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FOREWORD

This report represernts the results of research performed by the group at
The University of Michigan under the direction of Professor H. L. Garner.
Concurrently, research on the same subject was being conducted at Harvard
University under the direction of Professor Howard Aiken, and at the Lockheed
Missile System Division under the direction of Dr. Richard Tanaka.

There was a considerable exchange of information among the above groups
during the course of the research effort. The efforts attained exhibit little
overlap, rather they are complementary.

A portion of this report was extracted from the doctoral dissertation of

D. P. Rozenberg. His work was supported by this contract, and led to the Ph.D.
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ABSTRACT

The purpose of the research performed under this contract was to inves-
tigate the feasibility of residue number systems in their applications to
digital computers.

The problems of such an application are the ones of magnitude determination,
sign determination, overflow, scaling, and division. These problems are not in-
dependent, but are found to be quite interrelated.

A theoretical treatment of residue number systems is given which lays the
foundation for a unified study of the complete problem. Treatments of an or-
ganizational nature are given which deal with multiplication, division, and
scaling. The matter of correlating the theoretical and organizational studies
to physical realizations involving networks is treated also.

The question of whether the residue number system can be successfully
applied to general purpose computers is still an open one. Their application

to special purpose machines is considered both feasible and practical.
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CHAPTER I

INTRODUCTTION

1.1 INTRODUCTION TO THE rRCBLEM

The aspects of the residue class of the number system which makes this
class of number systems suitable for high-speed computation has been long known
to mathematicians. The firsf consideration of the residue class of numbers for
a computer system 1s due to Valach.:L This initial work was soon followed by a
paper by Svoboda,2 and later a paper by Valsch and Svoboda.5 Svoboda must be
given credit for the most fundamental and comprehensive study of the applica-
tion of residue class to practical computing machines. In his paper, "Rational
Number Systems of Residue Classes,' he considers both fractional and integer
number systems. The residue number system is most naturally interpreted as an
integer system, though the fractional interpretation allows greater flexibility
with respect to the problem of scaling. The paper by Garneru considers only
the integer interpretation of the residue nurber system and suggests a unified
approach to the problem of sign detecticon. The first part of this research re-
port is a continuation of the study of the vector-space approach to the sign
detection problem.

Carry propagation accouats for the major portion of execution time in &

conventional arithmetic system. The residue number system, based on the algebra

Manuscript released by the University of Michigan, October 1961, for publication
as an ASD Technical Report.
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of residue classes, permits addition and multiplication to be performed with-
out the existence of carries. The main advantage to be gained from the resi-
due number system follows from the fact that it should be possible to execute
multiplication as rapidly as addition. The usefulness of the residue number
system for general purpose computation is still an open question. However,
there exist many favorable applications of a special nature. Cheney5 has de-
signed a digital correlator based on the residue number system and has esti-
mated that a correlator of similar accuracy, based on the binary system, would
have been 10 to 100 times slower, depending on whether the organization were
parallel or serial. The residue number system has several characteristics
which have prevented the adoption of this system for general purpose computa-
tion. The problems of sign detection, the detection and handling of additive
and multiplicative overflow, and division are of extreme practical importance.
In this report the algebraic and numeric properties of the residue number sys-
tem are investigated in order to determine algorithmic solutions for the above
problems. Considerable attention has been given to the nature of possible al-
gorithmic solutions. This is, in many cases, more important than the actual
algorithms.

In the remainder of this chapter, the residue number system is shown to
be a ring. Various well-known ring theorems are interpreted in terms of the
residue number system to provide fundamental information concerning the prob-
lems of sign detection, the representation of negative numbers, and division.
Other theorems provided in this section relate to the construction of residue

number systems.
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In Chapter II, the basic algebrailc structure required for the investigation
of the residue number system ard other number systems is developed. 1In Chapter
ITT the carry structure of the class of non-redundant number systems is deter-
mined. It is shown that the residue aumber system is a member of the class of
carry-type number systems, for which the carries are congruent to zero modulo
base of the number system. In Chapter IV, the characteristics of the mixed-
base number system are determined. In Chapter V, particular attention is given
to the problem of sign detecticn. It is shown that the only non-redundant rnum-
ber system with simple sign detection characteristics is the mixed-base number
system. This fact is used to establish a general definition for the sign de-
tection process. In Chapter VI the problem of multiplication for a residue
number system 1s studied. In particular, two different multiplication schemes
are presented. The first is based on the decomposition cf the ring structure.
This obtains a simple multiplication algorithm at the expense of compliicating
the addition algorithm. The second approach uses redundancy to speed the multi-
plication process and is termed A-coding. Both of the techniques offer advan-
tage over conventional residue coding when the moduli are large.

In Chapter VII, division for a residue number system is considered. Two
division schemes are presented. (ne is based on a Newton-Raphson iterative
procedure, while the other depends on approximation to the integral part of
the quotient. In Chapter VIII specific attention is given to the problem of
multiplicative overflow. Various schemes are considered and a special purpose
application of the residue number system is given. In Chapter IX the problem

of sign detection is considered in terms of physical realization.
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1.2 THE RESIDUE NUMBER SYSTEM

As a preliminary step in the introduction of the residue zumber system,
the ring Iy of integers modulo M will be discussed.6 Tae elements of the ring
are the integers 0, 1, 2, ..., M-1. Ring additicr and ring multiplication of
two elements of Iy are performed by reducing the conventional sum ard product
modulo M. That is, the sum or product is divided by M and the remainder is
retained as the result. Thus, for example, the ring Ig consists of the inte-
gers O, 1, 2, 3, 4, 5. Dividing the ordinary sum of 4 and 5 by 6, one obtains
3 for the remainder. Therefore, in Is, 4+5 = 3. Similarly 2+k = 0, 22 =L,

~

and 4+2 = 2. The proof that I is actually a ring follows from tne fact that
in the division of an integer by M, the remainder is unique. The compliete prool
may be found in the literature. The order of Iy is M.

Consider the ring I of integers and the ring Iy of integers modulo M. An

arbitrary element m of T determines a unique element m of IM; namely, the re-

mainder upon division by M. If one denotes the correspondence of m to m by

m &—m, it is clear that if my €— my, mo f*'ﬁé, then mp+ms <> mi+mp = m;+me

and mimp é—>mims = mymp. Therefore, the correspondence between I and Iy is a
homomorphism.

Fixed point digital computers dc not operate upon the ring, I, cf integers
but rather on the ring IM‘ If one thinks of the radix point as being on the
right, then the largest number which can be represented is M-1. That the homo-
morphism is a many-to-one mapping is painfully apparent whern overflow occurs
and the most significant digit(s) are lost. Forturately, one can detect such

an overflow by sensing the carry from the most significant digit position. The
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ring Iy possesses an additive inverse of every element. If m is an element of
Ty M-m is the additive inverse. Thus we map the integers less than M/2 onto
the elements of IM less than M/2, and the negatives greater than -M/2 onto the
remaining elements of Iy. Thus the sign is readily determined and thereby mag-
nitude comparisons can be performed. Since one can perform overflow detection,
sign determination, and magnitude comparisons, division is possible.

Iet S; and So be two rings and consider the ordered pairs of symbols

(s1,82) where s;eS; and szeSs. If one defines addition and multiplication to

be (s1,82) + (t1,t2) (s1 + ti,s2 + t2)

(s1t1,s2t2)

I

and (s1,82)(t1,t2)
this set of ordered pairs becomes the ring S termed the direct sum of S; and Sp
and denoted S; @ Sp. In the above definition the operations s;+t; and siti are
the ring operations of Si.

An especially important theorem is the following:

Theorem T. If a ring S has positive characteristic n = nj-'ns where nj
and no are greater than 1 and relatively prime, then S is isomorphic (=) to
S1 @ Sp where S; is a ring of characteristic ny(i = 1,2).

This theorem states, for instance, that Ig is isomorphic to the direct

sum Io @ Iz with the following mapping:

¢ &> (0.0) 3 ¢ (1.0)
1< (1,1) L« (0,1)
2 € (0,2) 5 ¢« (1,2)

Theorem I may be extended as follows:

Theorem ITI. If the ring Iy has positive characteristic M = mymo...m,

ASD TR 61-L483 5



where the m; are integers greater than 1 and pairwise prime, then

IM = Il®1m2@"'@1

Proof: If n = 2, the result fecllows from Theorem I. Assume the result for
n = k and consider M = mmp...my - M may be rewritten M = mlmg...mk, where
my = mymy.q. Thus we have

IM ﬂLml@ImE@.e. @Imf{.

but by Theorem I,

I, = I @®T .
My e M4

Therefore,
Im, @Im2 ®...® Imk+l'
Thereby, the conclusion is proved.
Theorem IT completely defines the residue number system. Elements of IM
are mapped into n-tuples of the direct sum (elements of the residue number

system) according to the following scheme:

x €2 (x mod my,x mod mo,...,x med my). (1-1)
If
X 6 (X1,X2,...,%),
then
X +y &> (xz + ymod my,...,x, + yymod my)
and

X *y <> (X1y1mod my,...,X,ypmod mp).
It is clear from both the example following Theorem I and Expression (1-1)

that the components of the residue representations have no positional signifi-

cance.
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Consider the following exampies of additions in the ring Is o with my =2

Mo = H, MWa = 5, and my = T
{a) 209 € {(1,2,4,6) (v) 209 > (1,2,4,6)
€= (1,1,1,1) 105 é— (1,0,C,0)
210 &= (0,0,0,0) 10 & (0,2,4,6)
(2) 105 ¢ (1,0,0,0) 23 <> (1,2,3,1)
120 «= {0,0,0,1) 52 & (1,2,2,6)

015 €—» (1,0,0,1) 185 & (0,1,0,0)
In example (a), the sum produces an overflow and each component ring indicates
an overflow. The sum in (b) overflows but only one component overflows. In
{c), overflow occurs but “he component subrings do not indicate overflow. No
overflow accompanies the addition in (d); however, overflow is present in each
comporent. These examples indicate that overflow in the component subrings is
unrelated to overflow of IMf Similar statements may be made concerning multi-

plicative overflow.

1.3 THECREMS ON THE BASTC FRCEERTIES OF RESIDUE NUMBER SYSTEMS

Treorem II7. The period of a residue class number system is equal to the

least common multiple (icm) of the Tases.

Proof: Given DASES My,... .M. ASsume ms ms, i#33 then the digits associated
1 1My *I 3o 1FJ

with modulus mms have a period equal to m - Thus, m; has no effect on the
period and may be dropped from further consideration. The process may be con-
tinued for remaining bases until for all pairs mi’mj, i%ju The pericd is

n

given by the product M =;”: M. The product is the lcm of the original bases
=] *

since, by the fundamental thecrem of arithmetic, the prcduct of the bases is
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P = pit p¥ ... pfa pBr pBe ... pBT ... opy
the lem of P, denote by <P>, is
<pP> = P? max pg max .. p% max,
Obviously, <P> = M.
Corollary: The maximum length period is obtained when the bases are relatively
prime by pairs. i.e., (mi,mj) =1.
Theorem IV. The replacement of all residue digits, rj, associated with

i, yields a num-

base m; by the modulo my product\ariim. where « # Oand < m
i

ber system with period M', where

M' = M
(a)mj_)
Proof':
1. N = aimod my
2. AN = Qaymod my
3 A . o //mod e
© T T Tom)  \ " @mp)
m.

)4'- M'=ml.,.,—l-—-—...mn=__M—

(O!,mi) (O'/:mj_)

Theorem V.

The successor of X an element of a residue number system R may be de-

fined as
X' = X+ 8 X' € R
X €R
d €R

The period of R is given by

ASD TR 61-483 8



Proof:

For the standard residue number system
X" = X+1
Multiplication by & yields
X' = X +8
Hence, the change of successor is equivalent to multiplication of each element
of the residue code by the residue representation for 8. This situation is
covered by Theorem IV. It is necessary to verify that
(M,8) = (mp,2) ... (mp,0)
where © is represented in residue ccde by ®yye.s,2,. But this is obvious since
(M,8) = (m1,8) «ov (mp,0) = (my,on) oo (mp,04)
(a182,b) = (a1,b)(az,b) = (a1,82) = 1
Theorem VI. Isomorphic mapping between the ring of integers Iy and the

residue number system consisting of Iml"'°’I exists for any successor value

My
5,(8M) = 1 if the operation is addition. If the operation is multiplication,
the isomorphic mapping exists only if & = 1.

8a + 8 = (a + D)
but

(3a) x (8b) # B(ab)
except when 8° = 8 mod M, & = 1 since (8,M) = 1.
Corollary: Isomorphic mapping is obtainable between IM and Iml,...,Imn if
each multiplication 1s followed by a corrective multiplication by 8.

The results of Theorem VI, and the corollary indicate that the integer

interpretation is the natural interpretation for the residue number system.
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Any other interpretation will require multiplicative correction to preserve
the interpretation.
Theorem VII. Consider the residue digits ry and rj associated with bases

my and mj; then the operation |r.-r. partitions the set of m;m; residue
1 73|my i3

digits into j subsets. BEach subset has i elements. The subsets are ordered
modulo my .
Proof:

l. N = rimod s

N = r.mod m-

J J
2. N = ry+myty
N = rj+mjtj
3 ri—rJ = mjtj—miti

L, ri-ry = mjtjmod ms
5. (ri-rj)/mj = tjmod my
Note: If N <mm; then t; < m; and I(ri-rj)/mj\mk -t

Example: m; = 2,mg = 7|

Ty To ‘rl-rg ny ’rg-rl'mg h!\rg-rl\m2!m2
0 0 0 0 0
1 1 0 0 0
0 2 0 2 1
1 3 0 2 1
0 i 0 Y 2
1 5 0 L 2
0 6 0 6 3
1 0 1 6 3
0 1 1 1 N
1 2 1 1 L
Y 3 1 3 5
1 L 1 3 >
0 5 1 5 6
1 6 1 5 6
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Theorem VIII. Consider the ring R. For every a and b elements of R

a¥p* = ab

a*b

(ab)*
where a* is the additive inverse of a defined as a¥*+a = O. Every element of a
ring has a unique additive inverse. This is usually given as one of the postu-
lates of a ring. This postulate and Theorem VIII taken together indicate two
possible correspondences between the elements of the ring, the inverse elements
of the ring and the positive and negative signs. The usual convention speci-
fies that an element interpreted as an additive inverse of a represents -a.
Thus the additive inverse provides a code for distinguishing positive and neg-
ative numbers. The code is wvalid for both addition and multiplication but is
useful only when the ring is partitioned into elements always interpreted as
magnitudes and elements always interpreted as inverses, and a simple means
exists for determining the correct partition for a given element.

Theorem IX. For every a and b; b # 0, elements of a ring there exist

X and y such that
a = bx+y

Howevef X and y are not unique.
Theorem X. For every a and b; b # O there exist a unique x and y such
that
a = bx +y
if y<b. y <D may be interpreted in terms of the successor concept. Ilet
y=2"and b =2°. Then y <1 if a[mklslm. m is the cardinality of the ring.

Theorem IX and Theorem X provide some insight into the nature of the di-

vision algorithms associated with any finite number system. The residue number
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system is included in the class of finite number systems. Observe that

a = ymod Db
and if y < b then
‘alb =7
Furthermore
?;’i'ﬁ_:a_"'_
b Y

|
-
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CHAPTER IT

THE R SPACE

There are many aspects of the residue number system which suggest the
appropriateness and usefulness of the vector space model. This approach is
pursued in this chapter. It will be shown that strictly speaking the residue
number system is not a vector space. However, a development including much of
the conventional vector space concept is a useful tool for the investigation
of the residue and related number systems. The appropriate axiomatic system
has been called the R space. The basic properties of the R space are developed
in the chapter and are applied in the next three chapters to the basic problems
of the residue number system. We have found no property of the residue number
system which cannot be validated using either the R space approach or the num-
ber theoretic approach. However, depending on the nature of the problem, usually

one approach is more suggestive.

2.1 BASIC PROPERTIES OF THE R SPACE
Let any two residue representations be
X o= (X1,Xo,.005%)
vy = (y1,¥2,--45¥p)
then x+y 2 [x2+y1(my), ..., Xp+yp(my) ] vhere the mj are pairwise relatively prime.
The component X5 is said to be associated with the base modulus m; . The residue

number system represerntations from an additive Abelian group which is denoted

by Rn. From S, a ring with identity, we select the integers and define multi-

ASD TR 61-483 13



plication by a scalar to be
A
ax = [axi(mp),...,ax,(my)]
With these definitions it is seen that

n
a. ax.R7,

b. a(x+ty) = ax + ay
for
a(x+y) = (al[(xatyr)(my)](my),...,a[(x+yy) (my) J(my))
= {[(ax1)(m1) + (ay1)(mi)I(my),...,
[(ax,)(m,) + (ay,)(m,)](m,))
= ax + ay
c. (a+b)x = ax + bx
since (a+b)x = [(a+b)xy(my),...,(a+b)x (m, )]
= {[(axy)(m1) + bxa(my) J(ma),...,
[(axn)(mp) + bxp(my) J(my))
d. (ab)x = a(bx)
for
(ab)x = [(abxy)(my),...,(abxy)(my)]

= afbxy(my),...,bx (m,)]
= a(bx), and
e. All elements of R are uniquely expressible as linear forms
a1€1 + ... + ap€p by means of a fixed basis elements with

0<£ a3 < my where €3 has one for its jth component and zero

i
for the other components.

The five properties which must be satisfied for R® to be a n-dimensional vector
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space a, b, ¢, d abcocve, and:

e'. All elements of R™ are uniquely expressible as linear forms

ER 1)

a1u1 + o.. + ayu, by means of a fixed "basis elsments”

Up,..0,u, and ajes.

ol

This property is not satisfied, and thus R™ is nct & true vector spase., Toe
pseudc-vector space R™ will be called the R=-gpace and all vector space terms
which fellow will have aan irterpretation in the R-space which is azalogous to
the vector space definitiocns.

Consider the set of vectors <0y,...,0,> with each O having n components.
Form a sqguare array of the components by placing the zomponents of ¢, in tze
ith row. If this array can be made triangular (specifically a lower triangular

array) by reordering rows and columns, the set <Ol g .. C.> is termed zemi-
] 3 i’ Lt

triangular and the reordered set termed triangular.

Thecrem XI. If the set {aljnca,an} is triangular and the elemerts on the
principal diagonal are relatively prime to the associated base moduli, then
any linear form a0y + 8z0z + ... + a4 waere the a; are integers can be

uniguely expressed as

Proof: XkpnCp = kpnapmod my

where kij is the Jjth component of Q%
Thus cp = a, mod m, since my, 1s relatively prime to k.., and 0 g c, < my is

uniquely determined.

*a = b mod m (a is congruent to b modulo m) if and only if mja-b (m divides
a-b or a = b + km).
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Assume the conclusion true for cj for j =m, m+ 1,...,n and also that

these cj have been determined and consider the congruence

km-l,melcm—l + km,m—lcm + .. + kn,m-lcn =

km—l,m-lam-l + km,m-lam + ...+ kn,m—lanmdd mo_1

By adding to both sides of the above congruence the additive inverse of
(km,m-lcm + .00+ kn,m—lcn)mOd m._1» this congruence takes on the form
Ky1,m-1%m-1 = A mod my_,. Since (km-l,m-l,mm-l) =1, c,_; is uniquely deter-
mined mod my 4 and
0S epg < My
Theorem XI 1s of key importance for it allows us to abandon the ring S
and to concentrate our attention on linear forms of triangular sets of vectors;

n

namely, 'Zi cj04 where < Qj,...,0,> is triangular and 0 < cy <my.
1=

Except
where indicated, the following discussion will be limited to sets of triangular

vectors and linear combinations with restricted scalars.

Definition: The vectors Oy oo ,0 of a triangular array are linearly independ-

ent if and only if

c1Qy + ... + ey = 0 where O < ¢ < my

implies ¢y =cp = ... = cpy = O. Otherwise the vectors Oy,...,0, are termed

linearly dependent.

Theorem XII. The triangular set of vectors < O1,0p,.0.,0, > is linearly
independent if and only if each element on the principal diagonal is relatively

prime to the associated base modulus.

*The greatest common divisor (d) of a and b is written (a,b) = d.
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Proof: Consider the eguation

iy A oee. + o O = O, (2-1)
wd .
Equation (2-1) is eguivalent to “tre following simuitareous 1linear CONETUENCES
Rpwy = 0 mod my

¥eooo + c. = 0 nrod m
4L L J i
for
I o= n=l,....1.
For kppep = O mod m, to yield the unigue sclufica c, = O, it is sufficient that

\

(kpp,my) = 1. Assume (kypomg, = 1 and o = O for i =24 + 1

Ith congruvence becomes Kyppep = 0 mod Mg and c¢p = O is the unique solutior. This
proves the sufficiency of the hypothesis,

Assume r to be the least irdex for whichn (kii,mj) #1. let cy = C for
i > r. The above congruences Decone

= O mod o, (2-2)
r
kjqeq . Z kiicj = OCmddmy for i = rel,r-2,...,1.
J=i+l "

Congruence (2-2) may be solved with c, # C. Since (ksgomy) =1 for i = r-1,

r-2,...,1, the remsining corgruences assume +he Zorm

= Aimga Ty

The condition (k:..,rs) = 1 for 1 < r guarantecs the existence of a soiution
117 <

for each congruence. This completes the proof.

R : . 5 n o, ‘
Definition: A set of vectors {O:, 2;...,0,) is said to span R~ if and only

7

if there exists a set of coefficients ¢y in the range O ¢y < my satisTying

the equation
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n
Z Cs Qs = s
. 171 1
i=1

where ry is any residue number.

Theorem XIII. For a triangular set of vectors < O3,...,0, > to span rR"

it is necessary and sufficient that each element on the principal diagonal be
relatively prime to the associated base modulus.

Proof: The existence of solutions c; to the following congruences will be

shown
knncn = anmod m, (2-3)
n
and kjscy + j:%il kjicj = aymod my for all a; in the range O0< aj <mj. The

necessary and sufficient condition for the existence of a solution to (2-3) is
(kppsmy) oy . Since a, (an integer) will range 0 < a, < mp, it is necessary and
sufficient for (knn,mn) = 1. Assume that solutions c; exist for i > £. These
solutions are substituted into the fth congruence yielding an expression of
the form

kpgcg + D = aymod my
or

kpgcp = a, + E mod m,
Again (ag + E) mod mp, will include all integers in. the range O through my-1.
Thus to guarantee solution it is necessary and sufficient that (kzz’mz) =1.
The proof 1s complete.
Corollary: The triangular set of vectors <Oi,...,00,> is a spanning set of R"

if and only if it is an independent set.

Definition: A basis of an R-space is a linearly independent set of vectors
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which generate the R-space.
Theorem XIII may be rephrased in more conventional terms as follows:
Theorem XIV. For a triangular set of vectors <Ci,...,0nh> to be a basis
of Rn it is necessary and sufficient that each element on the principal diagonal
of the array be relatively prime to the associated modulus.
Theorem XV: If Q3,...,0, forms a basis for Rn, then every vector BeR™
has a unique expression
B = x10n + X0 + ..o + X0, 0K x5 <my.
Proof: It will be shown that the congruences which must be satisfied for the

above expression to hold will provide X3 which are unique modulo m let

3
B = (bl,bg,...,bn).

The first congruence is Xnkn,n = bymod m,. Since knn and m, are rela-
tively prime, x, is uniquely specified modulo m,. Assume Xp4j,Xpepse«--rXp
have been uniquely determined. Then to be considered is the congruence

km,mxm + km+l,mxm+1 toeee # kn,mxn = bmmOd My »

Add to each side the additive inverse mocdulo m, of

(km+l,mxm+l oo t kn,mxn)

to obtain
km,mxm = B mod my,.
Since (kym,m,) = 1,%, is uniquely determined modulo my.
Theorem XV states that every residue number has unique coordinates rela-
tive to a given basis. Thus every basis serves to define a number system re-
lated to the residue number system. It is now shown that triangularity is a

necessary as well as a sufficient condition for a nonredundant number system.
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Theorem XVI. If the set of residue numbers, <0p,0,...0,>, spans rR™
n

(i.e., rer™ Ha;)® w,aiai = r) then the set is triangular.
i=1

Proof: TIf

(a1582,-.+,8,) €2 8103 + aglp + ... + &0y

(b1,D2,e00,bpn) € b1y + b2l + ... + bpoy
From the properties of R it follows that

a;Q + by = (ay + by)oy
then
(8101 + 820 + ... + a,0p) + (bay + ..o + byo0) =
(a1 + bp)ay + (a2 + b2)ap + ... + (ap + byl =

A
d10y + doOp + ..o + 40y = S

Consider the form & = mjqq + ry in which myqqy is an integer; then

msq = 2 es .0
141 3=1 1373
and
n
S = Z riQ; + Z Z
=1 1=1 j=1 48514

]

> g
121 (fi * Z qd Jl/

The above expression ylelds the residue number which is cqngruent to the

sum S modulo M; it is not, however, the required expression for the sum. The

desired sum has restricted coefficients, 0 < a3 < my. So consider the above

expression to be

1

sT = daloy + dzcp + ... + dR0y
2
This sum is manipulated tc yield S , and the process is continued until

k+1 k
S =5 . It will be shown that the existence of this sum is equivalent to
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triangularity.
The next step of the proof will be to show that no carry cycles can exist.

Assume that carry cycles of length k, when k  n, exist. That is

ey k-1 # O

ex-1,k-2 * O

éi,k F O
and
ej,k = O for j >k
Consider the element (xi,%z,...,%,0,0,0), where x; < mj-1. Since R"
is an additive Abelian group, the additive inverse of the above element exists.
Assume it to be
(Y1525 +,¥n)
Further it is known that the sum
(Xl,xg,...,xk,...,0,0,0) + (yl,yé,..a,yn) = (0,0,...,0)
No carries can enter this initially from outside the group of k under consid-
eration.
Case I. k =1: here, e;y £ 0; €31 = 0, J > k.
A. Xty must produce a carry into the first position, thus the first
component of the sum is non-zero.
B. If the sum, reduced modulo m, plus the carry is Z,mi, there must be a
carry in the first position and the result is non-zero.
Case II. The general case.

