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COMPOUND MATRIX METHOD FOR EIGENVALUE 
PROBLEMS IN MULTIPLE CONNECTED DOMAINS 

N. R. ANTURKAR, T. C. PAPANASTASIOU AND J. 0. WILKES 
Department of Chemical Engineering, The University of Michigan, Ann Arbor, Michigan 48109, U.S.A. 

SUMMARY 
An algorithm based on a compound matrix method is presented for solving difficult eigenvalue problems 
of n equation sets in connected domains that are coupled through (n - 1) sets of interfacial boundary 
conditions, when n is an arbitrary number. As an example, a linear stability problem of n-layer plane 
Poiseuille flow is formulated. The resulting Orr-Sommerfeld equations form a set of stiff differential 
equations at high wavenumbers, which are solved accurately for various combinations of parameters. 

1. INTRODUCTION 

Standard shooting techniques for finding eigenvalues of a set of differential equations tend to 
be inaccurate for stiff systems. The accuracy can be improved dramatically by using a 
corresponding differential system of a compound matrix, the elements of which are the minors 
of the solution matrix. The resulting compound matrix method was used by Gilbert and 
Backus' for elastic wave problems, and by Ng and and Davey' for two-point 
boundary value problems and eigenvalue problems of the Orr-Sommerfeld equation. These 
investigations computed eigenvalues and eigenfunctions with marginal errors where standard 
shooting methods failed. Yiantsios and Higgins6 extended the method to equation sets valid 
over two connected domains that are coupled through interfacial conditions; in particular, they 
solved the Orr-Sommerfeld equations for two superposed fluids in plane Poiseuille flow. 
However, since the eigenvalues are obtained by matching the interfacial boundary conditions, 
the method is unsuitable for computations in more than two domains connected by interfacial 
boundary conditions. 

Here, the compound matrix method is implemented for n equation sets that are valid over 
connected domains through (n - 1) sets of interfacial boundary conditions, where n is 
arbitrary. Instead of matching boundary conditions at a particular interface for finding 
eigenvalues, the integration of the compound differential system proceeds with new initial 
conditions at an interface for the compound differential system of the next domain. 
Subsequently, the eigenvalues are computed by matching the boundary conditions at the end 
of the last domain. This general algorithm for finding eigenpairs is used in the linear stability 
analysis of n-layer, Newtonian, plane Poiseuille flow, for which resulting differential systems 
are known to be stiff at large wavenumbers. 
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2. ALGORITHM 

We consider the following n linear homogeneous systems of a differential eigenvalue problem: 

4j  = W j ( Z j ) + j ,  0 < Z j  < hj) j = 1 ,2 ,  ..., n (1) 

where Wj(zj) is a 4 x 4 matrix, the solution 4j is a 4 x 1 vector, and the prime denotes a 
derivative with respect to zj. The boundary conditions at z1= 0 and at Z, = h, are separated 
and expressed as 

D4i  (0) = 0 (2) 

E4n ( h n  ) = 0 (3) 

where D and E are 2 x 4 matrices. At (n - 1 )  interfaces located at (Zj  = hj, Zj+ 1 = 0),  the 
interfacial boundary conditions are 

Fdj(hj)  + Gj$j+, (0) = 0, j =  1-2 ,  n - 1 (4) 
where F j  and Gj are 4 x 4 matrices. Note that the origin for the j th system is shifted for 
convenience to the ( j  - 1)th interface. 

Let +j,l and 4j .2  be any two linearly independent solutions, which satisfy the boundary 
conditions (2) for j = 1 or the interfacial boundary conditions (4) for j # 1 .  The minors of  the 
solution matrix [+j , l4 j ,2]  are given by 

yj(k, 4 = 6 j , l k 6 j , ~ /  - 6j, l /uj ,2k) k = 1 3 2 ,  3, I =  k + 1 )  k + 2, ..., 4 ( 5 )  

where 6j,mk is the kth element of solution vector 4j.m. When yj(k,I)  are arranged in the 
lexicographic order of their indices, e.g. yj( l ,2)  =yj,1,yj(l, 3 )  =yj,2 and so on, they form the 
elements of the second compound matrix yj. These elements satisfy the quadratic identity4 

(6) Yj,lYj,6 - Yj,2Yj,S f Yj,3Yj,4 = 0 

Schwartz7 has shown that the differential compound system for yj  is given by 

(7) y !  - 
j - Hj(Zj)yj ,  j =  1,2, ..., n 

where Hj(z j )  is known in terms of Wj(zj) such that 

where Wj,k/ is the (k,l)th element of Wj. 
From the matrix [&,I  4 1 , 2 ]  at z1 = 0, the initial condition y l ( 0 )  is obtained by using (5 ) .  

