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SUMMARY 

Grid adaptive methods combined with domain adaptation are discussed for two-dimensional seepage flow 
problems with free boundaries through porous media. Examples of grid and domain adaptive methods are 
presented to demonstrate several ways to predict grids and shapes of free boundaries using an iterative 
scheme. Finally, the combined adaptive methods are applied to obtain smooth non-oscillatory shape of a free 
boundary of seepage flow through non-homogeneous porous media. 

INTRODUCTION 

Although several fixed domain methods have been introduced to solve free boundary problems of 
flow through porous media, it is still popular to apply domain adaptive methods which adjust the 
flow domain and the free boundary at  each iteration so that the free boundary condition can be 
satisfied at the last moment of the convergent iterative procedure. Among such adaptive methods 
to solve free boundary problems, the works by Taylor and Brown,’ Finn’ and Neuman and 
Witherspoon3 are fundamental. Especially, Neuman and Witherspoon provided a sophisticated 
two-step iterative procedure which could solve many difficult free boundary problems. After their 
work, major contributions in this area were introduction of various fixed domain methods which 
need not define new finite element grids during iteration to adjust the flow domain and the free 
boundary. The flow domain itself was a part of the solution to be obtained. Fixed domain methods 
introduced so far can be classified into two groups; the extended pressure head method and the 
variational inequality method. The first method is based on the concept that the pressure head P, 
which is related to the head 4 and the height y of a point from the datum line by P = y ( 4  - y), where 
y is specific weight of fluid, is extended to the unsaturated area ‘smoothly’ from the flow domain 0. 
This extension of the pressure head to the entire porous media yields the extended coefficient of 
permeability of the medium: 

( 1 )  
1 

K e , , = K + - ( l - ~ n )  
& 

where j ( ,  is the characteristic function of the flow domain R defined by 

x,= 1 if XER, x ,=O if ~ $ 0  

and E is a regularity parameter which is expected to be a very small positive real number, for 
example, ~ = ( 1 0 - ~ - l O - ~ ) K , , , ~ , ,  and Kmin is the minimum of the K in the flow domain. 
Mathematically, this extended pressure head method was introduced by Ah4*’ and was also 
studied by Brezis et aL6 Application of these mathematicians’ work to solve free boundary 
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problems of flow through porous media was done by Le Tallec' and Oden and Kikuchi.* In an 
engineering context this method was introduced by Desaig*" independently of the above 
mathematicians' studies; he solved a number of practical problems together with experimental 
verification of his residual flow procedure. 

The variational inequality method was first introduced by Baiocchi' ' and was applied to solve 
free boundary problems by Baiocchi et al. l Z  Some extension of their works and extensive study on 
numerical methods were performed by Bruch13 and Oden and Kikuchi.' This method, however, 
suffers a serious restriction; although it possesses a beautiful mathematical structure for its theory, 
application of the method to general irregular domains is almost impossible. More precisely, the 
method requires a kind of regular domain such as a rectangular domain. 

In the present paper we shall return to domain adaptive methods, and shall provide new insight 
to these more or less classical methods by applying studies of grid adaptive finite element methods 
based on mathematical error analysis. Grid adaptive methods are regarded as schemes to improve 
the quality of finite element approximations by introducing refinement of grids in the area where 
the approximation error is large. That is, we shall consider a combination of grid and domain 
adaptive methods to solve free boundary problems of flow through porous media. 

FLOW THROUGH POROUS MEDIA WITH FREE BOUNDARIES 

A standard description of finite element methods is given in this section for a two-dimensional 
irrotational incompressible seepage flow through a porous dam with free boundaries. Let a flow 
field be denoted by R, and let it be Lipschitz as shown in Figure 1. The boundary of the flow 
domain R consists of three mutually disjoint segments To, Tl and T2. The free boundary To is a 
priori unknown and satisfies the free boundary conditions. On rl the head is prescribed, while the 
flux is given on r2. 