A. Tt will be necessary to have

a. yy = x; to get a zero in the kth position. This will produce a
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carry to (k-1)th position.

b. If jth position produces a carry, the (j-1)st will also produce
a carry, for the (j-1)st unreduced sum is non-zero and will have
to be made congruent tc zero by the addition of an appropriate
yj-1-

It can be seen that there will be at least one full cycle of carries.

B. Assume we have had / full cycles of carries.

a. The sum of carries plus the previously reduced sum is in the
kth position. This is non-zero. If this sum is < my the desired
contradiction has been obtained. That is, the existence of the
additive inverse has been contradicted. A carry must propagate
from k to k-1, otherwise the inverse does not exist.

b. Again it may be argued that, if the Jth position produces a carry,
the (j-1)st position must also produce a carry.

Therefore, there are £ + 1 carry cycles and the carry process does not con-
verge; the proper sum is not obtained. This is the desired contradiction which
proves that it is not possible for carry cycles to exist.

From the fact that carry cycles of length 1 cannot exist it can be seen
that the principal diagonal of the carry matrix consists of zero elements only.

Since there can be no carry cycles of length 2,eij #0 = ey = 0.

The next step in the proof of the theorem is to show that the number sys-
tem must have a carry matrix which is a lower triangular array with zero ele-
ments on the principal diagonal.

1. Initial Step. There must be at least one column which is composed
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entirely of zeros. If this were not the case, there would be carries into
every position; and thus carry cycles.

2. Ceneral Step. Assume there is one column with at most k-1 non-zero

elements for k = 1,2,...,4. There is a columrn with at most [-1 non-zero
elements.

The array may be rearranged by placing the column, with k non-zero ele-
ments in the old array, into the kth column of the new array for k = [, I+1,

...,n. The rows are interchanged in a similar manner, giving

— -
0
X .
X C
. x O
[
v x x O
i X 4 e o e x x x 0

Consider a non-zerc element ey , 4 above the principszl diagonal in the

i,

% C implies e;:. = 0; row 1 may be interchanged with

(£-1)st column. Since e 51

1J

row £-1, and column i with column £-1, while retaining Cp.1.0-1 = 0 and
)

e. . = 0. Thus all non-zero elements are placed belcew the principal diag-

To complete the proof it is only necessary to note that since the base

moduli are pairwise relatively prime, multiplying a vector by the ith base
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modulus can create a zero only in the ith position. Thus a carry matrix
with all non-zero elements below the principal diagonal implies that the set

<, 25400,04 > is triangular.

2.2 LINEAR TRANSFCRMATIONS AND MATRIX MULTIPLICATION IN THE R SPACE
Definition: A linear transformation G: R™ + 8" of an R-space R into an R-

space s™ is a transformation which satisfies

(€ + )G ¢ + nG

(ct)a c(8G).

Theorem XVII. If Ogy.ee,0 is any basis of R" and Yys+++57, 8TE any vec-

tors in Sm, then there is one and only one linear transformation G:R™s™ with

OélG = ')'l

WG = 7,
This transformation is defined by

(%200 + ... + x, 0 )G = X7, F XYy b oeee F Xype

l

Proof: ILet A [al,..a,an} be a basis for R™

and B = ({B1,...,By) be a basis for Sm,
then
NG - 7,
R = 7,
o = 7
where
Yy = 84181 + ...+ ayBy
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for

i = 1, ,n
It
¢t = (x4, ,,xn)AeRn,
then
£ = X104 + ... + X0y,
from which results
66 = x(G) + %(0G) + ... + x(OG)-

By substituting for (03G), one obtains

= xl(allﬁl + ... + almBm)
+ xo(az1B1 + --- + 8y B)
+ x (8, B + oo 3B,
and by rearranging terms,
(¢ = (x1811 + XpB21 + ... + x8..)B)

+ (Xlalg + Xo8po * ... + X 8 )62

+ (xlalm + Xo8pm *t ... + Xnanm)ﬁm.

By Theorem XI the image (G can be uniquely expressed

where
0<dy <my
and, therefore, (GeS™ and the transformation G is a linear transformation

R™s™,
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Let

no= (yl)"')yn)A
then
N o= yi0y + ...+ Y0,
Thus
G = ya(aG) + ... + y (@G)
= y171 + ... # In?n?
E+m = (X + y1)0 + o0+ (X, + yp)oy
(E+M)G = (x1 +y1)0G + ... + (%, + yp)G
= (X3 +y1) Y1+ «-- + (X + ypn)7n
ST SUATE SPPREE I Sy I SV ST SR o 2
= (G + G
and el = ex10y + ...+ expOy
(ct)d = (ex1)1G + ... + (cxn)(anG)
= cx173 + ...+ CX 7y
= c(ta).

Thus the transformation is linear. It is to be noted that it 1s not necessary
that the set (71,...,7n} be a triangular set.

Since every vector in R™ can be expressed uniquely as X301 + ... + X 0p
for 0 x4 < m the transformation is single valued and, therefore, no other
transformation from Rn into Sm yields BiG. The proof is complete.

let A = (Q1,...,0,} be a basis for R" and B = {Byy:+-sBp) e a basis for

m

S7. We then have the equations

alG = allBJ_ + ... + almﬁm
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UG = 8o91B; + .. + aZmBm

%G = an B + - + apmPn

The form of these equations suggests writing the square matrix

B R
811812 .- alm
821 o a2m
a =
any --- anm_J
n 4n n . . . .
If R, 57, and T are three n-dimensional R-spaces, G is a transformation

n n
of R into 8 , and H is a linear transformation of s™ into T™. The product of
the transformations 1s defined

a(cH) = (w)H

Theorem XVIII. If the product of two +transtormations 1s defined, then it

is a linear transformation.
Froof: Let G and H be linear transformations whose product exists, let c be
a scalar, and let (1, G be vectors in the domain of G. Then we have

(g + o) (GH) = [(0p + ap)G]H

= [(G) + (opG)]H

(01G)H + (G)H

and

(cy ) (GH)

1l

o
Q

l_.l
@
=

ASD TR 61-483 27



Multiplication of linear transformations has been defined and will now be
used as & guide to defining multiplication of matrices. To this end let Rn,

n R . . .
8B and T" be three R-spaces of dimension n with respective bases
b4

A = {On,e..,0)
B = {Bl:'“°:5n]

and
¢ = {711"°’7n}‘

Relative to these basges G has the matrix & and H has the matrix B.

Congider the matrix P = HPin of the product transformation J = GH rela-

n

tive to the bases for R™ and S™. A development of the rows of P will be given

in terms of 84 3 and bij'

G = &a711B1 + ... + alan

OG = a21By + ... + aann

GG = 8B+ ... +anfy
and

ﬁlH = bll',‘/l + se. blnyn

BoH = Dboi71 + ... + b2n7n

Bufl = b7k ees + Doy

Thus (Q1G)H

a11(PiH) + ara(BoH) + ... + 8, (BH)

1§

a11(b11?1 + bazle + ceo + ypyy)

+ alg(bgl'yl + b2272 + cee * b2n7n)

o

o

(b 37, + by + eee + D

@i Pn1’a n¥n) -
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Therefore

n n n .
(0:0H) = /Z 8101y Ju B broseeos 2 a3 by .
Kkzl ik kl’k=l 1k ko) ,k=l lk kn/

Similarly
z z 8 \
(0pGE) = 28 b, 2 b _ae., 2oa_ b .
k=1 =k K*fk:l 2k k=2 kel =2k K?/

Thus

n n n ‘
(.GHI) = 7 8 0% s o B Dy ees, LA b
O K] nk _r{l’kzl nk ko s )kzl nk kn/

The above equations are preliminary results in the determination of the rows of
P. Each of the linear forms indicated above must be expressed as linear Tforms
with restricted coefficients. The linear form with restricted coefficients
corresponding to (aiGH) constitutes the ith row of P.

The Jjustification for restricting the discussion to the multiplication of
matrices which correspond tc linear transformations from n-dimensional R-spaces
into n-dimensional R-spaces is the projected application of such multiplication.
The principal applicaticn will be in the change of basis operation (conversion
from one number system into another). In this application the linear trans-
formation is an automorphism from RT onto RE.

In the interest of completeness, the result for the most general case will
be given. ILet RX, Sw, and T? be taree R-spaces with respective bases

A = {Ql,0005axj,

E o= {Bl)"°':6w})

and
C = {71,0!0’72}.

The linear transformations G and H are defined by

W
4,6 = LagyB (i =1,2,...,x),
=1
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and

Therefore,

e = 2 P a T
) = (Bans ) = Pas(em = Doy, P
* V=l + TBV/ V:l v VH V=l iv _l vu’u
z v w w w
= ;l vzlalvbvu‘)'u = kznlalkbkl, Z a’lkbkz’ Z a kbkz>

The above linear form when expressed with restricted coefficients constitutes
the ith row of the product matrix.

If A = ”ain, B = Hbin, and C = ”cij” are n Xx n matrices relative to the
natural basis, the product (AB)C is developed in the following manner:

AB =E = ”eij” relative to the natural basis and the ith row of E is ob-

tained from the linear form

n n n
2. a:1b Y a:ib cee, 2.asyb .
K1 ik kl,k:l ikPka» ,k=l ik"kn

Since this linear form is to be reduced relative to the natural basis, the ith

n \ n
<;§iaikbk1)(ml)’<;§iaikbk;>(m2)" <;Zia kbkn><mn)

The product (AB)C = F = [If;;] is similarly developed and the ith row of F is

row of E is

n n N

<;§1eikck;)(ml):-u': kzieikckn/(mn)
/

LE_ []gi alrbbk/ mk-}ckl; (my)y...,

jk ) <?Zlalrbrk mk%}ckn/(mn) (2-4)

Consideration of the product BC gives rise to the following linear form with
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restricted coefficients.

n n N
(z.lbikcks (ml ) geoe ,lebikckn)(mn) .

/
Also

A(BC) = D = [agyl
where the 1th row of D is
n n n n
<;§iairk§ibrka;>(m1),---,<;§iairk§ibrk0kn:%mn)]- (2-5)
As shown by equation (2-4) and (2-5), multiplication of matrices associated
with the residue system is not associative, for the ranges of the components in

(2-4) and (2-5) differ.
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CHAPTER IIT

CARRY FUNCTIONS IN RESIDUE NUMBER SYSTEM AND RELATED NUMBER SYSTEMS

3.1 THE CARRY ALGORITHM

In the second chapter many of the results depended upon the existence of
a linear form with restricted coefficients which was equivalent to a given
linear expression. This chapter will discuss an algorithm (the Carry Algo-
rithm) for finding the linear form with restricted coefficients when any lin-
ear combination of the basis vectors {an,.o.,an] is given. The algorithm in-
volves the notion of carries from some components of the representations into
other components of the representation.

If the linear form to be reduced is a,0q + aslp + ... + a0y, one proceeds
by expressing a0, as D10y + balp + ... + b &, where 0K bi < my; and making
the substitution to obtain (ai+b; )<y + ... + b0, - The process is then re-
peated focusing attention on (b, _q+a, 1)@ 1 and continued until one has the
desired result.

Dividing aj by mj, one obtains aj = myq +r, 0L r< mj. Any multiple
of ugley will yield a vector in the subspace (xl,x2gon.,Xj_l,o,.ﬂ,,o). Since
ithe set of vectors ()} is a basis, the set {al,.,.,aj} is a basis of the men-
tioned subspace by Theorem XIT. Thus the term_qu will not affect the multi-
plier of aj in the reduced expression; that coefficient must be r. The product
mj&j can be expressed as a linear combination of &3 through aj-l and. qmjaj

is merely q times each term of that combination. The linear combination for

(qmy)c

3 is added to the original linear combination and a 303 is replaced by

J
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ray. Thus one applies the above procedure to first a,, then to the new coef-
ficient of O, _1, and so on until the desired result if obtained.

The Carry Algorithm may be stated as follows:

1. Express mjQj as a linear combination of al,...,aj_l denoted bjlal +

D:sls + oon + for j =2,%3,...,n. Beginning with j =n

D, O,
Ji-173-1
and ay = an.
2, Divide aé by‘mj ard obtain
! = e o . w1 s .
aj = qjm; +ry with 0 < T < m; -

1 3 47
3. Replace ajaj with rjaj and.

! * 1
af with (ai+qibji

) for i =1,2,...,j-1.
4. Repeat steps 2 and 3 substituting j-1 for j. Stop after executing
steps 2 and 3% with j = 1.

Theorem XIX. The linear form produced by the application of the Carry
Algorithm expresses the same residue number as the original linear combination.
Proof: The proof will be the demonstration that the coefficients of the re-
sulting linear form satisfy the congruences indicated in the proof of Theorem

XT.

Consider c,, = a

n mod my with 0 < ¢y <my. By the uniqueness of division

n

r, is the residue of ap modulo my and ry = cp.

Assume that ry = Cj for j = m,m+tl,...,n. The congruence which then must

be satisfied is

Kp-1,m-1%m-1 * ¥y,p-1m * coc F Enym-1%n
= kp-1,m-18m-1 * Kpop-1%n * oc0 T Kpme1 @ mod my 7 - (3-1)

The quantity'aj which enters the division in step 2 of the Carry Algo-

rithm is
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ro= + + b .+ b
85 I N R 9541°35+1, 3

thus
an = a,
aﬁ—l L qnbn,'n-l
apo = 8o FApPp po * A 1PnaPpoy o2
8n-1 = @p-l * dnPn,m-1 * e * ApPpom-1c

In expressing

one solved the congruences
kj—l,j—lbj,j—l = mjkj,j—lmOd my_1

Kj-2,5-23,3-2 * Ky-1,5-2P3,5-1 = myky,g-emed my-2

kna1,m-123,m-1 ¥ ¥n-2,m-1Pg,m2 ¥ o0 F Kyo1,m-13,n-1

= mjkj,m_lmod My 1

kllbjl + k21bj2 + ... + kj-l,lbj,j-l = mjkjlmOd my .

Using the induction assumption, relation (3-1) can be written
kp-1,m-1%m-1 * ¥ m-1Tm * ¥p w1
= Kpo1,m-18m-1  ¥pyme1®m tocec ¥ Kp poa8pmod My

which can be manipulated to yield

km-l,m-lcm-l * km,m—lrm toeeo F kn—l,m—lrn-l
(3-2)
= Kp1,m-1%m-1 Y Koym-1®m toee- F kn,m-l(s‘n - rp) mod my_q-

1 — 1 —_
Since ap = al,a, - ry, = qum,, (3-2) becomes
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Km-1,m-1Cm-1 + Ky 1Ty + co- + kp-1,m-1Tn-1
= kmul,m-l(amml + qnbn,m-l) *+ km,m—l(am + qnbnm)
+oeeo + kyg poqlany + qnbn,n-l)mOd My 7 (3-3)
upon the substitution
an (k-1 ,m-1bn,m-1 + Smym-1Pam *oeee F kg pg n,Pn-1)
= qnmnkn,md(mod Ty )

Once again we transpose (add the inverse) kn-1,m-1rn-1 and recognize that

8n-1 ¥ Obry1 - Ty = 8p.1 ~ Tp-l = An-1Mn-q-
Making the following substitution:
n-1(En-1,m-1n-1,m-1 * Xm,m-1Pn-1,m * -+ + kn-1,m-1n-1,n-5
= dp-1Mp-1kp-3,p-1mod mpy_,

we obtain

Kp-1,m-1%m-1 + Ky m-1Tm * -ee + Kn-2,m-1Tn-2

n-1,m-1 By ¥ Gy g * 95-1°n-1,m-1"

+

km,m-l(am * Gpbn,y * qn-lbn-l,m) MAREE
+ kn o po1(apo + dnbp,n-o + 4n-1Pn-1,n-2/mod mp_7 .

Again we identify the last quantity in parenthesis as an.o, transpose and sub-

stitute. By repeating these manipulations, one finally obtains

Ky 1,m-1m-1 = km-l,m-l(am-l * anPpgoy foeee UpPry -1 Jmod mp 4
or
“m-1 = 8pqmod mp
which yields the desired result Cp-1 = Tpo1-

By showing that Im = Cps We have shown that the linear form produced by

the Carry Algorithm is identical to the linear form of the conclusion of Thecrem
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XI. Therefore the proof is completed.

Without the Carry Algorithm, one can perform operations such as addition,
multiplication, and matrix multiplicatiorn by resorting to the defined opera-
tions of addition and scalar multiplication of residue numbers. The only al-
ternative is to solve a set of simultaneous linear congruences every time one
wishes to express a linear form with restricted coefficients.

With the Carry Algorithm, it is necessary to solve only n sets of simul-
taneous linear congruences, and further those sets of congruences may be solved
immediately upon the selection of the base moduli and the basis vectors. There-
after, any linear form may be reduced to one with restricted coefficients by
the application of steps 2, 3, and 4 of the Carry Algorithm. It is thus pos-
sible to select a set of basis vectors, perform step 1 of the reduction algo-
rithm (i.e., determine the carry functions), and thereafter perform addition
of two vectors by addition of the components followed by the application of the
Carry Algorithm. Scalar multiplication is effected by multiplying each compo-
nent of the vector by the scalar and then applying the Carry Algorithm. The
Carry Algorithm will prove significant in the multiplication of representations

for it will provide a means of combining partial products.

3.2 THE BORROW ATLGORITHM AND COMPLEMENTATION

The question arises: Given two representations X and Y of positive inte-
gers, how does one obtain the remainder X - Y? This question will now be con-
sidered in some detail.

Let X be represented by (Xi,Xo,...,X,)0 and Y by (y1,y2,.0«,yp)% Initi-

ally one forms (X1-yi1,Xe-yz,...,Xp-yp)- This last expression denotes
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(X1-y1)0 + (X2-y2)Q + ... + (x4-yu)0,. Consider the jth component of an ex-
pression to be negative. Since
mJaJ = bjlal + 'bjzfaz + ... + bj,j_laj_l
one may add to the above expressicn zero in the form
(1 ) . =
dJ [mJij - \‘leal + bnglg + bJ,J—laJ-l)] 0
where dj is the smallest multiple of I 5 which is larger than the magnitude of
the jth component. This addition yields
(Xl - Y1 - dnbn]_) X2 -y2 - d‘nbnz"”’xn—l = yn_2 - dnbn,n—l’
X = ¥n ¥ dnmn)
for j = n,
(1 - y1 - dpbny - dn-lbn—l,l’ X2 = y2 - dpbp, - dn—lbn-l,Q,

creoXpy v ¥n-l 7 ApPponay FdnMpya¥n - Yy F dymy,)

for j = n-1, and finally
(x1 - y1 - dpbp, - dn~1bn~l,l - e - debay ¥ dam,
Xo = Yo - dnbNB - er—lbn-l,2 - eeo = d3b32 + d_gmg,

ceesXp 1 = Ypoi - dnbn,n-l + A, qmy_9,Xy -y, + dm) for § = 1.

This final expression will be a linear form with restricted coefficients which
is the representation of X - ¥ if X 2 Y. If X < Y the above procedure yields
a representation of -(Y - X). Thus complementation gquite naturally enters the
picture.

By dividing the range of integers which can be represented by residue num-
bers into those integers less than M/2 and those integers larger than M/2, one
can designate the first group of vectors to be representations of positive in-

tegers and the second group, codings for the complements of the elements of the
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first group. If M is even, M/2 is self complement.

To find the complement of a given represertation Z, one generates the
remainder (0-Z) as indicated above.

The procedure for perrforming subtraction and finding complements indicated

above suggests the statement of a Borrow Algerithm as follows:

1. Express mjaj as a linear combination of al,.,.,aj_l denoted
bjlal + bJEOé + oo + bj,j~laj-l for J =2,3,...,n. Beginning with
J = n and as = 8.

2. Perform steps 3 arnd L if aj < 0, otherwise skip to step 5.

5. Determine dj such that dj is the smallest multiple of m.j which is
larger than faé!u

L. Add to the linear form the expression
(-djbjl, - dsbjzsy o0, - djbj;j_l’ + djmj,o,,.",o)o

5. Repeat steps 2, 3, and L substltuting -1 for j. Stop after executing
steps 2, 3, and Lk for j = 1.

Example: With the basis < (1,0,0,0), (1,2,0,0), (1,1,2,0), (1,1,1,1) > where

the modull are my =2, mp = 3, ma =5 and my = 7, the carry functions are

30 = Q1, D503 = Oz, ard T, = Oy. An example of subtraction using the Borrow

Algorithm directly will e given as well as subtraction by using the comple -

ment of the subtrahend.

Subtractlon using the borrow algorithm:

{1,2,2,1) ¢> 190
- (0,2, 4, 6) &> -104
(/ 1, O:‘“E:"_':j)
+ 4 0, 0,-1, 7)
( 1: O;"B: 2)
+ ( 0,-1, 5, 0)
( 1:"1; 29 2)
+ (“'l) 3) Os D)
(0,2,2,2)<«> 86
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Complement of (0,2,4,6):
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“

e
o
e

+
Py N T
o |o
A
o
A [\
H lo+ Jor o+

Subtraction utilizing the complement:

(1,2,2,1) «> 190
+ ( 1, 0, O, l) é—%--lo&

(0,2,2,2) &> 86

3.3 CHANGE OF BASIS

One quite important use of the carry algorithm and matrix multiplication
is the change of basis operation. Quite often it is desirable to convert from
one number system to another, l.e., express a vector in coordinates relative to
a different set of basis vectcrs. One might wish to make the conversion because
different number systems are more advantageous for particular operations than
others. More will be said concerning this later.

let a vector X be represented by (xl,xg,..,,xn) relative to the basis
< Q1,020,040 > It is desired to find coordinates (yl,yg,‘..,yn), relative
to the basis < Bi1,Bs,...,Bp > Bach vector @3 of the cld basis can be expressed
as a linear combination of the vectors of the new basis in the form

Qi = qiiPi + Qish2 + ... + qinPn- (3-4)

However, since both bases are triangular, qi) = O for k > i. The vector X with
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coordinates (Xl,Xg,.--,Xn) relative to the basis
< 0 ,0z,...,0 > 1s %303 + X202 + ...+ X O
Substituting from above, one obtains for X
X1911B1 + X2[d21B1 + QooPa] + ce. + X [qniBi * .-+ + dAnnPn]
which can be written
(X2011 + %2921 + «++ + Xnpani)Bi
+ (X2q22 + -+« + Xndn2)B2 + ... + XnannPn-. (3-5)
The carry algorithm is then applied to linear form (3-5) and the result is
X =yiP1 + y2P2 + ... + ynPn-
The y; are the coordinates of X relative to the basis < By,Bz,...,B, >
If the zero coefficients are retained in expression (3-4), expression
(3-5) becomes
(Xx1911 + X221 + -« + Xnani)B1 + (X1q12 + X2022 + --- + Xnanz)B2
+ ... + (X3qin + XoQon + .-+ + Xndnn)Bn-
This expression is an interpretation of
(%1911 + Xagey + ... + Xnin),(X1Q12 + XoQpz + ... + Xndnz),
. + (X1q1p + -+« + XpQnn)

which is the matrix product

[X1,X2,0 5%y ] Giidiz --- dan |
421d22 --- d2p = [Y1:Y255Yp]
dnidnz --- dnn

denoted X:Q = Y.

The above procedure constitutes an effective procedure for executing
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change of basis.

The vectors Bi of the new basis can be written as linear combinations of

the old vectors,

n
By = izapijaj (3-6)

Thus for a change of basis from < Bi,...,B, > to < 03,...,0, >, the appropriate

°

matrix product is Y+P = X where P = “Pij

Substituting equation (3-6) into equation (3-L4) one obtains
n n n
Qs

c 2 DasOs + g Qs + ooo + iy 2o Py sOls
i qlljzlplg J qlzjziPZJ J din 20 Pnd™

n n

n
431D, .0, + L Q3 Dpi0y + -oc + L Qg Py O
1 1dJd j=1 iz7ad d =1 in*nj—J

J:
n n

= 2 T quPrias
kPkjq
k=1 j=1 + o

One may interchange summations to obtain

n n
%7 jéi 21 kP %
n n n
= Dy 0ikPki% * L aniPeele * -+ + L QikPknOn- (3-7)

Equation (3-7) written in n-tuple form with restricted coefficients is the ith
row of the matrix product QP. Since the 0y constitute a basis, the reduced form
of equation (%-7) must be @ = 3. As a consequence, it is seen that
QP = I. (3-8)
By advancing a dual argument, one deduces
P-Q = I. (3-9)
Equations (3-8) and (3-9) can be used as a check on the determination of the P

and Q matrices. These equations are necessary but not sufficient conditions.
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3.4 MULTIPLICATION

To multiply two elements of a number system related to the residue number

system, one forms partial products, one for each component of the multiplier,

and adds them together producing a linear combination of the basis vectors

which is then reduced by means of the Carry Algorithm. The algorithm for de-

termining the form of the partial products will be called the Multiplication

Algorithm.

The Multiplication Algorithm may be stated as follows:

Consider the most general multiplicand (yl,yz,o..,yn) and multiplier

(X1)X2:°‘°;Xn)-

1.

Write the multiplicand (yl,yg,.o.,yn) as the vector sum yi1Qp + ys0n +

. + ynan.

Beginning with j = n

2.

Example:

Write the partial multiplier (0,...,O,Xj,o,oo.,0) as the vector Xjaj‘

Multiply, component by component, Xjaj * Vi@, 1 =0,...,n.

Express the vector Xj%3 + yi% as the linear combination Z;Q + ...

+ 72501, 1 = 0,...,n.

