addition of only one solution. The solution which did
not involve a3 and ag is replaced by a solution deleting a5 and a, or
8y and a soiution deleting a3 and aj or a, is added. By the addition
of one solution the largest number represented for the example above
1s (m/momg)-1 which is equal to T70.

The maximum range of the representation of an n digit residue

code with single error correction is given as

0L Rp< 2
< Bn o

An upper limit for the number of solutions required to realize this
range 1s obtained by considering the deletion of the digits ag to a,
with the deletion of a; and ap. This scheme will yield 2n-4 solutions
and represents the absolute maximum number of solutions required to
realize the above range. Usually the required number of seplutions
will be less than the maximum.

The efficiency of the residue code for the correction and
detection of single digit errors is now compared with the theoretical

efficlency predicted by Shannon's theory,(h) It is known that a single

error detecting and correcting code of the Hamming type obtains the
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maximum theoretical efficiency if the total number of digits of the
representation is 2m-l, where m is any non zero positive integer. The
Hamming code is least efficient when the total number of digits is
equal to 2M, The residue code will be considered from two viewpoints.
First, the number of represented states will be translated to bits
without regard to the form of the final code. Secondly the residue
code will be considered in terms of a corresponding binary code for
each residue digit. The binary coded residue representation does not
use the information capacity of the binary code in the most efficient
manner., However, the binary coded residue representation is one form
in which the residue code would be used in practice.

The data of Table X indicates the efficiency of a residue
code constructed from consecutive prime bases starting from two. The
code has error detecting and correcting properties and the efficiency
is defined as the ratio of the logarithm base two of the number of
states of the representation corresponding to information to the loga-
rithm base two of the total number of states of the representation.

The theoretical maximum efficiency for single error correction
and detection is obtained for the assumption that for an m digit code
m+]l events may occur with equal probabllity. The possible events are

any single digit in error or no error.
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TABLE X

RESIDUE CODE EFFICIENCY

Efficiency
Number of Efficiency of the Bin ry
Residue of the Encoded Residue
Digits Residue Code Representation
L .43 .37
5 055 0)4‘7
6 .65 .56
7 .70 .60
8 .75 .64
9 .78 .68
10 .80 .T1
11 .83 JTh

The following formula due to Shannon specifies the maximum efficiency.
m+1
C=1logy N- > p; logy Py
i=1

The bits of information per binary symbol is given by

C 1
o= 1- i~ logs Dp;

The results of Table X and the above formula are compared graphically
in Figure 15. The graphical presentation permits a rapid comparison

of the relative efficiencies of the various codes in spite of the

fact that the total number of binary digits varies. The variation in
the number of binary digits assoclated with a particular number of resi-
due digits is due to the inefficient use of binary digits when each

digit of the residue code is expressed by a binary code.
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Division

In any number system the operation of division is a problem.
This is particularly true of the residue system. Every element of a
field except zero is assoclated with a unique multiplicative inverse.
This is one of the requirements which must be met by a mathematical
system if it is to be a field. The multiplicative inverse of a field
element x is denoted by /x and is defined by the following relation-
ship

x/x = 1 Mod my
The definition also requires closure.

The division process for residue codes 1s complicated by two
factors. The first is the absence of a multiplicative inverse for the
zero element. The second difficulty is the fact that residue division
and the normal division process are in one to one correspondence only
when the resulting quotient 1s an integer value. We shall consider
first the problem of residue division of the elements of a single field
and shall conslder later the elements of several fields considered as

a residue code. The division process represented in equation form as

=4

ole

implies the following equation:

a = bq
The difference between normal arithmetic and residue arithmetic 1is
that 1n residue arithmetic the product bq need not necessarily be
equal to a, only the congruence of a and bq is required.

bq = a Mod mp
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Multiplication by the multiplicative inverse of b obtains

