The n-th Root of a Digraph

Dennis Paul Geller¹ Logic of Computers Group The University of Michigan

Abstract

For any digraph D and any $n\geq 2$, necessary and sufficient conditions are given for there to be a digraph E such that $E^n = D$. The absolute n-th power is defined, and a characterization of digraphs which can be expressed as the absolute n-th power of another digraph is also given.

 $^{^1}$ Research supported by National Institutes of Health (GM-12236) and the National Science Foundation (GJ-519).

Enam UMR 1544 Graphs and digraphs having at least one square root have been characterized in [1] and [2]. In this note we extend the results of those papers and, for any $n \ge 2$, given necessary and sufficient conditions for a digraph to have an n-th root.

Let D = (V,X) be a digraph. We represent the adjacency relation on D by Γ_D ; thus $\Gamma_D(u) = \{v | uv_{\varepsilon}D\}$ and $\Gamma_D^{-1}(u) = \{v | vu_{\varepsilon}D\}$. The <u>n-th power</u> D^n of D is a digraph with $V(D^n) = V(D)$ and $uv_{\varepsilon}D^n$ if and only if there is a walk of length at most n from u to v in D.

Let $S_1, S_2, \ldots, S_{2n-1}$ be sets, not necessarily disjoint, subject to the constraints that $S_n \neq \emptyset$ and if $S_{n-j} = \emptyset(S_{n+j} = \emptyset)$ then for all k > j $S_{n-k} = \emptyset(S_{n+k} = \emptyset)$. Let $K = K_n(S_1, \ldots, S_{2n-1})$ be the digraph with

$$V(K) = \bigcup_{j=1}^{2n-1} S_j \text{ and } X(K) = [\bigcup_{j=1}^{n-1} S_j x(S_n \cup ... \cup S_{n+j})] \cup [\bigcup_{j=n}^{2n-2} S_j x(S_{j+1} \cup ... \cup S_{2n-1})].$$

Theorem 1: Let D be a digraph and let $n \ge 2$. There exists a digraph E such that $E^n=D$ if and only if there is a collection of subdigraphs $K_i = K_n(S_{i,1},\ldots,S_{i,2n-1})$ of D associated with the points u_i of D such that

- (1) $S_{i,n} = \{u_i\}$
- (2) $X(D) = \bigcup X(K_i)$
- (3) $u_i \in S_{j,n-1}$ if and only if $u_j \in S_{i,n+1}$
- (4) for any 0<r<n-1 and s=r+1: $u_k \in S_i$, n-s if and only if there is a $u_j \in S_i$, n-r such that $u_k \in S_j$, n-1; $u_k \in S_i$, n+s if and only if there is a $u_j \in S_i$, n+r such that $u_k \in S_j$, n+1.

<u>Proof</u>: Let E be a digraph. For each $u_i \in E$ define $S_{i,j}$ to be $\Gamma_E^{j-n}(u_i)$; in particular $S_{i,n} = \{u_i\}$. In E^n , for each $1 \le j \le n-1$, each point of $S_{i,j}$

is adjacent to each point of $S_{i,n}$, $S_{i,n+1}$, $S_{i,n+j}$, and if $n \le j \le 2n-2$, each point of $S_{i,j}$ is adjacent to each point of $S_{i,j+1}$, $S_{i,2n-1}$. Each arc $u_i u_j$ of E^n is determined by a path $u_i u_k ... u_j$ of length $r \le n$, so that $u_i \in S_{k,n-1}$ and $u_j \in S_{k,n+r}$, and hence $u_i u_j \in K_k$. Conditions (3) and (4) follow from the properties of Γ_E .