Sum the linear forms produced in Step 4 to determine the Jth partial
sum.

Reduce j by one and repeat Steps 2 through 5. Terminate the procedure

after doing the above steps with j = 1.

Consider the multiplication

(YI)YE)"':Y4)M ° (Xl;XE)"°)X4)M

in the mixed base number system where m =2, m =3, mg=5,m =7. Here
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the bvasis is < (1,0,0,0), (1,2,0,0), (1,1,2,0), (1,1,1,1) >.

The following steps are numpered to correspond to the statement of the
Multiplication Algorithm.

1. (y1,0,0,0) + (y2,2y2,0,0) + (¥3,¥3,2Y3,0) + (Ya,¥a,¥4,¥a)

20 (X4yXa,%X4,%a)

3. (le4,O,O,O)

(Y2%4,2y2,%4,0,0)
(yaXa ,¥3%4,2¥2%4,0)
(VaXa,VaXe YaXa VaXae)

L. (y1%,0,0,0) = (y1X4:0:0,0)M
(y2X4,2y2%4,0,0) = (0,y2x4,0,0)y
(Ya%a,¥3%4,2y3%4,0) = (0,0,y3%4,0)y
(YaxXa,¥aXa,yaXa,yaxa) = (0,0,0,yaxq4)y

5. (y1,¥2,¥35¥a)y © (0,0,0,x4) = (Xa,¥1,%a¥2,XaV35%aYa )y

2. (Xg,Xg,2%5,0)

3. (y1x3,0,0,0) = A
(y2x3,2y2%3,0,0) = B
(yaXa,ysXs,2(2ysxs),0) = C
(YaX3,¥4%3,2y4%3,0) = D

L, A

(YlXB:O:O:O)M
B = (O:Y2X3)O)O)M

C

I

(0,0,2y3%3,0)y + (0,%3y3,0,0)y
since (0,0,2x3y3,0)y + (0,X3y3,0,0)y

= (2xay3,2X3y3,4%3y3,0) + (Xays,2X3y3,0,0)
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(Y3X3;YSX3;2(2Y3X3),O)

1

D

(O;O:XSY4;O)M‘
5. (leyZJy3JY4>M : (O;O;X3:O>M
= (y1Xs,YoXs + YaXs,2Xa¥as + Xa¥a,O0)y

2. (%2,2%2,0,0)

3. (x2yl,0,0,0) = A'
(xpy2,4%2y2,0,0) = B'
(x2ys,2%2y3,0,0) = C'
(xo%4,2%2¥4,0,0) = D'

o A" = (y1%2,0,0,0)y
B' = 2(0,%2y2,0,0)y + (%2y2,0,0,0)y

for (xzyz,4x2y2,0,0)M
= (x2y2,2%ay2,0,0) + (0,2x2y2,0,0)
= (%2y2,2%2y2,0,0) + (x2yz,2%2y=2,0,0)
+ (%2y2,0,0,0)
c' = (0,%x2y3,0,0)y

Dl

(0;X2Y4,0,0)M
5. (y1,¥2,¥8:¥aly (0,%2,0,0)y
= (xoy1 + Xoy2,2%X2y2 + Xe¥2 + X2¥a,0,0)y
2. (Xl,0,0,0)
3. (%1¥1,0,0,0)
(x1y2,0,0,0)
(x1¥3,0,0,0)

(XlY4)O:O;O)
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5. (y1,92,¥3,¥a)y © (¥1,6,0,0) = (X171 + X1¥2 + X1¥s + ¥1¥4,0,0,0)y

FAMS

The results of +the Multiplication Algorithm in this example are the fol-
lowing for rules for the formation of partial products:
(YlJYZ)YB)Y4)M ) (Xl:o)O:O)M = (Xiy1 + X1¥2 + X1ys + le4,O,O,O)M

/

(Yy15¥2,¥3,7a )M+ (0,%2,0,0)y = (Xeyi + %oy2,2%y= + Xeys + X2¥a,0,0)y

i

(y1,52,¥3,¥a)y + (0,0,%3,0)y (Xay1,Xay2 + Xa¥s,2%ays + Xaya,0)y

il

thﬂ&h&'(%@%&m (Mhﬂﬂ&&%ﬂwﬂw

To multiply two mixed base elements (yi1,¥2,¥3,¥a ), and (Xl,xg,xs,x4)M one pro-

M
ceeds as follows:
1. Form the above partial products.
2. Reduce each partial product by employing the Carry Algorithm.
3. Sum the partial products again employing the Carry Algorithm.

As an example, consider the product (l,E,B,M)M- (O,2,h,6)M. The partial

products are

(1,2,3,A)M . (0,0,0,6)M (6,12,18,24) = (1,1,1,3)M mod M

(4,28,L0,0)

(1)2)5)}+)M : (O:O;A)O)M (l,l,O,O)M mod M

(6,22,0,0) (1,1,0,0),, mod M.

(1J2?5}h)M : (O)Q!O)O)M M

Therefore,

(1,2,3,k),, - (0,2,4,6)y (0,0,1,3)y mod M
(0,2,4,6), <> 10k

and
(1,2,5,&)M £ 200

104 - 200 = 2080C = 10 mod M

(0,0,1,3)y €<= 10.
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Iet us lcok again at the question of associativity of matrix multiplica-
tion. Consider the three matrices A = ”aij”’ Hb ”, and C = Hcinu Tet
the basis of the vector spaces by U, < 0p,0,...,0, > V, < 61,62,..,,Bn >
W, < VARSI ERRE VN > and Z, < 81,02,...,0n > TA is a transformation from

U~>V, Tg: V> W, and TC: W~ Z.

The ith row of the product A-B is

n )
Q{élaikbkl,kélaikbkz’ ) ; alkbkn>

reduced relative to the basis < VAURERFYN >. Designating the reduced form ob-

tained (eil,eig o€y ), we obtain
alkbkn
k=1
€in =
Define n
Z aﬂkar
1
fin =
n
kaiaikbk,n-l + Lin8n,n-1
®i,n-1 = L, 1 f
Z aikbk n-1* f1ngn n-1
fi,n"l = mn_l
-~ n
v
| Lialkbkﬁ fingn,1 + fi n-18n-1 + --- + 1 -85,
eil = ' My
where
. . . + g. + ... .
57 €171 T 83575 * gj,j_lyj-l
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The ith row of the product (A-B)C is

n n

wl ) \l;'ll o Z

(4 CikCkays & €4xCros ey L €4%Cky
k=1 k=1 k=1

reduced relative to the basis < 71972,..,,7 >. This gives rise to the re-

n

duced from

; _
‘-Lll,hlﬂ) o o ’hin)
where
kéteikck;1
Mo = )T
n
n 7
£ €1kC%kn
Lin = My
n
‘k§£eikck,n-l * Aintn,n-1{
hl,n—l = 1\ m,_q {
and .
kzleikck,nml + 2inrn,n~l|
'ei,n-l = L mn_l J
n
w2 C1kCka * binTrn,s * 4i,n-1Tn-1,1 + -0 + TioTo1|
hy, =
1 m; _)
where
mbS, = r,8 + ...+1v, ... .
J7d Jrz J,Jd-173-1

Similarly the ith row of the product B-.-C is

-

reduced relative to the basis < 813..6,8n >. The reduced form is
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Si,n-1

i1

The ith row of

reduced relative to the basis < Biseos,0n >.

where

in

Vi,n-1 =

ASD TR 61-483

n
kgibikckan-l * t1nrn,n-1_}
My J

> A

kélbikckl + tinrnl + ti’n_lrn_l,l + .0 + ti2r21 L

) 1

“ my |

A(BC) is

n n n
<;§laiksk1;k§1aiksk2,...,kglaiksk%>

(Vil,viz, o e a ’Vin)

a.

ksk,n_l + uinrn,n-1A

B
T

Mn-1

L9

l

The reduced form is



831%5%,n-1 * Yintn,n-1

Ui n-1
(&
1 k:::l

Selecting particulaszr

/Tl
hs = i
in K.:

[ /n
t T

\
D Qs De MmO hi °
Z_flalkokn// mod T, cn

i.

4+
(-1
/

mporents for compariscn

J.kbk -1 Hirﬁn,m—) mod mpy_y - cnwl,n o

&
+ \ Gk Bibgs F fingni + £ n-18n-1,1 + ---
\
B
+ figgzll mod m. ° Ci,n mod my,
/ —J
or
e \
in =1 \I"—l &4 % O%rf mr/ T My,
n- l/ﬂ
+ ,Z/?' «.f;zf Jg 1mod m[/ s 2 2nm0d' m -

Removing cne term an

.'EJ.
hin = =
[n-1
+
lr*-l
Nel
o
r=1
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d changing indices, one finds

a’lkbkfl‘“l" pmod My

L\’ID'
*

8

2 J_}:bkrmOd “*1' e crnimod my,

\
C:ﬁfldgjrmod mT/ crand m,

50



ﬁ 81k PynCnnmod my

n-1 | n n
rzi kgiaikbkr + .Z fi585r |mod my - cypmod my.
= - J:r

+

Also

<
Il

n \
i Z 8ixSkn , mod m
in x=1 k7kn n
n . n
S, 2, bixCrnmod my | + ais ( Z.bgkcknmod my,
k=1 \F=l

/o=

n
cee 2 B4n (kg DppCrpmod mn>[}mod my,

+

\
~

or
n-1 n

in rgiairbrncnnmod m, + k§ Zialrbrkckand My -

<
I

Changing indices for clarity, one obtains

n n-1 n
Vin = kziaikbkncnand my, + rgi kglaikbkrcrand my .

Since the first terms of hip and vj, are the same, it is sufficient to

look at
n ]
gialrbrk + jzkfijgik mod my (3-10)
and N
n
rgiairbrk mod my,. (3-11)

It is seen that the above expressions are not in general equal, for the range
of expression (3-10) is the positive integers less than m, vhereas the range
f (3-11) is the positive integers less than m,. Since the mj are relatively

prime, one is led to conclude that the ith row of (AB)C is not equal in gen-

eral to the corresponding row of A(BC). This was shown independent of the
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selection of the basis for the varicus image spaces involved. Therefore, no

selection of basis will guarartee associativity of matrix multiplication.
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CHAPTER IV

THE MIXED BASE NUMBER SYSTEM

4.1 GENERAL CHARACTERISTICS
In order to remove ambiguity the elements of a finite number system are
partitioned into two classes, those representations defined as positive and
those defined as negative. Normal convention assigns a magnitude interpreta-
tion to positive elements and a complement interpretation to the negative ele-
ments. For sign determination and magnitude comparison, it is necessary to
identify the classification of each and every element. The structure of the
residue number system makes immediate classification difficult. The structure
of the mixed base system facilitates immediate classification. In addition,
the mixed base system allows one to handle the problems of additive and multi-
plicative overflow, and division. We shall see that the mixed base system ex-
tracts payment in the form of carries for these advantages.
The basis vectors for the mixed base system are generated in the following
manner:
1. Order the primes mj,Mmo,...,Mp.
2. Set & equal to the vector consisting of all 1's. Beginning
with § = n.
3. Obtain aj_l = mjaj'
. Repeat step 3 with j replaced by j-1. Stop after performing 3

with j = 1.
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Theorem XX. The vectors {Q,...,0,} produced by the above scheme con-
stitute a basis.
In order to prove the theorem, Lemma 1 will be prover.

Lemma 1: If (a,b) =1, then {(a mcd b,b) = 1.

Procf: a =bg +r, 0K r <3 and by definiticon r is the residue of a mod b

a = rmed b
or
a = (amod b) mod b.
Siace x = y mod z = (x,2) = (y,z), (2 mod b,b) + (a,b). The conclusion fol-
lows.

Proof of Thecrem XX: y is a representation of the integer 1. The vector

n

£ is the residue representation of A = X

ms:. KEach m.
i=4+1 T

; for 1 £ £ is rela-

tively prime to AL. Thus it is seen that
kg = Ofcr i >4
and (kp;,m;) = 1 for 1 > £. By Thecrem XIT the set < Q1,02,...,0, > is a

basis of RE.

Theorem XXI. An element (¥y,Xo;...,X,) of the mixed base number system

. . - . : M N ‘
1s a representation of an integer X in the range C ﬁrus X < (¢+1) o if and
1 11
only if x4 = C.
Proof: The element X = (xl,xg,o.o,xn) is a coding of the integer
M ' M
Xy — + %o L 4 Xg ———— + ... + X_ modulo M. (L-1)
my ma Mo myMollig e’
Consider the quantity
1
==+ Ky ——— 4 X — .. + ° LL-
X1mg *Xe mp t ¥s M3 Mo *n (h-2)
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The largest value expression (4-2) can assume is attained when

X3 = omy - 1.
Upon substitution one obtains
M ( M - M
mp - 1)— + {(mn - 1 + (mg - 1)+ ...+ (m, -1
(m; )ml VR )mlmE (ma )mlm2m3 0 )
This is then rewritten as
M M
- ( - Lo 0 - coe ——(1 - o
(my - 1) + my(m, 4 1) + mnmn_l(rn_z 1) + + mlmz(ng 1) + o

remembering the scheme for generating the base vectors. All but the following

terms add out:

RN Ep
miy mjy,

~

This means that expression (L-2) is equivalent to expression (L-1). Consider

next the quantity:

M
-1 + ( -1 + ... + -1
(ma )mlme ms )mlmgms (mn )
which is equal to
(mp - 1) + mpl S1) rmgmy (- 1)+ oeee + (mp - 1),
n n\My_1 My My 7\l 2 2 T, Mo
The above expression reduces to
m]_.g.l\_&_.,
mj,

From this the conclusion is clear.
To determine the sign of a mixed base number it is necessary to have a
partitioning of elements representing consecutive integers into two classes.

The first coordinate gives such a partitioning if m; is even, i.e.,
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x; <m/2 = 0<X<MA2.
When applying the Carry Algorithm to the reduction of the expression
810y + 8200 + ... + anan
(ai is a base vector of the mixed base system) one must increase by one a’ for

J
every multiple of mj+l contained in a5+1. (The notation here is consistent
with that contained in the discussion of the Carry Algorithm.) This indicates
that a carry may be propagated from the nth coordinate to the first. There-
fore, when adding two elements of the mixed base system, one unit of time is
required to produce the unreduced sum, and up to n-1 units of time may be re-
guired to propagate carries. Borrowing is accomplished by reducing a' by 1
and increasing a3+l by mj+l° Again up to n-1 units of time may be required to
perform subtraction or complementatiorn.

Multiplication of two elements of the mixed base system was discussed and

an example given in Chapter TIIT.

Theorem XXII. When two mixed base numbers are added, the carries are

binary and a position which produces a carry cannot also propagate a carry.
Proof: The largest jth component of the unreduced sum occurs when the jth com-
ponents of the addend and the augend are maximum, i.e., equal to mj—l. The
maximum sum will be mj—2.

let j = n. The maximum unreduced nth component will be 2my,-2; therefore,
the carry can only be zero or one. Consider j = n-1. The component Zmn_l-2
will precduce a carry. If a carry was generated by the nth position m,_q-2 +

lm, _q; therefore, no carry is both propagated and generated.

Assume the results true for j = m. In this case 2mm_l—2 will generate a
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carry of one, and me_l-E + 1 will also give rise to a carry of one.

4.2 CVERFLOW

A problem of the residue number system which can be solved with the mixed
base system is cverflow. In a mixed base number system where my, = 2, the inte-
gers less than M/2 are represented in the system. Therefore, overflow is de-
fined to e the condition where the true arithmetic result is an integer larger
than or equal to M/2. First additive overflow will be discussed and then var-
ious conditions for the absence of mulitiplicative overflow will be demonstrated.
(Due to sign detection and overflow conditions it will be convenient to assume
m; = 2 for the remainder cf this chapter. In this chapter all n-tuples will
be elements of the mixed base number system.)

Theorem XXIII. If the sum of two positive elements of the mixed base sys-

tem is (zl,..,,zn) additive overflow occurs if arnd only if z; = 1.

Proof: (2z1,22,...,2 represents the integer

n)

M M 1
zy5 + 22555 + ... + zymod M (b-3)

and overflow occurs when

M M
Zl—+ Z2-———+ oo + Z.

2 2mp n
This will clearly be the case if z; = 1.

The largest value that z2§M— + ... + 2z, can attain has been shown to be
Mo

M
5 - 1. The largest sum possible is 26% - > = M-2 < M. Thus expression (L4-3)
becomes zlg + ZZ§M_ + ... + 2z, and the other conclusion follows.

mo

To insure that multiplicative overflow will not occur, conditions will be
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given which will insure that no multiplicative overflow will occur as the par-
tial prcducts are formed. It is also necessary that overflow does not occur
when the partial products are summed. This will also be treated.

Consider (yi,y2,-+-,¥n) * (%x1,0,...,0). Since (x1,0,...,0) &> Xlg, over-
flow will occur unless y3 = y2 = .00 = yp = O.

Consider next (yi,y2,.--,yy) * (0,%2,0,...,0) and note that (0,%x2,0,...,0)
“> X2§%;- Therefore, the condition which is necessary and sufficient for the

absence of multiplicative overflow in this partial product is:

Y1 = YJo = PP yn_l = 0 and Xo Yn < Mo .
Since (0,0,%x5,0,...,0) represents X35 M_ and (y1,¥25+++,¥n) represents
zMoMa
_ M . -
Y =yp + Yn-1%n + yn_gmhmnnl + ...+ ylﬁ?’ a necessary and sufficlent condition
to prevent overflow is
% —1 vy < M (b=l
2mommg 2
or
Xz Y < mpmg
Thus it is seen that condition (L4-L4) becomes
xa(y, + vy, _m ) < memg (4-5)

and
yi = ¥z = ... = ypp = 0.
Since yp < my we may substitute for expression (L-5)
Xagmy, (ypoq + 1) < mamg
to obtain a sufficient condition.

Consider now the general partial product (yl,yg,c..,yn)

M

Moee M=
2 J

(O,,..,O,XJ,O,..Q,O)° In this case (o,..o,o,xj,o,...,o) represents X
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To guarantee that no overflow will occur we must satisfy the inequality

x: ¥ < mwo...ms Or

J J
Xj{yn + yl,l__,lml,1 + ... + yn-(j—E)mn [P mﬂ-(j-B)
(4-6)
M <
+ yn_j+lmnmn_l mn_j_g + oae. + Ya g) mgmsmj
The condition becomes
Yp-j+a1 = Yp-3 T -0 = V1 = 0
and
xj(yn + Yoy + oo .. F yn—(j~2)mn"'mn-(j—5)) < mamgmy . (4-7)

This constitutes a necessary and surfficient condition that this partial pro-
duct does not produce an overflow. Again there are simpler inequalities the

validity of which will imply the validity of (4-7). These inequalities are
Xj[<yn-l + 1)my, + ...+ yn—(j—w)mn"’mn—(j-B)] < mgmg. . .mj.

Xj[(yn—E + l)mnmn_l + ...+ yn-(j—?)mn"'mn-(j-E)] < LE L CHRR Y

Xj[(}’n_(j-g) + l)mn...mn_(j_5)] < Mamg. . ..

The sufficiency of the above inequalities stems from Theorem XXIV.

Theorem XXTV. If x; < m;, then

X; + Xomy + Xgmamo t+ ... + X,

Proof: The maximum value that

X3 t Xomy + XgljMo + ... + xk_lmlmg...mk 5
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can attain is

(my - 1) + (mo - 1)my + (mg - 1)mms + ... + (mk-l - l)mlmg...mk_z

= Milo. . ..mk_gmk 1

- 1< mimo . .amk_l.

-~

Even when none of the partial products of a multiplication involve multi-
plicative overflow, overflow may result when the partial products are summed.
Such overflow will be avoided only if the first coefficient of the unreduced

sum is zero and no carry is propagated into that position.

L.3 DIVISION IN THE MIXED BASE SYSTEM

Utilizing the overflow rules given in this chapter, one may now state
rules for performing division in the mixed base system. The conditions for
the absence of multiplicative overflow and rules for forming partial products
provide a means for estimating trial divisors. The subtraction rules then
allow one to determine the new dividend. The method will be demonstrated be-
fore the formal rules are stated.
Example: Divide 95 by 14 using the mixed base system where my = 2, ms = 3,
mg =5, and my = 7o

9 ‘H (O:Q:B:A)
1k &> (0,0,2,0)

E=A W)

Step 1: Determine first divisor

04
0,0,2,0  )0,2,3,k
It is seen that it is necessary for & = O to avoid overflow.
Step 2: Determine second divisor

0,B
0,0,2,0 10,2,5,u

ASD TR 61-48% 60



Again to avoid overflow B = O.

Step 3: Determire third divisor

From overflow considerations

0,0,7
0,0,2,0 02,5,k

it is seen that y = 1 is satisfactory.

(@) e}
o
[
>

Nl
Al
FAN |

0,0,2,0

2

o

o
e

N
"o

it is seen that ¥y =1 is too large; thererore, y = O.

Step 4: Determine fourth divisor

0,0,0,6
0,0,2,0 0,2,3,k4

From reference to overflow rules and multiplication the estimate is { = 6.

0,0,0,6
0,06,2,0 0:2;531‘
0,2,2,0
0,0,1,k

The division is completed giving 95 = 6 - 14 + 11.

The procedure for determining the trial divisor is as follows:

1. Consult the conditions for the absence of multiplicative over-

flow to determine the possible range of trial divisors.

2. TUse the rules for forming partial products to determine a trial

divisor which will yield the required zero(s) in the most sig-

nificant place{s) and a non-zero component in the most signifi-

cant non-zero position (kth) of the dividend. (The kth com-

ponent must be less than or equal to the kth component of the

dividend.)

5. Subtract the partial product from the dividend and if necessary
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revise the quotient so that the least possible non-negative

result is achieved.

4.4 DIGIT FILL-IN
An addition problem which can be solved by using the mixed base system
is the problem of digit fill-in. If one is given the coordinates of a vector
representing the integer relative to the basis A = {Q1,0,...,0,} and base
moduli mj,mp,...,m,, the problem is to express the integer s in terms of
coordinates relative to the basis {51’52’°'°9Bn’6n+1"'°) n+m} = B and base
moduli ml,mg,.,.,mh,mn+l,..a,mn+m. The m; are pairwise relatively prime.
Since one can represent s as a vector relative to the base moduli

m ,Mp,...,M,, S 1s less than iﬁi my. Therefore, if s is expressed in the
mixed base system relative to the moduli L L g B Y
the coordinates with weights greater than or equal to {Ei my must be zeros.
The weights of the last n components of the mixed system will be in reverse
order, 1,m,,m.M,_q,.0«,MMy_700.M2. These weights are the same as the weights
of the components in the mixed base system relative to the primes mj,mo,...,my,.
Therefore, digit £ill-in is accomplished as follows:

1. Perform the change of basis operation from the basis A to the

mixed base system.
2. Prefix the m zeros to produce the correct representation in the
extended mixed base system.
%, Perform the change of basis operation, this time from the ex-

tended mixed base system to the basis B.
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CHAPTER V

OTEER NUMBER SYSTEMS RELATEZ T0 THE RESIDUE NUMBER SYSTEM

5.1 PARTITIONING PROPERTIES

In Chapter IV it was ncted that the mixed base number system representa-
tions corresponding to consecutive integers are partitioned by the first co-
ordinate. It is this property which permits a rapid solution to the sign de-
tection problem. A ¢uestion arises whether other number systems exist which
possess the desirable partitioning whiie having simpler rules of arithmetic
manipulation. It will be shown that the only non-redundant number system to
achieve a partitioning of elemernts representing consecutive integers is the
mixed base system.

Lemma 2: For any integer % within the range 1 < k < p, there exists an inte-

ger £ such that

P bk < 2p where £ < p and p > 2.

Proof: It is evident that k cannot lie in the range

1< x <2
p-1
for
p~>2, p-2 >0
2p-< > p

2(p-1) > p;

therefore,
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Thus there exists an integer £ such that

> |Hd

P
k< —— wi >
< 1 with p > £

and one concludes p < £k < Zéf p < 2p.

Theorem XXV. If the base moduli are ordered m;,mg,...,m,, only the mixed

base number system gives a partitioning of the elements into those elements

which represent integers in the range less than LEillM-but greater than or
equal to c %_y where c is the first coordinate of the element.
1

Proof: We will consider all number systems which give the desired partition-
ing and conclude that they are all identical to the mixed base system.
Consider the number system based on the vectors < Bi,B2,...,B, > It is
assumed that this number system achieves the desired partitioning. Here B;
corresponds to By;Bz to Bo etec. An element of this number system Y = (yi,y=,
.+,¥p) represents the integer.
viBi + y2B2 + ... + y B mod M.

For the set < Bi1,...,B, > to be a basis it must be triangular; therefore, one

may state
B, = kyn
Bpi = kpoqmy
- k., . JT
Py 7 %51 ™
s
Bl = kl i=2 mi
where <
J
0 < kJ <££i my
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Consider y; = ¢ and y; = 0 for i #£ 1. The expression y;By + yoBz + ... yan

M 5 - - cM M / M - .

; X — mcd M., Cle YV, —— ky — — ' ires
mod M becomes cks, ) med ) iearly, ) L cky T < (c+1) N for ¢ < my requires
kX7 = 1. One condition which must be satiszfied is y3 =0 - = - Y < %7. This re-
quirement becomes

yoBa + yaBg + +y,8, = zmodM (5-1)
where z < M for all y - s
my NEBNATRERFNAE
Consider first the case
yo # Oy ya3 = ... = y, = O.
We have
- M
VeBa = y2ko T
If there is an integer /£ in the range C < £ < mp that
Moo 2 < (5-2)
My N Mo
condition (5-1) is violated. Expression (5-2) may be written
mp < bkp < mymp (5-3)

By Lemma 2, it is seen that for ko > 1, we can find an integer in the range
0 < £ <m such that my < fkz < 2mp. Since m; > 2, irequality (5-3) is satisfied.

