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ABSTRACT
REALIZATION WITH FEEDBACK ENCODING
by

Dennis Paul Geller
Chairman: John F. Meyer

Automata theorists have long been concerned with various notions of
realization. All of these haye?'as a basic feature, an input.encoder
which transforms inputs intended for the realized machine, M', into inputs
to the realizing machine, M. In this paper we introduce one modificafion
to this concept. We give the realizing machine a measure of control over
the realization by introducing feedback to the input encoder. The input
encoder is then a map h from pairs (q,i') to inputs of M, where q is a
state of M and i' is an input to M'. We introduce the restriction that
for each q, the map h(q,.) is one-to-one and onto.

With this restriction, we are able to demonstrate strong ties with
the theory of directed graphs. We introduce and study admissible
homomorphisms of graphs and show that they play a role‘for realization
with feedback encoding similar to that played by homomorphisms of machines
for classical realization. We also investigate algebraic properties of
realization with feedback encoding,

Finally, we discuss two applications of the concept of realization
with feedback encoding. The first is to the problem of finding series-
parallel decompositions of automata, and the second involves the design of

diagnosable machines capable of realizing a given state behavior.
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INTRODUCTION

In this thesis we will be studying a new definition for the concept
of realization of finite-state sequential machines. Although their
content may vary,bdefinitions of the notion of realization in the
literature all fit into a basic paradigm. As the realizing machine
~will, in general, have a different input alphabet than the realized
machine, provision is made for a memoryless input encoder, which trans-
forms inputs "intended for" the realized machine into the input alphabet
of the realizing machine. In some cases, (realization [17, p. 28]), ghis
;ncoder transforms symbols to symbols, and in other cases, (simulation
[17, p. 192]), symbols to strings. One featuré, however, is always
constant: the way a symbol is transformed is invariant. In this work
we propose én apparently drastic change to this paradigm: we allow the
realizing machine to exert a measure of control over the realization
by adding feedback from the realizing machine to the input encoder.

In this way, a given symbbl may be transformed in any one of a number
of different ways, depending on the current state of the realizing
machine. We call this new notion of realization, realization with
feedback encoding.

It is a truism of autoﬁata theory that adding even a small amount
of feedback to a system can have profound results, and the
modification which we propose here is no exception. We show, in
Chapter III, and in a different context in Chapter IV, that unless some
restrictions are placed on the behavior of the input encoder, the

concept becqmes trivial, in the sense that there may be no discernible



relation, either behaviorally or structurally, between the realized
and realizing machines.

The restrictions which we place on the encoders.in Chapter III
are natural ones, but they lead to a surprising result. Whether or
not one machine can realize another with feedback encoding can be ascer-
tained by examining their state transition diagrams with the input
labels on the arcs removed. Thus, graph theoretic tools become quite
valuable in the study of reaiization with feedback encoding. Graph
Theory is reviewed in Chapter II, where we present the notion of an
admissible homomorphism between graphs.‘ Properties of admissible
homomorphisms are discussed, and they are related to other forms of
mappings between graphs, most notably those of McNaughton [25] and of
Harary, Hedetniemi and Prins [13]. In Chapfér I}I we show that the
existence of an admissible homomorphism between the unlabelled state
transition graphs of two machines is both necessary and sufficient for
realization with feedback encoding of the range machine by the domain
machine. We then show how well-known theorems about realization of
machines by cascade compositions can be generalized to include the
class of realizations with feedback encoding. Using the complexity
measure size, we then generalize a result of Zeigler [36] and show that
it is impossible to realize, even with feedback en;oding, all machines
by cascades of bounded complexity. Finally, we investigate the addition
of a feedback encoder to the special case of simulation, b-slow
simulation, and in the process we provide a characterization of those

digraphs which are powers of other digraphs.



In Chapter IV, we investigate algebraic properties of both real-
izations and simulations with feedback encoding. We show that it is
possible to associate a semigroup with each machine so that the question
of whether one machine can realize or simulate another with feedback
encoding can be.resolved by examininé the semigroups associated with
the two machines. We also relate the notion of simulation with feedback
enéoding to the S*-semigroups defined by Hedetniemi and Fleck [20],
and settle a conjecture of theirs in all but one case.

- In Chapter V we examine the problem, given a machine, of finding
a realizing machine which has a distinguishing sequence. It is shown
that allowing realizations with feedback encoding makes the problem in
general more tractable even with the additional restrictions, which
we assume throughout, that there be no increase in state-set or input-set
size, and as little increase as possible in output-set size. In
particular, we define a class of machines for ;hich the problem can
always be solved when realization with feedback encoding is permitted.
For other machines, we show that the difficulties which are reflected
in the structure of the state transition graph of the machine to be
realized can be modelled as a problem in coloring the lines of bipartite

graphs. We develop a new canonical form for such colorings, and then

apply it to the distinguishing sequence problem.



CHAPTER I

FUNDAMENTALS

This chapter and the next present some of the basic concepts from
the theories of machines and graphs which will be important to the
study at hand.

A machine, or finite-state automaton M, consists of a set Q of
stateg, a set I of inputs, where both Q and I are finite, and a map
6:Q x I » Q. A machine M = <d,I,6> can be specified either by giving
the map ¢ explicitly, or by drawing its state-transition graph, a
labeled directed graph (See Chapter II) whose points are the states
of M, having an arc from state q; to state qj labeled with input
x ¢ I if and only if 8(q;,x) = q;- A machine is autonomous if |I| = 1.

Example 1.1

The following table for § describes the machine M = <Q,I,é>

whose state-transition graph is given in Figure 1.1;

Q= {ql,qz,qz,q4} and I = {xl,xz}.

M X; | X
| 9 | 9y
Al a4 | 9
43| 93 | 9
9| 9% | 93

We will make the notational convention that, unless otherwise
specified, the state set and input set of a machine M are always denoted
by Q and I, respectively; thus, for example, a machine M' has state

set Q', and a machine M, has input set 12.



~Figure 1.1. A state-transition graph.

We will also omit explicit reference to.§, the transition funetion;
if 6(qi,x) = qj we will instead write
q;X = q.. (1.1)

J
A machine M', is a submachine of a machine M if Q'CqQ,

I'CI, and &' = Slgr x 10

A string y over a set I is a nonempty finite sequence
y.= xlxé e X of symbols from I; the length L(y) is the number n
of symbols in the sequence. Given any finite set I we define I* to
be the set of all strings over I.

The transition function 6 of a machine M can be extended to a map
T:Q x I* » Q by setting 6(q,x) = §(q,x) for all x ¢ I and
F(ci,xy) = §(5(q,x),y), for x,y ¢ I*; altemétely, we could write
q(xy) = (qx)y. In fact, as is common, we will use the symbol § or
the notation of (1.1) for both & and §.. It is well known that the

value of qz for z ¢ I is independent of the way that z is decomposed



into a product z = xy of strings. For the machine of Example 1.1,

UWa*2 ® Y
A%1%2 = 93
U3%1%2 = 92
Uxy¥p = 43

Let Q be the vector of length |Q|, where §(i) = q;- Each string
x ¢ I* transforms 6 to a vector ax, where ax(i) = q;X. Note that for
the machine of Example 1.1, 6X£ = 6x2x2x2x2x2.

Let I* = I¥{A}, where A, the empty string, has the properties
that £(A) = 0, GA = 6 and, for any string y € I*, Ay = yA = y, Define
an equivalence relation on I* by setting x = y if and only if 6x = ay.
Then the equivalence classes under = are the elements of a semigroup,
S(M), where [x][y]-= [xy]; S(M) is the semigroip of M.

