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The fundamental intrinsic radiative process associated with excitons in semiconductor multiple quantum 
wells is discussed within the context of exciton polaritons. Multiple quantum wells in which each well 
is randomly displaced from its ideal periodic position are discussed in order to investigate the effect 
of disorder on excitonic radiative widths. The coherent transpori of excitons in multiple quantum wells 
is discussed. 

1. Introduction 

Although it is debatable who first introduced the concept of exciton polariton, it was 
Hopfield's famous paper of 1958 which set the tone for much of the later work on the 
topic [l]. The term exciton polariton was originally used by Hopfield to describe the 
stationary coupled modes involving an exciton and light in ideal infinite bulk crystals. 
Although the theoretical technique employed was to diagonalize the Hamiltonian for the 
crystal interacting with the quantized modes of the electromagnetic field, it was also realized 
that the exciton polaritons correspond to resonances in the dielectric function. Underlying 
this was an apparant dichotomy later to emerge, namely of exciton polaritons as viewed 
as resonances in some quantity characterizing the excitons (material approach) or as 
resonances in some quantity characterizing light propagation through the medium (opitcal 
approach). Whether exciton polaritons are viewed as elementary excitations or as resonances 
in the dielectric function, the same underlying physics is involved. Nevertheless, one 
approach or the other may be more convenient for the problem at hand. In the paper by 
Andreani [22], exciton polaritons in multiple quantum wells (MQW) are discussed in the 
context of the optical approach; in the present paper exciton polaritons are discussed 
employing the material approach. 

At this point let us clarify what we mean by an exciton polariton. As it shall shortly be 
made clearer, the term exciton polariton here denotes a resonance in a correlation function 
(e.g. Green's function, GF) for a material degree of freedom (e.g. the spectrum of the 
exciton number operator) in the presence of the self-consistent interaction with the 
electromagnetic field. A corresponding definition applies in the time domain. The model 
Hamiltonian is to include only terms quadratic in exciton and photon creation and 
anihilation operators, and the exciton operators are assumed bosonic. In the first place, 
why concern ourselves with exciton polaritons? The answer is simply that they are the 
elementary excitations most closely associated with light emission by the radiative 
recombination of excitons. They provide a minimal model for light emission from quantum 
structures, in that we need not invoke the participation of other elementary excitations or 
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of static disorder - despite the major roles played by both - in order to discuss the 
fundamental radiative process. In addition, we shall see that polariton effects give rise to 
a novel mechanism for vertical exciton transport in MQWs. In short, the concept of the 
exciton polariton is key in order to describe the radiative dynamics of excitons on ultrafast 
time scales comparable or short compared with the dephasing processes due to other 
scattering mechanisms. 

In this paper we discuss radiative dynamics involving excitons in MQWs in the context 
of the material approach to exciton polaritons. By way of introduction, we start with a 
brief discussion of exciton polaritons. A fundamental point is that polaritons involve a 
spatially coherent coupling of the exciton with the optical field over a length scale not much 
smaller than the wavelength in the medium of the emitted light. Consider the case when 
the coherence is complete in directions of translational invariance in a structure. In bulk, 
excitons are described (in an effective-mass treatment) by three-dimensional plane waves 
in the center-of-mass coordinate. Energy-momentum conservation dictates bounds on the 
momentum of those free excitons that can decay into a photon. For an infinite bulk crystal, 
only those states exactly at the crossing of the exciton and photon dispersions can decay 
(see Fig. 1 a). The coupling between the exciton and the electromagnetic field, however, 
gives rise to an anticrossing in these dispersions. Hence, no coupled mode resides at the 
noninteracting crossing and consequently exciton polaritons in ideal infinite bulk crystals 
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Fig. 1. Schematic exciton-polariton dispersion (heavy curves) for a) bulk and b) a QW. For bulk, all 
polariton states are stationary due to the absence of available electromagnetic modes to conserve 
energy and momentum in the decay process; only at the point where the two dispersions cross decay 
would be allowed. For the QW, the exciton dispersion is confined to the plane, but the photons are 
not. Thus, each exciton at k l l  interacts with all the photons lying on the hyperbola with the same k l , .  For 
states lying inside the light cone, i.e. with kll < x, photons with k ,  + 0 can carry away the extra 
momentum necessary to conserve energy and momentum. The polariton state marked * can decay 
into the photons marked x 
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are stationary with respect to the radiative decay process. In order to have irreversible 
decay, the point at the noninteracting crossing must somehow be accessed so that energy- 
momentum conservation can be satisfied in the decay process. Scattering by phonons, defects, 
impurities, or crystal interfaces in practice accomplish this. The situation with low- 
dimensional semiconductors is entirely different. By way of illustration, consider a quantum 
well (QW). The absence of translational symmetry in the growth direction implies that the 
normal component of the quasi-momentum is no longer a good quantum number. Thus, 
a QW exciton with some given in-plane center-of-mass wave vector kl l  interacts with a 
continuum of photons with the three-dimensional wave vector k = (kll, k,) though having 
the same value of k l l  (see Fig. lb). It is found that only the excitons lying inside the light 
cone may undergo a radiative decay [2 to 51 while energy-momentum conservation prohibits 
the decay of states with larger k l l .  This is the lowest-order picture of radiative decay. In 
real structures, static disorder, phonons, exciton-exciton, and exciton-free-carrier scattering 
all play important parts depending upon sample quality, temperature, and excitation 
conditions. We shall concentrate on the lowest-order picture in Section 2. In Section 3 we 
touch upon several topics related to the role of static disorder. Section 4 considers the 
coherent vertical transport of excitons in MQWs. We give our concluding remarks in 
Sections 5. 