‘q+= /b Mod> m;
The correct interpretation of q in the above equation is that the
number a is obtained by forming the sum consisting of b, q repre-
sentations. The sum is carried out in a closed number system of
base m,. Thus q corresponds to the quotient only when the quotient
has an integer value. Examples may be obtained from the considera-

tion of a modulo 5 field.

o

2

2q = 4 Mod 5

Q=2 Mod 5

3q = 4 Mod 5

qQ = 3 Mod 5

note 3x3 = 4 Mod 5
2=4

hq = 3 Mod 5

g =2 Mod 5

In the above examples q corresponds to the guotient only in the first

example.
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The residue code representation of a number consists of many
elements. Each digit of the representation is associated with a differ-
ent prime base., In other words each digit of the representation is an
element of a different field. The division of two numbers in residue
code may be expressed by a system of congruences. The solution
A= (ql,qe,....qn) must satisy all the congruence relationships of the
system. A zero digit in the divisor B = (bl’bQ”“'bn) must be glven
special consideration. The congruence corresponding to any b; = O must
be removed from the system. The deletion of the congruences for which
bi = 0 is consistent with the residue definition of division given
above. In general, if some by equal zero then

QB # A Mod m
For the special case in which by =0 and

QB = A Mod m
it is also true that Q has an integer value. The deletion of the con-
gruence assoclated with by =0 results in a relationship of the follow-
ing form if there are no elements bj = 0.

By = Ay Mod _m

n

The examples which follow are presented to clarifj the process of
residue division. Consider a residue coée with bases 2,3,5 and 7.

Since some confusion might exist between the normal number repre-

sentation and the residue representation the residue representations



-138-

are enclosed in parenthesis.

=2 (1042) _ (1042) = q (OLkk)
T o) -~ @
q = (x01%)

in terms of congruences

hg = 9 Mod 105
3P4 = 9 Mod 105
q =22 @) = (1241) _ (1142) «=> 79
11 (121k4)
79 x 11 = 29 Mod 210
_ T _ (1120) _
q = Z (Q) = (m) = (XX 20)
6x 7= 7 Mod 35
24 _ (o0k3)
8 x 3 =24 Mod 105

The process of residue division has certain interesting
properties and quite possibly has applications in respect to special
problems., Unfortunately, the residue division process is not a
substitute for normal division. It appears that the only way in which
division can be effected in the residue code is by the utilization of
techniques similar to those employed for division in a consistently
weighted number system. The division process then requires trial and
error subtraction or addition and the greater than or less than rela-
tionship. The division algorithm could also include trial multipli-
cation since in the residue system addition and multiplication require

the same period of time.
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The material of this chapter forms a preliminary investiga-
tion of the applicability of residue number systems to the arithmetic
operations of digital computers. The residue system has been found
attractive in terms of the operations of multiplication and addition.
It is possible to realize practical logical circuitry to yield the
product in the same operation time as for the sum since the product
is not obtained by the usual procedure of repetitive addition. The
main disadvantages of the residue number system are associated with
the necessity of determining absolute magnitude. Thus the division
process, the detection of an overflow and the determination of the
correct sign of a subtraction operation are operations which at this
stage of the investigation seem to involve considerable complexity.
Nevertheless there are certainly many special purpose applications
well sulted to the residue code. In particular there exists a class
of control problems characterized by the absence of the need for
division, the existence of a well defined range for the varlables
and also by the fact that the sign of the variables 1s known. For
the problems of this class, the use of the residue code should re-
sult in a reduction of the overall computation period and give a com-
puter with a higher bandwidth than obtainable with the conventional
number system. It seems that one appropriate application of the
residue code would be in the design of a concurrent or parallel

digital differential analyzer.
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It has been shown that the residue code with redundancy can
never obtain the theoretical efficilency predicted by Shannon. The code
does have the obvious advantage that an erroneous digit does not re-
sult in a propagated error. It is not unlikely that the residue code
could have important applications in the field of communications.

