A Conjecture on S^*-semigroups of Automata

Dennis Paul Geller

with assistance from:

Department of Health, Education, and Welfare
National Institutes of Health
Grant No. GM-12236
Bethesda, Maryland

and

National Science Foundation
Grant No. GJ-519
Washington, D.C.

administered through:

OFFICE OF RESEARCH ADMINISTRATION

January 1971
Enm
Uínk
1687
Introduction

In [2] Hedetniemi and Fleck define the S^*-semigroup of an automaton. It was conjectured that if A and A' are any two strong machines with the same number of states then $S^*(A)$ is isomorphically embedded in $S^*(A')$, and vice versa. In this note we prove a stronger result which settles the conjecture except in the case where exactly one of the machines is autonomous.

S^*-semigroups

Let $A = (S, I)$ be an automaton with states S and input set I; if $s \in S$, $i \in I$ then we write si for the successor of s under input i. If $s, t \in S$ and x is a string of symbols from $I(x \in I^*)$ such that $sx = t$ then we say that (s, x, t) is a triple of A; if $x = i \in I$ then (s, x, t) is an elementary triple. Let U and V be finite sets of triples of A; we define the product $U \circ V$ by

$$U \circ V = \{(s, x, t) \mid \exists (s, y, r) \in U, (r, z, t) \in V \text{ such that } x = yz\}.$$

Under the operation \circ the finite sets of triples form a semigroup; we call this semigroup $S^*(A)$.

Let A be a strong automaton with n states and at least two inputs, n and \bar{n}. Since A is strong, for any states s and t of A there is a string w_{st} of length at least one such that $sw_{st} = t$.

Let A' be any automaton with at most n states, and let ϕ be a 1-1 map from the states of A onto the states of A'; thus, unless $|A'| = |A|$ the domain of ϕ will be a proper subset \bar{S} of the states of A. If the input set of A' is $I' = \{i'_1, i'_2, ..., i'_a | a = |I'|\}$ we define a map $h: \bar{S} \times I' \rightarrow I^*$ in the following manner. Let $s \in \bar{S}$ and $i'_j \in I'$ be such that $(\phi(s), i'_j, t')$ is a triple of A'; choose $t \in S$ such that $\phi(t) = t'$ and define

$$h(s, i'_j) = h_s(i'_j) = n_j w_{qt},$$
where \(q = s(n_i^j) \). Clearly \(h_s \) is 1-1 for each \(s \in S \); also for each \(s \in S \), \(i_j \in I^s \), the relation \(\phi(s h_s(i_j)) = \phi(s) i_j \) holds. (In fact, the pair \((\phi, h)\) defines a generalization of the classical automata-theoretic notion of realization; this is dealt with in detail in [1]). We can also extend \(h \) to domain \(\tilde{S} \times (I')^* \) inductively by \(h_s(i_j x') = h_s(i_j) h_t(x') \), where \(x' \in (I')^* \) and \(t = s h_s(i_j) \in \tilde{S} \).

Lemma. The map \(h: \tilde{S} \times (I')^* \to I^* \) is 1-1 for each \(s \in \tilde{S} \).

Proof. Let \(j_1 \ldots j_m \) and \(k_1 \) and \(k_1 \ldots k_m \), be two strings from \((I')^*\) and let \(h_s(j_1 \ldots j_m) = h_s(k_1 \ldots k_m) = w \). Then, by definition, there are states \(r, t \in \tilde{S} \) such that \(w = h_s(j_1) h_r(j_2 \ldots j_m) = h_s(k_1) h_t(k_2 \ldots k_m) \). But there is a unique positive integer \(\ell \) such that the prefix of \(w \) having length \(\ell + 1 \) is the string \(n_\ell^c \). This uniquely determines \(j_1 = k_1 = i_\ell \), so that \(r = t = s i_\ell \). Then \(h_r(j_2 \ldots j_m) = h_r(k_2 \ldots k_m) \), and we can repeat the above process until we arrive at \(m = m' \) and \(j_\rho = k_\rho \), \(\rho = 1, 2, \ldots, m \).

Note that the lemma would not simply follow if \(h_s \) was 1-1 on symbols for each \(s \in \tilde{S} \). Using the notation of the lemma, suppose \(h_s(j_1) = a, h_s(k_1) = ab, h_r(j_2) = bc, h_t(k_2) = c \). Then \(h_s(j_1 j_2) = h_s(k_1 k_2) = abc \), but \(j_1 j_2 \neq k_1 k_2 \).