2. Theory of Polaritons in Quantum Wells 

Before advancing to the topics of the ensuing sections, we here give a brief overview of 
exciton polaritons in single QWs and MQWs approached from the viewpoint of the material, 
i.e. excitonic, degrees of freedom, rather than from the alternative perspective of the external 
electromagnetic degrees of freedom. The method for carrying out our study is based on 
the G F  for the exciton creation operator, the general techniques for which can be found 
for example in [7]. The GF can be related directly to basic experimental properties of the 
system, such as the exciton population dynamics and the electromagnetic spectrum of the 
spontaneously emitting excitons. 

The central quantity is the self-energy due to the self-consistent interaction of the oscillating 
dipole moment associated with the exciton crystal ground state transition with the 
electromagnetic field. To save space, we consider an infinite, periodic MQW; the results 
will be specialized to the single QW below. The matrix elements between QWs 1 and rn of 
the time-ordered (zero-temperature) G F  for the exciton transition dipole moment are 

where 10) is the crystal ground state, ( T .  . .) is the time-ordered zero-temperature expectation 
value, and b l k  II ( t )  is the Heisenberg-picture destruction operator for dipole excitation on 
QW 1 with in-plane wave vector k l l .  We shall write D to denote the matrix GF. Standard 
manipulations may be employed to obtain the GF as a function of frequency (energy) rather 
than time [7]. We can write the inverse G F  as 

(2) D-1 = D’-1 - RC(’)F, 

where AC(’)F is a self-energy (SE) matrix (to be discussed below) and 
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hC@) is another SE term to be discussed shortly. For the infinite MQW the G F  is diagonal 
in the normal-direction plane-wave basis { 14)) [6] 

where [D],,. = D,6441, q is the normally directed (z) component of the excitation wave vector, 
[ is the complex energy variable, and k = (k i l ,  C); Eex(kIl) is the kll-dependent exciton 
energy, tl = [ k i  - x2]112, and x = l/(hc). tl is the wave vector in the z-direction associated 
with the electromagnetic component of the polariton which mediates the interwell coupling. 
The superscript 0 on F p )  denotes the infinite periodic case, i.e., F,,, = Fr)6 ,qr .  For k l l  < x 
E 8+, c1 is imaginary and the electromagnetic field is propagating; for k l l  > x E B’, tl is 
real and the associated field is evanescent. The speed of light in the dielectric medium in 
the absence of the exciton resonance of interest is c = c , , IG,  where c, is the speed of light in 
vacuum and E,, the background dielectric constant (assumed spatially uniform) which in 
practice we can take to be the high-frequency value. The GF  for the single QW is obtained 
by setting F p ’  = 1; thus the sum of hC(” and hZ(’) is the single-QW SE. For the MQW, 
F describes the interwell coupling. 