Therefore, ko = 1.

Assume that we have shown ky = 1 for 1 =1,2,...,m. Iet y; =m; -1
for 1 = 1,2,...,m,¥n41 % 0, and yp4p = Ym+® = oe0 = ¥n = 0. Counsider
M M (my,_y ) M
-1 + -k) — — + o b ——— 4+ —
(mo ) mms (mg ) m; Mol MiMg .« « <Dy Ymet1 K LMz . - <My

or

(mz - L)mg...my + (mg - L)mg..ompy + oo + (mp - 1)mpyq ..oy + Vg Ky Moo o0

which yields
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(momge..mp) = (mpeq-..my) + Yim+1 Ky B+ + Ty
But M. Molg. « oMy, .
my 3
Thus the sum s is
S % m T Mmer™ F Y+ Fm1 P2 * M

If

yLng s <M (5-4)
ms

condition (5-1) will be compromised. Expression (5-4) becomes
< < ( - 1) Moy
M1 e e My S Va1 Kpe 1Mo o« <My my my T Mm+lcccTn
which upon substitution for M yields
Mpe1 s oMy S Va1 Kpe1Mpep - - iy < [mz...m (mg - 1) + 1lmq-eom-

Removing the common factor in the above expression one obtains

Myl S Yml¥p+l < [meeeomp(my - 1) + 1lmpyy . (5-5)
If mpyy < kpyp < (ma-1)mg...mpyq, (5-5) is satisfied by Y1 = 1o If
kpy1 < my4y and k9 > 1, Lemma 2 guarantees that there exists a Y1 Such
that

Tpal < Yme1kmel < 2y
but since

2 < [mgs.omm(ml - l) + l].
It is necessary that ky41 = 1 or that

(my - 1)mp...mpqy < Kppp < MMz . gy -

To see that kp41 cannot be in the range

(my - L)mg.ompy g < Kpyq < MiMp . « oMy 5

consider yp.q =1 and y; = 0 for i Zm + 1. Then
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s = BpyiKpiiMmepe -y

and

|Z

(
< (m; - l)mg...mm+2°,.mn <5 <Mafp...moe-oMy = M.

-
e

=]

Again we have satisfied condition (5-%); it is necessary that k .4 = 1.

Therefore, the only number system which effects the partition described
is that system having k;y = 1 for 1 = 1,...,n. This system is the mixed base
number system.

Theorem XXVI. If the base mcduli are ordered my,mz,...,m , there is only

one number system with the property that the first coordinate partitions ele-
ments which represent consecutive integers into mj classes. That number system
is the mixed base number system.

Proof: Theorem XXV shows that there exists but cne number system which parti-

tions the elements into those elements which represent integers in the range
less than (c + 1) %T but greater than or equal to C%I’ where c¢ is the first
coordinate of the element. By definition this number system is the mixed
base number system.

It remains to show that nco number system exists which effects the same

partitioning for y; # c. Assume such a number system exists with basis

Bi’ﬁé"”°’8ﬁ‘ An element of the rumber system represents the integer

1 ] 1
yiB1 + yeB2 + ... + ypBy mod M (5-6)
Again we may state
Bp = ky
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o
N
=

Bl
j

' n
i=2

1
By

J
where O < kj < :Tgmi. The range imposed on k; is 0 < k; < my;. Thus we have
i=
Bi = kl M/ml

and expression (5-6) becomes

M
yaika m mod M when y; # 0, y2 = ... = yn = O.
It will now be shown that there exists an integer ¢ in the range 0K c < my
such that

c gylklI%—lmodM<(c+l)M

my my
cannot be satisfied for 0 < k; <my, 0< y; <my, and y; # c. Take c = O.

Expression (5-7) becomes

0 < yika %I mod M < %I' (5-8)

Condition (5-8) will be satisfied only if

yiki = O mod m;.
Since y1 # 0, (5-9) requires +hat ky = O. This is the desired contradiction
which completes the proof.
Corollary 1: If the base moduli are ordered my = 2, mp, mz,...,n, there is
one and only one number system with the property that the first coordinate
partitions the elements into two classes, the representations of the integers

less than g, and the representations of integers greater than or equal to %.
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Proof: This corcllary follows from Theorem XXVI with my = 2.

One now asks whether a number system with base modull mj,mp,...,mn exists
which partitions elements which represent consecutive integers into ms classes
with the first coordinate where J # 17

The number of elements having the same jth coordinate in any system having

m: as a base prime is

J
M m

2 = 1s

m, il 1

J ey

i

Likewise, the number of elements associated with a particular value of the

first coordinate is

M/ml = JUmy
i=2

The number of elements in the two cases differs and the greatest common multiple
is one. Therefore, the answer to the question posed in the preceding paragraph
is negative.
A similar argument shows that no number system with base moduli mq,ms,

.o mp where (mp,m) = (mg,m) = ... = (my,m) = 1 exists which partitions with
the first coordinate elements which represent comsecutive integers into two
classes, one class the elements of which represent integers less than M/m
and the other class representing integers greater than or equal to M/m. The
argument follows:
Since M is relatively prime to m, m.* M, but m/M - £ when 0 < £ < m. Iet

m-—ﬂ:dm. Ifm<m1,mlkM-£n Ifm>m1

my * M- £ for em; < £ < (¢ + 1)m;.
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Suppose km; = £, then m - £ = my,mp,...,m, - mi;k but (m,m;) = 1; therefore,
m*M-z which is a contradiction. The only related number system which produces
a partitioning is the mixed base number system and; therefore, the proof is
completed.

From the theorems and arguments advanced thus far in this chapter, one
concludes that the mixed base number system is the only number system which
partitions the elements representing consecutive integers. In particular only
the mixed base system with m; even partitions the elements representing con-
secutive integers into two groups--(1) elements corresponding to positive in-
tegers and (2) elements representing complements. Thus if one wishes to use
a number system to determine the sign of the residue element, he will find it

necessary to use the mixed base system.

5.2 NUMBER SYSTEMS ALLOWING SIGN DETECTION WITH FEWER THAN N-CARRIES

It has been suggested that the use of number systems which are neither
strictly residue nor strictly mixed base might ease the carry situation in
sign determination. Such systems are those in which a certain number of
carries are eliminated from the operation of expressing a vector in the mixed
base system.

As developed in the chapter concerning the Carry Algorithm, a vector X

with coordinates (x;,Xs,...,%X,) relative to the basis < Bis.+.,By > 1s expressed

n)
with coordinates (yl,yg,...,yn) relative to the mixed base basis < Qy,...,0, >

by determining the q = “qin matrix and following with the matrix multiplication

X * Q=Y. The elements of the Q matrix are governed by the equation
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= g3, * oo g0 for 1= 1,2,...,7, (5-10)
The Y so obtained will not in general be a linear form with restricted coeffi-
cients. Carrys must then be propagated from each position to the next more
significant positicn. The general coaversion will require up to n-l carries.
To reduce the maximum possible number of carries which can occur by say m-1
carries, it will be necessary and sufficient to guarantee
Vp <My for k= n-m,...,n. (5-11)
This is in turn equivalent to the condition
4ix = Bsy for i,k = n-M,y ... ,n. (5-12)
Condition (5-12) may be expressed as

n-m-1

B = O + iii ¢ % for k = n-m,...,n. (5-13)

If Hain is the array of the mixed base basis vectors, consider the m x m
sub-array in the lower right correr. Equation (5-13) states that this sub-
array must be preserved in ”bij“’ the array of the B vectors. The only other
requirement is that ”bij“ be triangular. Other considerations which affect
the selection of the remaining elements in the B array stem from a desire to
simplify the carry structure in the B system.

Since ajy = 04 3 for 1, jJ = n-m,...,n the carry structure in the last m
positions 1s fixed. Carries from the kth components to the jth components
where

k = n-m,...,n

J = 1,2,...,n-m-1

can be prevented by the following constraint
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bij = O for i - n-m,...,n
J = 1,2,...,n-m-1.
Further carries can be eliminated by making the upper right partition of the
array the identity matrix.

Since ajj = bij for i, j = n-m,...,n carries from the £th component to
the (£-1)st component will occur for 4 = n-m+l,...,n. Therefore, at least
m-1 carries will occur in the B system. The total number of carries in the B
system for a subtraction followed by sign detection is at least as great as
for subtraction in the residue number system and conversion to the mixed base
system.

Such number systems do not appear practical, for nothing is gained in

addition and sign detection. In fact, from the Multiplication Algorithm of

Chapter III, it is clear that much speed is sacrificed in multiplication.

5.3 GENERALIZATION OF SIGN DETECTION FOR THE RESIDUE NUMBER SYSTEM

Let a residue number system be defined as

Pn Pn
= — + ... —_ -1k
Sey V1, * ¥ o (5-14)
(mi,mj) = 1 except for i = j
where |Sle = X
iXi =
"X!mi Xl
Xlkl my - yl
Py
k, — = 1
l 1 ml ml
P, = m;,1l < [u] < n; P, = 1
1=
m = p,
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The residue number system is a member of the general class of nonredundant

weighted number systems which satisfy the feollowing relationship:
B, = zio+ .. +zp (5-15)
The necessary and sufficient conditions for the validity of this relationship
is the triangularity of the weight matrix (See Theorem XV and XVI).
Consider next the special mixed base number system which satisfies the
relationship. It has been shown in the previous sections of this chapter
that the only non-redundant number systems having simple sign properties is

the mixed base system.

S gy o 6
T 420 B (5-16)

Zq is identified as A(x) and z; is the high order digit of X. Any non-
redundant weighted number system S must satisfy the relation

5 = Sy (5-17)

where S = Z1p1 + ... + Z,Ppn-

The following relatiomns are also valid if S = Su

kS = kkSM
kS] = [kSy]
(5-18)
{kS] = {kSM]
kS = |xs,,|
[y = e,
Consider the normalized residue code
-SRN = SM (5'19)
S P S P
RN i _ Mi
Pn Pn
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(5-20)

T
— = Zp 5
1 M g0 Tt

It is possible to further reduce the left hand side of the equation when

Pi' This occurs when i > J.

&
P. 2 y.py E P;
Ty 2+ | W= = T z, —= (5-21)
B J>1 My £=0 ~ Py
The i-1 term associated with equation (5-20) is
E yjPi—l iil Pi-l ( 2)
) ms = z2y Py 5-2
j=1 g=0 % 4

Both sides of equation (5-21) are multiplied by m; and the resulting equation

is subtracted from equation (5-20) to give

n Y5Fi n YyP5q
Lomym T Y T s ozl Hlen (5-23)
J=1 J=1
Reduction of the left side of equation (5-23) yields
n yjPi n v P,
. J i-1
.P. + - |- m. —— = -
YiPia * & T my j;é_l , zy (5-24)
The identity
(o] - my [I%] = [[0] |my (5-25)
may be applied to equation (5-23) to give
n yjPi
e m m; = 23 (5-26)
0< [1] < n vwhere my = o
Equation (5-26) may be reduced to
n
Z Vs ii‘ [Z yjPi = Zi
j<i ms s> ms
J J 371 3 | my
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ViFia1 G Wy flmg TP

(5-27)

1

L+ 2125 0% [m] $1; 0 [zl2J<‘§—1-maybe

the previous formulas.

m
The special case 2|my, zi = 211

N

nhandled within the framework of

Ir particular

z11 = Y14 .+ Vn o |Tay ., 02 (5-28)
my My my Mp
and
‘ 2
211 = [gzl + ...+ 200 (5-29)
L?l Tn | o
or in general when EX]ﬁl
z3 = |yt %i Jo2 * ... E; In (5-30)
n

Equation (5-2

st

9) and (5-30) should be regarded as the fundamental defini-
tion of the sign digit.

A1l known methods of sign detection may be inter-
preted in terms of these equations.
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CHAPTER VI

DIGIT ENCODING IN ARITHMETIC OPERATICNS

This chapter discusses some coding schemes for individual moduli and
the resulting facility of arithmetic operations. Two types of natural en-
coding result depending upon how one represents the integers with respect to
multiplication. The first approach analyzes the abstract structure of the
given prime subring, i.e., residue digit. It is recognized that still a
further decomposition is possible with respect to multiplication., A repre-
sentation scheme is suggested by the direct sum decomposition of the com-
ponent multiplicative subgroups. The second approach treats multiplication
as a linear transformation on the additive subring. Such a treatment sug-
gests a weighted code so that the fundamental property of multiplication, its
distributivity, may be employed. This is the more conventional approach.

Tt will be shown how codes may be constructed for arbitrary moduli by the
use of redundancy. Furthermore, the redundancy may itself be used to speed

up arithmetic operations.

6.1 CODES BASED UPON THE GROUP STRUCTURE OF THE MULTIPLICATIVE SUBGRCUP
The fundamental idea of the residue number system is the ring decomposi-

tion:
= -+ - -
Rm Rplocl G Rp2a2 ® ® Rpmam

?Zpio‘i = M (psrpy) = 114

ASD TR 61-L83% TT



where Rj denotes the ring of integers modulo i.

If the p; are taken prime, there is no further ring decomposition pos-
sible. Nevertheless, the subrings Rpiai possess multiplicative groups which
may be further decomposed. In general, the order of the multiplicative group
of Rpiai is a group of order ¢(piai) where ¢ is the Euler function. If p is
prime and @ = 1, then ¢(p) = p-1 and the multiplicative subgroup includes all
but the zéro of the subring.

Since p-1 is not prime, this cyclic group may be represented as the pro-
duct of its prime power cyclic subgroups. In number theoretic terms we are
Just saying that multiplication may be done by taking the index function of
the additively expressed integers and performing a residue encoding.

As an example, take Rzj. Column I contains the additive code for Ra1,
column IT the index or multiplicative representation, and columns II a, b,
¢ the decomposed or residue representation of II.

If a4 # 1 then the multiplicative subgroup will no longer include all
but the zero of Rpiai’ since p, 2p, 3p, etc., will be "divisors of zero."

In this case, a larger system may be constructed of which Rpiai is a homo-
morphic image. A semigroup acting like an exponent of p is adjoined to the
multiplicative subgroup representation. This semigroup Ey = {0,1,...,x} has

the operation defined as follows:
x »y = max(a; x+y) X, yeky

Every element in Rpa is represented in the form x = ypi where y is in

the multiplicative subgroup and i is in Fy. The whole system is then
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Cq, ®Cq_ ++- BCy O Fy

2

n 3
77 a5 = o(p%)
{=1

TABLE 1

ENCODING OF THE MULTIPLICATIVE SUBGROUP

I 1T 111 I II 111
a b d a b
Cax Cao Ca Ca Cs Ca1 Cap Co Ca Cs
0 -- -- -- -- 16 6 ) 1 1
1 0 0 0 0 17 7 1 1 2
2 2L 0 0 i 18 26 0 2 1
3 1 1 1 1 19 i 0 1 i
i 18 0 0 3 20 8 0 2 3
5 20 0 2 0 21 29 1 2 L
6 25 1 1 0 22 17 1 2 2
7 28 0 1 3 23 27 1 0 2
8 12 0 0 2 24 13 1 1 3
9 2 0 2 2 25 10 0 1 0
10 14 0 2 i 26 5 1 2 0
11 23 1 2 3 27 3 1 0 3
12 19 1 1 L 28 16 0 1 1
13 11 1 2 1 29 9 1 0 i
1k 22 0 1 2 30 15 1 0 0
15 2l 1 0 1

As an example take Ro7 = Rg. Column I gives their additive representa-
tion, column ITI the index if it exists or a factorization ypi if i £ 0.
Column IIT a, b the residue representation of the index and column IV the
exponent. Notice that the system contains a certain amount of redundancy.

The number six could have just as easily been represented at ll.}l or 20.51.
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TABLE 2

FACTORIZATION PROCEDURE

I II III IV I II ITI IV
a b a b
Co7 Clg Co Co Es Co7 CLg Co Co Es
or or
Factorization Factorization

0 1.3° 0 0 3 1k 17 8 1 0
1 0 0 0 0 15 5.3% 5 1 1
2 11 1 0 0 16 n L 0 0
3 1.3 0 0 1 17 15 6 1 0
L > o 0 0 18 2.3 1 0 o
5 5 5 1 0 19 12 3 0 0
6 2.31 1 0 1 20 7 T 1 0
7 16 7 0 0 21 7.3% 7 0 1
8 3 3 1 0 22 14 5 0 0
9 1.3 0 0 2 23 11 2 1 0
10 6 6 0 0 oL 8.31 3 1 1
11 13 i 1 0 25 10 1 0 0
12 4,31 2 0 1 26 9 1 0 0
13 8 8 0 0

There appears to be at least two possibilities for application of the
multiplication decomposition exhibited above.

The most obvious is to use a machine code that is based on this decomposi-
tion. The desirability of such a scheme appears questionable except in rather
exceptional circumstances. The fundamental question, of course, is how one
adds in such a code. If a reasonably fast technique for addition were forth-
coming, it might be reasonable to consider using the multiplication code since
multiplication in the multiplication code is considerably more easily accom-
plished than addition in the normal code due to reduction of carry problems.

Nevertheless we are not too hopeful since there is no distributive law operat-
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ing so that additicn can be done by only multiplication as one can the con-
verse in the normal situation,

The other possibility is to somehow use the muitiplicative decomposition
in the logical design of the multipliers where a more conventional code is
used as the basic machine language, This is essentially dependent on conver-
sion from conventional tc muitiplication code and reconversion, This problem
ressembles the radix based-residue conversion problem except on a much re-
duced scale and the techniques developed there are applicable. Some techniques
which appear quite expensive in time and hardware for +he gross conversion
problems will be applicable at this level because the order of the subring
being decomposed will be of very moderate magnitude, A further distinction
is that the completely reduced codes would only have to be added whereas in
the ring decomposition one must both add and multiply in the subrings. The
use of this code within residue multipliers would be indicated if mappings

were used rather than sequential methods.

6.2 CCDES BASED ON MULTIPLICATION AS A LINEAR TRANSFORMATICN

The type of weighted binary code with which this section deals in the
following. It consists of a set X = {Xg,...%Xn-1), x2{0;1)} of 2" elements.
The set is interpreted by a set of weights W = {wi,..w,) and a modulus M
where the w; and M are integers with wi < M. We further require the follow-

ing relation on the weights

LleW LeW = (21 mod M)eW
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This latter property ensures that addition of code elements may be done using
ordinary carry procedures. Also we shall consider only the case where M is
an odd prime. The work is easily generalized to the case of composite moduli,
at the expense of a certain amount of notational inconveniénoe.

A code or a subset of a code is said to be complet if for every positive
integer k < M there is at least one x<X such that

sn-1 ~
k = ( X xiwé>mod M.
1=0

It can be noted immediately that if M < 2m, the entire code will be complete.
We shall be primarily interested in the completeness of certain subsets of
codes.

If wy = 1 and Wi41 = 2wymod M, then because of the restriction on the

weights and modulus, it must be that 2w, 1 =1 mod M. Since for each wj,

there exists a W3 such that Wi = 2wi mod M then a permutation Xj - X3 results
in multiplication by 2. Repeated shifis will therefore generate all powers
of 2 modulo M. Thus there is set up a correspondence between certain ele-
ments of the code set and a cyclic permutation of the bits of the code. This
correspondence is the basis of the ordinary pencil and paper method of doing
multiplication as well as conventional machine multiplication with the slight
differerce that in our case we have a true permutation whereas conventionally
one bit is "lost" and a zero introduced.

It should be clear at this point that we have described what is sometimes

called a reduced radix code, This is the special case obtained when M = 2n—l.

We mention another commonly known example of this class which is not usually
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thought of as a weighted code at all., It is the one digit per wire code. In
this case n = M-1, and the weight set includes all possible weights,

These two well known coding schemes are the extremes of all codes of this
class. In the case of the former, there is almost no redundancy (zero has
two forms) but the arithmetic must be sequentially., The one digit per wire
code on the other hand has extremely high redundancy while permitting simple
combinational arithmetic. It is our purpose to'investigate those codes lying
somewhere inbetween,

Consider the code M = 17, n = 8, W = (1,2,4,8,16,15,13,9}. 1In this case
the weights are entirely generated by powers of two. This code may be viewed
as using the reduced radix code for 2% = 255 to represent numbers modulo a
divisor of 255. Notice, however, that by introducing all this redundancy it
is possible to select a complete subset of this code with some very nice
properties. The following subset has the useful property that no element has
more than two bits which take the value one.

This property ressembles the property of the one digit per wire code in
that it facilitates arithmetic. It is not quite as easy to do arithmetic
in this code, but on the other hand it is much less redundant. Addition may
be done quite easily in this code using adders in each position consisting
of one two input "and" and one three input "or."

At most, 2 levels of logic are required regardless of carries because
carries can propagate only one level, This results from the additional prop-

erty of the set chosen that no element has two adjacent "ones,"
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TABLE 3

=8

17, n

THE CODE M

13
Xs

15

16
X4

X7

X5

X3

X2

X1

X0

mn\ \O

11
12

13
1k
15
16
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or

¥

X4

Cy =

An adder for the M = 17, n = 8 code.

Figure 1.
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Unfortunately the sum produced may no longer be a member of this spacial
subset. It is necessary to retrieve this proper form prior to doing further
arithmetic, The nature of the ccmplexity of this problem is not yet known
sufficiently tc make final judgement., It is known that in special cases, re-
duction networks may be designed such that the total addition +ime pius re-
duction is competitive if nct superior to conventional binary addition, Fut-
thermore the complexity of the coding networks seems tc increase only linearly
with the number of bits,

Notice that complementaticn may be done either by complementing each bit
individually or by a simple permutation since "-1" is included as cne of the
weights.

If a complete set exists having only at most 2"one" bits per digit, multi-
plication is reduced to a single addition of the two appropriate permutations
of the multiplicand, In the example given above, the weights were generated
by successive powers of two., This is not the only manner in which a set of
weights meeting the criteria may be generated. The set of pcwers of two form
a multiplicative subgroup. Any coset of this subgroup is also closed under
multiplcation by two and therefore may be included in the weight set. Consider

1,2,4,8,16 |
the set of weights {;,6,12,2M,lzj and M = 31, 'This ccde has a complete sub-
set having the 2 "one" bit preperty. The only difficulty here is that +there
are no permutations corresponding to the coset weights {3,6,12,24,17}, and
therefore multiplication cannot be carried out by successive shifts and adds.
In order for this property to be retained, it is necessary that the cosets

1,2,4,8,16
themselves form a subgroup under multiplication, Thus the set 3C,29,27,23,15
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would be a better choice since the cosets are now isomorphic to the 2 element
group {1,30}.

In general, it is easy to determine closed sets of weights of arbitrary
order dividing M, using pcwers of primitive roots as generators. The problem
of determing whether a code has a complete "2 one's" subset is more difficult.
The coset decomposition of the entire multiplicative group allows a short cut
to be used. If any element of a coset is representable with only 2 one bits,
then every cther element in the coset also is, since each is only a permuta-
tion away. Thus, only the least element in each coset need be examined.

Consider as a final example a coding for M = 127. Certainly the weight
set must include {1,2,4,16,32,64}. If no additional weights are used, the
almost non-redundant reduced radix code of seven bits results by adding the

1,2,4,8,16,32,6k
subgroup generated by 3°2 = 126, the 14 element subgroup {;26,125,125,119,111,
95,63 results.

This code has a "3 one's" complete subset but no "2 one's" complete
set. If the subgroup of order 3 generated by 342 is used, the resulting 21
weight set does yield a "2 one's" complete subset.

In concluding these remarks about redundant weighted codes it should be
emphasized again that the recovery of the cannonical form of a number is the
big question in the practical utilization of these codes. If moderate success
is met here, the way is open to use very large moduli with a resulting saving

of scaling and base extension time,
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CHAPTER VIT

DIVISION

7.1 INTRODUCTION
The definition of a division in Euclidean rings suggests that algorithms
for performing it will be crucially tied up with magnitude comparison, Given

two elements (a,b) it is desirable to find a (q,r) such that:

a = bg +r and r < b,

The difficulty of recovering the natural magnitude ordering from the residue
representation had initially led us to suppose that division within the sys=-
tem would be very difficult also. Recent workers have recognized essentially
three different approaches.

a, Devise a really efficient magnitude comparison scheme; more
conventional algorithms will then prove feasible,

b. Do division in some other closely related systems such as a
mixed bhase system.

¢, Find an algorithm which is independent of magnitude tests.
This chapter is devoted almost entirely to the approaches of the third type,
The brief discussion of the first two apprcaches is given for purposes of
contrast,
Considerations of the nature of the sign detection problem have been made
in other parts of this report. While it is not so fair to say that no im-
provement can be made in the presently known sign determination scheme, it

is clear that sign detection will remain essentially as time consuming as
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division by a divisor of the moduli of the system.

Since, the division algorithms used in class C also use these "division
by a constant" procedures any improvements in sign determination techniques
would yield a corresponding improvement in techniques of type C also. With
regard to algorithms of type B, mixed base system division seems to be awkward
at best. It certainly is more complex than any binary division even without
consideration of translation time. This approach appears to be the least
valuable of the three, since it has rather extensive hardware requirements
without really being very fast.

The magnitude determination free techniques known to us are all iterative
in nature and resemble most closely the non-replacement techniques of conven-
tional binary division, With respect to these algorithms, several important
questions must be asked.

1. What is the rate of convergence?
2. What are the hardware requirements?

3., Are any initial estimates needed, and if so, how are they
determined?