The boundary value problem is formulated as 
- V . ( K  V4) = 0 in R = R ~ u R ~ u R ~  (2) 

4 = H  
$ = h  

on AB 
on CD 

- K V 4 . n  = 0 on A C  

on BE and DE P = y(4 - y) = constant 

- K V 4 . n  = 0 on BE 

't 

Figure 1 .  Example of non-homogeneous dam 
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Here, rl = ABuCD, r2 =AC, T o =  BE, H and h are prescribed heads, y is the specific 
weight of water, and K is permeability matrix of dam material. Equation (5) is referred from 
Darcy's law as the no-flux condition across the boundary r2, that is, r2 is an impermeable 
boundary. For simplicity, by taking zero pressure P, hydraulic head 4 is equal to the vertical 
height y along the free boundary To and seepage surface DE. The free boundary conditions (6) 
and (7) must be satisfied on the free boundary whose position is also unknown a priori as well 
as the head 4. 

The weak form of the local description (2) is obtained by multiplying both sides of (2) by an 
arbitrary Co continuous function C$ and integrating over the domain R, applying the divergence 
theorem, and substitution of the boundary condition (5) and 6= 0 on r,: 

(V$)*K V 4  dR = 0 for all 6 such that 6 = 0 on AB, CD and DE (8) 

with boundary conditions 

o n A B  
4 = h  o n C D  

and the remaining free boundary conditions 

4 = y on BE and DE, (1 1) 

KV4.n=O on BE (1 2) 

while ( 5 )  has been applied to obtain the form (8). It is noted that the weak form (8) is nonlinear since 
the flow domain R is unknown, i.e. the position of the free boundary To and the seepage point E are 
also unknown, although (8) is apparently linear in 4. Now finite element discretization can proceed 
using the shape functions of four-node quadrilateral isoparametric element: 

4 = C 4 i ~ i = ~ T 4  (13) 
i 

$= c & N i  i =  1, ..., n 
i 

where n is the total number of nodes. Thus, we have a typical statement giving 

f J (VN,)~K VNjdR4, = 0 i = 1,. . . , n 
e = l  fie 

in R except on AB, CD and DE, where 6 = 0 (15) 
for which 4 = H on AB and 4 = h on CD are prescribed. Here Re denotes a discretized element and 
E is the total number of elements. The derivatives of shape functions with respect to the global co- 
ordinates is obtained from the isoparametric relation between an element Re in the global co- 
ordinate system (xl, xz) and the square master element in the normalized co-ordinate system 
(tl, t2). That is, 

where Ri is the shape functions corresponding to the four corner nodes of the master element in 
(tl, tz), and J - '  is the inverse of the transpose of the Jacobian matrix. The stiffness matrix is then 
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obtained by a numerical integration such as 2 x 2 Gaussian rule: 

H..= t j  (VNi)TK V N  j dfi 

GRID ADAPTIVE METHODS 

Although the application of finite element methods to solve shape design problems is standard 
because of their simplicity and generality, there are few works which thoroughly discuss the quality 
of finite element approximations, especially the nature of dependency of finite element solutions on 
the form of the finite element grids. It is certain that convergence and stability of finite element 
approximations have been established mathematically by, for example, Ciarlet l4 and Oden and 
Reddy.' However, quantitative and qualitative analyses of finite element approximate solutions 
have not been discussed in the past. Recently, grid adaptive finite element methods are introduced 
in order to grasp both quantitative and qualitative behaviour of the error involved in finite element 
approximations (see, for example, Shephard16 and Babuska et al.' 7-18). While there are many 
adaptive methods to define grids, typical adaptive methods can be classified into three categories: 
p-method, h-method, and r-method. The first two methods increase the degrees-of-freedom by the 
increase of the order of polynomials and by the subdivision of elements for grid refinement, 
respectively. The r-method optimally distributes the error into the entire domain by relocating the 
nodes and thereby changing the shape of elements. 

In this section we shall discuss briefly the main aspect of the r- and h-methods, which serve to 
eliminate oscillatory behaviour of design boundaries when those adaptations are combined with 
shape optimization algorithm and used in the iteration process. The minimization of the maximum 
value of error in I -  and h-methods is based on two observations: 

1. In the finite element model with uniform grid the error measure of approximation is biggest near 

2. The total amount of strain energy or potential energy is almost the same regardless of the 
the singular points and decays rapidly far away from these points. 

location of nodes inside the domain. 