The exciton-polariton modes in a symmetric single QW can be categorized by the 
symmetry of the associated electromagnetic field. We are concerned only with the 
dipole-active modes since the inactive mode does not contribute to either the radiative 
decay or the transport properties in the absence of scattering. The dipole-active modes are 
each associated with a direction R, of the transition dipole moment: 

E = T i  ri,.kll = R T . i  =z 0 ,  ( 5 )  

& = L ,  R , ‘ k , ,  = kll ,  (6) 

& = Z ;  n z . i = i .  (7) 

The three kinds of polaritons are denoted T, L, and Z. For modes possessing mirror 
symmetry in the z-direction, the modes L and Z are uncoupled. We shall in general neglect 
the L-Z coupling. (See, however, the paper of Andreani [22]). 

The explicit form of hC!’) is [5, 61 

Here S = J dz Ifc(z)fV(z)l, where fv(z) If,(z)] is the valence- (conduction-) band envelope 
function, and C, the coupling strength. C, is proportional to the transition dipole moment, 
C, = X ~ ~ E ; ’ ~ ~ U ~ , ( O )  ((cv),~ eR lo), where x,, = Eex(kll)/(hc), U e x ( q )  is the exciton envelope 
function for the electron-hole relative motion, I(cu),) is the electron-hole pair of spin s, 
and ((cv), 1 eR 10) is the dipole matrix element between I(CV),) and 10). C, is related to the 
areal oscillator strength f ,  by f ,  = 2moE,,(0) lUeX(O)l2 h-’ I(cu),lR. ii, 10)12 with m, the 
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free-electron mass. Where hC(') is well behaved, - 2 Im C(') corresponds to the excitonic 
radiative decay rate as calculated from Fermi's Golden Rule [4]. 

hE,") gives to the (LT)-Z splitting [8]. Its reads 

where 9 = J dz If,(z)f,(z)l'. We thus have hC(') = 0 unless E = Z, in which case hZ'" is 
a real constant independent of (4 ,  k).  hC(" therefore plays no significant dynamical role. 

F describes the interwell coupling. The direct-space matrix elements of F are 

(10) F,, = e-E\LI - Lm\ 

where L, is the position of the 1-th QW. For the infinite periodic MQW, F is diagonal in 
the plane-wave basis, 

sinh y - sinh y F P )  = - 
cash y - cos ~p 

with y = aL  and q = qL. Here L is the periodicity of the MQW in the z-direction. Thus, 
for kll  > 1x1 (x < g), a is real and the coupling strength falls off exponentially. For kll  < 1x1, 
however, the relevant values of CI are imaginary, and consequently the coupling is 
long-ranged. It is easily verified that h C " ) F ~ '  is real. Consequently, there is no excitonic 
radiative decay in the infinite periodic MQW. This is expected, based upon what we know 
about bulk polaritons [l]. 

3. Disorder Effects 

Static disorder of various kinds is always present, even in the best of QWs. In single QWs 
fabricated out of direct-gap materials disorder such as that due to interface roughness mixes 
states with different kll. Consequently, the low-lying states are not pure kll  = 0, but some 
admixture with a spread in k-space given by the inverse of the localization length [5 ] .  
This leads to relatively long radiative recombination times for the low-lying excitons [5],  
which shows up as slow decay of the time-resolved photoluminescence signal at low 
temperature [9]. For a review of these effects, see [lo]. In QWs formed from indirect-gap 
materials possessing type-I excitons, disorder of this sort is expected to enhance the 
low-temperature emission rate [l 11. In this section we consider a different type of disorder. 
Namely, we consider an infinite MQW composed of identical QWs in which each QW is 
displaced slightly by a random amount from its periodic positions. This model is of interest 
because it provides a minimal model for an infinite system for the study of the disorder- 
induced origin of the excitonic radiative decay. 