This statement is based on the fact that a sine wave may be residue
encoded by phase modulation.

The ultimate usefulness of the residue code will probably be
determined largely by the success of the circuit designer in perfecting
circuitry ideally suited for residue code operations. In this respect
there 1is one recent development in permanent storage devices which
should revolutionize some of the standard concepts of computer design.
It is not unlikely that the computer of the future will consist in
part of a large number of addressable permanent tables. The standard
computer operations would be executed by a series of table look-ups.
The designer of such a computer should give serious consideration to
the use of a residue code, It appears that the combination of residue
coding and permanent addressable tables obtains numerous advantages.
The combination would permit arithmetic without carry and the inclu-
sion of the redundancy needed for error detection and correction.

The permanent storage tables would greatly simplify the problems
associated with the determination of signs and relative magnitude and

the error correcting and detecting routine.



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

This thesis has dealt primarily with techniques appro-
priate to error checking in a computer arithmetic unit. Particular
attention has been given to the logic and error structure associated
with the binary adder. The conventional digital parity check has
been shown to have the properties of arithmetic ilnvariance required
to check arithmetic operations. The digital parity check has been
applied previously to storage and transmission systems but to the
author's knowledge the check has never been applied to an arith-
metic system. Previous applications of the digital parity check in
computer systems have determined the parity of the result of an
arithmetic operation by a means independent of the parity of the
operands. A parity checking scheme which provides a check of the
arithmetic operations requires cognizance of the number of generated
carries. This fact i1s one decided disadvantage of the digital check-
ing system. The digital parity check is not necessarily rgstricted
to binary number systems. The digital parity check may be defined and
applied to check arithmetic operations for any consistently welghted
number system regardless of the base. The essentlal features of the
digital parity check are the dependence of the check on the magnitude
of the symbols of a number representation and the independence of the

check on the magnitude of the weight assoclated with the symbols. The

~141-
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definition of the digital parity check in terms of the sum of the symbols
modulo b where b is the base of the number system is a much more funda-
mental definition than the usual definition of ﬁhe digital parity check
given for the binary number system. The usual definition of the digital
parity check is given in terms of the oddness or the evenness of the
number of ones contained in the representation.

The numerical check is based on the concept of linear congru-
ences, The check base may therefore be any number except the magnitude
of the number base. The main advantage of the numerical check is that
carry cognizance is not required. The check is, however, sensitive to
carry malfunctions.

The question of the effectiveness of the different parity
checks in the detection of errors is closely related to the logical
structure of the adder. A cursory examination of the problem reveals
immediately that the major difficulty is associated with the propa-
gation of carries in the addition process. If it were not for carry
propagation it would be easy to obtain independence of the elements
involved in the addition process. If the elements were independent
then the simple digital parity check would be one hundred percent
effective against single component malfunctions. It is possible to
design arithmetic structures in which each car;y element 1s determined
independently. However a severe penalty in terms of time and equip-
ment 1s associated with structures of this type. For example the carry
logic normally associated with a 30 bit binary adder with non-independ-

ent carry elements consists of 29 AND gates and 29 OR gates each gate
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having two inputs. The generation of instantaneous and independent
carry elements would require 29 OR gates with 464 inputs and 435 AND
gates with 4930 inputs. One example of a non instantaneocus but in-
dependent carry logic requires 29 OR gates with 464 inputs and 481
AND gates with 1682 inputs. These figures illustrate the.high price
paid to obtain independence of the carry elements. There may exist
some carry logic design in between the extremes illustrated by the
examples given. In particular 1t should be possible to design a
carry logic for which the carry elements are not completely independ-
ent but are less dependent than the carry elements of the standard
carry logic. It should be possible to synthesize carry legic of this
type by an extension of the vector space concepts which have been used
to investigate the structure of binary additlien. The extension of the
vector space concepts to the problem of the synthesis of arithmetic
structures has been given only brief consideration and should be an
important area for future work. Vector space concepts have been found
particularly appropriate for the analysis of the process of binary
addition. The author found that the study of the binary additien pro-
cess by means of vectors tended to clarify the problems assoclated with
the structure of the binary adder. In particular the introduction of
the carry matrix permitted a unified approach to the study of different
configurations .of carry logic.