Details can be found in the paper by Diaz et 
The grid design problem may be defined as follows. Let E ,  be an error measure of the eth finite 

element Re, and E represents the total number of elements. Then the min-max design problem of 
grid design for the r-method is defined by 

Min Max E ,  
node { l i e C E  } 

relocation 

The min-max problem 

refinement Min {Max,,} I C e C E  

characteristics the h-method. For the above problems a necessary condition for the optimality is 
that the error measure of each finite element must be constant all over the finite element mode, i.e. 

E,  = constant e = 1,. . . , E (20) 

Note that we are minimizing the maximum error instead of total amount of errors. However, we 
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can reduce the total amount of error as well by minimizing the maximum error which bounds the 
total amount of error eh defined as 

e,,= [ i =  f 1 .:I”’ 
i.e. we have 

eh < El1’ Max E, (*.... ) 
where the equality holds when the optimality condition (20) is satisfied. 

For the choice of quantitative measure of error in finite element approximations, we shall take 
the idea that finite element error is bounded by interpolation error. Let us define the error measure 
E, of seepage flow as 

(sum in m, n) 

in the normalized co-ordinate system (tl, tz) for a positive constant c. Here, J ^ -  is the inverse of the 
transpose of the Jacobian matrix in the isoparametric relation, 4 is the solution, and J is the 
Jacobian. Equation (23) is obtained as an upper bound of the interpolation error using 

for a positive constant c 2 0 independent of 4, where 

and (bh is the interpolation of 4. Details of interpolation for finite element approximation error can 
be found in, for example, Reference 19. 

The next step is the approximation of the error measure E ,  by an error 8, which can be 
calculated from the finite element solution $h because the unknown 4 cannot be used to compute 
E,. To do this the ‘second derivatives’ of $,, are obtained by taking derivatives of the continuous 
first derivatives of $h computed by the least squares method from the discontinuous ones in the 
four node quadrilateral isoparametric elements. Using the above approximations, an approxi- 
mated necessary condition (20) to the grid design problem (18) and (19) is defined by 

8, = constant, e = I , .  . . , E 
where 

(sum in m, n) 
Similarly, if the interpolation error on the head, i.e. 4 - $h, is the basis for the error measure to the 
grid design problem, E, may be defined by (refer to Reference 20) 
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which leads to the approximation 

It must be emphasized that grids are adapted in different ways for different error measures, and that 
the error measure must be selected carefully to characterize the nature of the given problem. 

The major advantage of using the error indicator E, defined in the above is that the existing 
preprocessor and finite element codes can be used to introduce adaptive schemes of finite element 
grids. There are many ways to relocate nodes or subdivide elements until the optimality condition 
' E ,  = constant' is satisfied. For the r-method, one of the relocation schemes is based on 

where x, is the new location of the nth node, x, is the geometric centroid of the element Re, A, is the 
area of Q,,& is the error indicator of Re, and the summation is taken over the elements related to 
the nth node. In the h-method, elements whose error indicator is larger than some constant times 
the average error indicator in the domain, are subdivided. Usually, this constant is bigger than 1.0 
and its value is set according to the user's choice. 

An example is presented to show the differences in the solutions with and without using the grid 
adaptation. In Figures 2-5 a seepage flow in a foundation with two unsymmetric impermeable 
walls is considered. Obviously, the velocity of seepage flow becomes infinite at the tips of the walls. 
Starting from the uniform grid, the adaptive grid are obtained by the r- and h-method. In both 
adaptive grids, elements are accumulated near the tips of the walls. The very large velocities are 
computed at these tips, while the uniform grid gives a not so large velocity there. However, the 
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Figure 3. (a) Grid adapted by r-method; (b) velocity field 

Figure 4. (a) Grid adapted t by h-method; (b) velocity field 

Figure 5. Hydraulic head contours: (a) uniform grid; (b) r-adapted grid; -adapted grid 
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(4 (4 
Figure 6. Adapted grid by r-method with error measures: (a) inverse of pressure; (b) derivative of velocity component; 

(c) Adapted grid by r-method with derivative of head as an error measure; (d) by elliptic generator 

distribution of hydraulic head contours has not been changed significantly after applying the 
adaptive methods. These results prove the initial observation, i.e. the total amount of potential 
energy is almost the same regardless of the grid design. 