Let us specify our model. The MQW stack is composed of N identical symmetric QWs 
( N  shall be taken to infinity) each of width L,. L, is assumed to be much less than the 
wavelength of the emitted light in the medium. The structure is assumed to posses strict 
in-plane translational invariance. In the growth direction, however, each QW is slightly 
shifted from the position it would occupy in a periodic structure. Moreover, we assume 
that the disorder is uncorrelated between distinct QWs 1 and l'. The almost-periodic character 
of the MQW suggests that a convenient starting point for a theoretical description of the 
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polaritons is provided by a plane-wave basis (14)) in the z-direction, where (z I q )  
= W 1 1 2  exp {iqLl) with q E {27cn/NL, n = 0, 1, . . ., N - 1). Because this basis is ortho- 
normal and D' is diagonal in ( I l ) } ,  D' remains diagonal in the representation (14)). The 
matrix F, however, couples distinct states 14) and 14'): 

W 

N 

Here Y(p, q) = N -  ' I 2  exp {iqL,} exp {ipLI}. In order to obtain the spectral and dynami- 

cal properties of the system, we must invert D-'  - an infinite matrix. As discussed in the 
previous section, for the periodic case L, = lL, the basis 114)) diagonalizes the problem 
[6]. The addition of the disorder via L, = IL + xf with Ixfl < L will restore, at least in part, the 
radiative width present in single QWs [12] but absent in the infinite periodic MQW. 

The introduction of disorder through xf $; 0 leads states with different q to become coupled 
giving rise again to a problem of infinite dimension. In order to make headway, we calculate 
the configuration average of the GF rather than the G F  itself [13]. In the case when the 
disorder is instead in the site-diagonal part of the GF, the lowest-order term in the configuration 
average leads to the so-called virtual-crystal approximation (VCA). The VCA effectively 
results in a fictitious uniform medium with parameters that are in some sense the average of 
those characterizing the individual constituents of the mixed crystal. We shall find for our 
off-diagonal disorder model that the lowest-order approximation to the configuration average 
gives the leading modification to the radiative dynamics due to the random interwell spacings. 

Let the configuration average of the quantity 0 be denoted (0). Upon inverting D and 
performing the configuration average, one finds terms containing factors of the form 
(Y(pl,ql) Y * ( p l ,  4;) . . . Y ( p m ,  am) Y*(Pm, 4;)). The expression above would then factor as 
( 9 ( p l ,  q,))(9*(pl, 4;))  ... (Y(P,, q m ) X  ( Y * ( p , ,  4;)) except for the Occurrence of terms 
which involve multiple occupancy on the same site. These correlations occur between any 
pair of Y in the product; the dominant contributions come, however, from products of Y with 
the same p-variable because other pairings are, on average, weak due to their essentially 
random phases. Thus, we replace the configuration average of the product with the 
factorization ( Y ( p l ,  ql)  Y * ( p l ,  4 ; ) )  ... Ybm, qm) Y * ( p m ,  4;) ) .  We can now write down a 
Dyson equation for (D) within these approximations as 

1 = 1  

[(D)]-' "N (D-') = D'-l - (hZ(')), (14) 

where hZ") = hZ(O)F. We must therefore calculate [(hZ(l))]qq,, which is proportional to 
( Y ( P >  4)  Y*(P> 4')):  

(15) 

Put C = (eipxre-ipxr,) and let the distribution P(x)  characterizing the disorder be defined 

such that (O(x , ) )  = dx P(x)  0(x) .  Furthermore, assume that P ( x )  is normalized in the 
m 

- m  
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m m 

sense [ dx P(x)  = 1. If P(p) = dX P ( x )  eipx, then C = [l - IP"(p)I2] dII, + IP(p)\' . This 
- m  - w  

gives 

where G and G' are %direction reciprocal lattice vectors. To simplify what follows, we 
assume that x,,L < 1 holds. This allows us to neglect umklapp processes in the evaluation 
of integrals, namely we take G, G' = 0. We then have 

m 

- m  

F F )  is given in (12); however, within our approximation of neglecting umklapp processes, 
we have F F )  = 2y/(y2 + q'). Thus, the approximation to the configuration-averaged G F  
(D,) is also diagonal in the plane-wave representation (Iq)), as it is in the ideal periodic 
case. The inversion of the inverse of the configuration-averaged G F  is now simple 

With a choice for P(x) ,  we can calculate the disorder-induced broadening -1m hC(". We 
can invoke the exciton-pole approximation [14], in which the energy ( in the SE is replaced 