One notion which is crucial to our study is that of one machine
being able to ''simulate'" the behavior of another.

We say that M realizes M' if there are maps ¢:Q ORtOQ' and

h:1' O3tor such that
¢(q)x' = ¢(qh(x")). (1.2)

The map h is called the input encoder. If the map ¢ is one-to-one
we say that the realization is isomorphic, and otherwise it is homomorphic.
In either case, ¢ is said to be a homomorphism with substitution property,
or an SP homomorphism. An important property of an
SP-homomorphism between two machines is that if

0(a)) = 4(ay) then for all x e I, 6(@yx) = $(a®)  (1.3)

The partition which an SP homomorphism induces on its domain is an

SP partition. '



A machine M simulates a machine M' if there are maps ¢:Q ~ Q'

and h:I' + I* such that

¢(q)x'= ¢(qh(x")) (1.4)
A special case of simulation is b-slow simulation; M b-slow simulates
M' if M simulatés M' and the.ihput encoder h has the property that
for each x' ¢ I', £(h(x')) = b. - |

Often it is not important to know precisely to which state an
input takes a machine. Instead, outputs are associated with a machine,
and one is interested in the mapping from inputs to outputs whiéh
the machine induces.

A Mealy machine is a machine M = <Q,I,8> together with a finite
set Y of outputs and an output function \:Q x I +Y; M s <Q,I1,6,),Y>.
It may éften be the case that for any states 9,4, and inputs X1 5%y
q4;%; = q,%, implies that A(ql,xl) = A(qz,xz).k Intsuch a machine
A(q,x) can be considered to be a function of the next state, qx.

Such a machine is called a Moore machine, and, as the meaning will
always be clear from context, we will write A(q,x) = A(qx). In fact,
the two types of machines definevthe same classes of behaviors. In
many applications, Moore machines are instead defined so that

A(q,x) = A(q). We chose the formuiation which we did (see [1]) to
make the derivations in Chapter V more tractable although, as we point
out there, we actually lose no generality by doing so.

As with the transition function, we can extend A to a map with
domain Q x I*. 1In fact, this can be done in two ways. We define
x:Q x I* + Y by X(q,x) = A(ay,x;), where x = yx, & I* and *1 e I.

On the other hand, 8:Q x I* + Y+_is the map B(q,x1 ces kn) =
A(q,xl)x(qxl,;z) cos A(qx1 ‘oo xn-l’xn)‘ Using the same symbol, A,

for both A and X, we see that in the Mealy machine M = ?{qlsqz,qs.q4},
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{xl,xz}, §, A, {0,1}> of Figure 1.2,

xl;O

Figure 1.2. A Mealy machine."

A(ql,xlxz) = A(q4,x1x2) = A(qz;xlxz) = 1, and B(ql,xlxz) = B(q4,x1x2) = 01,
but B(qz,xlxz) = 11. N

We say that - two states q and q, of a machine are equivalent if,
for each x ¢ IV, A(ql,x) = A(qz,x). A machine is reduced if no two
states are equivalent. For every machine M which is ﬂot reduced there
is a unique reduced machine which is formed by identifying each set
of equivalent states to a single state.

.If M and M' are machines with output then M realizes M' if there
are maps ¢:Q OQtOQ', h:I' ogtoI, g:Y -+ Y' such that

¢(q)x' = ¢(qh(x'))
N (#(@),x") = g(A(a,h(x")))

(1.5)

It then follows that every machine realizes its reduced machine.

Given machines M; and M,, let Z be a map Z:Q; x'11'+ Iz; The

1

- cascade My 0y M2 of M1 and M, with comneeting map 7 is a machine M

with Q = Ql X st I =Il’ and (ql’qz)xl = (q1x1:q22(q1’x1))' If Z is

-in fact independent of the state of Ml’ z:I1 > 12, then the cascade
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is a parallel composition. In a cascade M, 0, M,, M, is the front

component and M, is the tail component.
The operation of cascading machines is, in general, not associative.
On the other hand,‘if we write M1 olez ozz M3 we are not actually
being ambiguous: once we specifx the maps Z. the cascade will be defined
uniquely up fo isomorphism. Thus, if we have a cascade M of n machines
Mi we can Qrite’M = IIMi as a purely notational'COnvenience. O0f course,
since cascade is a binary operation, every céscade IIMi can be written
as M, = N o, N2’ where, in general, both N, and N, can be specified
as cascades of the M, . | .
Among the well-known, in fact almost ''folklore', theorems_to which
we will be referring in the sequel are ([17]).
1. M can be isomorphicglly realized by a cascade M1 0, M2 if and
only if M, is SP homomorphic image of M. *
2. M can be isomorphically realized by a Qgrallel composition
My 0y M2 if and only if each of Mi and M2 is -an SP homomorphic
image of M and the meet of the induced SP partitions is the

zero partition on Q.

For example, the partition {qlqssq2q4} on the machine M of Example 1.1
has SP, and is the only such partition which is nontrivial. 'The cascade

M1 0y M2 in Figure 1.3 isomorphically realizes M.
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Figgre 1.3. A cascade.



CHAPTER II

ADMISSIBLE HOMOMORPHISMS

In this chapter we will develop an apparently new notion for
ﬁomomorphisms of directed graphs, the admissible homomorphisms. A
survey of other definitions for homomorphisms can be found in [18].

Our admissible homomorphisms willvbe seen to lie '"between' SP
homomorphisms of machines and McNaughton's pathwise homomorphisms [25].
The notion is somewhat tangent to the usual idea of homomorphisms in
graph theory [12], but we will develop some relationships to these;

in particular, we will strengthen a result of Hedetniemi [19] on the
conjunction of two graphs by generalizing it to digraphs and then showing
that in many cases the homomorphisms which he-considers are, in fact,
admissible.

In graph theory, the term digraph usually refers to irreflexive
relations. This turns out to be unsuitable for our purposes: most of
our results will eventually be applied to state-transition graphs of
machines, which often have loops or multiple arcs. We will therefore,
unless we specify otherwise, use the term digraph to refer to the more
general structures called nets in [15].

A digraph D consists of a set V of points together with a collection
X (repetitioné permitted) of ordered pairs, called arcs, from V x V.

If uv = (u,v) is an arc of D write uv ¢ D or uv ¢ X. If there is at
least one arc from u to v then u is adjacent to v and v is adjacent

from u. The expression "uv ¢ X" is used both in the normal set-theoretic
uéage and alsb as a predicate, to express "u is adjacent to v'".

Such dual usage causes no confusion, except possibly when there is more

11
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than one arc from u to v. Where difficulties may arise, we will try to
be especially careful in using this notation. Figurc 2.1 shows two
digraphs; the first is also a digraph in the sense of standard

graph-theorctic usage. We will generally use the symbols p for |V

and q for |X]|.

Figure 2.1 Two digraphs.

With each digraph D, we associate a relation Yy, defined by
(u,v) e v if and only if uv e D; then y(u) = {v|uv e D} and
y-1(v) = {u|uv € D}.

With each point of a digraph D, we.associate two numbers. The
indegree id(u) of u is the number of arcs vu € D; note that, since
we are permitting multiﬁle arcs, id(u) is not in general equal to
Iy'lﬁgl_ Similarly the outdegree od(u) is the number of arcs UV ¢ D.
A digraph is outregular (df degree d) if all its points have the/same

outdegree (equal to d).
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If a digraph is, in fact, an irreflexive relation, and hence a
digraph in the sense'éf'[lsj, we will say that it is pure.