Conversely, let D have such a collection. Define a digraph E by setting V(E) = V(D) and $u_i u_j \in E$ just when $u_i \in S_j, n-1$. We show that $E^n = D$ by demonstrating that, for each u_i and each $1 \le k \le 2n-1$, $S_{i,k} = r_E^{k-n}(u_i)$. It will then follow that $u_i u_j \in E^n$ if and only if $u_i u_j \in D$. For, if $u_i u_j \in D$, $u_i u_j$ is in some K_k ; thus for some r and $s_i u_j \in S_k, r$ and $u_j \in S_k, s$, where r < n < s and $s \le r + n$. Then there is a $u_{t_i} \in \Gamma_E^{(r+1)-n}(u_k)$ such that $u_i \in S_{t_i}, n-1$, so that $u_i u_{t_i} \in E$, and $u_{t_i} \in S_k, r+1$. We then find t_2 such that $u_{t_i} u_{t_i} \in E$ and $u_{t_i} \in S_k, r+2$; we continue until we find $t_i \in S_k, r+2$; we continue until we find $t_i \in S_k, r+2$. Similarly we find a sequence $t_i \in S_k, r+2$, where $t_i \in S_k, r+2$, so that $t_i \in S_k, r+2$. Similarly we find a sequence $t_i \in S_k, r+2$, where $t_i \in S_k, r+2$ is a such that $t_i \in S_k, r+2$ is a sequence $t_i \in S_k, r+2$. Similarly we find a sequence $t_i \in S_k, r+2$ is an analyse $t_i \in S_k, r+2$ is a sequence $t_i \in S_k, r+2$ in t_i

We proceed to show that $S_{i,k} = r_E^{k-n}(u_i)$. If k = n-1 then $r_E^{k-n}(u_i) = r_E^{-1}(u_i) = \{u_j|u_ju_i\in E\} = \{u_j|u_j\in S_{i,n-1}\} = S_{i,k}.$ If k = n+1, $r_E^{k-n}(u_i) = r_E(u_i) = \{u_j|u_iu_j\in E\} = \{u_j|u_i\in S_{j,n-1}\}.$ But $u_i\in S_{j,n-1}$ when $u_j\in S_{i,n+1}$; thus $r_E(u_i) = S_{i,n+1}$.

Suppose the result holds for $n-r \le k \le n+r$, and let s=r+1. Then $\Gamma_E^{(n-s)-n}(u_i) = \Gamma_E^{-s}(u_i) \qquad = \Gamma_E^{-1}(\Gamma_E^{-r}(u_i)) = \Gamma_E^{-1}(S_{i,n-r}) = \bigcup_{j=1}^{n-1} (u_j) | u_j \in S_{i,n-r} \}.$ For any $u_j, \Gamma_E^{-1}(u_j) = S_{j,n-1}$. Thus if $u_p \in \Gamma_E^{-1}(u_j) \text{ and } u_j \in S_{i,n-r} \text{ then } u_p \in S_{i,n-r-1} = S_{i,n-s}.$ On the other hand,

if $u_p \in S_{i,n-r-1}$ then there is a u_j such that $u_p \in S_{j,n-1}$ and $u_j \in S_{i,n-r}$, so that $u_p \in \Gamma_E^{-1}(u_j) \subset \Gamma_E^{-1}(S_{i,n-r}) = \Gamma_E^{-1}(\Gamma_E^{-r}(u_i)) = \Gamma_E^{-S}(u_i)$. Similarly, we can show that $S_{i,n+s} = \Gamma^S(u_i)$ establishing the theorem.

The theorems in [1] and [2] follow as corollaries for the case n=2. The <u>absolute n-th power D^n of D</u> has $V(D^n) = V(D)$, and $v \in D^n$ if there is a walk of length exactly n joining u and v in D. Let V(H) = V(H) =

Theorem 2: Let D be a digraph and $n \ge 2$. There is a digraph E such that $E^n = D$ if and only if there is a collection $H_i = H_n(S_1, \ldots, S_{2n-1})$ associated with the points u_i of D which satisfies conditions (1) - (4) of Theorem 1. Corollary: A digraph D has an absolute square root if and only if there are sets S_i and T_i associated with the points u_i of D such that (1) each point of S_i is adjacent to each point of T_i ; (2) for each arc x of D there is some u_i for which x joins S_i and T_i ; and (3) $u_i \in S_j$ if and only if $u_i \in T_i$.

<u>Corollary</u>: A graph G has an absolute square root if and only if there is a collection of complete subgraphs K_i associated with the points u_i of G such that $G = \bigcup K_i$ and $u_i \in K_j$ if and only if $u_j \in K_i$.

References

- Geller, D., "The Square Root of a Digraph," <u>J. Combinatorial</u> <u>Theory</u>, <u>5</u>, (1968), 320-321.
- 2. Mukhopadhyay, A., "The Square Root of a Graph," <u>J. Combinatorial Theory</u>, <u>2</u>, (1967), 290-295.