A natural extension of the vector space concept of measure

has resulted in the specification of three new addition algorithms.
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The algorithms provide an interesting description of the addition pro-
cess but do pot lsad to logical circuits having any advantage over the
convertional circults.

Tre study of the structure of the errors for a standard paral-
151 adder has shown that the propagated errors due to single logical
element malfunctions exist in only two forms. The two forms are a
serieg of zeros terminated by a une or a geries of ones terminated by
a zero. The form of the error sequence is due largely to the fact that
the propagation of arn vrror tc some element 8141 requires that r; = 1.
Error propagation is halted when some element of thee vector, r 3= 0,
where J>1. The probability of error propagation has been found to be
a function of the type of malfunction which initiated the error. The
gtudy of the srror structure of the standard adder has revealed the
sxigtence of only four different classes of error propagation proba-
bilities corresponding to all of the possible gingle logical malfunctions.
Thus the effectiveness of the digltal parity check is a function of the ‘
type of malfunction. A simple digital parity check consisting of only
one parity check bit has a probability of success of 2/3, 3/4, 1/3 and 5/9
for sach of the four posgitle error propagation probabilities. The
digital check may be congiderably more effective in the detection of
errors of more than one parity check digit is employed. For example
if two digits are emplcyed in such a manner that alternate digits are
asgoclated with one check bit and the other digite with the other check

digit then the probabilities assoclated with the succese of the check
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become 14/15, 19/20, 13/15 and 41/45 respectively. The extension of the
digital check to include additional check digits is not particularly
fruitful since the numerical parity check has been shown to be 100%
effective. Furthermore the numerical check has the advantage of not
requiring carry cognizance. The figures which have been stated for
the effectiveness of the various checks apply only to the results of
single addition-like operations. Multiplication and division, which
consist of repetitive addition, must be checked at each addition step
in order to obtain the parity check effectiveness stated above. The
parity effectiveness for a sequence of addition operations has not
been investigated in thié paper. This would be an excellent topic
for future study.

The numerical check 1s superior to the digital check for the
purposes of error detection. However there are certain difficulties
assocliated with numerical checking if error correcting properties are
desired. The extension of the numerical check to include additional
check digits will not provide the information needed te correct an
erroneous representation unless the check representation contains all
of the information of the original representation. In this case it
becomes possible to carry ocut the arithmetic operations in terms of
the check representation and the original representation may be ignored.
We have called the numerical check representation for this case a
residue number system. There appears to be a fundamental limitation
in regard to the application of numerical checking procedures for the

purposes of error correcting since the numerical check is dependent on
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magnitude. For example a numerical check modulo 35 consisting of check
bases 7 and 5 would provide error correction information for any error
of magnitude less than 35. If the magnitude of the error is greater
than or equal to 35 the correction data is ambiguous. It would seem
that there exists an interesting possible combination of error detecting
techniques used in conjunction with a reasonable amount of circuit
duplication.

The residue number system has been investigated in detail.
The main advantage of the number system appears to be the complete in-
dependence of the digits of a residue representation. Addition and
multiplication are both defined operations and are executed without
carry between the residue digits. However, complete element independ-
ence may not be obtained within a residue digit when the digit is
represented in binary code unless special logical circultry is employed.
Independent addition elements must be employed within the adder logic
of a sipngle residue digit to give complete bit by bit independence.
Also if standard carry logic were employed within a residue digit the
addition time while still less than that of the standard adder would
not be significantly less. Multiplication in a residue code would be
significantly faster than that presently achieved by standard techniques
even if standard carry logic were employed within the residue digits.
However, 1t is doubtful that the residue number system will ever be
used extensively for general purpose computation due to the difficulties

