THE UNIVERSITY OF MICHIGAN COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS Computer and Communication Sciences Department

Technical Report

How to Color the Lines of a Bigraph

Dennis P. Geller

with assistance from:

Department of Health, Education, and Welfare National Institutes of Health Grant No. GM-12236 Bethesda, Maryland

and

National Science Foundation Grant No. GJ-519 Washington, D.C.

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR
April 1971

Engn UMP 1554

ABSTRACT

It is shown that the lines of any bigraph G can be colored from $\{\beta_1,\ldots,\beta_{\Delta} \big| \ \Delta \text{ is the maximum of the degrees of the points of G} \} \text{ in such a way that all lines colored from } \{\beta_j \big| j \ge d \} \text{ are incident with points of degree at least d.}$

König [2] showed that the lines of any bigraph 1 G can be colored from a set $\{\beta_1,\ldots,\beta_\Delta\}$ in such a way that no two lines which are assigned the same color are adjacent, where $\Delta=\Delta(G)$ is the maximum of the degrees of the points in G. It is then natural to conjecture that a bigraph G should have a line-coloring in which the only lines colored β_Δ are incident with points of degree Δ . This is indeed true; in this paper we prove the following stronger result:

Theorem 6: Let G be a bigraph with degree sequence $d_1 < d_2 < ... < d_r = \Delta$. Then G has a line-coloring from $\{\beta_1, ..., \beta_{\Delta}\}$ such that all lines colored

$$^{\beta}d_{i}+1,\cdots,^{\beta}d_{i+1}$$

are incident to points of degree at least d_{i+1} .

Before we begin proving the theorem, we present some convenient notation and definitions. If in some line-coloring of G a line x = uv is colored with α we say that x is an α -line; we also say that α appears at both u and v. If α and β are two colors used in a line-coloring of G then by $G|_{\alpha,\beta}$ we mean that subgraph of G induced by the lines colored α or β . In any bigraph G, we will let V_1 and V_2 stand for the blocks of the partition of the point set of G.

Theorem 1: Let G be a bigraph such that all points of maximum degree are in V_2 . Then G can be line colored from $\{\beta_1,\ldots,\beta_{\Delta}\}$ such that the only lines colored β_{Δ} are incident with points of maximum degree. Proof: We suppose the result to be true for bigraphs with q-1 lines.

1Definitions not given here can be found in [1].

Let G have q lines and let all points of maximum degree be in V_2 ; let x = uv be incident with one such point v. If $\Delta(G-x) < \Delta(G) = \Delta$ then v was the only point of maximum degree in G. So any line-coloring of G-x from $\{\beta_1,\ldots,\beta_{\Delta-1}\}$ extends to a line-coloring of G in which only x is colored β_{Λ} .

If $\Delta(G-x)=\Delta(G)=\Delta$ then we can color G-x with Δ colors so that all lines colored β_{Δ} are incident with points of maximum degree; in particular, no line colored β_{Δ} is incident with v. If there is no β_{Δ} -line at u, then x can be colored β_{Δ} in G. Otherwise, there is a β_{Δ} -line uv₁ [where deg v₁ = Δ]. Since deg u < Δ there is some color α which does not appear at u. Clearly however, there is a line v₁u₁ colored α . Thus we get a sequence <u = u₀,v₁,u₁,v₂,... > such that each v₁ has maximum degree, each u_jv_{j+1} is colored β_{Δ} and each v_ju_j is colored α . Since deg v_j = Δ , the process cannot stop with a v_j, so it must stop at some u_j, at which there is no β_{Δ} -line. We have thus defined a component of the subgraph G-x| α , β_{Δ} , and can interchange the colors α and β_{Δ} in this subgraph, preserving the validity of the coloring. But now β_{Δ} does not appear at u, so x can be colored with β_{Δ} .

Theorem 2: In a bigraph G, suppose max $\{\deg u | u \in V_1\} = n$ and that there are at least two degrees greater than or equal to n realized by points of V_2 , the two largest being $n \leq \Delta' < \Delta$. Then there is a line-coloring of G from $\{\beta_1, \ldots, \beta_{\Delta}\}$ such that all lines colored $\beta_{\Delta'+1}, \ldots, \beta_{\Delta}$ are incident with points of maximum degree.