+ iO+,  kl l ]  is the width of the spectral density at fixed ( E ,  kll, q). Below, we shall argue 
moreover that this quantity coincides with the radiative width of the state ( E ,  k l l ,  4).  Note 
that energy-momentum conservation dictates that the radiative width must vanish for 
hckil  > Eex(kll) [3], which indeed hT,(kII, q) does. F i t )  possesses a simple pole, and thus 
does not contribute directly to the radiative decay. We then have 

by Eex(k11). If IIm hZ:,liq[Eex('ll) + iO+, kllI < E e x ( k l l ) j  then hr&(kll, 4 )  = -Im h~~,ljq[Eex(kl~) 

T&(k , , ,  4 )  = CQW(k, , )  Re Wqq) 3 (21) 

where r:Qw(kII) = -1m Z~"[Eex(kII) + iO+, kl l ]  is the single-QW decay rate [5],  which 
vanishes for k l l  > Eex(kll). In particular, 

Re W,,,) = (1 - + [IP"(q)l' + lP"(-4lZ1) d,,, 2 (22) 

where r]  = v m .  If the scale of variations in P ( x )  is d 2 0, in the long-wavelength 
limit (qd < l), then Re 6(Fq , )  - q2d2, and so T,(kll, q) x yZd2T~QW(kll) .  (qd was already 
assumed small when we neglected umklapp processes). This can be seen explicitly with 
specific forms for the distribution P [15]. 

To be certain, if we wish to compute the radiative width, we should calculate the 
time-dependent expectation value of the exciton number operator giving some initial 
one-exciton state. This quantity can be written as the sum of two-particle GF, each term 
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of which is a product of two one-particle GF. For the MQW with disorder, we would then 
calculate the configuration average of the relevant two-particle GF. The decay of the 
time-dependence of the configuration-averaged number operator would then be attributable 
to radiative decay. The reason that the configuration-averaged one-particle G F  is frequently 
inadequate to obtain the radiative width is that the disorder conceivably introduces 
density-of-states broadening without radiative broadening. For the problem at hand, 
however, we conjecture that the broadening of the configuration-averaged one-particle G F  
gives the radiative width since to the order we calculate the configuration average, we have 
(DD) = (D) (D) for the configuration-averaged two-particle G F  which we denote 
schematically as (DD). Note, moreover, that the interaction does not result in broadening 
to lowest order for the excitons with hck,,  > Eex(kll). 

4. Coherent Vertical Exciton Transport 

In superlattices in which the barriers are sufficiently narrow and low, the low-temperature 
vertical transport of excitons is due to quantum-mechanical tunneling between successive 
quantum wells (QW) [16]. For structures with wide and high barriers, i.e. MQWs, the 
interwell coupling is due to the dynamic dipole-dipole interaction [ 171. However, this is 
simply polariton effects in the time domain. Exciton transport has been of interest in various 
molecular systems (see for example [ 18]), where the picture is of incoherent Forster transport 
[19]. The MQW provides a tailor-made system of which an individual structure can be 
studied, while data on molecular systems must be frequently interpreted in terms of 
ensembles. There has been little experimental or theoretical [20] work on this type of vertical 
transport in MQWs, although incoherent transport in such structures has been the subject 
of one study [21]. 

In this section we study the coherent vertical transport ofexcitons in MQWs. An interesting 
result is that in planar systems there is a possibility of rapid coherent excitation transfer 
between different QWs. We consider the dynamics subsequent to the introduction of an 
initial exciton population into a single QW within the MQW. Schemes for doing so by 
means of incoherent excitation are dicussed. The envisaged experiment involves initial 
conditions markedly different from light propagation studies. The dynamics are governed 
by the coherent radiative decay (spontaneous emission) of excitons and reabsorption 
elsewhere in the structure. At low-temperature, where the occupied exciton states have very 
small in-plane momentum (direct-gap case), it is essential to consider the effects of 
retardation, i.e., the full dynamical diple-dipole interaction must be taken into account, 
since for small in-plane wave vectors k ,, the interwell coupling including retardation is 
long-ranged, whereas the neglect of retardation arbitrarily introduces a finite spatial range 
to the interwell coupling. We consider an infinite, periodic MQW composed of symmetric, 
identical QWs, and assume that L, is much less than x,'. The GF for the exciton transition 
dipole moment in QW n following excitation with in-plane wave vector kl l  in QW 0 is 
D,(t, kll). The population in QW n is then N,( t )  = ID,(t, kI1)l2. As we saw above, the G F  is 
diagonal in the basis { Iq)}, and the dynamic dipole-dipole coupling, both intra and interwell, 
is characterized by a self-energy hC(')F?). 