4. What is the stopping procedure?
5. What type of arithmetic systems can this algorithm easily be
fit into?
7.2 AN APPROXTMATE DIVISOR METHOD
This algorithm utilizes the fact that inverse multiplication corresponds
to ring division if the remainder is zero.
Let:
m
M = ;}_gpi (i =1,2...m)
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be the modulus of a residue number system. Let Z be the set of 2™ numbers

less than M of the form

It is well known that division cof any number in the ring of integers, mcdulo
M by zeZ may be performed in a straightforward way by successively reducing
the dividend by an amount necessary to make it exactly divisible by cne of
the component primes of the diviser, and multiplying by the reciprocal of
that prime. In general, the division of x by z will take either 2n or n
steps depending on whether one counts substraction and multiplication as 1
or 2 steps, If m primes compose z, then the remainder of the n-m stages are
necessary to re-extend the quotient to full length, Using the set Z to ap-
proximate y for divisors the following algoritlm may ncw be empioyed., To

divide x/y; x,yeR; 2y > z > y; zeZ

x x
Ti.1
I"i -1 - - X

9

]
Neo
'_l
]
I._l
..f.
l}_h
N
L1
=
l..l
li

a3

stop when 9 =44 7o
An error of 1 will occur if every y < rjy < z which may be corrected by
comparison of r; with y following i = 94 _1 if an exact answer is necessary,
It is not necessary that z > y; however, the partial quotients will be

of opposite signs on successive iterations if z < Yo

The rate of convergence depends on z/y. Let y = (1-¢)z and x/y = q.
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The si are the partial sumands q5-95_7-

sg = L&:Elf = q(l-¢) rog = X - (1-¢)x y = Xe
y y
xe(1l-¢) xe(l-¢)
s = —— = 1-¢€ r = X€ -
1 - Q( ) 1 ¥
2
= x[e-¢(l-€¢)] = xe
i , . irq_
s;{ = XE (l-€) _ q(l_e) €1 ry = X€1 XeE (l €)
v y
. '+l
= x[et-(1-e)et] = xe
The error after i iterations will be
a(l-¢) (et + i+l +,..) = qei
for
q < 10%
then for )
qel <1l
el <1072 i loge < -a i > a/loge™t

a/i.

expressing ¢ as a function of i and a, then ¢ < 10~
The convergence of this algorithm is crucially dependent upon how well
the set Z approximates arbitrary divisors. In the partical cases where only
a few moduli are used it would appear that this algorithm would not be feas-
ible if a fast division were sought. However, in systems including a large
number of different modull the closeness of approximation is remarkable. The
system consisting of the primes less than or equal to 31 was considered in
detail. The set Z was tabulated and ordered. A set of twenty-five random

divisors in the range 10° to 10° was examined to see how closely they might
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be approximated. Assuming these numbers to’be divisors of dividends of the
order 10! a quotient of less than 10%° will be produced. The approximating
zeZ for each number was determined alcng with the necessary number of itera-
tions. For all numbers examined the number of iterations was either 3 or 2,

As an example consider the computation of 10,00C,000,000/815,392

z = 817,190
q, = T2O0L00,000 _ g5 oy r, = 10 - (12,237)(815,392)
817,190
= 22,048,096
a1 = 12,237 + 22,048,096 = 12,263 riy = 22,048,096 - (26)(815,392)
817,190
= 847,90k
a> = 12,263 +(§51129E = 12,264 ro = 847,904 - (1)(815,392)
817,199
q = 12,264 » = 32,512
r = 32,512

Note that for this particular divisor, which was chosen at random, the
probability of an error of one in the quotient for a random dividend is less
than 1%.

There are three possible means of terminating this procedure., A fixed
number of iterations can be used. If indeed it were shown that three is the
largest ever needed, such procedure would be the best. TFor a very small
divisor however, this may not be sufficient as the approximations are not as
good. The test r;4 = Tr; does not involve either additional hardware nor
significant additional controls. However, given ri4] = ry, one additional

unnecessary iteration has already been performed. Nevertheless, the insurance
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that the error in the quotient is at most one, makes it more desirable than
the fixed length procedure, unless +he particular arithmeti; system used
scales all numbers inftc a range where the approximations are always gocd.
The third method involves ~cmparison of ri with a real divisor and there-
fore, an additional cycie of n operaticns following the conditions Ty = riqle
This is the oniy method for determinirg an exact quotient, It appears that
this additional test would best be left +c the programmer Jjust in case an
exact quotlent is required, since for most uses the error involved is unim-
portant, The hardware requirements for this algorithm are moderate in addi-
tion to the residue multipliers and adders which will already be available,
A control register of n bits is necessary to indicate the base primes used
in the approximate divisor., The hardware for producing the approximate divisor
?

is an additional problem. Tt appears that this may most efficiently be imple-
mented by a tatle-look-up prozedure. Indexing this table requires the first
two or three digits of the mixed tase representation of the divisor and re-
quires the equivalent of an additional iteration., The magnitude of the table
required for this system illustrated would be sbout 2000 eleven Dbit words,
which is not prohibitive.

The remaining two algoritims are essentiality unrelated to the residue

s of Interest to see what difficulties ensue

(WX

number systems itself, tut it

in their realization, Both metheds require a fractional multiply operation.
It is not yet certain that all possibie utilizations of residue arithmetic
weuld entail taving a fractional multiply, however, for any conventional nu-

merical analysis it seems likely., Fractional multiplication schemes all in-

ASD TR 61-438 92



volve division by one of the divisors of the moduli. It is fair to compare
the number of iterations of the abecve descrived algorithm with the number of
fractional multiplicaticns of the two algorithms described below. In a system
that permits postponement of scaling, it ig reasonable to count the number

of scalings necessary, rather than the number of multiplications.

7.5 A NEWION-RAPHSON METHOD

A Newton-Raphson me‘!:-hod8 is derivable from

b—.—l :O Xéh
ax a
i.e.,
X4l = X3 - Txg)/FH(xg)
b b ax
= xi - (g - D/(- 5z 2), — -1 <1
ax,
= a3

This is useless directly since it involves the calculation of a/b. If b = 1

however, then

Xi = %0 (2 - axy), laxg - 1] <1

is quite satisfactory since one may compute l/a and then multiply by b.

These procedures converge exponentially since if

then

X441 (1-¢) - x[2 - (a/b)(1-¢)x]

]

(1-€3) - x
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SO

Giver an X, such that ¢. < 277 then ez < 27°° which is of the order re-

quired. This czentrasts favoratly with the third algorithm

= x{l-¢) - (1+be) = x{l-e{1l-b)-be2]
sSC

S z(1-b) +pc®

] _ oAl ey L

€1 €

which is very poor if (1-%) is not very close to C.

It is possibdle to szale © Ty one of the divisors of the modulus of +he
residue system, however this still results in a geometric convergence *o
better than that provided by the approximate divisor method which does not
require fractional multiplication, The scaling would require hardware sim-
ilar to the obtaining of the approximate divisor as in the first method

descrited.

T.4  INITIAL APPRIOXIMATIONS
It 1is poseible tc use a uniform x, in the reciprocation formula. For
integral a, then a very small x. will always satisfy ’l-axol < 1l. A decent

approximaticn, however, is clearly necessary since if (1-¢) is the required
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precision then the number of iteration i must be such that

24 i. n
€y "< € 27 2 (loge)/logey

i >-log2{loge/logeo}

. - i . 1
1 > logolog z - iogolog -
0

which for €4 close to 1 becomes large.

As an initial approximation, one may use a table-look-up; however, the
index to such a table must reflect relative magnitude and therefore, for
residue numbers, requires a conversion to mixed base. Still, such an approx-
imation is superior to a linear approximation which would require about the
same time but no table. We consider now a system which is mentioned else
where in the report which involves the use of a "double length plus" expres-
sion of numbers when in the arithmetic unit. The use of this system is con-
venient in both the initial approximation procedure aﬁd in performing the
iterations themselves.

If the size of the system is such that the double length magnitude M*
is of the order IM® where M is +he single length magnitude then in approxi-
mately the same time, one can compute a quadratic approximation where the co-
efficient of the second order term is a small integer less than L. This is
possible since where the fraction x is represented as [xM], the first coef-
ficient is represented directly [a] while the second and third as bM and CM?,
so that

ax® +Dbx + ¢

is represented before scaling
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[allxM]® + [eMI[xM] + [cM®]

+

[ax®M® + bxMZ] + [eM]

1

[(ax2 +bx)M] + [cMB]

which becomes

[{ax® +bx + c) M ]
Overflow will not occur as long as [(a+b) < L]. A comparison of approximation
techniques is somewhat difficult because of the measure of goodness of fit.

Ideally one wishes to minimize the expected number of iterations which is

L 1
c 4:/ﬁ[- log log == (a)l]da
5 )

given a uniform distribution of X. If f(a) is the approximation of l/a then
€, = l-af(a) and only a numerical solution appears feasible. A simple least
squares measure should, however, give & rough comparison.

The best-fitting quadratic using a least squares criterion results from

the solution of the system of linear partial differential equations:

2 _ 2 _ 2

32 o 3¢

= 0
L 2
v = J[\[l - x(ax2 + bx + c¢) ]7dx.
o

These equations easily reduce to three linear equations in the coefficients.
The solution yields a nonintegral value for a, however the linearity of the
system insures a unique local maximum, and the best integer values for a may
be determined by inspecting the two nearest integers.

The hardware requirements in addition o those already needed for the

fractional multiple are almost negligible. The only additional equipment is
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that associated with determining the initial approximation, Depending on the
type of instructional organizaticn used in the machine, it may be possible to
do away with the division instruction per se, altogether, The condition under
which this would be possi®le without loss of speed would essentiaily involve

& streaming mode of operation, similiar to that used in computing tke vector
dot product.

Before concluding this chapter, it is important to emphasize again the
impossibility of deziding on a best division algorithm without considering
the system on a whole, In our opinion, the Newton-Rapkson Reciprocation pro-
cedure is clearly superior to any other known if a fast fractional multiplica-
tion has already been purchased., Its exponential rather than geometrical con-
vergence plus its lower hardware requirements make it quite satisfactory., The
other algorithms might have use in certain limited special purpose applica-

tions where a full fractional multiplication is not desired,
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CHAPTEE. VIZII

THE MULIIPLICATIVE CVERFLOW PROBLEM

8.1 INTRODUCTION

The problem of multiplicative overflow detection is one that is unique
to systems in which the multiplication operation is accomplished in one step.
In conventional systems, those in which multiplication is performed as a
series of additions, the detection of multiplicative overflow can be handled
by the detection of additive overflow.

One of the main advantages of a Residue Number System (RNS) is its
adaptability to a one-step multipiication operation, It follows that one of
the more pressing problems of a RNE is that of detection of multiplicative
overflow,

In any finite number system, an obvious way to prevent overflow under
multiplication is to require that every number to be processed be less than
the square-root of the system's 1limit., The product of any two such numbers
will be less than the 1limit of the system, and no multiplicative overflow
will exist. But this restriction must apply to every step of each calcula-
tion, and merely represents the substitution of a scaling problem for the one
of overflow detection.

A universal problem of finite machines, whether their organization is
integer or fractional, is the one of scaling the double-length result of

multiplication back into single-length form., This problem has a solution

ASD TR 61-438 99



that takes the form of multiplication by a constant. In a RNS of single-
length capacity m, where the residue representations are interpreted as in-
tegers, that constant is the inverse of m.

In his work on RNS, Svoboda2 suggests handling this scaling problem by
employing a double-length multiplier whose capacity is at least as great as
the square of the capacity of the single-length system. He then employs a
procedure which is essentially division by m (the single-length capacity) to
rescale the result of multiplication into suitable form for further calcula-
tions. The unfortunate feature of this method is the amount of time required
for the digit-fill-in operations (single-to-double-length and vice versa) used
to implement the scaling process.

Cheney9 has suggested a method which involves scaling by combinations of
the individual base primes. The precision achieved by this method is not as
good as Svoboda s, but the comparison is somewhat unfair since Cheney does
not use the double-length idea., The question of precision will be treated
more fully in the last section of this chapter.

The individual-base scaling procedure is awkward and cumbersome. As a
result it is time-consuming. FEven if precision were equal for the two pro-
cedures, this one suffers by speed-comparison.

Consider now an extension of Svoboda's concept to include what will be
termed multiple-precision, This title may be misleading, as the direct result
is a gain in speed while precision is increased non-uniformly. That is, the
increase is slight (or non-existent) in some cases, while present to a greater

degree in others.
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The propcsed extension is accomplished by attaching positional signifi-
cance to each of a group cf RNS representations (as in, for example, a dec-
imal number) and allowing the prcpagation of carries between subgroups of
these representations.

Such an arrangement, with the operations of truncation and scale-factor
multiplication, constitutes a Ficating-Point number system. The arithmetic
of this system is apparently retarded by the necessity for carries, but carry
assimilation is accomplished as a part of the scaling operation.

The speed advantage of this system comes from the fact that the sub-
groups of RNS representations (the coefficients) are small. This permits the
standard RNS operations to be accomplished rapidly. The digit-fill-in and
scaling operations are performed on the entire number by processing several
small parts of its simultansously. A complete description of these operations
is continued in the following sections,

The two parts of this chapter which follow are both methods of employ-
ing this parallel structure, The system contained in Sections 8.2 through
8.8 is primarily a general purpose structure, while that of the remaining
sections of the chapter is intended for special purpose use. That is, the
one considers everything that might occur, while the other ignores or mini-
mizes certain problems under the assumption that they will occur infrequently,
if at all,

The original starting point for the two developments was different. The
former is a result of an inquiry into the general problem of multiplicative

overflow. The latter came about as a use for the redundancy established by
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an extra-length representation.

There are two main areas of dissimilarity between the two methods. The

.

first is the question of whether the sign of a number should be carried along
explicitly in the representation, or be allowed to remain implicit within the
representation. The second is a question of the size of the double-length
system; whether its capacity should be the square of the capacity of the
single-length system, or slightly larger than the square. Rather closely con-
nected to these two areas is the question of when and/or how often the internal
scaling procedure must occur.

Perhaps each system is superior for its intended use, or even for a series
of specified uses. Given a well-specified purpose, the two systems could be

carefully compared to determine equality or the superiority of one over the

other,

8.2 APPLICATION OF THE SQUARE-ROOT CRITERION
This direction of attack upon the overflow problem branches off from the
square-root criterion,

Consider, for the bases of a RNS, some sequence, B, of composite numbers

B = Bi,...By

subject to two restrictions:
(By,85) = 1, 143 (8-1)

By = 15 (8-2)
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The first restriction is equivalent to, and may be replaced by, the following

restriction on the set, P, of sub-bases,
(pispy) = 1, 143 (8-3)

The set, P, may be thcought of as a sequence of prime numbers with no result-
ing loss of generality.,

Consider also, in the mather of coding the modular representations of
the RNS with respect to the base Bi, the use of a two-digit uniformly-based
number with base Pj. OSuch a coding does indeed accomplish the representation,
although it requires one carry-digit within each composite-base representa-
tion.

The following formulas serve as a summary of the discussion of this sec-

tion:
N = oymod Bj, OLN<M (8-4)
n
M o= 7 B, By = D5 (8-5)
Tl
Q5 = aiipy; t+ aip (8-6)

It follows that the zero power, or units, digit (aio) represents the
residue of N with respect to P Thus there exists a readily available n-

digit number which represents the residue of N with respect to m, where
m = Ju = 7o, (8-7)

These n digits are the units digits (aio) of the n representations of N modulo
Bi(i =1,2,...,n).
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8.3 CONSIDERATIONS OF THE DOUBLE-LENGTH SYSTEM

If a number, A(0O < A< M), is considered to be of the form

(8-8)

A = aim + ao

it is clear that a, may be found by some reduction process involving the
single-length system m: if you will, the "square-root" system m. That is,
since Oany<m and the n units-digits of A(aio; i=1,2,...,n) are available
by inspection, the search to find ay may be limited to the m-system. Digit-
fill-in of ay from the m-system into the M-system acquires the first-power
digits of ag, and subtraction of this result from the original representa-
tion of A leaves aym as the new representation.

Because aiym is an integer multiple of m, the units-digits of this repre-
sentation are all zeros. For this reason, consideration may be limited once
more to an m-system representation, in this case involving the first-power
digits. Division of this representation by the first-power digits of the
representation of m, along with m-system to M-system digit-fill-in, yields a;.

The above paragraphs describe a complete reduction of the M-system rep-
resentation of a number to more conventional form by means of m-system opera-
tions. With the background established so far, investigation of some prop-
erties of this "square" system may be undertaken.

The redundancy established by this particular system, the easy avail-
ability of the square-root residue, is gained only at the expense of pro-
viding a carry-digit within each composite-moduli group. But this system is

useful in the scaling aspect of the problem. The redundancy provides the
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necessary magnitude information for scaling, which makes division by m a

simple operation.

8.4 MULTIPLICATICN
Consider the multiplication of two numbers A and B (O.g A, B<M in

algebraic form.

A = a,jm + 8oy B = blm + bO (8—9)

aibim® + (agbi+aibo)m + agbg (8-10)

&

Each of the ordered pairs (aibj) represents a non-overflow situation since, by
the nature of the system, every asi, bj < m.

The interesting part of this is not in the possibilities for detection of
overflow, but in other possibilities suggested by the ordered pairs. These
numbers are all readily available in the system, and the products are guaran-
teed non-overflow. Through some system of manipulations they may be carried
along to give a complete description of any number, though it be arbitrarily
larger than the finite limit of the sub-system.

Such factors as truncation and round-off may be considered if an approx-
imate answer is acceptable. ZFor example, it may be considered necessary to
keep only the four most significant coefficients, any remaining terms then
being discarded.

Now consider a more general multiplication, AB, with A and B not re-
stricted in magnitude as they were previously. Let R be defined as the re-
duction operation of Section 8.3, and understand R; to be the first (ay) por-

tion of this operation, while Rs shall be the remaining (a;) portion,
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S
1}

™
0
=]

’_I

i=0

where

0L ai,bj,eq < m.

(8-11)

(8-12)

(8-13)

(8-1L)

The multiplication AB results in several ordered pairs, aibj, and by the re-

striction of equation (8-1L)

i < M

so that the operation R, when applied to these products, gives

R .
ajby — = Cigim + Cijo

in which

0L cij1 < m-1; 0L Cijo < m.

Define, for the collected term of multiplication:

Z Cl nt
i+j+t=k 9

[¢]

Since the number of terms collected is very small compared to m,

0 cx << m?
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Now, under a further reduction step:

Cp —25 cpym + oy (8-20)

The restrictions upon these coefficients follow from equation (8-19)
0 < cyy << m; 0 < ¢ckp < m. (8-21)

At this point, AB = C may be expressed as follows:

r+s K
c = 2 (cklm+cko)m 0 (8-22)
_O

Since the largest number expressible in this form is given when

A = m -1 (8-23)
B o= oo (8-24)
AR = mr+s+2 _ mr+1 _ ms+-l £1 (8-25)
it follows that
¢ = aB<ntE (8-26)
and
Crigsp = O, (8-27)

Thus, finally, the form of equation (8-13) is obtained

r+s-+l a
N
L cam .,
d=0 d

Q
I

Since the cq's must satisfy the restriction of equation (8-14), they must re-

sult from a process of reduction upon the Cyxt's and completion of the carry
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(or scaling) process, An exception is Cp4g4] Which will never propagate a
carry, as a result of equation (8-27),

An estimate of truncation error would be in order at this point, Let
the decision be made to store only the four most significant coefficients of

any number, the highest-order of which is non-zero. Thus if

A = am® + ar_lmr'l + ar_gmr-E + ar_ynr'5 + ar_gmr'h + ... (8-28)
B = bem® +bgm® 4 by om®2 4 bg_smSD + b mS Tt 4 .. (8-20)
certainly

AB < arbsmr+s (8_50)
while the highest-order neglected term is
r+s-4
(ap_Lbg + apbg_))m . (8-31)

Therefore the error is given approximately by

arbg.), + ap_)bg

arbgm?* (8-32)

In the worst case, with ap, kg 1 and 8n_)» Pg_ ), ¥ m, a rough upper bound on
the error as obtained from equation (8-32) is 2/m3, While if ap, bg ®m and
ar-h, bg.y ™ 1, a bound on the error is 2/m>, In any case m need not be too
large to result in quite a few significant demical digits with such an arrange-
ment. For example, if the set P of sub-bases is (2, 3, 5, 7), m = 210 and
2/m®> 2,16 x 1077, And if P is (3, 5, 7, 11), m = 1155, 2/m® ~/ 1.3 x 10-°,

This demonstrates the feasibility of a "small" RNS.
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Figure 2 is a schematic description of multiplication in the proposed,
floating-point RNS. The justapcsitions (aibj) all indicate non-cverflow RNS
multiplications, the R operations are as defined earlier in this section, and

the additions indicated are also non-overflow RNS operations.

agbs asbo agbg agb; aghbo a bz agby, agb; a;bo aghbs asbg a;b; agbo

TTTTVTEFYTEEY

C331 Ca30 Cs20 €310 €300 C200
tC321 tCos0 to20 210 €110
tCo3: tCa11 +C13p €120 +Co20
Hoz: tCap1 +Cosz0
tCi3; o211 tCon1
121 tCa111
TCo31 o221
c7 Ce Cs Cq Cs Ca
lﬁ LR lB LB \lﬁ
N
/]
c7 Ceo Cs0 C40 Ca0 oo |Ce1 £ 25 Cs1 K B; can £ 65 %
el tcsa +Cy1 a1 tCoy *#% Jea1 < 65 c21 € 25 c7,ci0 < mj
c7 Ce Cs Cq Cs3 X
iﬁ iﬁ lﬁ LR
Cc7 Cs0 Cs0 Cao C30
tCay iCsy +C4y tC33 {?il‘< 15 c7,ci0 < mj
c7 Cs Cs Ca T Cs
lﬁ J}? R
/
co Ceo Cso Cao ca (T: Truncate, if cs # 0)
a1 tCs1 tCq1
C7 Ceo ?So Ca T Ca
sz lﬁ v ***See Section 8.8 for
carry-completion
c7 Ceo Cso Cq Cs3 sensing.
gy tCsa
Cr Cg Cg Cyq T Ca

Figure 2, Multiplication in the floating point RNS.
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The first level shown is aztually the only multiplication involved, the
remainder of the opera®ion can e regarded as scaling to get the respective
digits back in*c the £ g 23 < m range. This scaling can take place quite
separately from +the multiplication, leaving the thirteen side-by-side M-
system multiplication units free immediately for a new coperation., The re-

sults are no% immediately available for further computstion, however, but

must firs®t te processed through the reduction "grinder."

a unit or as several semi-independent stages. Some of the stages may prove
useful for operaticns on added numbers, ete., The "grinder" may also be proc-
essing a sequence cf numbers at the same time in different stages, with a
continuous flow of results from the output.

In Figure £, A and B are taken to be of the following form:

=
1l

m' (asm3 + asm® + agm + as) (8-33)

td
1]

m®(tam® + bom? + bym + bg) (8-34)

I"*JK‘S)

Manipulaticrn of the "exponent'" (m is not shown, but understood.
J

H

Q

At the first level of reduztion, thirteen side-by-side R-type units are

)

necessary. Trese are followed hy five adders, followed in turn by five R-
type units, Next rcme five adders, followed bty four R-type units., As was
seen in equation (8-27), further attention to cs is unnecessary as it cannot
overflow,

At this level, four adders are necessary and truncation can occur by

dropping ¢«. In the worst case three more levels are necessary, with R fol-
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lowed by adder., The number of elements needed would decrease with each stage.
It is possible that carry-completion sensing would be both possible and prof-

itable, That subject will be taken up in a later section.

8.5 NUMBER FORMAT AND MAGNITUDE COMPARISON

A description of number format is now presented in order to lay the
groundwork for a discussion of some other operations in the system, The sys-
tem-description of a number, A, shall consist of a magnitude-plus-sign ar-
rangement. The magnitude is to be represented by four coefficients with posi-
tional significance, and an exponent term. S(A) is defined to be the sign of

A, and may be represented by one bit.

S(A) as a2 a a; r (8-35)
where
0L a; < m,
while

r = 0, #1, +2,,,,%q (8-36)

Equation (8-35) is then defined to mean

A = S(A)(agn® + am® + agm + ag)u® (8-37)

The magnitude comparison operation may now be accomplished by a three-
step procedure. If A and B are represented as suggested in equations (8-55,
36, 37), then:

1. Inspect the signs;

a. If they are different, the positive one is larger.
b. If they are the same, proceed to step 2.
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2. Inspect the exponents;

a. If they are different, the more-positive one corresponds to

the larger number.
. If they are the same, proceed to step 3.

3. Complement »5{i = 0, 1, 2, 3) with respect to M, add A+B = C.
OUperate on ¢4 with Ry. Inspect caim.

a, If camm #C, B > A,
L. If caym = 0O, inspect cas.

1. If csp =0, A>3,
2. If czn =, inspect coym,

The complete operation R is not needed in step 3, because the question of
magnitude is determined by whether or not ci;m is zero. This information is
available at the cutput of R;.

Figure 3 is a graphical aid for step 3 above, The X under sign and ex-

ponent indicates that they are of no interest in this step.

S(A) as as aq a0 T
S(B) b ba b, o r
X Ce3 Co Cq Co

Ry R1 Rq R1

Cail,Can; C21M;Copos €11M,C3105 Coi1M,Coo

Figure 3. ©Step 3 of the magnitude comparison.

8.6 THE FOUR ZASES OF ADDITION

For the addition of two numbefs, there are four cases of interest, In-
spection of the signe and exponents of A and B determines the case in any
particular instance. For convenience and simplicity, A is assumed always
positive, with more-pcsitive relative expcnent if the exponents are different.

The four cases are;
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1. Same exporent, same sign;

2. Same exporent, different signs;

3. Different exponents, same sign;

L, Different exponents, different signs.

Addition in case 1 is accomplished by positicnal addition of correspond-
ing coefficients. The sign of the result is the same as the signs of the two
numbers, The exponent must be determined in the scaling process, Truncation
(T), the right-shift of coefficients, and augmentation of the exponent as
shown in the final stage of Figure L, take place only if ca; % 0. No further
carries are possible out of cs3 or C_,, but in the worst possible case, three
more sequential (R, Add) operations will be necessary to complete the carry
process. It can be seen that only one carry (and of unit magnitude) can be

transmitted from any position. That is, a position that generates a carry

cannot propagate one. Thus, carry-completion sensing is suggested.