We will use the standard definition for graphs [12]. A graph G
consists of a set V of points togethér with set X of unordered pairs
of distinct points, called lines. If>there is a line between u and v
in G we write uv € G or uv ¢ X.

‘As we mentioned, we will be interested in applying the results

of this chapter to state-transition graphs of machines. To do this,

we will associate a digraph with each machine. If M = <Q,I1,6> is a
machine, the digraph D(M) of M has for its points the set Q and for
its arcs the collection X of arcs uv such that for some x € I, ux = v,
Note that if there are, say, n inputs X for which ux, =‘v then there
are n arcs from u to v in D(M), so that D(M) is aiways outregular,

A machine and its associated digraph are shown in Figure 2.2.

D(M)

Figure 2.2. A machine and its digraph.
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A walk in a digraph is a sequence W =.<u0u1,u1u2,...,un_1un> of
arcs. The length of W is n. We may often abbreviate this notation
and write W as a sequence of points, W = UgUp e U although it
is understood that in a digraph with multiple arcs there may be distinct
walks which have the same abbreviation. A digraph D is said to be

strong, or strongly connected, if there is a walk W= v, ... Vv

1 n-lvl

such that each point of D appears at least once as one of the vy

In much of this work we will be dealing with maps between digraphs.
Although it will be convenient to treat these as mappings between the
point sets of the digraphs, we will provide a slightly unconventional
definition. To this end, we introduce some preliminary notation.

The reflexive closure DR of a digraph D is the smallest superdigraph

of D which has a loop at each point. For a ﬁBinttu € D, let g(u) be

the set of arcs incident from u, and let g(u) be the set of arcs incident
to u.

Given digraphs.D and E, by a mapping from D onto E we will mean a map-
ping ¢:X(D) - X(ER) which is onto X(E) and which satisfies the fdllowing
property: for each u € V(D) there is a u' ¢ V(E) such that ¢(§(u))§§(u')
and ¢(§(u))g§(u'). A consequence of this definition is that ¢ can be
considered as a map from V(D) onto V(E); we will write ¢ for the map in
either case, and»it will be clear from context whether we are mapping
points to poinfs or arcs to arcs.

There are two important features of mappings as we have defined
them. Hedetniemi [19] calls a mapping ¢:G + H betweeﬁ‘the point sets of

two graphs a full mapping if for each line u'v' ¢ H in the image there
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is a line.uv ¢ G such that u' = ¢(u) and v' = ¢(v); fullness is

automatically a property of mappings as wo have defined them. Another

<

important property is that if x e X(D) is an arc from u to

then ¢(x) is an arc from ¢(u) to ¢(v) in X(E), unless o(u) = ¢(v), in
which case ¢(x) may not be a loop in'X(E), but may instead be a loop in
X(ER) - X(E). The reason for this dicﬁotomy arises from differences
between well-established results in the theories of graphs and automata,
Following McNaughton [25], if D and D' are digraphs and

é:D ogtoD' is a map, then ¢ is said to be walkwise if, for any walk
<xi,.
i=1,...,n; since McNaughton used the term "path' for walk, he called

..,xﬁ> in D' there is a walk ?xl,...,xn> in D such that ¢(xi) = xi,

such mappings ''pathwise". McNaughton defined '"pathwise Homomorphisms"
between state-transition graphs in conjunctiqQn with his studies of the
star-height problem. He showed that the "rank" (in the sense of [5])

of a state-transition graph cannot increase under a walkwise homomorphism.
Hedetniemi [19] studied maps which were homomorphisms between graphs

in the sense of [12], from here on simply called homomorphisms,

and also walkwise, and proved a similar result for the cycle rank [12],
the numbef of independent cycles. We will complete this sequence by

eneralizing Hedetniemi's theorem.
g
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A cycle Z in a digraph D is a walk Z = v Vo where v, = Vo

1 1
and, for 1 < i <j <n, vy # vy The length of a cycle is the number
of distinct points. As in [12,p. 37], we can consider each cycle in
D to be a formal sum over the q arcs of D, Z =igleixi, where the €5
are elements of the two-element field {0,1} and e; = 1 if and only if
X, is an arc of Z. Thus, each cycle can be represented by a vector
from the vector space of dimension q over the binary field. A set of
cycles is linearly independent‘if.the cycles are linearly independent
as vectors. In a graph G, it is known that the cycle fank m(G), the
maximun number of independent cycles, is equal to q-p+k, where k is
the number of connected components of G. Berge [2 ] showed that the
same equation holds for strong pure digraphs, so that the cycle rank
is m(D) = q-p+1l. | His result can be applied to digraphs as we
have defined them.

Lemma 2.1

If D is a strong digraph then m(D) = q-p+l.

PROOF: (skétch).

Suppose that D is a strong digraph. We form a new digraph D*

with V(D*) = V(D)UX(D), and X(D*) = {uix.,x.u }. In effect,

Xyl = %
D* is formed by inserting a new point on each arc of D. It is clear
that D* is a pure strong digraph, and that m(D*) = m(D). By Berge's
result, m(D*) = q(D*) - p(D*) + 1. But p(D*) = p(D) + q(D*) = 2q(D).

Thus, m(D) = m(D*) = 2q(D) - (p(D) + q(D)) + 1 = q(D) - p(D) + 1.

Berge's result, and hence Lemma 2.1, does not hold for digraphs

which are not strong. The digraphs D and D* of Figure 2.3 each have
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q-p+l = 1, but each is acyclic. However, if a digraph D has k strong

components and every arc belongs to a strong component, then m(D) = q-p+k.

- Figure 2.3. A digraph and the derived pure digraph.

Corollary

If D is'not streng then m(D) is the sum of jthe cycle ranks of

the strong components>of D.

Lemma 2.2
If ¢:D + D' is walkwise and if D' has a cycle of length n,
then D has a cycle whose length is a nonzero multiple of n.
PROOF:
Let the cycle Z' in D' have points vi ,...,vﬁ, and consider an

arbitrarily large walk around Z':vi ,vé ,...,vﬁ ,vi sees o This walk

must have a pre-image which is a walk, say

= = !o i
W Vi1oViger e oV e Vag et s o Vo Vg ot e o where ¢(vij) vJ Since
D is finite there must be repetitions of points in W; ‘suppose that
Vii = Vip is the first such repetition. Then clearly j = £ and

1]
Vij’vi,j+1""’vkj is a cycle whose length is (k-i)n.
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For any digraph D and any collection Y of arcs of D, D-Y is a
digraph with V(D-Y) = V(D) and X(D-Y) = X(D)-Y.
Lemma 2.3
Let D and D' be.digraphs and ¢:V + V' a walkwise map. For
any collection Xi = {ui.vi ,...,uﬁ vﬁ} of arcs of Df,
¢, considered as a ﬁap'from D - ¢'1(Xi) to D' - Xi, is
walkwise. |

The proof is immediate.

Lemma 2.4
If D is a strong digraph, and x is an arc of D, then
m(D-x) < m(D).
PROOF:
Since D is strong, X belongs to some cycle Z of D. Now any
linearly independent collection of cycles in D-x is certainly linearly

independent in D, but Z cannot be dependent on any of these as x ¢ D-x.