Suppose that y1 is computed by integrating (7) for j = 1 from z1= 0 to hl for a given initial 
estimate of an eigenvalue c. The next step in the algorithm is  to find yz(0)  by satisfying the 
interfacial conditions (4) for j = 1 ,  and then to compute y2 by integrating (7) for j = 2 from 
22 = 0 to h2. The process continues until every y j  is computed for j = 1,2, ..., n for a given 
initial estimate of c. The matrix M( = E[4,,1 (h,) 4,,2(hn)]) is singular for non-trivial +j) and 
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where y j ( k ,  I )  are defined in ( 5 ) .  Once Y n  is calculated for a given estimate of c, the eigenvalue 
relationship (9) is satisfied by varying the eigenvalue c using a suitable iterative procedure. 

The crucial step in the above procedure is to find y j +  1(0) by satisfying the interfacial 
conditions (4) for a known y j ( h , ) .  This procedure is as explained below. Suppose that y j  is 
computed by integrating (7) from z j  = 0 to h j .  Since the solution #j  of (1) can be expressed as 
a linear combination of +j , l  and +,,z, the relationship between y j  and #j  is derived using ( 5 )  as 

Qj (Yj )# j  = 0 (10) 

where 

Y j , 6  0 - Y j . 3  YJJ 

Yj .4  - Y j , 2  Y j , l  

= ~ j . 5  - ~ j , 3  0 Y j , l  

0 Y j , 6  - Y j S  Y j .4  O 1  [ 
However, by using (6) and row reduction on Q, it can be shown that Q, has rank 2. Therefore, 
two linearly independent solutions + j ( h j )  are obtained using two equations from (10). The 
interfacial boundary conditions (4) provide two additional linearly independent solutions of 
+ j + 1 ( 0 ) .  These four equations are used to find yj+i+1(0).  For non-singular G j ,  the solutions 
computed by the above procedure are linearly independent. 

After determining c, the eigenfunctions are computed. In several engineering applications, 
however, the eigenfunctions are not needed. In those cases, the subsequent steps can be 
avoided. For fixed (k ,  f) with k # I, two auxiliary equations are obtained from (1) and (5 ) .  They 
are 

y j ( k ,  1)4;,k = 5 Wj.km [ Y j ( m ,  f)'bj,k - Y j ( m ,  k ) + j , f l  
m = l  

Once y j  is calculated by using the previous algorithm, two equations taken from (10) and two 
equations taken from (1 1) provide the required number of equations for determining +j, 
assuming that y j ( k ,  f) does not vanish in the interval 0 < z j  < hi. 

The boundary condition + n ( h n ) ,  required for integrating (1 1) for j = n from z,, = h, to 0, is 
provided by simultaneously solving (3) and two linearly independent equations taken from 
(10). The unique solution is guaranteed for non-singular E. Subsequently, to integrate (1 1) 
for any j # 1, the interfacial conditions (4) provide the necessary initial conditions +j- 1 ( h j -  I ) ,  

which depend on +j(O) .  

However, a caution is warranted in computing eigenfunctions using (11). In many cases, 
z j  = 0 is a regular singular point of (1 I), even in a single domain.' In those cases, the above 
procedure of backward integration will fail to yield the final values at z j  = 0. However, the 
algorithm requires +j  at z j  = 0, because +j -  1 ( h j -  1 )  depends on +j(O) .  If z j  = 0 is a singular 
point, then +j(O) is computed by extrapolating the values of eigenfunctions near Zj  = 0 using 
any standard formula, rather than by solving (11). Besides, with a proper choice of the 
auxiliary equations, the exponents can be made positive at a singular point, and then the simple 
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matching problem from Z j  = hj to 0 is not expected to yield any numerical difficulties, even near 
zj = 0. This important aspect of the algorithm was discussed by Ng and Reid2 for their 
calculations on a single domain. 

3. EXAMPLE: LINEAR STABILITY ANALYSIS OF MULTILAYER PLANE 
POISEUILLE FLOW 

As a test problem, the compound matrix method is implemented in the linear stability analysis 
of n-layer, Newtonian, plane Poiseuille flow. With a convenient co-ordinate transformation 
shown in Figure 1, the dimensionless velocity profile for the primary flow is8 

(12) 

where Aj, Bj and Cj are the constants, and hi the thickness, which is made dimensionless with 
respect to the total thickness of the channel. The constants and the thicknesses of all the layers 
are computed for a given set of flow rates qj, j = 1,2, .. . , n, by means of (12). The boundary 
conditions are no-slip at the walls, and continuity of velocities and stresses at the interfaces. 