Theorem: Let \(A \) be a strong automaton with \(n \) states and at least two inputs, and let \(A' \) be an automaton with \(n' \leq n \) states. Then \(S^*(A') \) is isomorphic to a subsemigroup of \(S^*(A) \).
Proof: We use the maps ϕ and h above to define the isomorphism.

Let $b' = \{(s', x', t')\}$ be a singleton in $S^*(A')$ and set

$$g(b') = (s, h_s(x'), t) | \phi(s) = s'. $$

Note that this implies that $\phi(t) = t'$. Also, since h_s is 1-1 for each $s \in S$, $g(b'_1) = g(b'_2)$ if and only if $b'_1 = b'_2$; i.e., g is 1-1. Let $b'_1 = \{(s'_1, x'_1, r')\}$ and $b'_2 = \{(r', x'_2, t'_2)\}$. Let $b_1 = \{(s_1, x_1, r)\} = g(b'_1)$ and $b_2 = \{(r, x_2, t_2)\} = g(b'_2)$. Then $b_1 \circ b_2 = \{(s_1, h_{s_1}(x_1' x_2'), t_2)\}$ is a singleton of $S^*(A)$ and, as $\phi(s_1) = s'_1, \phi(t_2) = t'_2, b_1 \circ b_2 = g(b'_1 \circ b'_2)$.

Thus $g(b'_1) \circ g(b'_2) = g(b'_1 \circ b'_2)$. On the other hand, if $b'_1 = \{(s'_1, x'_1, t'_1)\}$, $b'_2 = \{(s'_2, x'_2, t'_2)\}$, $g(b'_1) = \{(s_1, x_1, t_1)\}$, $g(b'_2) = \{(s_2, x_2, t_2)\}$ and $t'_1 \neq s'_2$ then $t_1 \neq s_2$, so that $b_1 \circ b_2 = \emptyset$ and $g(b'_1) \circ g(b'_2) = \emptyset$.

Now let V' be any element of $S^*(A')$; V' is a finite set of triples of A'. Extend g to g^* by $g^*(V') = \{g(b') | b \in V'\}$. Let $S^*_{A'}(A)$ be

$$\{g^*(V') | V' \in S^*(A')\}.$$

Now, if $V'_1, V'_2 \in S^*(A')$,

$$g^*(V'_1) \circ g^*(V'_2) = \left[\bigcup_{i, j} \{g(b'_1) \circ g(d'_j) \} | b'_1 \in V'_1, d'_j \in V'_2 \right]$$

$$= \bigcup_{i, j} \{g(b'_1) \circ g(d'_j) \} | b'_1 \in V'_1, d'_j \in V'_2$$

$$= \bigcup_{i, j} \{g(b'_1 \circ d'_j) \} | b'_1 \in V'_1, d'_j \in V'_2$$

$$= \bigcup_{i, j} \{g(f'_j) \} | f'_j \in V'_1 \circ V'_2$$

$$= g^*(V'_1 \circ V'_2).$$

Thus $S^*_{A'}(A)$ is a subsemigroup of $S^*(A)$, and g^* is a homomorphism.

We wish to show that g^* is 1-1. Suppose $g^*(V'_1) = g^*(V'_2)$. Choose a triple $b'_1 \in V'_1$, and let $\{b\} = g(\{b'_1\})$. Then there is a triple $b'_2 \in V'_2$ such that $\{b\} = g(\{b'_2\})$. If $b = (s, w, t), b'_1 = (\phi(s), x'_1, \phi(t))$ and
\[b'_2 = (\psi(s), x'_2, \psi(t)), \quad \text{where } w = h_s(x'_1) = h_s(x'_2). \]

Then, by the lemma, \(x'_1 = x'_2 \), so \(b'_1 = b'_2 \) and \(V'_1 \subseteq V'_2 \). The symmetric argument gives \(V'_1 = V'_2 \) so that \(g^* \) is 1-1, and hence \(g^* \) is an isomorphism between \(S^*(A') \) and \(S^*_{A'}(A) \). Q.E.D.

In particular, if \(A \) and \(A' \) are both strong \(n \)-state automata,

\[S^*(A) \cong S^*_{A}(A') < S^*(A') \cong S^*_{A'}(A) < S^*(A), \]

where \(S_1 < S_2 \) indicates that \(S_1 \) is a proper subsemigroup \(S_2 \). To complete our partial solution to the conjecture, we need only note that any two strong, autonomous, \(n \)-state automata are isomorphic, and hence have isomorphic \(S^* \)-semigroups. To completely settle the conjecture it only remains to decide whether the \(S^* \)-semigroup of the unique autonomous, strong, \(n \)-state automaton can isomorphically contain the \(S^* \)-semigroup of every other strong, \(n \)-state automaton.

REFERENCES