Recall that for kll > x, c( is real indicating that the dynamic dipole-dipole interaction 
between distinct QWs is mediated by an evanescent electromagnetic field and the coupling 
strength falls off exponentially. For k l l  < 1x1, however, the relevant values of CI are imaginary 
(propagating field), and the coupling is long-ranged. The coupling energy ttC(')F,, is thus 
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of a very different form from the Forster-type coupling between point dipoles ( r - 3 ) .  We 
now consider two limiting cases: (i) kll > x,y 9 1. This reduces to the case of nearest- 
neighbor dipole-dipole coupling between QWs (instantaneous limit, IL). (ii) y < 1 
(long-wavelength approximation, LWA). 

(i) For kll % 1x1, retardation is negligible. The IL corresponds to an interwell interaction 
mediated by virtual photons throught the evanescent electric fields associated with 
large-wave vector polaritons. For kIl % 1x1, hZ'", y E B. Since y % 1 by assumption, sinh y ,  
cosh y 9 1 and Fie' x tanh y [l + sech y cos q]. In the pole and rotating-wave approx- 
imations, the Fourier time transform of D,(k) is 

iD,(t, kll)  = O ( t )  exp (- i(E" + tanh yhC( l )  + GA cos q) t /h) 

+ O( - t) exp (i(E" + tanh yhC'l)  + GA cos q) t /h )  (23) 

with G, = tanh y sech y hC(l), O(t) = 1 if t < 0 or 0 if t > 0, and E" is a constant such 
as E,,(kll). The spatial Fourier transform gives 

iD,(t, k l l )  = i"J, (y)  [ O ( t )  exp (-i(E" + tanh yhZ('))  t /h )  

+ O( - t )  exp (i(E" + tanh yhC(')) t/h)] , (24) 

where J,(x) is the Bessel function of first kind. Thus, the dynamics depend solely on n and 
the scaled time z A  = GAt/h. The population in QWs n as a function of scaled time 
N n ( ~ A )  = lDn(~A)12 is plotted in Fig. 2a. One finds for zA <g 1, 

1 - + (GAt/h)' ; n = 0 ,  

; n + O .  

As t --f 0, the time derivative of N,(t) --f 0. This leads to a time delay for the transfer of 
excitation to QWs n as seen in Fig. 2a. For T ~ %  JnJ, we obtain the long-time behavior 

N,( t )  x (2) cosz (" - - - - 
7cGAt h 2 4  

Thus, for large zA the time scale for the loss of population in a given QW is h/GA. 

rotating-wave approximations as in (i), we obtain 
(ii) The LWA is valid at all k l l  if k l lL < 1. We have F ,  z y / ( l  - cos q). In the pole and 

(27) 
where 

- n  

4' 
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Fig. 2. The exciton population in QW n 
as a function of scaled time. a) IL, b) LWA 
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with zB = GBt/h and G, = hC("y. We therefore see that in the LWA the population dynamics 
N,(t) = IRn(zB)12 depend only upon the function R,(z,), indexed by n, of the single parameter 
zB, which describes the time scaled by GB/h. The integral Rn(zB) can be expressed in closed 
form, i.e., in terms of a finite number of standard special functions. Although the resulting 
expression is cumbersome, it is nevertheless useful in order to extract limiting behavior. It 
is convenient to define /3 = iz,/2 and z = cos2 ((~12). By making the change of the variable 
cp + z ,  we obtain 

where 2,n,C2p is a binomial coefficient. The integral is then evaluated to give 

where W',,(/3) is the Whittaker function. In particular we have at n = 0 

R ,  = erfc ( / 3 ' 1 2 ) ,  (32) 
where erfc is the complementary error function. 
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N,(z,) = ID,(z,)I2 is shown in Fig. 2b. In the short-time limit zB 4 1, we obtain 

The time derivative of the population at t = 0 does not vanish (for n = 0 it diverges), 
unlike for the IL. For n + 0, the initial rise is independent of n. Thus, the long-range 
character of the coupling between QWs gives rise to fast excitation transfer, in contrast to 
what was seen in the IL. The long-time limit zB 9 In1 gives 

2h 
nG,t 

N,( t )  x -. (34) 

Apart from the oscillatory factor in (i), the long-time dynamics are thus formally similar 
to what was found above in the JL. Because the LWA is a continuum limit, we do not 
expect the oscillatory part which arises from the discreteness of the MQW. 