The linear stability analysis of the primary flow in (12) gives the well-known 
Orr-Sommerfeld equation for each layer in terms of streamfunctions 4j of the disturbed 
velocities. 8,9 When the Orr-Sommerfeld equations are written in the form of (l), the non-zero 
elements of Wj are: 

V x j =  Aj + BjZj + CjZf, 0 < Z j  < hj, j = 1,2, ..., n 

where a is the real wavenumber of the disturbance, c the complex wavespeed, i the unit 
imaginary number, and mj the viscosity ratio of the j th layer to the first layer. The Reynolds 
number Rej is defined as pjvH/pl, where p j  is the density of the j th layer, p1 the viscosity of 
the first layer, V the average total velocity at the inlet of the channel, and H is the thickness 
of the channel. 

The compound differential system of (1) is then derived from (7) and (8): 

Zn qf- Layer 1 
- x .  

qj- Layer j 
X 

41 - Layer 1 

Figure 1 .  Geometry of multilayer, plane Poiseuille flow and transformation of the co-ordinates 
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The no-slip boundary conditions at the walls define the matrices D and E to be the unit 
matrices. The continuity of velocities in the x- and z-directions, and the continuity of shear 
and normal stresses at the interfaces provide the non-zero elements of F j  and Gj. They are: 

V i j  ha= 1, h=- C - Vxj t 4 . 2 2 =  1 

and 

Here, dj= p, /p~ is the density ratio, and (15) and (16) are evaluated at j = 1,2, ..., (n - 1). The 
steady-state velocity Vxj and its derivatives with respect to Z j  are evaluated at zj = hj, whereas 
the steady-state velocity vx(j+1) and its derivatives with respect to Zj+l are evaluated at 
zj+l= 0. These derivatives are denoted by primes. The dimensionless groups are the capillary 
number Caj = VpJuj (inversely proportional to the interfacial tension uj between the j th and 
0’ + 1)th layers), and the Stokes number St = gh2/vplpl (proportional to gravity g) .  

Let +1,1 and 41,~ be two linearly independent solutions of (1) for j =  1 that satisfy the 
boundary conditions (2), such that 

Suppose that yj  is computed by integrating (14) from zj = 0 to hj following the steps described 
in Section 2 for an initial estimate of the eigenvalue c. The following two equations are then 
used to find yj+ 1(0) from (1 1): 

By assuming that yj.6 does not vanish at the boundaries, two linearly independent solutions 
obtained from (19) at Z j  = hj are: 

+j,2 = -Yj,6, yj*4 - & , , , , I ,  yj,6 [ j = 1 , 2  ,..., n - 1  
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where yj is evaluated at zj = hj. Then +j+ 1(0) is determined using (4), and subsequently, yj+ i(0) 
is evaluated by means of ( 5 ) .  Since E is the unit matrix, 

det M = yn,l = 0 (21) 

The eigenvalue c is computed from (21) by Newton iteration. 

eigenfunctions are evaluated from (1 1). The auxiliary equations are: 
When the eigenvalue and yj over all the connected domains are determined, the 

Since yj , l= 0 at zn = h,, (22c) or (22d) is chosen for backward integration from z, = h, to 0. 
The conditions at zn = h, are provided by solving (3) and (19). Note that if y j (0)  does not 
contain any zero elements (which is the most likely situation), then the limiting behaviour of 
(22) near zj = 0 indicates positive exponents, except for j = 1. The vector yl(0) does not contain 
zero elements, and only (22a) has a positive exponent for j = 1. Therefore, it is necessary to 
integrate (22a) for the first layer. In this algorithm, (22c) is integrated in the nth layer, and 
(22a) is integrated in all other layers to obtain the eigenfunctions. The initial conditions for 
the integration are obtained using the interfacial boundary conditions (4). As mentioned 
earlier, z1= 0 is a regular singular point for (22). Therefore, the Newton-Cotes fourth-order 
extrapolation formula is used near z1 = 0 to get 4j(O). Since the integration is carried out using 
the fourth-order Runge-Kutta method, the error estimates of both the integration and 
extrapolation are of the same order of magnitude. 

The calculations were performed on an IBM3090/600E mainframe computer with double- 
precision complex arithmetic. A constant step-size, fourth-order Runge-Kutta method is used 
for the integration. The Jacobian dy,,l/dc in Newton iteration is evaluated numerically. If a 
suitable initial estimate of c is available, (21) is found to be satisfied in four to five iterations 
with quadratic convergence within a tolerance limit of yn,l < The drawback of the 
algorithm is that it can only compute one eigenvalue for a given set of parameters, and 
depending on the initial estimate the solution may not converge to a leading eigenvalue. 
However, accurate initial estimates of the leading eigenvalues at small wavenumbers can be 
obtained from asymptotic solutions, in which case the method converges to the leading mode. 
The initial estimates in the complete domain of the parameter space are then obtained by the 
first-order continuation. 