+ as 8o al ao r
+ b3 bs bl bO r
+ Cs Co Cy Co r
+ Cax Caso*Caz CoptCii Cio0*Co1 Coo

+ Cs Co < Co Coir+l

|

|

T

[

T
Figure 4. Addition in the floating point RNS.

Addition in case 2 is accompiished Dy, first, step three of the magnitude
comparison operation. The next step is complementation of the smaller number,
and then positional addition., This is followed by the R, operation as in
Figure 3. Then a check must be made on ci;(i = 0,1,2). If ci; = 0O, the proc-

ess is complete. If ci, # O:
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1. Add m to cji;
2., Add M-1 to c;

i+l

This reduction process must be carried out three times in the worst possible
case. However, a borrow can be propagated through the ith position only if
ci1 = cip = 0, which suggests a possible borrow-completion sensing method.
The sign of C is that of the larger number, A or B, The determination of r
must, upon borrow completion, be determined by the highest-order non-zero
ci, and a shift accomplished to put that c; into the cs position.

Addition in case 3 involves a relative shift to the right, of (r-s) posi-
tions, for the smaller number. At most four reduction processes are neces-
sary to complete carry-propagation. Sign is carried along unchanged, while
truncation and r-augmentation are accomplished as the last step.

Addition in case 4 combines the right-shift of case 5 and the complementa-
tion of bj with respect to M as in case 2. Once again, borrow-completion re-
quires at most three reductions (R,). The resulting sign is that of the

larger number, while positional-shift and r-determination are accomplished as

the final step.

8.7 DIVISION

The division procedure in this floating-point system must be some combina-
tion of the familiar and the unfamiliar. The familiar portion is due to the
similarity of the gross system-structure to the decimal system. The unfamil-
iar portion is due to the modular arithmetic of the sub-structure.

One possible division procedure is graphically displayed in the flow-

diagram of Figure 5. Some prior attention must be pgiven to the orerations
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involved, and the intent of the over-all operation explained, in order that
the flow-diagram may be more easily interpreted.

Given two numbers, A and B, in the form of equation (8-35), the sign of
A/B = C will be determined, as in multiplication:

If

1]
+

s(a) = s(B), 5(C) (8-38)

Il
[

S(A) # s(B), s(c) (8-39)

While the initial determination of the exponent (t) of C will be accomplished
as

t = r-s-3 (8-L0)

and may or may not require modification in the final step of the division

procedure. This the number, C, will be represented by

s(¢c) t (8-41)

where the box around cq(d = 0, 1, 2, 3), here and in Figure 5, implies that
the number is in the storage location reserved for that particular final re-
sult,

For the calculation as shown in the flow-diagram, the signs of the num-
bers are ignored and the exponents are treated as though they were zero (ex-
cepting the final step). In other words, only the stems of the numbers (their
coefficients) are treated in the calculation.

The operation Ms(A,B) is the step-three magnitude comparison operation

of Section 8.5. The operation Mé(a,b) is a reduced version of the same thing,
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operating on a pair of singie coefficients rather than on two complete num-
bers, The A = Am operation is a single left-ghift of the dividend, while
the operation as = agm+as is a sub-system computation to obtain the new co-
efficient ag. The operaftion, Add cq to |cg| , is understood to leave cg = O
upon completion, R;(x) is the reduction operation of Section 8,3, but is
used only to detect overflow of the m-system in this procedure,

The multiplications used in *his procedure are not the full-scale multi-
plications of Section 8.4, The multiplication in thecg)sequence involves no
carries at all and is a singie-step operation involving two m-system coef-
ficients, The(:)sequence multiplication does involve carries, but it 1s the
multiplication of a number, B, by a single coefficient, cg, and might be
thought of as a "scalar multiplication" as opposed to the complete "vector
multiplication" described in Section 8.4,

The Ra(a,b) operation is one for the selection of a reasonable first
approximation for the quotient digit. It could be done by a table-look-up
procedure; since the m-system may be relatively small, such a table could
also be of reasonable size. However, it can be done by a simultaneous-re-
duction process, the reduction teing to a non-uniformly-based number system.

If ag is of the form (0 £ a3z < m)
as = Q1 O2 Oa Og (8-L42)

corresponding to the definition of equation (8-4), then the process

8z - 84 - @é
P4 - Qg .
P3 - o (8-13)
ba
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an operation in the m-system, must go to zero at one of the steps. If the

pair of coefficients (ai,bj; a; > bj) are reduced simultaneously, when the

b-sequence goes to zero the remainder of the a-sequence may be re-expanded

into the M-system and used as the desired approximation. If both sequences
go to zero at the same time, unity may be taken as the approximation.

The(@/and(é)sequences of Figure 5 are used to find and improve a series
of quotient-digit approximations. The first approximation in each case is
chosen in such a way as to be smaller than (if not equal to) the correct one.
The loops increase the approximations by consecutive-integer-multiples until
overflow results, thereby bracketing the correct result. Restoration is used,
upon overflow, and a new approximation is then found from the remainder term.
The remainders are always compared with the divisor for relative magnitude
to determine the subsequent operation. When the remainder is smaller, the
correct quotient-digit is the current sum in |cg] .

Note that the Mé(a,b) operations in the A > B portion of theC:)sequence
show only two alternatives, because the third one (a < b) does not exist as
a possibility at that point.

The convergence of this division scheme is roughly geometric. A Newton-
Raphson scheme converges nearly exponentially and would thus be more desir-
able. This method has been presented in the spirit that these straightforward
algorithms serve to demonstrate that the system is feasible with rather simple

operations.

8.8 CARRY-COMPLETION SENSING

There are several tools that might be of use in the carry-completion prob-
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lem, For example, borrow-completion, in addition cases 2 and 4, may be sensed
by testing every ci; and ciy after the application of R, (as in Figure 3).
If, for all i; cii1, Cio # 0 then no further steps are necessary,

Carry completion, in addition cases 1 and 3, is aided by the fact that
carries cannot be both generated and propagated by the ith position. Ob-
viously, if cy; = O or 1 (for all i) the prccess is completed, Moreover, if
any ci; = 1 (it cannot be greater) then it need not be checked further. Fig-
ure 6 is a chart specifying the situation in detail, following the additional

rule that if ciy, = O, C(i-1) # 0 a further step is necessary.

If i equals

And c4 equals Then N corresponds to
the number of further

possible steps.

HEFEFFEFHHEEFEFEOOOOOOOO W
HHFFEFHOOOOHKHKEREREOOOO |
HHOOHHOOKFRMEFOOHKHIEOO K
HOHOHFHOMFORMFOROHMKOHKHO |O
OOHFHOKFHHEHMNMOKRHERERENDMLDWO I

Figure 6. Carry completion.

The scaling operation after multiplication is not as slow as it looks in
Figure 2. It may be seen that carries occur only if m-6 < cio < m (in the
worst case) at the starred level. Under the assumption of a uniform distri-
bution of numbers in the range 0K cipo <m, and taking m to be 1155, this
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represents less than a 1 percent probability. This may be detected by the
criterion that cj, = O (for all i) represents completion of the scaling proc-
ess., Moreover, if carries do exist at that level, at the next level Figure

6 is directly applicable to the completion problem, under a change of the

subscripts given by 1 = 1i+3,

8.9 POSTPONED SCALING AND SPECIAL PURPOSE MACHINES

The most striking characteristic of RNS arithmetic is the substitution
of the magnitude-control problem for the one of pure integer multiplication.
The first approach discussed in this chapter demonstrates how RNS arithmetic
may be used to construct a conventionally-organized machine. This means that
the machine instruction code employed might be indistinguishable from a con-
ventional machine instruction code. The difficulties in the RNS, however,
might well demand a machine organization of a different type. The direction
of exploration here is based on the maximum postponement of the time-consuming
magnitude-control operation.

The primary characteristic of a system using such an organization is an
arithmetic unit capable of operating on longer-than-double-length numbers,
This feature permits addition and subtraction operations on a set of products
before scaling. Postponement of scaling necessitates '"remembering,' between
operations, which numbers have been properly scaled and which have not. The
best method of handling this difficulty depends on whether a general-purpose
or special-purpose use is intended.

General-purpose organization will require special scaling instructions,
or perhaps tag bits in the ordinary instructions, indicating whether or not
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a result is to be scaled. The difficultilies for the programmer, in keeping
track of magnitudes, should be overcome by the use of compilers., Such com-
pilers initially would reed information as to the possible range of all input
variables; they would keep track of each variable, inserting scaling instruc-
tions where necessary.

The postponement of scaling requires an implicit sign scheme, since sign-
determination is as difficult, in general, as scaling itself., An ordinary
complement-system appears applicable to a multiple-precision RNS, with one
slight difficulty. The base-extension procedure must differentiate between
negative and positive numbers. The former must then be placed in the upper
half of the double-length system.

There are certain numerical-analysis procedures which can take quite
natural advantage of scaling-postponement, The computation of the dot-product
of two vectors is typical cf these procedures. This operation occurs in re-
laxation methods for differential equations, in the formation of a weighted
sum of neighbors. This procedure is basic to several matrix inversion al-
gorithms,

The design of a special-purpose machine for matrix inversion was con-
sidered in some detail during the past year. That portion of this study having
to do with organization is included here. The suggested configuration appears
to be considerably faster, at no great cost than conventicnally-organized
machines. The "streaming mode" of operation, with its resulting savings in
instruction fetch, is of particular interest, apart from the use of the RNS,

10
In some respects this organization resembles the "Harvest" device of IBM.
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8.10 A MATRIX-INVERSION CCMPUTER

The matrix-inversion problem involves little input-output data, but a
great deal of arithmetic computation. The proposed computer is capable of
handling up to 100 by 100 matrices.

In any residue machine, the digits of the residue number may be coded in
binary form., Only prospective moduli which are equal to (or slightly less
than) powers of 2 can be coded efficiently in binary form. If a sufficient
number of digits are carried throughout the computation (in this case the
equivalent of 16 decimal digits will be carried) to insure the desired ac-
curacy, either the number of residue digits required, or the size of the in-
dividual moduli, becomes excessively large. The time required for magnitude
and/or sign determination is almost directly proportional to the number of
residue digits.

A multiple-precision system was selected as the best way to reduce the
number of residue digits and to insure an efficiently coded number for stor-
age. Sufficient accuracy can be obtained, using multiple-precision, to carry
the equivalent of 16 decimal digits throughout the computation. The basic
machine number will consist of four base "b" digits, where "b" is 127 x 128,
A scaling factor, o, will also be part of the number. Each base "b" digit
will be expressed in a two-digit residue code, the two digits of which are
127 and 128. These residue digits are then binary-coded, using 7 bits for the
127-digit and the same number for the 128-digit. A 64-bit storage word allows
an additional 8 bits for exponent.

The problem of matrix inversion can be broken down into a series of
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matrix multiplications. Matrix multipiication can be broken down into a series

of "sum of products'" cperaticns:

I

Cij a’ikbkj'

~

If the arithmetic unit can be crganized to compute this "sum of products" op-
eration efficlently, it will de ideally suited for the matrix inversion prob-
lem,

In a conventional machine, a double-length accumulator is provided to
insure thet multiplicative overflow does not occur., The accumulstor is made
somewhat larger than double-length so that it is possible to compuh e the sum
of several products without overflow. To this end each base "b" digit (ex-
pressed in a 127, 128 residue zode) will be extended to a 127, 128, 63, 61,
59, and 31 code as soon as it is obtained from storage. These numbers are
pairwise prime. Furthermore, their product is greater than 40O (127 x 128)2
The extended-base representation of each base "b" digit will be carried
throughout the arithmetic unit. A block diagram of the proposed arithmetic
unit is shown in Figure 7,

The machine will be basically a two-address machine., The general stor-
age is to be word organized, and divided into X and Y halves, The cycles of
the two halves can be interlaced to reduce the time required to obtain both
operands.,

The "sum of products" operation will proceed as follows:

1. The two operands X and Y are obtained successively from storage.

2. FEach operand passes through the base-extension unit and then to one
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X ©Storage

Y 8Storage

Figure 7. Block diagram of a computer.
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of the operand registers.

3. When both operands are present in the operand registers, the actual
multiplication can begin. The multiplication operation will involve forming
several sets of cross products. As each set of cross products is formed, they
are added into the Z registers through the shift unit (SU). To multiply two
numbers together, it will be necessary to form four sets of four cross pro-
ducts each, t is evident that in the worst case, after one multiplication,
some one of the Z registers will contain a number of order hb2.

L. The SU is controlled by the Exponent-Comparing unit (ECU)., The ECU
adds the exponents of the X and Y operands and compares the results with the
exponent already present in the Z register,

a. If the exponent already present in the Z register is greater
than or equal to that of the new product, the cross products are added
through SU into the appropriate Z registers,

b. If the exponent of the new product is greater than that already
present in the Z register, the contents of the Z register are shifted
right enough positions so that the most-significant digit of the product
will add into the Z; position.

5. This process is continued until a maximum of 100 of these products
have been summed.

At the end of the "sum of prcducts" operation, each of the Z registers
will in general contain a number of order 400 b2. But since the capacity
of the register exceeds 400 b2, no overflow will have occurred. Before the

result can be stored, it must be scaled so that the number in each of the Z
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registers is less than b. When this condition is met, the 127, and 128 digits
will express the number uniquely and the 63, 61, 59, and 31 digits may be
dropped. The scaling operation proceeds as follows: consider the set of
digits (Zo, 23, Zo, Zs, Za, Zs, Zg, Z7).

Zo represents an overflow digit and will be zero at the start of the
scaling operation. FEach of the Z; digits will be divided by b. The remainder
in the nth position will be added to the quotient from the (n-1)th position
and the sum placed in the nth register. The resulting number is exactly the
same as the original number except that each digit is smaller by a factor of
b. The only exception will be the Zo digit which will be larger if there was
& quotient in the Z; position. This process is repeated until all of the
quotients are zero, at which point the contents of any digit position will be

less than b. Consider the set of digits:
21 2o Z3 .. 27

which are of order 400 bZ where b = 127 x 128, If 7, is replaced by:
o+ Bl

Where Rj is the remainder when Z;i is divided by b, and Zi-l/b is the integer

part of the division Zi-l/b. The procedure for scaling should proceed as

follows:
1. Decode each Z digit
2. Divide by 127
3. Divide the quotient of step 2 by 128
L. The quotient from step 3 consists only of the modulo 63, 61, 59,

and 31 digits. These are now extended to include modulo 127 and
128 digits.
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5. The remainder of this division is taken as the number expressed by
the 127 and 128 digits before division. This number is extended to
include modulo 63, 61, 59, and 31 digits.

6. The quotients and remainders are now added.

A block diagram of this operatiorn is shown in Figure 8.

A floating-point mode of cperation has beern implied in the discussion.
However, the arithmetic structure as defined will work equally well in a fixed
point mode,

Floating-point round-off may be accomplished by adding a constant K = l/2b
into position Zs just prior to the scaling operation., After scaling, if Zs is
non-zero, the contents of the Z registers are to be shifted right and the ex-

ponent increased by one, The four high-order digits and the exponent are then

to be stored,

8.11 A METHOD-PRECISION COMPARISCN

In Cheney'59 procedure, the scaling is accomplished before multiplica~-
tion. Because of this féature, Cheney's method is the worst in terms of pre-
cision.

If A is scaled by m; and B by mo

A , .
A= fmeo A, = e -om v e (8-1k)
B ; ,
B = Eié}mg + |Blp, = by me + g (8-L5)
where
m, come = m (8-46)
then
AB apby | a1bp | 8gbo
— = ab, + - + — + - (8-47)
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By scaling before multipliication only a;<b; is kept, Thus the contributions

of

aobl . a‘lbo_ to LAE
my Mo m

are lost,
In Svoboda’s2 method, AB = C 1s completely available in the double-length

form. C is then scaled by m, with the result that

5 -

suffers no contribution losses as above. However, it should be observed that
the comparison between the two systems does not take into account that the
Cheney method employs a single-length operand, while the Svoboda method in-
volves a double-length operand.

The precision advantage of the floating-point system over Svoboda's method
follows from the degree to which ]AB’m must be discarded.

In the most extreme case, when E%ﬂ is on the order of unity, the loss
of precision in Svoboda's method can approach m/2q The corresponding worst
case in the floating-point system occurs when the most-significant coefficient
is on the order of unity. The errcr is then bounded by 2/m®, as was demon-
strated in Section 8.k,

Certain assumptions must be made about the capacities of the systems in
order to make further comparisons. If one takes the magnitude of Svoboda's
single-length capacity to be equal to the mantissa-magnitude (approximately
m® in Section 8.L4) of the floating-point system, there exists a common basis

for comparison,
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The precision of Svoboda's method will, at best, be equal to that of the

floating-point system., This occurs only when

SRR

In the ideal case, with E%—]i} = 0, neither method loses any precision.
This case is one of no multiplicative overflow, and represents only 1/m of the
total number range. In the larger range, with [ﬁ—BJ = E(E # 0), Svoboda's
method loses precision approximately linearly as compared to the floating-

point system; from equal precision when E=rm, to the extreme case (m/E when

E =~ 1) described above.
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CHAPTER TX

IVPILEVENTATICON CF SIGN DEITERMINATION METHCODS

9.1 INTRCDUCTION

The problem of sign determination in a RNS has received a great deal of
attention, and five different methods have been prcposed for the solution of
that problem in an efficient manner,

Efficiency here means the capability of operating in a very short time,
of the order of one or two pulse-times, and the possibility of implementing
in practice the conversion network with a reasonable number of switching el-
ements, The methods referred toc are the following:

(1) Implementation of the conversion equations;

(2) Change of representation;ll

I 11

(3) Addition of — 5 quan,ities;
m;

(4) Method of estimates;12 and
(5) Successive reduction, >
These five methods can e grouped in three categories, according to the means
by which the conversion is achieved:

(a) Methods implementing the conversion equations: (1) (2)

(b) Methods using stored tables: (3) (L)

(c) Methods using a reduction procedure (5).

If one is interested in extreme economy of equipment, the methods under

a) must be considered, taking intc account that any gain in simplicity is
) g
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paid for by a loss in speed. In general, this method takes (n-1) pulse-times
to be completed, where n is the number of moduli used in the system.

This type of conversion procedure has been dealt with only as an elegant
but impractical solution because it has been considered that for a practical
RNS, for example one with a range equal to 230, the number of elements would
become impractically large. This statement appears in practically every paper
on the subject, and must have been suggested by a wrong association with the
idea of a decoding network in the form of a complete tree.

This type of network requires 2% clements for n variables (levels in
this case). In a system with a range of 23°, a set of at least 8 prime moduli
is needed if small moduli are used, and an examination of the number of binary
digits necessary to encode the coefficients of the associated mixed radix
representation leads to the conclusion that the decoding tree for performing
conversion from the mixed radix to the residue system comprises 29 levels.

If this network were a complete tree, the number of elements would be
536,870,911 = 22%-1,

The networks for obtaining the other residues have a progressively-
diminishing number of elements, but the number of elements in the very first
network is enough to discourage any further attempt.

It will be shown that the number of elements for such a conversion is
actually very small and depends on the encoding used. For a RNS with a range
of 2°° it is never much greater than 1,000.

An implementation of this method, using current steering techniques, is

given in Section 9.2, and Section 9.3 deals with the procedure for determining
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the number of elements of the conversion network for the general case of
several moduli and large range.

A criterion for the choice uf moduli, resulting in an economy in the num-
ber of switching elements, is given in Section 9.k,

If a very fast conversion procedure is desired, only those methods which
are inherently non-sequential should be considered. In this case only those
under (b) are capable of being implemented with a reasonable amount of cir-
cultry.

Section 9.5 covers the application of fractional-binary-coding, to the
necessary tables for further reduction of the number of elements, at the ex-
pense of one additional pulse-time, bringing the total time needed for sign-
determination to two pulse-times. This procedure, although presented as part
of an algorithm using a table of %E |§;|mi quantities, actually can be applied
to any method using a table-look-up operation together with subsequent addi-
tion of the quantities thus obtaired.

Section 9.6 explains the general structure of the network, and Sections
9.7, 9.8 and 9.9 present a systematic procedure for determining the number of
required elements without actually drawing tne network., This procedure is

based on a general algorithm for developing a carry determining network (for

any number of variables) from a smaller network that is easily drawn.

9.2 RESIDUE TO MIXED BASIS CONVEESION USING CURRENT STEERING CIRCUITRY
The networks used to perform the conversion from residue to mixed basis

representation implement the equations of procedure number 1.
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an = [xlmy (9-1)

1
a. = — . X - 8 —2)
n-1 mnlmn-l | fn-1 n)lmn—l mp_31 9

I = e
Mp 'mp_p Mpo1'Mpoo

8n-2 = n

My o “‘X‘mn-Z

- lmn|mn_2 " fn-limn-2 |, o (9-3)

In general:

1 1 1 1
41 = 7 s ‘mn—llmi lmn—2|mi ' Imn-1+1 M3 |y
IX[mi - 8én - |mn\mi ©apoy - [mp n'ln-]_|m:.L
ap-p - |my + my_g e mn-i+2‘mi T %41 |my mg

If one considers the case where only three moduli are used, the preceding

equations take the form:

as = [xlm3 (9-4)
1
22 = |lmslny © [XIna - 22 fnn |y, (9-5)
1 1 .
a1 = ms ﬁ;lml ) lxlml - ag - |m3|ml ©8z2(p, - (9-6)

Each of the equations (9-1), (9-2) and (9-3) is implemented by an inde-
pendent network, but as ap is always equal to |x]mn, only n-1 networks are
required.

The inputs to each network are the residues, coded as one number per
wire, therefore the number of input lines is equal to the corresponding modulus.
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As an example, Figures 9 and 10 represent the conversion networks to per-
form conversion from the system mj: {4,3,5) *to the associated mixed basis
system.

The broken line is the path of information when the number 53 in residue
notation (1,2,3) is converted to the mixed basis representation: (3,1,3).

The procedure includes the following steps, as indicated on Figures 9
and 10:

1. The input (a;) is received on wire number 1,

2, The first binary digit of |a3|ml = |5|4 =3 =11 is inspected.
3. The first binary digit of }aglml is subtracted.

4. The interchange of wires in this step has no arithmetic meaning.

It is only a rearrangement to simplify the drawing. Every wire retains

its original weight.

5. The second binary digit of ]a3]ml is inspected. In this

case |a3|ml in binary is 11, and the second digit is also a 1.

6. The second binary digit of la3|ml is subtracted. Weight = 2.

7. Multiplication byil/malml is performed. In this example
|1/mglp, = 11/5]4 = 1L

8. The first binary digit of |as|p, is inspected. |az|p, = 1.

First binary digit is 1.

9. The first binary digit of |a2|ml is subtracted, with a weight

of 1.

10, No operation.
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Control Signals

—-§tep'- ggerations

las| =33 11 5 |1st digit of |as|y,

4 |No opereation

O\ \n

204 bin. diglt of |egly, )
4

las| =33 12 2nd diglt of |as|y,

n
o
[
A%}

1
7 XIigl,,,;Ii'l‘ -1

f
|
|
|

@

1st bin. digit of [ag|y 0
leg|, =1 =01

O

1st digit of |az|m,

10
2nd bin. digit of |aa|y, 1
laz|, =1 =01 12 |2nd digit of |ez|p,
2
1
2
O

Output: 8; =3

Figure 9. Switching network for residue to mixed basis conversion net-
work (1st part).
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Control Signals Input: |x|my=2 __Steps_ _Operations

1st bin. digit of |ag|p,

laalp, = |314 =00 3| -1st d1git of |es|y =00

4| No operation

2nd bin. digit of |a3|m2

o\ \n

-2nd digit of |ag|p =00

T| No operation

Output: az =1

Figure 10. Switching network for residue to mixed basis conversion net-
work (2nd part).
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11. The second binary digit of Iaglml is inspected. ]azlml = 1,

Therefore the second binary digit is O.

12. The second binary digit, with a weight of 2, is subtracted.
13. Multiplication by [1/mp|p, is performed: |1l/moly, = |1/3] = 3.
14, The output is a; = 3.

It is to be noted that the number of levels that are necessary depends on
the number of a coefficients to be inspected, which is (n-1) for the first
network, and on the number of binary bits needed to represent the a coeffi-
cients modulo m;. As my; = 4, the largest magnitude to be dealt with is 3, and
therefore only two binary bits are necessary for each coefficient.

The complete network to perform conversion in this system is shown in
Figure 11, and in more detall in Figure 12 where the f:l and(Z:] elements and
connections indicate auxiliary equipment performing notation changes, encoding
or modulo operations not essential to the conversion procedure.

The operation is sequential, that is, the coefficient ag appears first
at the output; after a certain time interval a; is obtained, and so forth,

Therefore the total delay to obtain the complete conversion is the sum
of the propagation times through the path shown as a broken line in Figure
12,

All the |x|mi are applied simultaneously as inputs, but they are delayed
by the delay elementstt#jto allow time for the modulo and conversion opera-
tions to take place on {xlma.

After that delay, both signals, that is, the individual |x|p; and the

corresponding setting signal for the switching elements obtained from ]x|m8,
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are applied to the first group of switching levels, indicated in Figure 2 as:
Y%V. The number inside the Y¢7 indicates the number of levels actually com-
prising the group.

The output of the modulo 23 column is already a,, from which the setting
signals for the second group (second row) of switching elements are derived
by modulo and conversion operations.

Therefore, initially there are no outputs, and the a; coefficients begin
to appear successively in decreasing order until they are all available after
a time equal to the total propagation time through the chain of elements in-
dicated by the broken line in Figure 12,

A slightly simpler network can be obtained by omitting the delay elements
:#:jin Figure 12; but then the output has to be strobed after a time equal to
the total delay A, because in this case there are output signals present since
the moment the |x|mi input signals are applied, but it is only after a time A
that they are all correct.