A strong digraph D is minimally strong if for each arc x, D-x
is not strong. It is shown in [7 ] that every minimally strong digraph
has at least two points having both indegree and outdegree equal to 1.
In particular, each arc x incident to such a point has the property
that m(D-x) = m(D)-1.
Theorem 2.1
If D and D' are digraphs and if ¢:V + V' is walkwise, then

m(D) 2 m(D").
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PROOF:

We proceed by induction. If m(D) = O then by Lemma 2.2, m(D') = 0.
Suppose that the theorem is true whenever m(D) < n and let m(D) = n+l.
If m(D') > m(D) then certainly m(D') > 1. Let x' be an arc in D' such
that m(D'-x') = m(D')-i. Such an arc certainly exists if D' has a.
strong componentbwhich is not minimally strong, by Lemma 2.1, and, as
noted above, a suitable arc also exists if every strong component is
minimally strong. Note that f' must belong to a strong component of
D', so that there is a closed walk in D' containing x'; therefore some
element of ¢'1(x') belongs to a closed walk, and hence a strong component,
of D. Then by Lemma 2.4 and the corollary to Lemma 2.1,
m(D-¢'1(i;)) < m(D). Using Lemma 2.3 and the inductive hypothesis
m(D-¢;l(x')) 2 m(D'-x')., But m(D) 2 m(D-¢'1q§'))tl and
m(D'-x')+1 > m(D'), so it follows that
m(D) 2 m(D-¢"1(x'))+1 2 m(D'-x")e1 = n(D').

The proof technique in the theorem is essentially that used in
Hedetniemi's probf, but Theorem 2.1 applies to a wider class of maﬁs.

Hedetniemi [19] asked which graphs have no walkwise homomorphic
images. During the course of this chapter we will be discussing
conditions which are sufficient to insure that a digraph has a walkwise
image. Now, howe;er, we present a class of digraphs which have no
walkwise images. The digraph which consists precisely of a cycle of
length n is an n-cycle, denoted Cj.

Theorem 2.2 |

For any prime p, there is nd nontrivial walkwise map whose

domain is Cp.
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PROOF:

By Lemma 2.2, if ¢ is walkwise, then ¢(Cp) cannot contain any
cycles of length greater than one and less than p. On the other hand,
since Cp is strong, ¢(Cp) must be strong. The only resolution to these
conditions is that either ¢ is an isomorphism or |[V(¢(Cp))| = 1;

i.e., that ¢ is trivial.

We suspect that the only strong digraphs which have no nontrivial
walkwise images are essentialiy the prime cycles, with loops at some
points permitted. For now, we can show that a large number of (strong)
digraphs do have walkwise images. A path is a walk ViVy e Vo in
which no points are repeated. A 8imple path in a digraph D is a path
vlv2 cee Vo such that for 1 < i < n, each point v, has indegree and out-
degree one in D. An arc is also considered to beta simple path.

Theorem 2.3

Let D be a digraph. If there are points u and v such that there

are at least two simple paths from u to v, then D has a

nontrivial walkwise image.
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PROOF :
We nofe that if ¢ is a map from D to some digraph D' and if ¢ is an

isomorphism from a subdigraph of D, then ¢ is walkwise. Consider first

the case in which one of the simplo paths is an arc. Let the other

simple path from u to v be'uvlv2 cee VOV If ¢ is the map which takes

each v, to v, and acts as the identity on the other points of D then

¢(D) is isomorphic to D -'{uvl,vlv2 .+« V. V}, so that ¢ is walkwise

and nontrivial. The same technique works in the case that neither

path is an arc. Let the paths be uv

eee V.V and uw, ... W Vv, where
n m

1 1
n 2 m. First map each vi,'i >m to v, and then map each vir 1 i<m
to w,. The resulting digraph is again isomorphic to a subdigraph of

D, so that the induced map, ¢, is walkwise.

A map whose only action is to identify two péints is an elementary
identification. For homomorphisms of graphs, there is a very strong
interpolation theorem, which states that if ¢:G -+ H is any homomorphism
- which is not elementary, ¢ can be factored into two nontrivial homomof-
phisms, ¢i:G + H and ¢2:H1 + H [13]. For walkwise mappings we get a
different sort of interpolation property, which we present in the next
two theorems,

Theorem 2.4

If ¢1:D > D1 and ¢2:D1 + E are both walkwise, then so is
¢2¢1 = ¢:D =+ E,
PROOF: |

This is immediate. Any walk Wg in E has a preimége WDivin Dy

which is a walk; ¢2(WD1) = WE' 'Also, since WD1 is a walk there is a
.
walk WD in D suchlthat ¢1(WD) = WD . Clearly ¢(WD) = WE, so that ¢

. 1
is walkwise.
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Theorem 2.5

If ¢:D +~ E is walkwise and we write ¢ = ¢,015

where ¢1:D > E1 and ¢2(El) = E, then ¢2 is walkwise.

PROOF:
Let w,w, ... w_be a walk in E. Then there is a walk v,v. ... Vv
12 n 1°2 n
in D, where ¢(vi) =W, But, ¢1(v1)¢1(v2) ves ¢1(vn) is a

walk in E;. If u e-¢l(¢_1(wi)) then u € ¢£1 (w.). Therefore,
¢2(¢1(vi)) =W, and hence ¢1(v1)¢1(v2) ces ¢l(vn) is a walk in E1

whose image under ¢2 is wlw2 L. W Thus, ¢2 is walkwise.

This theorem gives us a tool for checking whether a map is walk-
wise. The map can be expressed as a composition of two maps, of which
the second to be applied is élementary, and hence rather simple to check
for the walkwise property: if the test fails Ehg ériginal map is not
walkwise.

Theorem 2.6

Let ¢:D > D' be an elementary map which identifies two points
u and v to a point (uv) € D' and which acts as the identity on
V - {u,v}. Then ¢ is walkwise if and only if both of the
following hold: |

1) yveyu or .y uey M

(2) yucyv or y'vaY—lu

PROOF:
Whenever W' = ...wl(uv)wz... is a walk in D', then either
W, = s W U, ... OT W= +osWW,... is a walk in D. If yv ¢ vu,
let w2 € YV - yu; then Wv must be a walk in D. But if we take w1 € Y-lu

1

then we must have wl' € y'lv; thus vy~ uCY-lv; the rest follows by

Symmetry.
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To prove sufficiency, first label the subconditions:

(@)
(»)

Let

-1 -
yuCyv B) vy "vcy L

ywCyu (n) Y'lucvblv

= i ' =
W' ...wl(uv)wz... be a walk in D', and let wu oW UW, e,

W, = ce W VW el Clearly W, € Y'luk)v'1v~and Wy € yuUyv. We must

show that either W, or W, is a walk in D; i.e., that either

Wy € y'lur\y’lv or W, € yuNyv.

Case

Case

Case

Case

(anu). Then yu = yv.

(Bn). Then Y-lu-= yily.

(on). If W, € Yu Wwe are done. If Wy € YV - YU then
WV D by (n), so W, is a walk.

(8u) follows similarly.

Since graphs afe symmetric digraphs we have

Corollggx

For graphs G and G', if ¢:G + G' is an elementary identification
of u and v to (uv), then ¢ is walkwise if and only if for all
Wi € YU, W, E YV, either W, € YU OF Wy € YV; i.e., if and only if

either yuSyv or yvE€yu.

Example 2.1

We give an example showing that even if the composition of two

maps is walkwise, both need not be walkwise.