<u>Proof:</u> Clearly the result is true whenever n=1. Suppose it to be true for n-1, and suppose that in G, $\max\{\deg u | u \in V_1\} = n$. Note that if $\Delta - \Delta' = 1$ then the result holds by Theorem 1.

Suppose now that the result is true for $\Delta-\Delta'=t-1$, and that in G, $\Delta-\Delta'=t$, where v_1,\ldots,v_r are the points of degree Δ . We remove an independent set X of r lines, one adjacent to each of v_1,\ldots,v_r , to get $G':\Delta(G')=\Delta(G)-1$. If, in G', max $\{\deg\ u\,|\, u\in V_1\}=n$ then G' can be colored with $\Delta(G)-1$ colors in the prescribed manner: the only lines colored $\beta_{\Delta'+1},\ldots,\beta_{\Delta-1}$ are incident with the v_r . Now, the lines of X can be colored β_{Λ} .

Otherwise, max $\{\deg u | u \in V_1\} = n-1$. By induction on n, a line-coloring of G' with the desired properties can be achieved, and this coloring uses only Δ -1 colors, as above. Again, the lines of X can be colored β_{Λ} .

Theorem 3: Let G be a bigraph in which max $\{\deg u | u \in V_1\} = n$, $\Delta(G) = \Delta > n$, and suppose there are no points of degree $n+1,\ldots,\Delta-1$. Then G has a line-coloring from $\{\beta_1,\ldots,\beta_\Delta\}$ such that all lines colored $\beta_{n+1},\ldots,\beta_\Delta$ are incident with points of maximum degree.

Proof: By Theorem 1 we know the result is true, for any n, if $\Delta = n+1$. Also, the result is trivially true whenever n=1. Suppose that the result holds when max $\{\deg u | u \in V_1\} = n-1$, and let G have max $\{\deg u | u \in V_1\} = n$. Since we know the result holds for $\Delta = n+1$ suppose that it holds for $\Delta = n+k-1$, and let G have $\Delta(G) = \Delta = n+k$. Suppose the points of degree Δ are v_1, \ldots, v_r . Remove an independent set X of lines which covers $\{v_1, \ldots, v_r\}$, and let G-X = G'. If in G', max $\{\deg u | u \in V_1\} = n$ then the resulting graph satisfies the conditions of the theorem with $\Delta = n+k-1$, so there is a line-coloring where all lines colored $\beta_{n+1}, \ldots, \beta_{n+k-1}$ are incident with the v_i . Then the lines in X can be colored β_{n+k} and the result holds.

Otherwise, in G', max $\{\deg u | u \in V_1\} = n-1$. Then the result holds for G' by induction unless there were points of degree n in V_2 . If so, G' satisfies the conditions of Theorem 2 with $\Delta^*(G') = n$, $\Delta(G') = \Delta-1$, and

so there is a line-coloring of G' from $\{\beta_0,\dots,\beta_{\Delta-1}\}$ such that all lines colored $\beta_{\Delta'+1}=\beta_{n+1},\dots,\beta_{\Delta-1}$ are incident with the v_i . By coloring the lines of X with β_{Δ} the result holds. If V_2 had no points of degree n, then by the inductive hypothesis [induction on n], in the line-coloring of G' all lines colored $\beta_n,\beta_{n+1},\dots,\beta_{\Delta-1}$ are incident with the v_i . We can again color the lines of X with β_{Δ} , proving the theorem.