involved in performing the division operation. The basic difficulty
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pertains to the determination of magnitude. The ultimate success of the
residue code for general parpose computation is very much contingent upon
the development of speclal components suitable to the residue code. At
the present time the most probable application of the residue code is

in the realm of special purpose computation. The residue code is unique
in the sense that the residue digits are independent. Furthermore, the
code may obtain error correcting capabilities simply by the additien of
more residue digits providing of course that the base of the added digits
is relatively prime to the bases of the other digits. The error correct-
ing routine required by the residue code is moderately complicated

when considered in terms of equipment. The success of the residue code
as a means of error correction is dependent on the development of com-
ponents sulted to the properties of the residue cede.

It appears that the control of cemputation errors due to
circult malfunctions may be obtained by means of error detecting and
correcting codes which are arithmetically invariant. In this thesis
the simple digital parity check and the numerical parity check have
beeg considered in detail. While the nmumerical check is very effective
in error detection it is not particularly suited fer error correction
in ﬁ general cemputing system. It is suggested that perhaps the most
effective control of errors 1s to be obtained by the use of a hybrid

system employing both component redundancy and error coding.



APPENDIX

SIGN AND OVERFLOW CONVENTION FOR
ONE'S AND TWO'S COMPLEMENT ARITHMETIC

The following material is a detalled description of one
possible sign and overflow convention for binary arithmetic. The
material is pertinent to the discussion of the form of errors which
occur in the process of binary addition. This subject was discussed
in Chapter1y. We consider here the addition and the subtraction
processes for both ones complement and twds complement arithmetic.

It is conventional to speak of a binary representation to
the left of the radix point as consisting of n digits plus a sign. In
this case the sign would be the nth plus one digit and the last digit
or element of the carry vector would be the nth plus two digit.
However, the convention adopted in Chapter IIT is samewhat different
than this. The convention of Chapter III will be used in the re-
maining discussion. In this convention the number including sign
is represented by n digits or elements to the left of the radix point
end m digits to the right of the radix point.

For twos complement arithmetic the complement representation
of a negative number -A is defined by the following relationship

A" =20 .A  where |A|<2P-l |
In twos complement arithmetic zero is represented as a positive entity.
The largest negative number is 201 and is represented by 2=l in the
twobs ¢omplement representation. The largest positive number repre-

sentable by the n+m elements is 2n-1 _p-Mm  Ye now proceed to examine
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the results of the addition process for four different augend, addend
combinations.

Consider first the case where both the augend and addend are
positive. The resulting sum must also be positive. Therefore, any sum
which carries to the nth element constitutes an overflow of the repre-
sentation. It is readily verified that every sum of two positive
operands which overflows will cause a one to appear in the nth element
of the sum. The smallest overflow is 2P-1 while the largest overflow
obtained by the addition of the two largest poesitive numbers repre-
sentable by n digits is 2% -2=mtl  Both of these overflow sums con-
tain a one in the nth digit place.

We consider next the addition of a positive and a negative
operand. In regard to the overflow problem there is no difficulty
since an overflow is not possible. An important question is whether
the last carry element may assume a value of unity. The last carry
element corresponds to the nth + 1 element of the sum. It is obvious
that if the resulting sum 1s negative then the nth + 1 element cannot
equal zero for the nth element of the sum is a one and r, equals one
and cp must equal zero. It is therefore, impossible for c ., to equal
unity. On the other hand if the resulting sum is positive it is
possible for the c,,q digits to have a value of unity. Normally in
two% complement arithmetic this digit is ignored. The positive sum
obtained by the addition of a pair of positive and negative operands

extends over a range defined by the addition of the largest positive
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number and, in absolute magnitude, the smallest negative number to the
number zero. Zero is obtained by the addition of a positive number and
a negative number identical in absolute magnitude.

ol R < oB 4 on-1 _ o-m
It is observed that the nth + 1 element is always a one over the range
of the positive sum. Furthermore, the nth element has a value of zero.