The initial values present at the output depend on the state in which
previous operations left the switching elements, and they change successively
into the correct value as the signal travels through the broken line diagonal

path of Figure 12.

9.3 NUMBER OF ELEMENTS IN A CONVERSION NETWORK

When performing conversion from a residue number representation, the num-
ber of independent conversion networks is one less than the number of moduli
of the system, because the coefficient ay in the mixed radix representation

in equal to the residue lem .
n
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The number of input lines to the ith network is equal to the correspond-
ing modulus mj. For example, if for a network mj = 3, the number of input
lines will be 3, because the input is aj, and this can take any value up to
mj-1; therefore the largest possible value is 2, but an additional line is
needed for the O (zero) signal, which brings the total back to 3.

The number of levels is the product of the number of binary digits neces-
sary to represent moduli i the coefficients ai from aj4 to ap,, times the
number of coefficients to be added up, which is equal to (n-i).

The itemized calculation for a residue system with 8 moduli is given in
Table 8.

For the first network, my = 3, and the number of coefficients to be
added is 7: ap through ag. All these coefficients are taken moduli 3 and
therefore are represented in a binary notation by only two digits. The
total number of levels needed is therefore: 2x7 = 1k,

The following general formula can be used to calculate the total number
of switching elements of a conversion network for a system of any number of
moduli:

(n-1)

No. of elements = .Zi (n-i) x my x F(mj) (9-7)
1=

F(m;) is a function giving the number of binary digits necessary to rep-
resent a number modulus mj.
When operating moduli mj, the largest number that can occur is evidently

(mj-1), and for systems with a small number of moduli, F(mj) can be obtained

from the following table:
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TABLE U

TABLE OF THE FUNCTION F(mj)

Any m; up to 2 L 8 16 32 6L 128
Largest No. poss. 1 3 7 15 31 63 127
F(my) 1 2 3 L 5 6 7

In those cases where the number of moduli is very large, or the calcula-
tion is to be included in a program as a subroutine, F(mj) can be obtained
from the expression:

log (mg+1)
F(mj) = 1integer part of ——§—£—1——— + 0.99 (9-8)
0.3010

It is interesting to note that given a residue number system and the
associated mixed basis system, the conversion either way takes the same num-
ber of switching elements, although the networks are quite different in their

circuitry, and in the time required for the conversion.

Modular system with moduli: 3, 5, 7, 11, 13, 17, 23, 31,

TABLE 5

PROCEDURE FOR THE CALCULATION OF THE TCTAI, NUMBER OF ELEMENTS

1 2 3 L 5 = 3xh 6 7 = 5x6

1 3 7 2 1h 3 Lo

2 5 6 3 18 5 90

3 f 5 ) 15 I 105

L 11 L L 16 11 176

5 13 3 L 12 13 156

6 17 2 5 10 17 170

7 23 1 ) 5 23 115

Total number of elem. = 854

Column 1: network number

Column 2: my

Column 3: number of coefficients to be added

Column 4: number of binary digits necessary to represent the
coefficients moduli my

Column 5: number of levels

Column 6: number of input lines

Column 7: number of elements,
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The table beginning on page 145 gives the number of elements necessary
to implement the conversion network for different sets of moduli, all giving
a range equal or greater than a specified value., The results are a direct
application of the equation (9-7) and have been calculated for values of M
from 227 through 234, Only the %able for 227 is included here.

For the calculation of these tables, the first 40O prime numbers, ex-
cluding 2, have been considered as numbered from 1 to LCO. Therefore, the
numbers in columns 1 and 2 identify the first and last moduli of the set by
their ordinal position; i.e., 3 indicates the third prime number, that is 7.

The tables contain the following information:

Column 1: The first modulus,

Column 2: The last medulus.

Column 3: The number of moduli in the set,

Column 4: The actual range obtained, in floating point notation.
Column 5: The number of elements in the conversion network.
Column 6: The number of elements normalized for a range of 10%°.

Column 7: The minimum range, in floating point notation, as pre-
scribed in the program.

The same type of information is presented in Figure 13, beginning on
page 1L6.

Here only the first and last moduli are indicated, together with the num-
ber of elements. The length of the lines of 8's in the scale indicated, is

proportional to the number of elements.
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TABLE 6

NUMBER OF ELEMENTS IN THE CONVERSION NETWORK FOR DIFFERENT SETS OF MODULI

Tirst Modulus last Modulus Buber of Range Number of Mumber of Elements .
Prime Wo, Prime No. Moduli Obtained Elementd for a Range « 10%° 2
3 9 1 215656259 111k 51656 134217759
4 10 7 955048L39 1524 15957 134217739
€ 1u 6 247110459 1595 6usi6 136217759
7 12 6 595971659 1902 31914 134217759
[] 13 6 134877760 2310 17126 1342177%9
9 s 6 275619560 2761 10017 134217759
u 13 S 162489759 2424 149178 134217759
bH] 1% S 259105159 2640 101889 126217759
13 17 5 385497559 2868 74397 134217759
1 18 5 600658559 315%€ 52542 1252177%%
15 19 5 907376959 5535 38958 174217755
v iy 2 124578260 3949 31597 154217755
17 21 5 1E7343660 4376 26143 124217759
18 2 5 227696860 ugk2 2170k 13421775
19 23 5 302L62760 5208 17218 174217753
20 2k 5 413223560 5188 135280 136217755
a 2 > 571720060 5880 10284 136217785
2 26 5 745406960 €258 8295 124217785
23 7 5 960945160 6664 €93k 176217759
2 28 5 117688661 7028 5971 174217755
o 4 b 135743659 3879 285759 144217755
27 30 b 167373059 3uTh 207%¢0 130217755
28 31 u 204914459 3125 152502 134217756
2 3 4 257552659 5199 2018¢1 124217785
30 33 b 316812259 5859 18L93€ 124217759
3n 34 4 371692859 6448 173476 144217755
32 3 4 428439559 6704 156474 124217785
33 36 L 490985159 6928 141104 12.21775%
u 3 u 575755259 7218 125885 Lreoies
35 38 & 645313759 Thio 115252 124217755
36 39 L 739332659 1386 99900 1217785
37 Lo & 801900059 7968 94507 124217755
38 41 4 936017299 8208 87690 12-2177%5
39 L2 4 107053460 8LéL 79063 122217755
4 u3 ) 119429460 8720 73013 124217759
4. L) L 131439060 89k 68046 121217789
i 45 L 144510260 9248 63995 136217755
43 u6 b 159642160 9376 %8731 134217785
b 7 4 18L456960 9600 520Ul 12217755
us u8 L 212546760 9936 LETLT 13421775
L§ L9 b 244588660 10448 42716 134217755
47 50 4 270090460 10816 LOOuS 134217759
u8 51 L 269468860 10976 37917 134217759
L) 52 & 307321260 1136 36235 134217759
50 53 4 336845060 1134k 33677 134217759
51 s 1) 371541260 11600 31221 13L217759
52 Lo » LoBBSOL60 1213 29626 134217759
23 %6 L 136351360 13017 2852k 134217755
U 51 & 492713760 1kogh 2860k 121217753
s 8 k] 531056760 14382 27081 134217759
86 59 b 567402260 14634 25791 134217759
57 60 4 596931960 1832 2u8L7 17L217756
8 61 4 645390860 15084 23371 134217756
9 62 b 715288360 15318 2118 12L2177%5
60 63 4 T7916%3160 15678 1980k 13-2177%6
61 6L L 875573360 16236 18543 13L217759
€2 € L 947292060 16704 17€33 131217755
€3 66 " 102134761 16884 16931 134217759
[ 67 4 110673161 17136 15483 13L2177%9
€3 68 ) 122694961 17550 14303 15{4217*59
66 69 4 135080461 18126 13.18 134217755
€7 70 u 144058461 18486 12832 124217755
€8 n 3 153462661 18828 12268 12217753
69 T2 4 162307661 15008 1L 13u21775g
10 ™ " 173469061 15296 1123 13.21775%
n Th L 186245561 19656 10%%3 12.2177%9
T2 ™ L 198696261 20034 10082 124217799
™ 76 4 210606961 20340 9657 15{.21*75?
™ n " 224157961 20628 9202 1,‘~217:5:
7 T8 b 237169661 20916 geg byt
76 19 D) 253269661 21298 8393 1:72‘_“51
Li2 ji4 P 272801861 21618 7504 e
8 81 b 285293561 21960 7590 %uz‘ :5<
79 82 3 310936161 22374 195 -‘~21:75§
8 83 " 329181661 22770 6917 12-21775%
' 8 N 3LLB9L26L 23022 6€7% 11217y
8 8s 5 362917061 23382 6ul2 l'*flj_té
8 86 b 378073361 23580 6236 13217759
8 87 ) 399028861 23868 5981 1242177%9
& 88 b 419025561 2b196 5764 13-217735
86 89 3 L379L3061 298 5593 1:~21M:9
& % ’ u33499461 24804 oo bt
8 9 5 LTTL6861 2984 5223 L‘:Elw,.,ii
& 9% ) 504352361 25218 5000 1‘ gx 789
90 93 ) 9534852261 25614 u788 1; 4217753
9 9% b 571500661 26118 us70 1;5211159
% 9 4 600134461 26478 ub12 1:21; 5
93 9% ) 627244661 26766 u26 12y 715,
94 91 3 6655681€1 27108 uoT2 ‘3““,459
9 98 3 138683659 1372 1036315 12:21 759
F44 9 3 WTUOR3SS 19650 10€1720 x,‘ )‘217 59
98 100 3 154758159 15870 1025471 1;‘ 217759
99 101 3 164818759 16290 988358 124217799




Number of elements

Scale: 1000 ele/cm

Last modulus,
prime No.

First modulus,

— !
prime No.

3 9 1114
L 10 1524
6 11 1595
7T 12 1902
8 13 2310
9 1k 2761
11 15 2Lak

12 16 2640
13 17 2868
1 18 3156
15 19 3535
16 20 3949
17 21 4376
18 22 hglho
19 23 5208
20 24 5488
21 25 5880
22 26 6258
23 27 66654
2L 28 7028
26 29 3879
27 30 347h
28 31 3125
29 32 5199
30 33 5859
31 3k 6448
32 35 6704
33 36 6928
3L 37 248
35 38 74h0
3% 39 7386
37 Lo 7968
38 41 8208
39 L2 8u6L
Lo 43 8720
b1 Ll 89kl
ho 45 9248
L3 L6 9376
LWy bt 9600
45 48 9936
L6 49 10448
47 50 10816

[ [ I [ | [ | I [ |
1 2 3 L 5 6 7 8 9 10 11 12

Figure 13. Variation of the number of elements in the conversion network.
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. L8 51 10976

. Lo 52 11136

. 50 53 1134k

. 51 54 11600

52 55\{12113

53 56 13017,

5L 57 14O9L

55 58 14382

56 59 14634

57 60 14832

58 61 15084

59 62 15318

60 63 15678

61 6L 16236

62 65 1670k

63 66 1688k

64 67 17136

65 68 17550

66 69 18126

67 70 18486

68 71 18828

69 T2 19008

70 T3 19296

71 74 19656

72 75 20034

73 76 203L0

W 77 20628

75 78 20916

76 79 21258

77 80 21618

78 81 21960

79 82 22374

80 83 22770

81 84 23022

82 85 23382

83 86 23580

84 87 23868

8 88 24156

8 89 24498

87 90 24804

88 91 24984

89 92 25218

90 93 25614

91 9Lk 26118

92 95 26478

93 96 26766

ok g7 27108

96 98 1hLz72

97 99 15650 ~——

98 100 15870 1st type

99 101 16290

T T T T T T T

10 11 12 13 1k 15 16 17 18 19 20 21 22 23 24 25 26 27 .

Figure 13 (Concluded).
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9.4 SELECTION OF MODULI FOR MAXIMUM ECONOMY

It is evident that some combinations of moduli require a minimum of ele-
ments, and that two types of relative minimums can be distinguished:

One type 1s produced when the number of moduli in the set drops by one,
because as larger moduli are considered suddenly the range can be obtained
with one less modulus.

The second type occurs even when the number of moduli remains constant,
and is produced when the nth-1 modulus takes the largest value not exceeding
one of the following magnitudes: 2k-l. That is when the nth-1 modulus takes
the maximum value less than or equal to: 3, 7, 15, 31,....

This can be explained in the following way: The nth modulus does not
influence the number of elements because it gives directly the last coeffi-
cient in the mixed radix system. When the nth-1 modulus takes for example
the value 15, it is possible to encode it using four bits to full capacity.
If the modulus were 16, it would be necessary to use 5 bits and therefore
five levels of switching elements.

The rest of the moduli are also encoded in the same number of bits or
in less, because they are all smaller than the nth-1.

In the graph for a range of 227, the first type of minimum occurs for
the sets having the following first moduli: 6, 11, 26, 96. 1In those cases,
the number of moduli is reduced by one.

The second type is evident in the set having prime number 28 as the first
modulus. This set is composed of the following primes: 109, 113, 127, and
131, We see that the nth-1 modulus is 127, which is the maximum value repre-

sentable by 7 binary bits.
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9.5 THE APPLICATION OF BINARY CODING TO CONVERSION PROCEDURES USING STORED
TABLES

One of the procedures used to obtain the mixed radix coefficients cor-
responding to a given residue representation consists of the addition of the
. U S S T . .
corresponding values of the quantities ﬁf‘g‘l in mixed basis notation.
1 mj mj

This procedure requires the storage of n tables, n being the number of

moduli in the system. Each table contains the values of %T|§—] for all pos-
1 mj py
sible values of [x[mi, expressed in mixed basis notation.

From these tables one obtains the mixed basis coefficients corresponding
to each of the residues., They are added in a modular adder, taking into ac-
count the carries that may occur.

The main disadvantage of this method is that it reintroduces the problem
of carries. But when the problem is sign determination rather than change of
representation, the method can be modified to perform the determination of
sign in only one pulse time, assuming that the corresponding quantities have
already been obtained from the tables.

This modification is based on the fact that when a number x is represented

as.:
1l x
X = M Z'ﬁlmlmlj

where M is the range of the system, the summation takes values less than 1/2
for the first half of the range, and values greater or equal to 1/2 for the
second half. Now if the quantities stored in the tables are represented in
binary form, it is not necessary to perform the actual addition of all the

quantities, but only the determination of the first binary bit after the dec-
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imal point, If this is a zero, the summation is less than 1/2 no matter what
the other bits are. If the first bit is a 1, the sum is always equal to or
greater than 1/2,

When all the quantities have been obtained from the tables, the carries
are determined for all the columns except the first one, and the resulting
carry is added to the digits of the first column.

For example, if the (2,3,5) modular system is used, the corresponding

tables, expressed in binary notation, are as follows:

I 5150, x| 21, ], 5IZI_
0 . 00000 0] » 00000 0] . 00000
1 - LOOOO 1 .01011 1 .00110

2 . 10101 2 .,01101
5 . .10011
L .11010

For x = 16, residue representation is (0,1,1), and from the tables we obtain:

D BVl ENP B
For O .0 0 0 0 0
For 1 .0 1 0 1 1
For L .0 0 1 1 C
oL 0 0] 0 1

[

As only the first digit after the decimal point is to be inspected, the
complete sum is not needed. It suffices to determine the carries up to the
first column, and then to add the last carry to the first column.

This simplificetion makes it possible to perform sign determination in a
single pulse-time using a current steering network, because the necessary set-
ting signals for all the levels are available at the same time, and there is
no carry propagation problem.
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9.6 GENERAL STRUCTURE CF THE NETWORK

The switching network for carry determination is very simple because it
does not have to handle largs numbers since the largest carry for a sum of N
binary numbers is N-1, which happens only after several columns have been
added.

For the first columns, the nebwork has ho handle carries of increasing
magnitude, This recessitates an increasing number of wires to represent the
carries, but after the maximum value cf the carry has been reached, the com-
plexity remains statiorary., 7Then the same type of circuitry is repeated for
the following columns,

Three well defined regicns can be distinguished in the network., This
begins with a single wire representing the original "zero" carry into the
first column from the right. 1In the first region where the number of values
that the carry can assume keeps growing, *he individual networks representing
the columns are all different, because the possibility of carries of larger
magnitude demands more wires for thelr representation, This region ends with
the network corresponding to the column where the carry first assumes its
maximum value: N~1,

The second region is formed by a number cf networks, all alike, corre-
sponding to the cclumns up toc and including the next to the last, for which
the same number of values are possible for the carries,

The third region comprises only one network in which the resulting carry
from the previous columns is added tc the binary digits of the last column,

The result is interpreted as {+) if it is a zero, and as (-) if it is a one,
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Note that the networks in regions 1 and 2 perform binary carry determina-
tion, while the network of region 3 performs binary addition.

The configuration of the sign determining network for the example of Sec-
tion 9.5 is shown in Figure 1k,

A simplified network for the case where 4 moduli are used is shown in

Figure 15.

9.7 DETERMINATION OF THE NUMBER OF ELEMENTS OF THE NETWORK
The three sections of the network, as described in 9.6, contain four dif-
ferent types of individual networks:
Region 1: The first network is of the type (1+M), indicating that
it is of the type having only one input and M outputs.
From the second network on, only the type (M>M+W) occurs,
indicating a network having more output wires than input
ones.
Region 2: All rnetworks are of the type (M>M), that is all have
equal number of input and output wires.
Region 3: The network is always of the type (M+2).
Each of these types of networks requires a separate calculation to deter-
mine the number of elements necessary for its implementation.
Networks of the first type (1-M) are the most difficult to evaluate be-
cause they are asymmetric and include many cases of "don't care" conditions,
which tend to simplify the network but introduce difficulties for the syste-

matic determination of the number of elements.
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last bit
lst row
2nd row

ﬁlst column
3rd row

/

Carry from lst column

N\

> 3 similar
networks

Carry from\the 4kth column

> Network performing
bin. addition

Figure 14. Switching network for sign determination for a residue system
with 3 moduli.
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Carry Wires | Type of
Network | Reglons

0,1,2 k ) 3 1
34

0,1,2,3 l\j\/LJ L :i___ _________

/\ L+l 2
L

Lk

0,1,2,3

—
nf

0,1,2,3 Lk )/] X

Figure 15. Block diagram of sign determination network for a system
with 4 moduli.
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The following is an explanation of a procedure by which the number of
elements can be determined for any numter of variasbles (levels) without actually
drawing the complete network,

Figure 16 shows the carry matrix and the corresponding network for the
case n = 3, while Figure 17 shows the case n = L,

It can be seen that the carry matrix for the case of four variatles can

be thought of as being formed in the following marner:

111 111 000000
0090 111 Tr—
FE:N&] [cm| matrix |
[n=2*% | n=2 | for n=3 I

The asterisk (%) in the carry matrix of 2% is just a symbol to indicate
that the matrix is derived from the matrix for n = 2 by interchanging 1's and
O's in the firsht row,

The corresponding diagram in network form, for the previous diagram can

be indicated as: }\\\1_—
IC.MQ {xfk\\\
n=>3 i

C. M| C.M1
n=2% n=2

2

The procedure can te extended for a larger number of variables, and the
general structure of the network for the first column is indicated in Figure

18,
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|~ O
O |0+ O
=
=
',—l
(@)

E = either O or 1

Figure 16. Carry matrix for three addends and
corresponding network.

n==.4
0O0O0O000 111111
000111 000111
110100 100110
l1OEE1O E1010E
100110 110211

0O 01 0

Figure 17. Carry matrix for four addends and
corresponding network.
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;:»(Kkj) Branches

]
| Lo -d

G

Figure 18. General structure of the carry determining network
for the first column of K binary bits.

The number of elements in this network can be obtained from the follow-

ing table:

TABLE 7

NUMBER OF ELEMENTS FOR NETWORKS OF THE TYPE (1-M)

Output wires, No. of levels = Number of

M No. of moduli, N elements
2 3 L
3 L 10
L 5 2l
5 6 b3
6 7 87
7 8 175
8 9 351
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For values of N = 6, the following formula can be used:

N-6)

Number of elements = 17 x 2(N-5) + L x 2( + (N-1) +5 x (N-6) (9-9)

Second type: Networks of the form (M>M+W).

These networks implement the carry determination procedure from the second
column up to and including the column in which the carry assumes its maximum
value,

The number and type of networks that are needed in each case can be deter-
mined from the following table, which gives the maximum carry from every column

and at which column the carry stabilizes at its maximum value of N-1.

TABLE 8

MAXTMUM CARRY AND CARRY PROPAGATION LENGTH

No. of binary bits Max carry from column Max carry at
in a column to column column No.
2 1 1 1 1 1 1 1
3 1 2 2 2 2 2 2
L 2 3 3 3 3 3 2
5 2 3 L L i L 3
6 3 L 5 5 5 5 3
7 3 5 6 6 6 6 3
8 L 6 7 T 7 7 3
9 Ly 6 7 8 8 8 L
10 5 7 8 9 9 9 b

It must be remembered that the table gives the maximum carry, not the
number of wires, which is one greater.

Figure 19 shows the corresponding network for the case (2+3) for 3
levels,

Figure 20 shows the network for the case (3+4) for L4 levels. The
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2+3 type for
3 levels

Figure 19. Carry determining network
for the (2 to 3) case.

1

Figure 20. Carry determining network
for the (3 to L4) case.
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preceding table indicates that for L levels, that is four binary bits per
column, the carry from the first column into the second is a 2, Therefore the

network for the second column must have 3 input wires (for the values 0,1,2)

~

and 4 output wires (for the values (,1,2,3). Therefore the network of Figure
20 represente the second retwork for the case n = L,
Number <f elementg:

The nuwrber of elements of a network of the type (M>N+W) for N levels de-
pends only -n M and N, and Is calculated by means of the following formula:
Number of elements:

Mo+ (ML) 4+ (ME2) 4.+ E%ﬂ&%% (9-10)

™ird type: Nebworks of the form: (M+M).

For this type of network, the same formula (9-1C) applies.

Fourth type: Networks of the form: (M»2),

This network performs binary addition, but no carry read our wires are
needed, because only the resulting digit 1s inspected.

The number of elements is determined by applying:
Number of elements:

Mo+ (M+l) + (M+2) +....+ (M+P-1) (9-11)

9.8 THE NECESSARY WJMRER OF BINARY BITS

in order to attain the required discrimination between the positive and

[N
n

negative regicns, it necessary to determine the number of binary bits of

>

i

the ‘I quantities, A% the same time, 1t is convenient to use the minimum

1
my my

=
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possibie number of bits in order to save space in the tables, and to economize
in equipment,

The necessary discrimination is l/M. In the worst case, two representa-
tlons may differ by only one bit in the last place. The weight of this bit
is l/2k, where k is the number of bits in use,

Therefore k i1s the number of bits that produces a suitable discrimina-
tion, and must satisfy the relation: 2k > M

This number of bits insures an adequate discrimination in all cases, but
when maximum simpiification is desired, it is possible to obtain accurate sign
determination even when several of the final bits are dropped. In that case
the magnitudes are represented only approximately, but the sign is still cor-
rectly determined. The following considerations apply:

In a RNS, using 2 as one of the moduli, the representation for the first
number of the second half of the range is always:

(1; 0; 0;....0)

Therefore, the summation of the quantities from the tables is always
equal to 1/2 for this number, no matter how many digits there are in use., If
the following numbers are also represented with less than k bits, their mag-
nitude will be represented only as an approximation. But as long as the sum-
matvion resuits in values of 1/2 or greater, the sign determination procedure
will continue to operate correctly.

As an example, let us suppose k is being determined for the system (2; 3;
5). Here M = 30, therefore k must be 5, becduse o5 _ 32 which 1s greater

than 30,
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lowing approximate representations are

zaleoulated using *he tabls ~n page 150, but considering only four bits:

g 10 5/1€
il 5/16
First half 12 6/16 ;
of “he range i3 6?16 <1/2
1k 7/16
—= — ——-15 8/16
16 8/16 '
Second half 17 8/16 > > 1/2
of the range 18 9/16
19 10/16
s 20 10/16

9.9 SYSTEMATIC PROCEIURE FOR THE DEVELCPMENT OF THE NEIWORK AND FOR THE DETER-
MINATION OF HE NUMBER uF ELEMENTS

The only data available are the set of moduli in the system. The follow-

ilustrated in the next example.

e

ing steps should he follicwed, as

1. Draw the schematic of the netwerk, as in Figure 21, with as many Y¢7
{indicating individual networks) as the number K of binary bits used in the
tables of the %Ti§—i quantities.

2, Determine the sequence of maximum carries from Teble 8 for the num-
ber of moduli used in the system.

3, Write on the left side of the network the sequence of carries and on
the right side the same numbers increased by one, indicating the number of
wires,

4, Jdentify and separaie the three regions in the general network,

5. For the first network, obtsin the number of elements from Table 7,

or apply equation (9-9).

r‘:
[0
n
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Number of

Network Carries Wires elements
Number 0] 1 N
1 )

L
2
6
3
-
h L]
|
( | 8
|
|
|
21 A 8k
ERE -
22 92

0 1
Totel number of elements: 1786

&> lst region

2nd region
::> (18 1levels)

;:>3rd region

e

Figure 21. Determination of the number of elements in the carry network.
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6. Calculate the number of elements for the networks in the rest of
region 1 and 2, using equation (9-1C).

T. Determine the number of elements for the network in the 3rd region
using equation {9-11),

8. Add the partial results cbtained in steps 5, 6, and 7. The number
of terms to be added is equal to the number of individual networks.,
Example: Given the system: 2, 3, 5, 7, 11, 13, 17, 23, draw a diagram of the
general network and determine the number of elements,

The numbers on the left side refer to the steps of the preceding procedure.

