The n-th Root of a Digraph

Dennis Paul Geller
Logic of Computers Group
The University of Michigan

Abstract

For any digraph D and any $n \geq 2$, necessary and sufficient conditions are given for there to be a digraph E such that $E^n \leq D$. The absolute n-th power is defined, and a characterization of digraphs which can be expressed as the absolute n-th power of another digraph is also given.

\[\text{Research supported by National Institutes of Health (GM-12236) and the National Science Foundation (GJ-519).}\]
Ενοχή

ομόκομμα

1544
Graphs and digraphs having at least one square root have been characterized in [1] and [2]. In this note we extend the results of those papers and, for any \(n \geq 2 \), given necessary and sufficient conditions for a digraph to have an \(n \)-th root.

Let \(D = (V,X) \) be a digraph. We represent the adjacency relation on \(D \) by \(r_D \); thus \(r_D(u) = \{v : uv \in E D \} \) and \(r_D^{-1}(u) = \{v : vu \in E D \} \). The \(n \)-th power \(D^n \) of \(D \) is a digraph with \(V(D^n) = V(D) \) and \(uv \in E D^n \) if and only if there is a walk of length at most \(n \) from \(u \) to \(v \) in \(D \).

Let \(S_{1}, S_{2}, \ldots, S_{2n-1} \) be sets, not necessarily disjoint, subject to the constraints that \(S_{n} \neq \emptyset \) and if \(S_{n-j} = \emptyset (S_{n+j} = \emptyset) \) then for all \(k > j \) \(S_{n-k} = \emptyset (S_{n+k} = \emptyset) \). Let \(K = K_n(S_{1}, \ldots, S_{2n-1}) \) be the digraph with

\[
V(K) = \bigcup_{j=1}^{2n-1} S_j \quad \text{and} \quad X(K) = \bigcup_{j=1}^{n-1} S_j \times \bigcup_{j=n}^{2n-2} S_j \times \bigcup_{j=n}^{2n-1} S_j.
\]

Theorem 1: Let \(D \) be a digraph and let \(n \geq 2 \). There exists a digraph \(E \) such that \(E\) = \(D \) if and only if there is a collection of subdigraphs

\[K_i = K_n(S_{i,1}, \ldots, S_{i,2n-1}) \]

of \(D \) associated with the points \(u_i \) of \(D \) such that

1. \(S_{i,n} = \{u_i\} \)
2. \(X(D) = \bigcup X(K_i) \)
3. \(u_i \in S_{j,n-1} \) if and only if \(u_j \in S_{i,n+1} \)
4. for any \(0 < r < n-1 \) and \(s = r+1 \): \(u_k \in S_{i,n-s} \) if and only if there is a \(u_j \in S_{i,n-r} \) such that \(u_k \in S_{j,n-1} \); \(u_k \in S_{i,n+s} \) if and only if there is a \(u_j \in S_{i,n+r} \) such that \(u_k \in S_{j,n+1} \).

Proof: Let \(E \) be a digraph. For each \(u_i \in E \) define \(S_{i,j} \) to be \(r_{E}^{j-n}(u_i) \); in particular \(S_{i,n} = \{u_i\} \). In \(E^n \), for each \(1 \leq j \leq n-1 \), each point of \(S_{i,j} \)
is adjacent to each point of $S_{i,n}$, $S_{i,n+1}, \ldots, S_{i,n+j}$, and if $n s j s n-2$, each point of $S_{i,j}$ is adjacent to each point of $S_{i,j+1}, \ldots, S_{i,2n-1}$.

Each arc u_iu_j of E^n is determined by a path $u_iu_k \ldots u_j$ of length rsn, so that $u_i \in S_{k,n-1}$ and $u_j \in S_{k,r}$, and hence $u_iu_j \in E_k$. Conditions (3) and (4) follow from the properties of E_k.

Conversely, let D have such a collection. Define a digraph E by setting $V(E) = V(D)$ and $u_iu_j \in E$ just when $u_i \in S_{j,n-1}$. We show that $E^n = D$ by demonstrating that, for each u_i and each $1 s k s 2n-1$, $S_{i,k} = r^{k-n}(u_i)$.