The last case 1s the addition of two negative operands. In

this case the nth element of both operands has a value of unity and hence,
the nth + 1 element of the sum and the carry vector will always be
unity. The investigation here concerns the behavior of the nth digit.
The sum of two negative operands can overflow. We consider first the
range of the non overflow sum obtained by the addition of the two
smallest negative numbers (absolute magnitude) and the sum of any two
negative numbers which produces the largest (absolute magnitude) nega-
tive number which can be represented. This range is given as

oi-lg g < o0 _ -0
If the sum of the two negative operands overflows the result must lie
in the range specified by the sum of the two negative numbers largest
in absolute magnitude and the sum of the largest negative number in
absolute magnitude and minus one.

ol £ 0 €28 4 20-1 _ p-m
It is observed that if no overflow occurs the nth digit of the sum is
correct. The sum is negative and the nth digit is a one. If an over-
flqw occurs the nth digit becomes a zero which 1s the incorrect sign.

The nth + 1 digit is a one for both situations.
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In onés complement arithmetic the minimum negative number in
absolute magnitude is zero given as 20! - 2@ | The magnitude of the
largest negative number is 28-1 . 2-M ang is represented as 28 - 28-1,
The largest and smallest positive numbers are on-1 _ 2 Mand 271,

The overflow representation, due to the addition of two posi-
tive numbers, lies in the range

on-1<& g <on o o-m+l
The overflow does not affect the n+l digit but does produce a one in
the nth digit. The overflow is detected by the erroneous sign. The
normal addition of two positive operands produces a sum in the range
2-m+ls R g 2n—l _ oI

The addition of two negative numbers always requires an end
around carry correction. Before correction the range of the correct
sum and the overflow sum are

n+l -m+1

n+1l n-l_2-m£RS2 -2

2 -2

ontl _ on &g g ontl | on-1 | 5-mtl
Before correction the overflow representation and the normal repre-
sentation will always have a one value for the correction digit. The
sign digit for the correct representation is either a zero or a one.
The sign digit of the overflow representation is always zero. After
correction the overflow and normal range of the sum is

ontl _ on-l g g £ pntl | o-m

ontl _ on 4 oM 5 g ontl | pn-1 _ o-m
After correction the correction digit remains a one for both the normal

and the overflow representation. The sign digit for the normal sum is



-152-

a one while the sign for the overflow representation is a zero which is
incorrect.

The addition of a positive and a negative operand can never
produce an overflow but the sum may be either positive or negative.
If the sum is positive an end around correction is required. This is
verified by

S=A+B where |A|l > | B|
2P B2 AL Bt _ ol
2N g <2y on-1 _ o-mtl
Thus an end around correction is always required for a positive sum and
the sign is correct both before and after the correction. After correc-
tion the representation is in the range.
ol 4 2 ML g ol 4 oBl | oM
The negative sum is obtained for S = A + B, :f |Al £ |B]
2n—l £ g€ pon _ pm
The negative sum obtained has a zero value for the correction digit

and a one value for the sign digit. End around carry correction is

not required.



10.

11.

BIBLIOGRAPHY

Babbage, H., Calculating Engines, E. and F. N. Spon Co., London,
Eng.; 1889.

Goldstine, A., Goldstine, H. H., "The Electronic Numerical Inte-
grator (ENIAC)," Mathematical Tables and Other Aids to Computa-
tion, Vol. 1, pp. 97-110; July, 1946.

Von Neumenn, J., "Probabilistic Logics and the Synthesis of
Reliable Organisms From Unreliable Components," Automata Studies,
Edited by Shannon C. E. and McCarthy, J., Princeton University
Press, 1956, pp. 43-98.