Consider the cycles in Figure 2.4, Let ¢ be the map ui~+ Vi(mod 3);

Vl e VZ
I S
) |
3
. Yo

Figure 2.4. A walkwise map.

u u

1

US . 114
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then ¢ is walkwise. Suppose that we factor ¢ as in Figure 2.5. Using
~the theorem, we verify that ¢, is walkwise, since y_lwz = {wl},

= - -1 :
YWe = {wo}, ™, = {wo}, Y Wg = {wl}. (This, of course, does not prove
that ¢ is walkwise). On the other hand, using Theorems 2.5 and 2.6

we can show that gbl is not walkwise.

u u, w v,
31 by
— e
Uz W 1
ug Uy UgUg W v, Wo & Vg ? ——— )
ul,u4 + w1 w1 g v1 0 2
u, > W, Was¥g PV,
US P w

Figure 2.5, A factorization of a walkwise ‘inap.

For, if we factor ¢, as in Figure 2.6, then YT, = {rs}, yr, = {rz},

_ -1, . ) .
YT, = {ro}, Y 1= {ro}, so that <b4 is also walkwise, but ¢>3 is

. . -1 -1
not walkwise, since u; €Yy, and u, €Y ug but u, £ yuo.and v £y Ug.

In other words, there is no walk whose image is T,T0T

w
%4
) -
1
T, W W
u u u, =T 2 0 0
5 4 1 1 rl,r4»w1
) uZHrZ rZsz
u, =
4 4 rs'-*ws
U. "= r
5 )

Figure 2.6. A factorization of a map.
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We now turn our attention to an important class of mappings, the
admissible homomorphisms, which we will show to be walkwise. It is
important to note that these need not be homomorphisms in the sense
of [12].

Let D and D' be digraphs. A map ¢:V(Q) + V(')
is an admisaible homomorphism if whenever ¢(u) = ¢(v) and uw € D
then there is a point w such that vw € D and ¢ (W) = ¢(w).

Theorem 2.7

Every admissible hdmomorphism is walkwise.

PROOF:

Let ¢:V(D) » V(D') be admissible, let W' = wi cos wﬁ be a walk
. ] [] ' -
in D', and suppose that Wi el wn_1 has a walk pre-image Up eee U g

. . . -1
' ' ' X
Since wiqgWy, €D and- ¢ is full, there are points W€ (wﬁ_l),

Woe ¢'1(wﬁ) such that w_ e D. But then, by admissibility, since

-1"n
¢(un_1) = ¢(wn_1) there is a point u such that ¢(un) = ¢(wn) = wﬁ,
and L D. Therefore Up eee ug is a walk in D and the result
follows by induction.

While it is true that a mapping between digraphs can always be
written as a map between their point sets, expressing it in this way
may not exhibit all possible information. For example, the mapping

from digraph D to a subdigraph D' of D which is illustrated in

Figure 2.7 would, as a map from V(D) to V(D') seem to be the identity.



26

X
X
“ - —————o
V2
X, X1pXy > Xy
D i TN D'
Vo TV

Figure 2.7. A mapping from a digraph to a subdigraph.

On the other hand, it is often possible to write a mapping as a
product of elementary identifications of points. From now on we will
assume that an elementary ideﬁtification of adjacent pbints results

in a point with a loop.

Theorem 2.8

Let ¢:D + E be expressible as ¢ = € v € where €.:D,_; = Di

E. Let

is an elementary identification, and D0.= D, Dn
¢. be € ... €.:D, , »E. Then if ¢ is admissible,each ¢, is.
i n ii-1 i
PROOF:
We first show that ¢ = €_ is admissible. Suppose €_:D +D =E
n n - n n-1 n
is defined by en(u) = en(v) = (uv), and that uw ¢ Dn-l'
= 1y = "y = ve % 3
Let Wi €5 oo Ep- Let Wn_l(u ) = u, Wn_l(v ) = v; since ¢ is

full wu' can be chosen so that it is adjacent to some w' for which

o(w')
¢(w')

v'w" ¢ D, Since w is not uor v, ¢(w") = ¢(w') implies that

en(w). Suppose that w is not one of u,v. Then Wn_l(w') =

w. Thus there must be a w" such that o(w") = ¢(w') and

"y = yeo 1y = 3 tyg!!
Wn_l(w ) anl(w ) = w. Thus, since v'w" ¢ D, vw ¢ Dn-l'

If w is one of u,v then there is a w'" such that ¢(wﬁ) = ¢o(w') = (uv)

and v'w" ¢ D. Thus Wn_l(w") is u or v.
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Thus, is either case, there is a w such that vw ¢ Dn-l and
en(W) = en(w), so that en‘is admissible.
- Now, suppose that ¢j+1 = e e Ej+1 is admissible. We want to

show that ¢j =€ ...«ej is.
Suppose that for u # v, ¢j(u) a ¢j(v) and uw € Dj-l'

Case 1. cj(u) # ej(v).

Then, in Dj’ ¢j+1(u) = ¢j+1(v), andvuej(w) € Dj' Thus, there
isawe Dj such that vﬁlg Dj’and ¢j+1(ﬁj a ¢j+1(€jcw))' Since
W e Dj there is a w' ¢ ej'l(iﬁ for which vw' ¢ Dj-l; clearly
w') = W) = =
05600 = 05 B0 = 45,000 = 0, (0.
Case 2. ej(u) = sj(v) = (uv).

gL
J_ .
w'e W';_l(w),’ such that u'w' ¢ D; this is always possible by fullness.

. ' -1
] ]
S;nce uw € Dj-l’ (uv)w ¢ Dj' Choose u' ¢ 1(u),. v e‘%-l(v),
Since ¢(u') = ¢(v') = ¢j_1((uv)), there is a w" such that ¢(w") = ¢(w")
and v'w" € D. Let w' be Yj_ICw"). Then W' ¢ Dj-l’ and

056 = $u™ = p(w') = 65 00).

A functional digraph is a digraph in which each point u has od(u)=1 [12].
If M is an autonomous machine then D(M) is functional. Yoeli and
Ginzburg [34] characterized SP homomorphisms of autonomous machines
in terms of primitives which they called "elementary' homomorphisms.
(Note: keeping track of terminology can be quite tricky here. Yoeli
and Ginzburg's use of elementary is different from that of graph theory,
where the term is used to mean an elementary identification of nonadjacent
points [12]. jAlso, Yoeli and Ginzburg ([34],[11]) use "admissible" |
as a synonym for SP.) Hedetniemi asked whether the elementary homomor-

phisms are always walkwise [18]. That this is indeed true will follow
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as a corollary to the next theorem, which will also be proved as a
cdrollary to Theorem 3.5.

Theorem 2.9

Let M and M' be machines and let ¢:M + M' be SP. Then if |I| = |I']
¢:DM) > D(M') is admissible.

PROOF:

NOTE: We are given a map ¢ from Q to Q'. The first step in
showing that ¢ is admissible is to show that ¢ induces a mapping in the
formal sense from D(M) to D(M'); that is, we will show that from ¢ we
can define a function from X(D(M)) onto X(D(M')) which has the property
that for each point u of D(M) there is a point u' of D(M') such that .
¢(§(u)) §(u') and ¢§(u)) §(u'). Having done this once it will be clear
in later proofs that the same technique will let us take other functions
between machines and ''reinterpret" them as mdppinﬁs between the digraphs
of those machines.

Let x be an arc of D(M) from u to v. Then u and v are states
of M and there is an input i such that ui = v, and i is the label on
arc X in M. There is an arc x' from ¢(u) to ¢(v) labelled with i (or,
more generally, with h'l(i)); we take x' to be the image of x. The
map thus induced from X(D(M)) to X(D(M')) is onto, since if x' is an
arc from ¢(u) to v; induced by input i' then the arc from u to uh(i')
which is induced by h(i') will have x' as its image. Since this
arc-to-arc mapping is defined in terms of the point-to-point mapping ¢,
it is clear that all the arcs incident to (from) a point u map to
arcs incident to (from) ¢(u). We have thus shown that the SP homomorphism
¢ induces a mapping from D(M) to D(M'); in addition, when this mapping

is considered as a map from V(D(M)) to V(D(M')), we get precisely
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the map ¢. Notice that having started with a point-to-point map the

thing which we really had to prove was that ¢ is full.