Figure 6(a-d) demonstrate the dependency of grid adaptation on error measures. In 
Figure 6(b), the first derivatives of velocity components were used to calculate the error measure, 
while the inverse of pressure was used in the case of Figure qa).  The adaptive grid in Figure qc) 
is obtained using the derivatives of the head as an error measure, i.e. equation (29). Since the 
rectangular dam is homogeneous, the first derivatives of velocity components are equivalent to 
the second derivatives of the head 4, i.e. the error measure f?, defined by (27) is applied in 
Figure qb). As shown in Figure qd),  all the adaptive grids are different from the one obtained 
by the numerical grid generation method using a system of elliptic differential equation described 
in Thompson,21 although both the head and flow velocity are not affected by the grid in this 
particular example problem. 

Another way to move nodes to have an optimal grid is that introduced by Taylor in 1972.22 In 
this case, using, for example, 8-node elements, mid-nodes are adjusted so that ‘singular’ behaviour 
of the solution can be well simulated; see also Bathe and S ~ s s m a n . * ~  

DOMAIN ADAPTIVE METHODS T O  SOLVE FREE BOUNDARY PROBLEMS 

Domain adaptive methods have widely been used in many kinds of free boundary problems. In 
seepage flow problems, Neuman and Wither~poon,~ Oden and Kikuchi* and Askew and 
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Thatcher24 have developed their own methods. In most cases, the idea of domain adaptive 
methods is the two-step iteration algorithm introduced in Reference 3 for the purpose of satisfying 
the free boundary conditions, which usually come out to be constant values of some quantities. 
Consequently, the first step is the calculation of some quantities under the assumption that the 
free boundaries are fixed, and the second step is the movement of nodes on the free boundaries 
in the ratio of differences between the calculated quantities and the known constants at the 
nodes of a finite element model. 

In seepage flow problems, two free boundary conditions are given as (6) and (7). Those are: (a) 
pressure is equal to the atmospheric pressure, in other terms, the hydraulic head at  nodes on the 
free boundary is equal to the vertical height of the nodes; (b) the normal component of velocity is 
zero along the free boundary. Domain adaptive methods can be used to satisfy the above two 
conditions or either one of those conditions as long as the final shape of free boundaries is 
converged so that both conditions are satisfied at the end stage. In finite element methods which 
solve for the hydraulic head, it is more convenient to manage the first condition than the second 
one because the accuracy of the hydraulic head is higher than the accuracy of the flow velocity, 
since the latter is obtained from the derivatives of hydraulic head according to Darcy's law. 

In this section, we shall discuss a new but simple method of moving the nodes in the specified 
direction. 

The expression for the iterative scheme to find new co-ordinates of nodes on the free boundaries 
is 

x f + ' = $ + A x f  i =  1, ..., N (31) 

in kth iteration, where N is the total number of nodes on the free boundary. Here, Ax! is the 
movement of nodes in the specified direction and this value can be obtained from the movement in 
the normal direction: 

in the kth iteration. Oi is the angle between the unit normal vector n, and the unit direction vector a; 
at the ith node in the specified direction (Figure 7). 

k 

Figure 7. Movement of nodes on the free boundary rt, at the kth iteration 



26 K. J. CHUNG AND N. KIKUCHI 

For simplicity, iteration superscript k is omitted in the following. The normal movement x,, at 
the ith node in the kth iteration is obtained from 

where AAi is the area alloted at the ith node and I i  is the length of the ith element on the boundary. 
The alloted area AAi at the ith node is obtained from the ratio between the hydraulic head 4i 
calculated in the previous step of the kth iteration and the y-co-ordinate yi: 

$i is the value $ at node i, and AArea is the area between the free boundary I-$+ ’ and I-$. The value 
of AArea must be large enough at the beginning and diminish as the iteration goes on in order to 
have convergence. For this purpose we define a percent deviation from the optimum as 

using Lz norm, where S is the average length of elements of the free boundary 

(37) 

The value for AArea is given by 

AArea = (Total area of domain) x C x DTP (38) 
From our experience, the value of C is between zero and 1.0, although the proper value must be 
adjusted according to the problem and the speed ofconvergence. That is, the bigger the C value, the 
faster the converging speed. However, faster convergence is sometimes accompanied by 
oscillations of the free boundaries, and possibly by oscillations of the percent deviation as well, 
as the iterations proceed. On the other hand, a small value of C may result in very slow convergence 
without oscillations. 