Shannon, C. E., Weaver, W., The Mathematical Theory of Communi-
cations, University of Illinols Press, Urbana, I1ll., 1949, pp. 4L4-48.

Hamming, R. W., "Error Detecting and Correcting Ceodes," The Bell
Telephone System Technical Journal, Vol. XXVI, No. 2, pp. 147-160,
April, 1950.

Golay, M. J. E., "Notes on Digital Coding," Proceedings of the I.R.E.,
Vol. XXXVII, No. 6, p. 657, June, 19L49.

Ulrich, W., "Non Binary Error Correcting Codes," The Bell Telephone
System Technical Journal, Vol. XXXVI, No. 6, pp. 13%1-1387, Nov.,
1957.

Reed, I. S., "A Class of Multiple Error Correcting Codes and the
Decoding Scheme," Transactions of the 1954 Symposium on Information
Theory, I.R.E. Professional Group on Information Theory, pp. 30-49,
Sept., 1954.

Golay, M. J. E., "Binary Coding," Transactions of the 1954 Symposium
on Information Theory, I.R.E. Professional Group on Information
Theory, pp. 23-28, Sept., 1954.

Robertson, J. E., "Error Detection and Correction in Binary Parallel
Digital Computers,'" Electronic Digital Computer, Internal Report

No. 37, University of Illinois Digital Computer ILaboratory, pp. T0-81,
1952.

Block, R. M., Cambell, R. V. D., Ellis, M., "The Logical Design of
the Raytheon Computer, Mathematical Tables and Alds to Computation,
VOl. III, NOo 21", pp- 2%'2%’ 317"323, oct., 1914'8-

Block, R., Patent #2,634,052.

-153-



13,

14,

15.

16.

17,

18.

19.

20,

21,

BIBLIOGRAPHY (CONT'D)

Hardy, G. H., Wright, E. M., An Introduction to the Theory of
Numbers , Oxford University Prees, London, England, 1956.

Birkhoff and Maclane, A Survey of Modern Algebra, Macmillan Co.,
New York, N. Y., 1948,

Brillouin, L., les Tensuers en Mecanique et en Elagticite, Chapter
VI, Dover Publications, New York, N. Y., 1946.

Weinberger and Smith, "One Microsecond Adder Using One Megacycle
Circuitry," I .R.E. Transactions on Electronic Computers, Vol. EC-2,
No. 2, June, 1956.

Burks, A, W., Goldstine, H. H., Von Neumann, J., "Preliminary
Discussion of the Logical Design of an Electronic Computing
Instrument,” Part 1, Vol. 1, pp. 10-11, Princeton: Institute for
Advanced Study, 1947, Second Edition.

Gilerist, B., Pomerene, J. H., Wong, S. Y., "Fagt Carry Logic for
Digital Computers," Transaction of I.R.E. Professional Group on
Elsctronic Computers, Vol. EC-4, No. 4, December, 1955.

Innte, A, G. "The Application of Boolean Matrix Algebra to the
Analysis and Synthesis of Relay Contact Networks, Doklady Akademii
Nank SSSR 70, pp. 421-23, 1950.

Leonard, E. D., Modern Elementary Theory of Numbers, p. 19,
University of Chicago Press, Chicago, I1l., 1939.

Camsau, J., 0., "The Synthesis and Analysis of Digital Systems by
Boolean Matrices," Transactions of the I.R.E. Professional Group
on Electronic Computers, Vol. EC-3, No. 3, pp. 6-11; September, 1954,

Muller, D.E., "Application of Boolean Algebra to Switching Circuit
Degign and to Error Detection," Transactions of the I.R.E. Profes-
gional Group on Electronic Computers, Vol. EC-3, No. 3, pp. 6-11;
Sept., 105&.

(IHIWIHHHINHIHHHIN!I!INIHIHINIIIHIIINNHIIHI

9015 02826 0852

=154