Suppose that ¢(u) = ¢(v) and that uw ¢ D(M). Then there is an
input x such that ux = w, Since ¢ is'SP, ¢(vx) = ¢(w). Thus, letting

w=vx, ¢(w) = ¢(w) and vw € D(M), so that ¢ is admissible.

Corollary

Every SP hdmomorphism is walkwise.

Corollary

Every admissible homomorphism between autonomous machines is SP.

A partition m on the poihts of a digraph D is an admissible partition
if whenever u =_v and uw € D then there is QSpoi;t w such that v;'e D
and w E W,
Lemma 2.5
Any admissible homomorphism induces an admissible partition
on ité domain. Convérsely, if = is an admissibie partition

on D, then 7 is the partition induced by some admissible

homomorphism whose domain is D.
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PROQF:

Let ¢:D + D' be an admissible homomorphism, and define m by setting
usz v if and only if ¢(u) = ¢(v). Then, since ¢ is admissible, if
uz vanduw e D there is a point w such that w ¢ D and ¢(w) = ¢(w).
But if ¢(w) = ¢(w) then w = w, so that 7 is admissible.

On the other hand, if 7 is admissible, we will define an admissible
‘homomorphism ¢ from D to a digraph D;. The points of D' are the blocks
of m, and ¢(u) is just the block [u] of m which contains u. In D',

[u] is adjacent to [v] if andfonly if there are points of D, uy € [u]
and v, € [v], such that u, v,
It is easy to see that ¢ is a mapping. If ¢(u) = ¢(v) then

€ D; note that D' has no multiple arcs.

u = v, If, also, for some point w, uw € D then it follows from the

admissibility of m that there is a point w such that vw ¢ D and G'Eﬂ w;
but then ¢(w) = ¢(w), so that ¢ is an admissible homomorphism which

induces the partition m on V(D).

It is interesting to note that, unlike the SP partitions, the
admissible partitions of a digraph do not necessarily form a sublattice

of the lattice of partitions.

Example 2.2
Consider the digraph D of Figure 2.8. Both v, = {uv;

WgiWgHy )

and m, = {uv;w1w4;w2w3} are admissible, but

Figure 2.8. A digraph.



the meet L A T, = {uv;wl;wz;ws;w4} is not.

Theorem 2.10

The join m; v 7, of two admissible partitions is admissible.

PROOF:

Let 7. and 7., be admissible partitions of D, u = v, and suppose
1 2 anwz
that uw ¢ D. Since u E"f“"zv there is a sequence u = uo,ul,...,ut+1 avy
such that for each i = 0,1,...,t, either uy Ewlui+1 or u, §ﬂ2u1+1.
‘Then there are points w = WosWpseeeaWeyg such that u,w, ; D and either'
Wo :ﬂ1 Wiup OT W, =1T2 LI Thus w =“fV"2 Weel and Wi, € D; hence,
VT, is admissible.

The next theorem is actually a corollary of Theorem 2.9 and the
Yoeli and Ginzburg results, but because of its importance, we prove it
directly.

Theorem 2.11

Any pure admissible homomorphic image of a cycle C,.is a cycle
Cp» Where m|n.
PROOF:
Let ¢:Cy =+ D be admissible, and let = be the induced admissible

partition. If the points of C,, in cyclic order, are Ugses el g5

ﬁpppose that uy and uj, i < j, are such that u, = uj and U = U
m > k, implies that |m-k| 2 |j-i|. Without loss of generality take

i =0, so that Yy 5“ uj. Then we claim that for any r, urEn»ur+j and

if u = ug then j|(s-r). To see this, note first that since

uy =, uj\and Ugy; € C,, there must be a point w with up 5w and

ujw € Cn’ Since od(uj) =1, w must be uj+1, s0 u; = u1+j’ An
inductive argument then establishes the first part of the claim. For

4
the second, if u. E“ ug and s > v, then write s = r+kj+m, m < j. We
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know that u = = u .
T+kj+m

r g ur+kj ; but this contradicts the minimality

of j.
Now, let m be the smallest integer such that mj > n-1. If

K = mj(mod n) then u = Yo SO that k > j. But k < j, for other-

0
wise (m-1)j > n-1. Thus k = j, and mj

n. Hence j|n, and ¢(Cp) is Cj'

Theorem 2.12

Let ¢:D ~ D' be admissible, and suppose that D and D' are both
outregular of degree d, Then for any u and v the number n of
arcs from u to ¢'1(¢(v))"is the same as the number n' of arcs
from ¢(u) to ¢(v).

PROOF:

Since ¢ is full, every arc from ¢(u) to ¢(v) has a preimage, say
UV Since ¢(u) = ¢(u1) and ¢ is admissible, there must be a point
Ve¢_1(¢(v)) such that uv ¢ D. Thus n 2 n'. But this inequality holds
for each point v' such that ¢(u)v' € D'. Let the set of all such points
be §' = {vé

the number of arcs from ¢ (u) to v{ by n{ and the number of arcs from

= ¢(v),vi ,...,vﬁ}; note that ¢'1(S') = yu. If we denote

u to ¢'1(v{) by n,, then for each i = 0,...,m, n, 2 n{. But

g n'i = od(¢(u)) = d and n, = od(u) = d.

i=0 i

M3 »

0

Thus, for each i, n, = ni.
Note that the outregularity restrictions of the theorem are necessary,
as can be seen from the admissible homomorphism in Figure 2.9; there

are two arcs from v. to v,, but only one arc from u, to ¢'1(v2).

1 2’ 1
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Figure 2.9. An admissible homomorphism.

The existence of an admissible homomorphism with domain D might
seem to imply symmetr%es in D. While this would be hard to state
precisely, there is a well-defined converse. kmn ;utomorphism of a
digraph D is a map g:V(D) °EtOV(D) which satisfies: uv ¢ D if and
only if g(u)g(v) € D. The automorphisms of D form a group, I'D. Any
subgroup I'' € ID partitions V(D) into sets 01""’01' such that for

each g e I'', g(Oi) = Oi; the 0i are the orbits of I''.

Theorem 2,13

For any digraph D, the partition m, defined by v, 5 vj if

and only if there is an automorphism g € I'(D) such that
g(vi) = Vj’ is admissible.
~ PROOF:

Suppose v, = vj and ViV e!D. If g is an automorphism for which

g(vi) = vj then v5 is adjacent to g(vk), and certainly vy Ep g(vk),

so that v is admissible.
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Example 2.3
Let D be any digraph with n points in which each point has
outdegree t, and suppose that there is an automorphism g € TD which

n-lcv)

is an n-cyele; that is, for any v € D the points v, g(v), gz(v),...,g

are all distinct. Label the points by choosing Vo arbitrarily and then
. = o - 0 .. . .

setting v, = g (vy). Lets {11,...,1t|1k $ i,,,} be those integers

such that YV = {vi ,...,vi }. We first show that for any vj e D, the

1 t

arcs from Vj are Vjvj+i1""’vjvj+it' For, if vovik e D then

gJ(vo)gJ(v. ) € D; that is, v,v. . € D. But this accounts for t arcs
i Uiy ,
from Vj’ and there are only t.
We will refer to such digraphs by listing the ij and n; i.e.,
D = D(ij,...,i,n). Now, let m|n and define QA(D) to be a digraph
. ) _ '
whose points are the m sets W, = {vi’vi+m’vi+2m":'}’ where wiwj € Dm(D)

if and only if there are Vy EW., V) EW, such that v.v, € D. The w.,
: i j a'B i

B
as subsets of V(D), are the orbits of gn/m. Thus the map ¢:D ~» DE(D),
which takes each Vj to that set Wo of which it is an element, is admissible.
These digraphs D(il,...,it,n)_will be of prime importance in Chapter III.