We summarize: (i) The IL corresponds to the neglet of retardation. In the extreme limit, 
we have G, - e-YhC(') and the dominant coupling is between nearest-neighbor QWs 
n = f 1, and the expressions for the GF  are well known. The IL involves large-wave vector 
excitations which cannot couple directly with the free-space optical field. Time-domain 
techniques related to attenuated total internal reflection spectroscopy and near-field optical 
microscopy show promise to access these modes. For GaAsIAlGaAs-based structures, 
typically lZ(')l-' x 10 ps near k l l  = 0. h/G, z ekllL 10 ps 9 10 ps, and excitation transfer 
is slow. Consequently, excitons satisfying the IL in MQWs based on GaAsJAlGaAs or 
other direct-gap semiconductors are likely to dephase more quickly. Moreover, there will 
be a population of small-kll states whose dynamics are not described by the IL. An alternative 
for the study of the IL is the use of indirect-gap type-I exciton systems such as InAsIGaAs 
under proper strain conditions. 

(ii) Unlike (i), the LWA can be studied directly in the far field (in k l ,  < x), since the 
exciton-like states here couple directly with the free-space modes of the electromagnetic 
field. As in (i), the time scale h/G, $ IC(l)l-l. Because G, does not depend upon L 
exponentially, the time scale can be fast. For example, for a GaAsIAlGaAs MQW, 
xe;' x 40 nm. If L = 150 nm (L, = 80 nm, say), then h/G, % 27 ps if lC(l)l-l = 10 ps. 
Moreover, we point out the very rapid rise dynamics shown in Fig. 2b. Thus, long-range 
coupling is conductive to fast excitation transfer. This is desireable for switching applications, 
although the population decay is slow. This problem is not expected to be as severe in 
MQWs composed ofjust a few QWs where the radiative depletion of the coherent exciton 
population is on the 10 ps time scale. 

Fig. 3 shows proposed excitation and detection schemes for coherent vertical exciton 
transport. In Fig. 3a, QW B is tuned so its hh resonance lies between the hh and lh excitons 
of QWs A and A .  ( A  hh is resonant with A). The exciting pulse is then tuned to the hh 
absorption of B, which then transfers excitation to A .  Similarly, for detection, the hh 
resonance of A and A lies between the hh and lh resonances of C. One then time resolves 
the emission from the hh exciton in C. 
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Fig. 3. a) Excitation scheme, b) detection scheme 

We conclude this section with the remarks that the infinite-range coupling in planar 
systems is an essential feature; the neglect of retardation leads to spurious qualitatively 
different dynamics in the LWL. In finite MQW stacks the dynamics will also contain 
an oscillatory component due to the reflection of the last QWs. In addition, we expect that 
the rapid excitation transfer will also be present in the finite stacks, without the long 
population decay in infinite structures, thus making the phenomena under investigation 
of interest for applications in optical switching. 

5. Concluding Remarks 

We have outlined two types of polariton effects in MQWs: the disorder-induced origin 
of excitonic radiative widths in a MQW possessing weak departures from perfect period- 
icity in the growth direction and coherent vertical transport of excitons in MQWs. The 
models presented are valid provided other relaxation mechanisms and the non-bosonic 
character of the exciton may be neglected. To some extent these assumptions hold 
insofar as the initial transients in low-temperature time-resolved spectroscopic experiments 
on high-quality structures. In order to obtain a more satisfactory picture, other relaxation 
processes, such as those associated with exciton-exciton and exciton-free-carrier scattering, 
with phonon emission and absorption, and various sources of static disorder must be 
included. Nevertheless, the polariton picture even in its simple form has proven a useful 
picture in understanding radiative processes in semiconductor quantum structures. 
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