The compound matrix method is very efficient at large wavenumbers, where standard 
shooting techniques fail or do not provide accurate results. Since it is essential to study linear 
stability over a wide range of wavenumbers for ascertaining the stability of the flow at all 
wavenumbers, the algorithm is well-suited for linear stability analysis. The asymptotic analysis 
reveals that multilayer flow can be unstable to interfacial disturbances, even at small Reynolds 
numbers. We have investigated this interfacial instabiIity, and have carried out all calculations 
at Rej < 10, which is typical in many industrial processes of multilayer flows, such as in coating 
and coextrusion. Owing to the large number of parameters involved in the analysis, the results 
will be presented here only for two- and three-layer flows. However, the algorithm can be 
implemented for a flow of any numbers of layers. 
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4. SAMPLE CALCULATION 

The algorithm is validated by comparing numerical results using this algorithm with the 
asymptotic solutions for a! -+ 0 for three-layer flow (refer to Table I). The parameters in this 
calculation are Rej = 5 ,  @j = 1.0, St = 0, Cuj = to, m2 = 20, m3 = 1 and q 3 / q 1  = 0-3. 
The wave speeds calculated by the two methods agree well for a! = 0.001 at various values of 
q 2 / 4 1 ,  and deviate marginally as a! increases from 0.001 to 0.1. Similar calculations are also 
performed for two-layer flow. The neutral stability curves for two-layer flow also compare well 
with neutral stability curves at identical conditions in previous studies. 

An additional set of neutral stability diagrams is presented to emphasize the importance of 
the algorithm in predicting the interfacial instability at large wavenumbers for a flow with more 
than two layers. The first set, shown in Figure 2, indicates that the stability of the flow 

Table I. A comparison between the asymptotic solutions for a! -+ 0 and numerical results at small a! 
obtained by the compound matrix method for various 42/91 in three-layer flow at Rej = 5 ,  Cq = co, 

43/91 = 0.3, m2 = 20, m3 = 1, dj = 1 and St = 0 

42141 0.5 1.5 

Asymptotic solution 1.48455 + 0.50239 x 10-2ai 1 -29088 - 0.11079 x 

a! = 0.001 
a! = 0.01 
a!=o.1 

~ 

1.48445 + 0.50248 x 10-5i 
1.48330 + 0.50180 x 10-4i 
1-48106 + 0,49724 x lO-’i 

1.29073-0.11090~ 1OW6i 
1-29026-0.11162~ 10-5i 
1.28025-0.12381 x 10-4i 

92/91 4.0 

Asymptotic solution 0.99093 - 0.20649 x lOW2a!i 

a! = 0.001 
a! = 0-01 
a!=O-l 

0.99094 - 0.20630 x lO-’i 
0.99081 - 0.20589 x 10-4i 
0.98327 - 0.20346 x 10-3i 

’ 

12 - 
Co,,Ca2 = 50 

9 -  

a 
6 

Stable 

3 -  

0 1 2 5 4 5  0 1 2 3 4 5  

42/91 q 2 h  
Figure 2. Stabilizing effect of interfacial tensions on the neutral stability curves in three-layer flow in the a-q2/q1 
plane. The material properties are the same for layers 1 and 3. The parameters are rnz = 20, m3 = 1, q 3 / q l  = 0.2, dj = 1, 

Re1 = 5 and St = 0. The hatched regions are unstable and the unhatched regions are stable 
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improves with decreasing capillary number. In planar flow, disturbances increase the 
interfacial area. Therefore, interfacial tensions always stabilize the flow by minimizing the 
interfacial energy through minimization of interfacial area. Therefore, the stabilizing effect, 
which can be captured efficiently using the compound matrix method, is dramatic at large 
wavenumbers compared to small wavenumbers. From Figure 2, the critical flow rate ratios 
within which the flow is stable or unstable at all a, can only be estimated when the stability 
analysis is extended to large wavenumbers. Additional results are presented in Anturkar et al. * 

5 .  SUMMARY 

The advantages of using the compound matrix method for stiff systems (at large wavenumbers 
and/or at large Reynolds numbers) have already been demonstrated by earlier studies, 59274 

including the study of two-layer flows. We have shown in this paper that the method can also 
be implemented for several sets of equations connected through interfacial boundary 
conditions. The applicability of the algorithm is discussed for cases of hydrodynamic stability 
analysis of plane Poiseuille flow of more than two layers. Since an iterative technique is used 
to calculate eigenvalues, the converged numerical solution strongly depends on an initial 
estimate. Therefore, a major disadvantage of the algorithm is the necessity of providing an 
appropriate initial estimate to get the most dominant eigenvalue. This problem can be 
alleviated by complementing the compound matrix method with an approximate asymptotic 
analysis, or by calculating all the eigenvalues of a discretized problem using standard 
algorithms for selected parameters. 
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