In Theorem 2.8, we gave a necessary condition for a map ¢ to be
admissible. As with walkwise maps, that condition is most useful when
¢ is decomposed into ¢ = ¢2¢1, where ¢2 is an elementary identification.
In this case, it is easy to check whether ¢2 is admissible. If u and v
are not adjacent then yu must equal yv. If, say, uv is an arc then
yu - {u,v} = yv - {u,v} and either vu or vv is an arc.

On the other hand, suppose that ¢ = ¢2¢1 and ¢2 %s admissible.

What conditions on ¢1 will insure that ¢ is admissible?

Theorem 2.14

Let ¢:D ~ F be decomposed as ¢ = ¢2¢1, where ¢1:D + E is an
elementary identification of u and v to (uv) and ¢2:E + F is

admissible. Then ¢ is admissible if -and only if ¢(yu) = ¢(yv).
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PROOF:

Let W, = yu-yv, W2 = YUYV, W3 s YV-YU.

1 .
Then ¢(yu) = ¢(yv) if and only if one of the following holds:

(1) WIU W3 =
(2) 60N SHMIUB ()
Y(AYTYCAISTICS

i

(Necessity): Suppose ¢ is admissible. Since o(u) = ¢(v) let
uq, € D. Then q, € WIL)WZ. There must be a q, € D such that
¢(q2) = ¢(q1) and vq, € D. If q, € W2 there is no problem.
Suppose that q; € Wl. Then since vq, € D,q, ¢ WZLJWS‘ Thus
CARRICANTICARELR IO COSVEICAE

(Sufficiency): If (1) holds then ¢1 is admissible, so ¢ must be.

Otherwise, let ¢(q;) = ¢(q,) and q,q; € D.

Case 1: If neither q, nor q, is u or v, then ¢2(q1) = ¢2(q2).
Also, q,45 € D implies q1¢1(q3) e E. So, there is a
qy in E such that ¢2(q4) = ¢2(¢1(q3)) and 9,4, € E.
Thus, there is.a q', € ¢'11(q4);such that q,q) € D and
¢(a,) = ¢(az).

Case 2: If q =u and qy =V, then qs € wlLsz. If w3 = ¢ then
since ¢(q3) € ¢(W2) there is a q €W, such that
¢(q4) = ¢(q3) and, since qy € W2, vq, e‘D. If W3 is
not empty by the above it suffices to consider the case

* where q € Wl and ¢(q3)'e ¢(W3). Then there is a

q4-e W, such that ¢(q,) = ¢(q5); clearly vq, € D.
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Case 3: If q =u and q, # v then again qz € WlL)Wz. Now, in E,
¢2(q2) = ¢2((uv)) and (uv)¢1(q3) € E. Thus there is a qy € E
such that 4,4, € E and ¢2(q4) = ¢2(¢1(q3)). Since 4,9, € E
there is a q; ¢ ¢;1 (q ) such that q,q; e D. Also,
0(qp) = d,(q,) = ¢,(6;(q5)) = 8(az), so ¢(qy) = ¢(q3)-

Case 4: q, # v and q, = u. Since qlqs e D, q1¢1(q3) e E. Also,
since ¢(q;) = ¢(qa,), ¢2(q1) = ¢,((uv)). So there is a q, € E
such that (uv)q4 and ¢2(q4) = ¢2(¢1(q3)). Thus there is a
qi € ¢;1 (q4) such that either uqa or vq&, Suppose qi € WS;

~ otherwise we are done. Since q, €Wg 0(q) e dM IV (W,).

Thus there is a qg € Wluw2 such that ¢(q5) = ¢(qi). Since

¢(ap) = ¢;(q,) = ¢(dz), q; = qg(mod ¢). But ¢(ag) = ¢(q,);

thus ¢(qc) = ¢(q,).

Corollagz

If ¢ is a map which identifies u and v, write ¢ = ¢1¢2 where ¢1
is the elementary identification of u and v. Then ¢ is
admissible if and only if ¢2 is admissible and u and v satisfy
the condition of the theorem.
The result of applying an elementary identification to a machine
is often a nondeterministic machine. Thus, we would not expect to

find similar decomposition results for SP homomorphisms.

A homomorphism of a digraph D is a map ¢:D -+ D' such that if
uv € D then ¢(u)o(v) € D' and ¢(u) # ¢(v). The conjunction DlA.D2 of
digraphs D, and D, is a digraph D with V(D) = V(D,) x V(D,), and

(ul,uz)(vl,vz).e D if and only if wv, € D1 and uv, € D2' The next
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theorem was proved by Hedetniemi for graphs [19].

Theorem 2.15

A pure digraph D is equal to a conjunction D, AD, of pure
digraphs if and only if there are full homomorphisms
¢,:D Dl’ ¢,:D + Dé such that. the meet of the corresponding
induced partitions is the identity partition 0.
PROOF: | |
IfD = DlA D,, let ¢, and ¢, be the projection homomorphisms of D
to the.Di:¢i(u) - proji(u); ff ¢1(u) = ¢1(v) and u # v then u and v
cannot be adjacent. If u and v'are adjacent, then ¢1(u) and ¢1(v)
are adjacent, If u, and v, are adjacent in Dl’ then, for any
UV, € D2’ u = (ul,uz) and v = (VI’VZ) are adjacent in D, and
¢1(u) = u, ¢1(v) = v Thus ¢1 is a full homomorphism. A similar
proof serves for ¢2. If ¢1(u) = ¢1(v) and ¢£?u) ; ¢2(v) then u = v,
So that induced partitions must have meet equal to 0.
Conversely, if ¢1 and ¢2 are full homomorphisms of D onto D1 and
D2 respectively, and the induced partitions have meet equal to zero,
then each point u of D can be represented uniquely by the ordered
pair (¢1(u),¢2(u)), and this representatipn defines an isomorphism of
D with D,AD,. This follows as in [19].
We presénted the first part of the proof in detail because we can
show that, in many cases, the projection maps are also admissible.
A sink in a digraph D is a point u such that od(u) = 0. In a graph,
a sink is called an Zsolate. |

Theorem 2.16

4

Let D, and D2 be pure digraphs, neither of which has a sink,

and let D = Dll\Dz.' Then the projection homomorphisms
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¢i:D > Di are admissible.
PROOF:

Let ¢1((u1,u2)) = ¢1((v1,v2)), so that u; = vy Suppose
(ul,u:)(wl,wz) e D. Then uWy € D1 and U, € D2' Since vy is not a
sink there is a point Wé such that vzﬁé e D,. Now ¢1(w1,§é) = ¢, (W W,),
and (vl,vz)(wl,ﬁé) e D, since v; = u;. Thus, ¢, is adnissible.

Similarly, ¢2 is admissible.

Corollagx

If G1 and G2 are graphs without isolates and if G = Gll\Gz,

then the projection homomorphisms ¢i:G -+ G.1 are admissible.