Theorem 4: Let G be a bigraph in which max $\{\deg u | u \in V_1\} = n = d_0$, and suppose that the degrees greater than n which are realized in V_2 are $n < d_1 < d_2 < \ldots < d_r = \Delta$. Then there is a line coloring of G from $\{\beta_1, \ldots, \beta_{\Delta}\}$ such that all lines colored

$$^{\beta}d_{i}$$
+1,..., $^{\beta}d_{i+1}$

are incident to points of degree greater than d_i , for $i=0,\ldots,r-1$. Proof: The result is trivial for n=1. Also, by Theorem 3, it holds whenever r=1, so we can assume it true for bigraphs in which max $\{\deg u | u \in V_1\} \le n-1$ and also for bigraphs in which max $\{\deg u | u \in V_1\} \le n-1$ and also for bigraphs in which max $\{\deg u | u \in V_1\} = n$ and r-1 degrees greater than n are realized in V_2 . Let G have max $\{\deg u | u \in V_1\} = n$ and let degrees $n < d_1 < \ldots < d_r = \Delta$ be realized in V_2 . We first prove the result in the case $d_r - d_{r-1} = 1$. Suppose we remove an independent set X covering the points of degree d_r , to get a graph G'. If the maximum degree of the points in V_1 is reduced to n-1, then G' has a line-coloring of the desired type; in particular, all lines colored d_{r-2}, \ldots, d_{r-1} are incident with points of degree d_{r-1} in G', those being the points of degree d_{r-1} or d_r in G. Then by coloring the lines of X with g_A , the desired coloring results. If in G' the maximum degree of the points in V_1 is n, then the inductive hypothesis on r guarantees the desired coloring for G', and again we can color the lines of X with g_A .

Now, suppose the result holds for $d_r - d_{r-1} = t-1$ and suppose that, in G, $d_r - d_{r-1} = t$. Let v_1, \ldots, v_s be the points of degree $d_r = \Delta$. We can remove an independent set of lines X which covers $\{v_1, \ldots, v_s\}$, giving a graph G' with maximum degree Δ -1, and next largest degree d_{r-1} ; note that $(\Delta$ -1) - $d_{r-1} = t-1$. If, in G', max $\{\deg u | u \in V_1\} = n$ we get a line coloring of G' from $\{\beta_1, \ldots, \beta_{\Delta-1}\}$ with the desired properties by the inductive hypothesis on t. If not, we get a line-coloring by the inductive hypothesis on n. Either way, we can color the lines of X with β_{Λ} .

Theorem 5: Suppose G is a bigraph and that there are points of degree $\Delta(G) = \Delta$ in both V_1 and V_2 . Then G has a coloring from $\{\beta_1, \ldots, \beta_{\Delta}\}$ such that all lines colored β_{Δ} are incident with points of degree Δ .

Proof: Assume that the result holds for bigraphs with at most q-1 lines and let G have q lines. Suppose $u \in V_1$ has deg $u = \Delta$ and that v is a point with deg $v < \Delta$ such that x = uv is a line of G. Let G' = G - x.

Clearly $\Delta(G') = \Delta$, for G had points of degree Δ in both V_1 and V_2 . There are then two cases to consider.

Case I: In G' there are points of degree Δ in both V_1 and V_2 . We apply the inductive hypothesis to get a line coloring of G' such that each β_{Δ} -line is incident to a point of degree Δ . If neither u nor v is incident with a β_{Δ} -line, we can color x with β_{Δ} in G. Suppose first there is a β_{Δ} -line vu₁ at v. We choose a color α which does not appear at v and form the sequence $\langle v_0 = v, u_1, v_1, u_2, v_2, \ldots \rangle$ where each line $v_1 u_{1+1}$ is colored β_{Δ} and each line $u_1 v_1$ is colored α . The process defines a component of $G'|_{\alpha,\beta_{\Delta}}$ and we can interchange α and β_{Δ} so that there is now no β_{Δ} -line at v. Note that this procedure cannot introduce a β_{Δ} line at u. If u is a point u_1

then there is already a line $v_{i-1}u$ colored β_{Δ} : it may however happen that as a result of the process there is no β_{Δ} -line at u. In any event, if there is now no β_{Δ} -line at u we can color x with β_{Δ} in G. So suppose uv_1 is a β_{Δ} -line at u. Since in G' deg $u=\Delta-1$ there is a color δ which does not appear at u. If it is also true that δ does not appear at v then by the same procedure we can replace the β_{Δ} -line at u with a δ -line at u, without reintroducing a β_{Δ} -line at v, and then v can be colored with v in v . Otherwise, if v appears at v, since in v deg v is v at v. This replacement does not appear at v, and v can be replaced by v at v. This replacement does not alter the set of colors at v. We now have the situation where color v appears at neither v nor v. Then as noted, we can recolor the v-line at v by v and then, in v can be colored with v-line at v by v and then, in v can be colored with v-line at v by v-line at v by v-line at v-line at