1. Number of bite in the %T|%T| quantities = K = 22,

img

2. Sequence of carries for n = 8: from the Table 7, we obtain: L4, 6,
T T5 Ty Teoooo

3. This sequence 1s written on the left side of the network, and on the
right side the same gquantities appear increased by one,

L, The three regions are separated by broken lines.

5. From the Table 7, for M = 5, the number of elements is found to be
43,

6. Applying equation (9-10), we obtain:

For the 2nd network: 5+0+7+8+9+10+11+[12/6] = 62
For the 3rd network: T+8+9+10+11+12+13+[14k/2] = 77

For the Lth up to
the 21st network: 8+9+10+11+12+13+14+[15/2] = 8k

T. For the 22nd network: 8+9+10+11+12+13+14+15 = 92,
8. Adding the partial results of 5, 6, and T:
b3 + 62 + 77 + (18 x 84) + 92 = 1786

ASD TR 61-L438 164



APPENDIX T

THEOREMS ON THE GENERATION OF SEQUENCES CF RELATTIVELY PRIME NUMBERS

Theorem I, Given an ordered monotone sequence of positive and negative
integers for which the difference between successive numbers is #8. If there

exists one number in the sequence divisible by Ppy then the maximum length L

Py

._,_._._l. t
(5,5) ; note

or a subsequence of numbers nct divisible by Ppy is L =
(Pm)g) =1 or Py

Proof: Given pmla then the next number divisible by Py is B,

(ki-k2)py, +85 = O

(kl"'kg) pm + a 5 = 0]

(Pm;a) (Pm)b)

—Pm and there exists P
(Pm;a) (Pm,s)

Corollary: If one element of an ordered sequence of constant difference & 1is

Hence a = numbers between & and B.

divisible by Ppy then the length of the maximum subsequence containing only

Pn
Theorem ITI., Given a subsequence of length 2p -1 of the form a-a(pm-l),

one number divisible by py is Ly = .
vousOyeeo,atd(py-1). There is at least ore number divisible py.

Proof': ]aiBKlpm assumes all values between C and p -1 as k goes from zero
to pp-1l.

Corollary: If pm>(8 in the subsequence of length 2p -1 then two numbers of

the subsequence are divisible by P
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Theorem III, A necessary condition for a reletively prime sequence of

2
numbers of length I = (pp 5 =1; (pm,a) = 1 is that no number of the sequence
v mo

is divisible by a prime less than Py

Proof: Assume pn[a, Pp < Py; then it follows from Theorem I that the length

of the subsequence including two numbers divisible by 1 is In, = TEBQET - 1.
n’

The length of the subsequence including 3 numbers divisible by p, is Ln3 =

2 41, Botn Ly, and L, < Ip

(pnﬁﬁ) 2 3

Lemma 1: ILet pz > Py divide one number of the subsequence of length L = 2pp-1.
p, never divides 3 numbers of +he subsequence if (pz;a) =1,

2p£ + 1> 2Py - 1
Lemma 2: Iet Py > Py divide one number of the subsequence of length L = 2ppy-1.
The subsequence is partitioned into +wo parts a-é(pm-l),,..,a—é and Q,0+d,...,
a+6(pm-l), where pm]a. Neither part has two numbers divisible by Py if
(p,,8) =1,

P& > (py-1)8.

Theorem IV, If Py > p, divides one number of the subsequence of length
L-2pp-1 then the necessary condition for the division of two numbers in the

sequence by P, is
Py

—— + 2 2p
(PZ)B) m

The sufficient condition is either

Py

—t— + 1 <D
(Pg:g) S
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or if (pg,a) = 1 then integers k; and ks must exist such that
ikZSEpﬂ = lozipn ko L Pp - 1

k181

il
N

4
E

Corollary 1: If pf > pm divides one number of the subsequence of length
L-2pp-1 then a sufficient condition that only one number of the subsequence
is divisible by P, is

D
—r . 2 > 2pm
(ng5)
Corollary 2: A sufficient condition that only one number of the subsequence

of length L = 2p;-1 is divisible by py, > p, for the case Pyt < 2py; (8,p)) =

(35p,) = 1; is

| = -
oy, = 0, [l seees (o - )0,

or

e
[

I(P£ - l)5lp])v-°:{pm5lp£

Thecrem V, The necessary and sufficient conditions for a relatively
prime sequence of length L = p -1 of the form a-&(pm—l),aao,a,.ao,a+6(pm—l)
are:

1. (py,d) =1
2. pm]a
5. for all p;y < Py, p£><a and (p;,8) = pg

4, for all p, > p, satisfying p, +2 < 2p
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or

Proof:

1. Corollary, Theorem I
2. Corcllary, Theorem II
3 péyQ? follows from Theorem ITT
(pi,B) = p; follows from the fact that
|6K|p- for k =C, 1,..., Py~
i
assumes all values of P; is 8 is not restricted and hence for
some kl,laiklaipn = C. Thecrem III states that if one k exists
i
satisfying Ia&k&]pi = C than a second k also exists,
L. Corollary 2, Theorem IV,
Corollary: A relatively prime sequence meeting the conditions of Theorem V
may be modified by the multiplication of one and only one number in the
sequence by each of the P, i < n, without destroying the relatively prime
relationship between the numbers in the sequence,
Exemple: py =5, & = k5, 8 =2,3 =6, 2p -2 = 8 so p, = 7 and lal7 =0, 6,
5, 1, 2. Thus, suitable a's are 25, 55, 5, 85, 65, and the resulting se-

quences of relatively prime numbers are:

L, 17, 23, 29, 35, M1, W7, 53, 59
5L, 37, k3, k9, 55, 61, 67, T3, 19
-9, -i3, -7, -1, 5, 11, 17, 23, 29, etc.

A choice of @ such that [ai7 = 3 or 4 or o such that piia, 1 < n results in

a sequence of relatively prime numbers shorter than 9, consider o = 25,
. - - -
"’51 Ly .7; 15; -199 25? 51) 37) L@) Lﬂ9y 55
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APPENDIX IT

A MIXED BASE AND MODULAR COMPARTSON

The following theorem specifies the conditions thath must be satisfied

for a number S to have identical mixed base and modular represenftations,

Theorem I. et p., DP.s...,0y e the bases of a modular rumber system

of total medulius p = P P Pse -+ Py and let the modular representation of a num-

ber S be given by:

S = (aiépdge..zy, 3 = S mod Py OL e Lpg -1

let the mixed base representstion of S be given by:
28

S = Dbibo...by

where

(€3]

bl PNl + bgpw‘z T o ‘-bN-le + bN

and
Pyx = PyPn.iPy-2cc-Pra-
S has identical mixed base and modular representations if:
ax = Dbgy, K= 1, 2,f,.,N
Then S has identical mixed base and modular representations if, and only 1if,

|
_ gl
Py

is an integer
K=1, 2,...,N=-1°

.
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Define the quantity tyy:

go|=2—

3 Pk
thg =
Py K=1, 2,...,N-1

Now since ag = by only when ty is an integer, the following theorem relates
to the number of integer tyy's which appear as S goes through the integers
1, 2,...,p and K is fixed.

Theorem II, As S goes through the integers 1, 2,...,p, the number ks

given by:

tyk = -

assumes the value of all integers 1,2,,..,(plp2p3...pK_l)(pNK-l) at least once
and at most twice.

Proof: Examine the quantity

P
For
0K 8< Pyks A = S
For
pNKT$ S < QPNK’ A = S-1
and in general
apyg € 8 < (a+l)pNK, A = S-a

It is easily seen from the above that as S goes through the integers 1, 2,...
prK’ A goes through the integers 1, 2,...,prK~b. Therefore, as S goes

through the integers 1, 2,...p and since p = (plpzps...pK)(pNK), A goes
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through the iutegers 1, 2,...,(p p_o.. opy) (D=1
SL = . aM Lo
- v . . - . ~ . . - .
Now tyy = A/DPy hence, 1t follows that as 3 goes through the integers

1, @,000D; Ly 8ssumes integer valuss af least

'fPlpgo ° DPK') \pl\’va‘}
P

imes
K

1

< very ipteger 1 5 i - e
or tyy assumes every intsger I, CERRRLS J5 SRS Ny 1) at least once as

ylp. -
) (P
S goes through the integers 1, 2,...p.

Now examine the case of two irfegers S, and Ss where I1<8:1<825p
to see under what conditions their respective +..,'s are the same,

“NK

Let 1 & 81 < 82 < p wkere 3; and Sz are integers., If Ty for S; equals

o317 ‘_J So=| 2
PNg] Py
Py Py

tyg for Sz then

and

|
o
[\

S =
B
Trien

S1 = aipyx * ru, O rigpyg -1 (2-2)

S2 = &zpg * ra, OLragpyg -1 (2-2)
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Further more, since S, < So, this implies a; < as. Substituting a; and apo

into equation (2-1) gives

Sl-al = Sg-ag

Ss - S 8o - 8y (2-4)

Il

Using equations (2-2) and (2-3) to develop an expression for S-S, gives

Sz - 81 = (ag-aj)p,, + T2 - ry (2-5)
NK

Equating equation (2-4) and equation (2-5)

8z - a; = (32'31)PNK +ro -1y
as - a To-Ty
1-pyk

Now ap >» a; implies ap-a; > O. Furthermore, since a; and a, are integers,

as-a; is an integer, If all the bases are greater than one > 1 and

» Pk
l—pNK < 0. Thus rp-r; £ 0. Recalling the restriction on the range of r;
and rp from equations (2-2) and (2-3) it is seen that in general L-pyy < Ta-
ry £ pNK—l. In this case ro-r; must satisfy the additional conditions:

(1) r2-ry; <0

(2) 1 - must divide ro-r;. This leaves only two allowable

Pyx

choices of ro-riy:

Case (1) ro-r; = O
Case (2) ro -r; = 1 - Pyk
Case (1): Let rp-r; =0, then r» = ry and as-a, = 1 0 = O thus for Case
“Prk

(l) ro = I, and ap = aj.

ASD TR 61-438 172



Now since
S, = aibyg + ri}
f > 51 = B2

Sz = agpyg t+ro

But S; = So contradicts the original hypothesis that S; < So. Therefore,

I"g-rl;éO.

Case (2): Let

NK
then
1-
8o = aj = pNK = 1
1-Pyx
By equation (2-L4)
Sz -8, = 1
Now if
s = r; = l_pNK
ry = ro = PNK' 1

Recalling the limits on r; and rs it is seen that

ry = pNK -1
r= = 0
Hence,
S, = aleK + pNK -1
Sz = (al+i)PNK

when ty for S, equals tyg for Sa.
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It has been established that two integers S; and So will have the same
tyk for some 1 £ K £ N-1 when 8o is a multiple of Prx and S; = Sp-1. Now
assume that there is a third number, Ss, which has the same tyx as S; and Sa.
Since S is always and integer, it is clear that if such a S3 exists it is
either less than S; or greater than Sp. If Sz is less than S; it can only
be S;-1. If Sz = S;-1, then to satisfy the conditions already established
S1 must be a multiple of pyy. But S; = (pyg-l)mod pyy which is a contradic-
tion. Furthermore, if Sz > S5, then Sz = Sp+l and Ss must also be a multiple
of Pyke Now since Sp is a multiple of Pygs Ss = Sotl can only be a multiple
of pyk if Pyg = 1. This contradicts the hypothesis that PNk > 1. Hence, no
such S5 exists,

In summary, it has been shown that as S goes through the integers 1,
2,...,P, tyg 8ssumes integer values at least (plpe...pK_l)(pNK-l) times and

further that no more than two numbers have the same t Hence, the theorem

NK*

is Pproved.

Define Myy as the number of integer tNK for some fixed K as S goes
through the integers 1, 2,...,p. On the basis of the previous theorem we

can say that

I\{NK = (plp2° . 'PK-l) (pNK - l) + mNK

where myx is the number of integer tNK which appear twice as S goes through

1, 2,...,p.
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It has teen shown that ftyg will be the same for two numbers if they are
successive and if Pyx divides the greater one, Note that fyyx in this case is
not necessarily an integer, As S geces through 1, 2,...p there will be p/pNK
integers which are muitiples of Pyge

Now examine %ty when S is some multiple = of PNK°

‘ Pk |
. Pk - oy c{epgel)
K Py ) Px

|{pyg-1) 211 tyy for S = cpy, Will be integers, Since

It is clear that if Py
= ltip. of = . and =
there are p/pNK P1p2°°"pK multiples of Py MNK P.Pse0oPy and MNK (plp2
cooPy ) (P ) HPaPoe o) My = (D1Po0 00Dy 1) (PyytPy-1) 5 Pyl (pyg-1).
For the case pKX(pNK—l) 5 JSNK will be an integer only for those values of c

which are divisible by py and there wiil be P:P2°°PK of these,
, 5

Myg = (PyPoeeePiui)s PKX(PNK - 1)

I

Myk

(PyPoese Py ) Py = 1) + (DPyPoee Py 1)

(PiPoee.Pr.1) (Pygd» Py X(PNK -

Given some set of bases P.PoPgeeoPys the set My, Myo, Mz s 000 Myy.p CBN be
calculated, The number of identical mixed base and modular representations
of integers S such that 1 £ S £ p cannct exceed the minimum Mygk.
Example:

P, = 3, P, = 5 by = T,p, = 11

P,s 1, p,, = 7-11 = T7, p,, = T7°5 = 385

T L-1=>Ms = 3.5-11 = 165
SXTT-1==>M2 = 377 = 251
3[385-1=>M,; = 38543-1 = 387
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min Myg = 165. The actual number of identical elements = 27. Although the
minimum Myy does provide an upper bound for the meximum number of identical
mixed base and modular representations, it is a poor estimate of the actual
number. Furthermore, to determine the maximum number of identical elements
for all the N: mixed base systems associated with N bases requires (N-1):
computations. The Myyx function does give some insight into the problem of
choosing the bases to achieve the maximum number of identical elements, Com-

paring the two expressions for Myg seems to indicate that choosing the bases

and their order so that pK[pNK—l will lead to the greatest probability of
attaining a high degree of correspondance between mixed base and modular

representations in a system.
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APPENDIX IIT

SIGN DENERMINATICN BY A TWC-DIGIT REDUCTICN PROCESS

INTRCDUCTORY REMARKS

This report presents a method for determining the magnitude of a number
from the decimal system which has been transformed into a residue number sys-
tem., The residue represertaticn does nob permit a trivial recognition of
magnitude, otherwise there would be no need of such a method,

This method determines which half of the system the number is in,

TERMINOLOGY
The bases are taken as primes, where P, is taken %o be the number 2 while
pi(i # 1) represents any arbitrary prime. The primes are to be arranged in

increasing order, after arbitrary selection, such that
pl<p2<.oanonuo <Pi<pi+l<o.oo=.on <pn (5_1)

The letter n will be taken to mean the total number of prime bases, and N will

mean any number representable in the system, The letter a; shall represent

the residue of N with rezpect to Py and the range of N to be considered shalli
be

CE N <M (3-2)
where

=
il
(el
e
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In symbolic form, the number shall be represented by

Bases: DPiPoPy scscccsnsae Py (3-3)

N = = 818283 ss0scssoooes 8y

Use will also be made of further terminology. The letter m shall indi-

cate the product of two base primes, and to be orderly let

my = PpPp_q

Mz = PpoPp.3 (3-1)
° 5-

me = D4gPs3

The case under consideration is seen to be n an even number, with k thus
being equal to (n/2)-1.

This orderly pairing of primes and assignment of subscripts to the m's
is not essential and does not effect the generality of the result. It is
merely an aid to simplification of symbolism,

The letter bi shall represent the residue of N with respect to mj, and

si, ti and dj represent integers.

OPERATTONAL REMARKS
From the terminology section, aj is the residue of N with respect to p;.
This may be written as:
N = sipi + 8 (3-5)

and, from the interpretation of by;

N = timj + b3 (3-6)

ASD TR 61-438 178



By the nature of the residue system, certain operations are easily per-
formed. If the representation has a zero in the ith digit position, division

by P; 1s simple and guarantess an integer result. Thus

N-as

= sy 3-17)
Pi 1 ( |

is easily performed, tecause N-a; does indeed have a zero in the ith position,

Similarly, the operation

[
o'

= ty (3-8)

is easily performed, since m; is the product of two base primes and N-b; has
zero digits corresponding t¢ these primes,

However, by is not as readily available as was aj. But bi may be found
by equations (3-12) and (3-13). In the development of these equations, the

subscripts on b, t and m have Tteen changed to avoid confusion with p, d and

a.
Let
Ny, = pipj
where
2gi<jgn
and

By the definition of a and b

o
O
1l

ajmod P4

b, = ajmod P (3-9)
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These equations (3-9) may also be interpreted as follows

'DO = dipi + a4

by = d:ps + a. (3-10)

Combining equations (3%-10) yields

which may be also interpreted as

aj - ay = djpjmod pj (3-11)

and thus the procedure for the determination of by, from equations (3-10) and

(3-11) is:
a’o_a-
dy = [—4 (3-12)
23 o,
i
bo = djypy *+ & (3-13)

ADDITIONAL REMARKS

If care is taken in selection of the primes for m;, a savings will re-

1

sult., For if, in equation (3-12), pj +1 mod p; the congruence relation
is solved merely by subtracting aj from a; in the mod p; portion of the sys-
tem, a fast and simple step,

In connection with the forthcoming expansion, note that the machine
step of equation (3-7) destroys the ith digit position. If the system is
assumed capable of re-expanding s; to reclaim the lost digit position, then

a reduction to a uniformly-tased number system can be made. The following
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reduction to a ncn-uniformly-tased number system does not require such an

assumptiorn,

REDUZTION TO NON-UNIFCRML{ 2ASED SYSTEM
The number W will now be developed from its residue represerntation into
a non-uniformly-tased number., The starting point is the use of equations

(3-6) and (3-8), and tae following iterative procedure:

N -b
N = J:_’l_.".'ﬂl T 251 tl = ——?n—]—-——l-
- t, - b
Tty = tomp + bo te = —;EE—-Q
o +.° - b
k-1 k
Tx-1 = trmg F bk Ty = —g;gif——-
N = bl - 'b2
m! - bg
M)
. ~Pg-1
‘ Mgk.] = by (3-1L)
tx =
My

Equation (3-1Lk) +hus shows the final result of the iterative process,

By combining this equation it can be seen that

k-1
N-by-mybo-Mylobg=cecacooeo~ g}; m3 by )
Ty = = (3-15)

x
ms
Eg; i

Then by solving (3-15) for N, the result is seen to be a non-uniformly-based

number
k k-1

N = tk. )i mi + bk J 1 mi '}.ooooooooua'{“ -bsmzml + b2ml + bl (3—]_6)
izl i:}

ASD TR 61-438 181



in which

DEVELOPMENT OF THE FINAL STEP

There are exactly (p;ps)-1 occurrences of the case by =my-1 for O < N <M,
two of which will be helpful in establishing certain limits. The two cases

are now to be examined, and they are:

(a) W =
and

(b) N = M- 1,

In each case, add unity to the representation of (3-16), resulting in:

k

(@) % - @+ m (5-17)
1 |

@ M = (1) T my (3-18)
i=1

In the equations (3-17) and (3-18) the letters tﬁa) and tﬁp) refer to spe-
M

cific constants, respectively the most significant digit of 5 - 1 and M-1 in

the non-uniformly-based system,

By equations (3%-2) and (3-k)

Tm = I s (3-19)
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And, since p; = 2 by definition

M n
5 = JC (3-20)
i
By combining equations (3=17-—3-20)
o p, - UN = 2.1
tl({b) = ppy - LN = M- 1) (3-21)

It now follows from equations (3-21) and as a direct result of the carry
properties of the non-uniformly-tased number system of equation (3-16) that
for
s 0 tx <P,

%’IQ N < M, P, < tx < P;Ps (3-22)

Since the orderly use of the primes in the formetion of the m;'s was
not essential to any of the steps involved up to now, as long as each prime
is used once and only once in that formation except for p, and one ofher

prime pp, the equations become in the more general case

ML=

N
=
A

O tx <Py

=
A
=

pr' \<, t‘k < plpI‘ (3"25)

vl o
/N

The only difference resulting from a given selection of p, will be in the

welghts assigned to the digit posgitions of the non-uniformly-based number

system,

Each step of this procedure eliminates two digit positions from further
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consideration. After k steps, upon the derivation of tx, there are two digits
remaining for its representation, a; and a}, The primes on these letters
merely serve to underline the fact that they are not the a; and ap of the
number N,

A brief study of equations (3-23), bearing in mind the cyclic nature of

a residue representation, shows that for

0< tx < pps ai is gggn when ar is gggn

while

odd

1 1
< Tt < ; a1 is €Venl yhen a, is .
Pr Stk < PyPri @1 odd T even

And therefore when

a1 +ar = Nomod 2 (3-2k)
it is seen that when
M
o, OLK N 5
NO =
M
1, Z<N<M (3-25)

And it is for this reason that P, = 2 was saved for the last (k+l) step.

EXAMPLE

An example is now given to illustrate pairing the prime bases to satisfy
the criteria of the additional remarks section.

For the bases (2, 3, 5, 7, 11, 13, 17, 19, 23, 29), pairs m; = 29x7;

me = 23x11; mg = 13x3%; my = 19x5; while p, = 2 and P =D, = 17.

7
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The assignment of subscripts to the m's in this example is artitrary,

ol

Facl definite assigrment leads tc a separate number system.

‘ONSLUDING REMARKS

An answer to this particular magnitude question is guaranteed irn K+l

steps, where for

. n
Ver.: T+l = =
n ever K o)
. . n+l
n ndd: ¥+l = 5= (3-26)

In the latter case, the final step tecomes merely an inspecticn of the

! . s - RIS ) .
a, digit with tze conditicns of equation (3-25) tecoming

-
'

M

-
noj
N

2

A

But, while K+l shteps are required in general, *the procedure may terminate

earlier, depending uporn the size of N, For when any

N =

= 0/i1g K, 0g0N<

o

since

fte

ty = Qif«:\<1\T<thmj
=

Now a %ime estimate for the zomplete operahion gives, for equation (3-8)

[

~

1 add time; while for equations (3-12) and (3-13); 2 add times; for a total

of 3 add times per ith step I 1 £ K. The final step for n even takes 1 add

time, while for n odd does not require an addition, but an inspection. These
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facts coupled with equations (3-26) give

n even: (g -1)3 +1 add times

n odd: (E%£)3 add times (3-27)

to guarantee an answer.

However, if only one digit is removed at once, by the use of equation
(3-7) alone, only two add times per step are required for n-2 steps, and one
add time for the final step (n both even and odd) and equations (3-27) become,
for this case

every n: (n - 1) add times.
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APPENDIX IV

COMMENTS ON PARITY CHECKING IN THE RNS

A first thought is to apply normal checking procedures to the Residue
Number System. Any conventional method may be applied to the transmission of
digits from one point to another, That 1s, simple parity, multiple parity,
and Hamming checks may be applied by considering the binary coding to be a
message, with no consideration given its semantic character. Nothing new or
special is added merely because the message is a residue coding,

This discussion will be on arithmetic checking, The problem is essen-
tially to find a function F(a) having the property

F(a) +F(b) = F(a +1b).
The most obvious example of such a functior is F(a) = a. This is interpreted
as duplication of the addition circuitry, A second and more significant ex-
ample is F(a) = a mod m. If the moduli cf the RNS are m;, mo,...m,; and m = mj
for some Jj, then this functiocn is not particularly useful. It is a duplica-
tion of one of the component sums and suffers from the same type of limitation
as the identity function. Attention will be focused on the case where m # m;
(for all j). Here if nrfﬁﬁ (for all j), then F(a) is a function of all n
components and, therefore, requires a conversion to the mixed base system,
The carries involved make this system very unattractive. A "useful" check
will either involve a conversion to the mixed tase system or will require a
separate check on each of the digits. This latter case will be discussed in
considerable detail,
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In Garner'slbr paper on Generalized Parity Checking, the dimished-base

check is discussed, in which:
k _
oibj = oymod (b-1)
Also the augmented-base check, in which:

g:b

oimod (b+l)

or

Il

osmod (b+l)
Neither of these can be used when

bj = m

J
for then k = O and these relations are trivial, However, were the components
to be binary-coded, it would be possible to use the augmented-base check,

It is more intriging to consider a binary-coded base-? system of com-
ponents with the dimished-base check. Moduli up to 81 could then be employed
with & maximum of L such binary groups, and up to 27 with 3 base-3 digits.,
Only the least significant bit of each group would be involved in the check-

"

ing. Three or four digits could conveniently be handled with "carry-look-

ahead," if not by purely combinational circuits. Consider the RNS with moduli

mlJl, m2J2, o omnjna
If .

x = oymod m131
then )

X = 04 + kmiJi
and

Ji- { .
x = o4 + (kmy Jm;*, where £ < jj
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yilelding

Otimod my -

>
il

Thus, the residue of x mod miz may be ohtained from the residue of
X mod mijie From this it follows that suckli a RNS could be used to obtain the
residue of x mod m; as a function of the individuzl components., This derived
residue could be used to implement a check., It will now be shown that the

only moduli which would work in the above scheme are those which divide miJi,

Ir
X = amodm
and
y = bmod m
then
x+y = a; +bmodm

and the retained residue is

Now
a3 = agmod m'
by = bomed m!
and
a; +by = ao +bzomod m',

The residue of as+oomod m' equals the residue of a;+bimod m'. The residue

produced in the check procedure is
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{j‘l + b:}

o .

Choose for consideration an a; and a by such that
ay +b; = m

Such a selection is possible because a;+b; will span the integers I
0L I<2(m-1)

If m'|m then

83 + byl _ k|21 *+ Dby
m' m
a; + b,y B a; + by
m' m
al +bl - 0

m
a; + Dby
{T} £ 0

The hypothesis has been demonstrated.

and

However, if m'/rm

and
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11.

12,

13.
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