It will then follow that $u_iu_j \in E^n$ if and only if $u_iu_j \in D$. For, if $u_iu_j \in D$, u_iu_j is in some E_k: thus for some r and s, $u_i \in S_{k,r}$ and $u_j \in S_{k,s}$, where $r s n$ and $s s r+n$. Then there is a $t_1 \in E^r(u_k)$ such that $u_i \in S_{t_1,n-1}$, so that $u_iu_t^1 \in E$, and $u_t^1 \in S_{k,r+1}$. We then find t_2 such that $u_t^1u_t^2 \in E$ and $u_t^2 \in S_{k,r+2}$; we continue until we find t_b such that $u_t^1u_t^2 \in E$ and $u_t^b \in S_{k,n-1}$, so that $u_t^b \in E$. Similarly we find a sequence $t_d^1, t_d^2, \ldots, t_d^b$, where $d = s - r - 1$, such that $u_ku_t^1u_t^2 \in E$ and t_d^b all arcs of D. This defines a walk of length $s - r - 1$ between u_i and u_j in E, thus $u_iu_j \in E^n$. If $u_iu_j \in E^n$ then u_i and u_j are joined by a walk $u_i\ldots u_j$ of length at most n. Now, $u_i \in E_{s-1}(u_t^1) = S_{t_1,n-1}$ and $u_j \in E_{r}(u_t^1) = S_{t_1,n+k}$. Since $k < n$, $n+k < n+(n-1)$; thus $u_iu_j \in D$.

We proceed to show that $S_{i,k} = r^{k-n}(u_i)$. If $k = n-1$ then $r^{k-n}(u_i) = r^{n-1}(u_i) = \{u_j | u_ju_i \in E\} = \{u_j | u_j \in S_{i,n-1}\} = S_{i,k}$. If $k = n+1$, $r^{k-n}(u_i) = r^{j}(u_i) = \{u_j | u_ju_i \in E\} = \{u_j | u_j \in S_{i,n-1}\}$. But $u_i \in S_{i,n-1}$ just when $u_j \in S_{i,n+1}$; thus $r^{j}(u_i) = S_{i,n-1}$.

Suppose the result holds for $n-r < k < n+r$, and let $s = r+n$. Then $r^{(n-s)}(u_i) = r^{s-n}(u_i) = r^{s-n}(r^{r}(u_i)) = r^{r}(S_{i,n-r}) = \bigcup \{r^{r}(u_j) | u_j \in S_{i,n-r}\}$. For any u_j, $r^{r}(u_j) = S_{j,n-1}$. Thus if $u_i \in r^{r}(u_j)$ and $u_j \in S_{i,n-r}$ then $u_i \in S_{i,n-r-1} = S_{i,n-s}$. On the other hand,
if \(u_p \in S_i, n-r-1 \) then there is a \(u_j \) such that \(u_p \in S_j, n-1 \) and \(u_j \in S_i, n-r \),
so that \(u_p \in E^{-1}(u_j) \subseteq E^{-1}(S_i, n-r) = r^{-1}(r^{-r-1}(u_j)) = r^{-S}(u_j) \). Similarly,
we can show that \(S_i, n+S \) establishes the theorem.

The theorems in [1] and [2] follow as corollaries for the case
\(n=2 \). The absolute 2-th power \(D^{n=2} \) of \(D \) has \(V(D^{n=2}) = V(D) \), and \(uv \in D^{n=2} \)
if there is a walk of length exactly \(n \) joining \(u \) and \(v \) in \(D \). Let
\(H = H_n(S_1, \ldots, S_{2n-1}) \) be the digraph with
\(V(H) = \bigcup_{j=1}^{2n-1} S_j \) and
\(X(H) = \bigcup_{j=1}^{n-1} [S_j \times S_{j+1}] \). The proof of the next theorem is virtually identical
to that of Theorem 1.

Theorem 2: Let \(D \) be a digraph and \(n \geq 2 \). There is a digraph \(E \) such that
\(E^n = D \) if and only if there is a collection \(H_i = H_n(S_1, \ldots, S_{2n-1}) \) associated
with the points \(u_i \) of \(D \) which satisfies conditions (1) - (4) of Theorem 1.

Corollary: A digraph \(D \) has an absolute square root if and only if there
are sets \(S_i \) and \(T_i \) associated with the points \(u_i \) of \(D \) such that (1) each
point of \(S_i \) is adjacent to each point of \(T_i \); (2) for each arc \(x \) of \(D \)
there is some \(u_i \) for which \(x \) joins \(S_i \) and \(T_i \); and (3) \(u_i \in S_j \) if and only
if \(u_j \notin T_i \).

Corollary: A graph \(G \) has an absolute square root if and only if there is a
collection of complete subgraphs \(K_i \) associated with the points \(u_i \) of
\(G \) such that \(G = \bigcup K_i \) and \(u_i \in K_j \) if and only if \(u_j \in K_i \).

References