Case II: In G' there are no points of degree Δ in V_1 . We can now apply Theorem 1 and color the lines of G' in such a way that all lines colored β_Δ are incident to points of maximum degree. Since there are no points with degree Δ in V_1 we know that there is no β_Δ -line at v. If there is also no β_Δ -line at u, we can color x with β_Δ in G. Otherwise, as above, we choose a color α which does not appear at u and interchange β_Δ with α . Then x can be colored with β_Δ .

It may, however, have been the case that in G, every point of degree Δ was adjacent only to other points of degree Δ . But then, for each point u with degree Δ , the component of G containing u is the complete bigraph $K_{\Delta,\Delta}$ for which the result certainly holds.

Suppose that G is a bigraph such that there are points of maximum degree in both V_1 and V_2 . Color the lines of G in the manner prescribed

by the theorem, and let X_1 be the set of lines colored β_{Δ} . If $G_1 = G-X_1$, then $\Delta(G_1) = \Delta-1$, there are points of degree $\Delta-1$ in both V_1 and V_2 , and G_1 has a line-coloring from $\{\beta_1,\ldots,\beta_{\Delta-1}\}$ such that all lines colored $\beta_{\Delta-1}$ are incident with points of degree Δ -l. The line-coloring of G_1 clearly extends to G; since X_1 was an independent set of lines, all the lines in X_1 can be colored β_{Δ} . Thus G has a line-coloring from $\{\beta_1, \ldots, \beta_{\Delta}\}$ such that all lines colored $\boldsymbol{\beta}_{\Delta}$ are incident with points of degree Δ and all lines colored $\beta_{\Lambda-1}$ are incident with points of degree Δ -1 or Δ . But the procedure we have outlined applies to G_1 : we can remove the set X_2 of lines colored $\beta_{\Lambda-1}$ resulting in a bigraph G_2 in which points of maximum degree appear in both \mathbf{V}_1 and \mathbf{V}_2 giving rise to a line-coloring of \mathbf{G} in which all lines colored $\beta_{\Delta\text{-i}}$ are incident to points of degree at least $\Delta\text{-i}$ for i = 0,1,2. The process clearly extends further. We have thus proved. Corollary: Let G be a bigraph in which there are points of degree $d_1 < d_2 < ... < d_r = \Delta$, and such that both V_1 and V_2 have points of degree Δ . Then G has a line coloring from $\{\beta_1,\ldots,\beta_{\Delta}\}$ such that all lines colored β_k , k>d;, are incident to points of degree at least d_{j+1} , for j = 1, 2, ..., r-1.

We can now apply the procedure used to prove the Corollary to bigraphs in which points of maximum degree appear only in, say, V_2 . At each stage we remove an independent set of lines and lower the maximum degree by 1. If at some step we arrive at a bigraph in which there are points of maximum degree in both V_1 and V_2 , we apply the Corollary. Otherwise, the procedure terminates when all points in V_1 have degree one or zero, we can then apply Theorem 4. We have thus proved:

Theorem 6: Let G be a bigraph in which there are points of degree $d_1 < d_2 < ... < d_r = \Delta$. Then G has a line-coloring from $\{\beta_1, ..., \beta_{\Delta}\}$ such that

all lines colored

$$\beta_{d_{i+1}}, \dots, \beta_{d_{i+1}}$$

are incident with points of degree at least d_{i+1} .

REFERENCES

- 1. Harary, F. Graph Theory, Addison-Wesley, Reading, 1969.
- 2. König, D. Theorie der Erdlichen und Undendlichen Graphen, Chelsea, New York.

UNIVERSITY OF MICHIGAN
3 9015 02825 9656