An example of the domain adaptive method is presented in Figure 8 (a-d). A free boundaryof a 
saturated unconfined incompressible two-dimensional flow through a vertical homogeneous dam, 
is obtained by 10 iterations. With given upstream height 10 and downstream 3 and unit 
permeability, the calculated flow rate was 4.59 which agrees with exact solution 4-55 from 
Polubarino~a-Kochina~~ and Liggett’s result.26 The final results show 0-1 per cent deviation, 
which means almost zero pressure along the design boundary, and velocity field in Figure 8(c) 
shows zero normal component on the free boundary and impermeable boundary. The hydraulic 
head contours in Figure 8(d) are normal to the free boundary and the bottom boundary, which are 
stream lines. It should be mentioned that the penalty method” was used in the finite element 
analysis to satisfy the boundary conditions of given values of hydraulic heads on To, e.g. on 
the upstream face, the downstream face and the seepage face. 
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Figure 8. Shape design of vertical homogeneous dam: (a) initial model; (b) converged shape; (c) velocity field in the 

converged shape; (d) hydraulic head contours; 

COMBINATION O F  GRID AND DOMAIN ADAPTIVE METHODS 

As we have discussed, the quality of finite element approximations is strongly affected by finite 
element grids. In free boundary problems, the accuracy of finite element solutions is very important 
for the determination of free boundaries by approaching to the final shape iteratively. 
Finite element grids which are not well designed for singularities of the drastic change of the 
velocity field frequently lead to boundary shapes with unreasonable oscillation of the boundai y 
shape. In seepage flow problems, oscillations or big jumps of free boundaries usually occur in non- 
homogeneous domains of very different permeabilities (see Fig. A.2 in Reference 8). 

In this sense, the combination of grid and domain adaptive methods may be necessary not only 
to avoid oscillations of free boundaries, but also to obtain the best possible computed results. 
Figure 9 shows an algorithm for the combination of both grid and domain adaptation to solve free 
boundary problems. 

Seepage flow through a non-homogeneous dam is chosen for an example, as shown in Figure 1. 
Permeabilities are K ,  = 1, K ,  = 0.05, K ,  = 1, respectively, and the height of the upstream and of the 
downstream are H = 16 and h = 2. The interface of material 2 and 3 is also taken to be a 
part of the free stream line. Starting with the uniform grid in Figure lqa),  the shape converged after 
10 iterations of the domain adaptive method and contains the oscillation near the interface, see 
Figure lqb).  Clearly, this shape cannot be the shape of free boundary because of its non-zero 
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I Generate an Initial Finite Element Grid 1 
U - 

[ Solve Boundary Value Problem 1 
1 

Yes 

Domain Adaptive (moving Nodes] so that 
Pressure Const. on the Free Boundaries 

I 

Is R-Adaptation no 

Yes 
Compute €e, e=1. . . . , E 

I 

Figure 9. Algorithm for combination of domain and grid adaptive method 

normal velocities (Figure lOc), although the pressure reached almost zero on the boundary. 
However, restarting with the remeshed grid using the r-method (Figure 1 la), the final shape is 
obtained after 5 more iterations of domain adaptive scheme and it shows no oscillation 
(Figure 11 b) and the normal velocity is completely vanished on the free boundary (Figure 1 lc). It is 
noted that in this example the inverse of absolute value of pressure is used to define the error 
measure in the grid adaptation. 

CONCLUSIONS 

In this paper, we have discussed grid and domain adaptive methods. I t  has been shown that the 
combination of grid and domain adaptive methods is useful to solve oscillatory behaviour or 
unreasonable shape of free boundaries, as well as to provide more consistent velocity fields in the 
flow through porous media. 
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(4 
Figure 10. Non-homogeneous dam with uniform grid (a) initial model; (b) converged shape before applying e-method; 

(c) velocity field in the shape converged before applying r-method 
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Figure 1 1 .  Shape design with remeshed model: (a) restarting shape adapted by r-method; (b) final shape converged; 
(c) velocity field in the final shape; (d) hydraulic head contours in the final shape 
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