Since we know from Theorems 2.7 and 2.1 that for any admissible
homomorphism ¢ of a digraph D, m(D) > m(¢(D)), it is now natural to
ask what the cycle rank of the conjunction of two digraphs is.

Theorem 2.17

Let D1 and D2 be strong digraphs with P; points, and

m(Di) =.ki+1' If DlA D2 has § strong components, then

m(DlA D2) = (klk2+6) + plk2 + pzkl..
Note: If the greatest common divisor of the lengths of all closed
walks in Di is di’ then § = gcd(dl,dz) (see [16]).
PROOF:

Let Di have q, ares. Then Dll\D2 has q,9, arcs, and
m(D;AD,) = q;q,-p;P,*8. Now (q;-p;)(q,-p,) = k;k,, so that
q1927P197%2P1 *P P, = ik

and q4,4,-P P,*8 = (k k,+8)+p,q,+p,q,-2p,p,

= (k1k2+6)+p1k2+p2k1.
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Corollagz

If G1 and 62 are connected graphs with cycle ranks ki+1, the
cycle rank of GIAG2 is (k1k2+6)+q1q2+p1k2+p2k1, where 6 = 2

unless one of GI,G2 has an odd cycle, in which case § = 1.

A homomorphism of a graph G onto a graph with n points defines
a coloring of G, an aséignment function from V(G) onto a set of n
colors such that no two adjacent points are assigned the same color;
conversely, every coloring‘of‘the points of a graph defines‘a
homomorphism, where two points are identified just when they have the
same color. The minimum number of colors in any coloring of a graph
G is the chromatic number, x(G), and the image under the associated
homomorphism is the complete graph Kx(G)' The homomorphisms associated
with colorings are, in general, not admissible. ;t might well be of
interest to develop a iheory of admissible colorings of graphs. We
will present one connection between colorings and admissible
homomorphisms.

A graph G with chromatic number x(G) = n is said to be uniquely
n-colorable if there is exactly one homomgrphism from G onto Kn
(see [4], [14]).

Theorem 2.18

If G is uhiquely n-colorable then the homomorphism ¢:G + K,
is admissible. |
PROOF:
It is showq in [4] that if G is uniquely n-colorable then in
any coloring of G with n colors, every point v is adjacent to at least

one point of every color different from that assigned to v. Thus if
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$:G » Kn is the unique homomorphism from G onto K, suppose that

¢(u) = ¢(v) and uw ¢ G. Then w is assigned a color different from
that of u. Since u and v have the same color, it follows, from

the result just quoted, that v is adjacent to a point w which has the

same color as w; i.e., &(ﬁ) = ¢(w). Thus, ¢ is admissible.



CHAPTER III

REALIZATION WITH FEEDBACK ENCODING

A major concern of classical automata theory has been the reali-
zation of either the state behavior or the input-output behavior of
machines. The main thrust of the research has always been to realize
the given machine by a loop-free network; that is, by a network for
which the digraph obtained by taking the modules as points and the flow
lines between them as directed arcs has no directed cycles. In such
a network there is no feedback, except possibly within modules.

As noted by Holland [22], "feedback is a prominent structural
feature of most systems which exhibit complex behavior." Nevertheless,
as Zeigler [36] showed, many networks can be modelled by cascades;

i.e., feedback-free networks. The modules of the new network are taken
to be the strong components of the original network. This construction,
of course, greatly incéeases the complexity of the component modules.

There are advantages both to excluding and including feedback in
networks. On the one hand, there is a large body of techniques available
for analyzing feedback-free systems and also for deriving feedback-free
realizations of a given behavior [17]. On the other hand, a feedback-free
realization can be artifactual: it often consists of merely masking
those parts of the network with feedback, the strong components, and
considering them as '"black boxes'". We thus have a trade-off between
simplicity of the compoﬁents and simplicity of the.interconnections,

It is certainly to be expected that by restricting in‘some way the form
that feedback is allowed to take we can strike a suitable balgnce between

the two extremes.

41
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Thus, one motivation of the study we are about to undertake is
the desirability of defining a restricted form of feedback which will
prove tractable in both theory and application. / .itcr is the following.
Suppose that we have some given state behavior wh' at to realize
by a scquential machine. If the behavior is so realizable then, in
fact, techniques exist for doing this in an optimal way: the algorithm
for deriving reduced machines, first discuss °~ "+ *"nre [30]. However,
it is often the case that additional restrictions are g,  t on the
realization. For example, oné might want the realizing machine to be
expressible as a cascade of modules from a well-defined set. This,
of course, has been studied by Zeiger [35], Krohn and Rhodes [24],
and others. In general, it turns out that the behavior of the cascade
which is derived properly includes the desired behavior. For another
example, take the fault diagnosis problem, a small segment of which
is discussed in Chapter V. Here we might want a realizing machine,
for example, which, if it fails in some way, allows us to determine
the cause or location of the fault, or perhaps even to correct it.
Even the simplest fault diagnosis properties cannot, in general, be
incorporated into the reduced machine which realizes the given behavior,
and it is usually necessary for the realizing machine to have more states
or inputs (and thus, more state circuitry) than the reduced machine.
A second motivation for the study to follow, therefore, is to develop
a form of realization which will allow us to add additional constraints
and at the same time, will not cause the same state set growth as the
classical theory.

As presented in Chapter I, a realization of a machine M' = <Q',I',6'>

by a machine M = <Q,I,6> is defined in terms of two maps
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¢:Qon£o Q'

and
h:I' »+ 1

such that, for any q € Q and any x' ¢ .I'

$(q)x' = ¢(qh(x")). (3.1)

The function h can be considered to be a combinatorial (i.e.,

nenoryless) module which encodes inputs to M' into inputs to M (see

~ '(: ), h(x') [::]

Figure 3.1).

- ]
Figure 3.1. Schema for realization.

We will say that M realizes M' with feedback encoding if there
are maps
¢:Qon&o Q'
and
h:Q xI' 1
such that for all q € Q and all x' ¢ I"

¢(q)x' = ¢(qh(q,x')). (3.2)

Thus the combinatorial circuit h has as inputs both the input to the
realized machine M' and the current state of the realizing machine M.

This is expressed diagrammatically in Figure 3.2.
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h(q,x")

x!

g i

"Figure 3.2. Schema for realization with feedback encoding.

We will often find it convenient to consider the map h to be a
collection {hqlq e Q} of maps, where each hq maps I' to I. Thus,
(3.2) could be restated as

$(Q)X' = ¢(ahg(x")) (3.3)

If all the maps hq were identical, then h would simply be a function
from I' to I. We thus have the following simple observation:

Theorem 3.1

If M realizes M' then M realizes M' with feedback encoding.

We now give some examples of pairs of machines M and M' such

that M realizes M' with feedback encoding, but not without.

Examgle 3.1

Let M1 = <Q,Il,6 > be the modulo three counter in Figure 3.3,

and let M, = <R,I,.,6.> be the machine in Figure 3.4. Note

2 2’72
that the only actual difference between the two machines is

that the input labels at state Ty have been permuted.
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Figure 3.3. A modulo three counter.

To show that M2 does not realize M1 we would in general have to
consider all maps ¢:R°n&9 Q'aﬂd h:I1 -+ 12; however, since M1 is highly
symmetric, it is sufficient to look at the map ¢1 such that

¢1(ri) = qi,i =1,2,3.

Figgre 3.4, A machine which does not realize
a modulo three counter.

There are then four candidates for the h to consider. Although

it is quite clear, as it will be other examples, that only one-to-one
maps need be considered, in this one case we will examine all the
h maps for completeness. For each proposed map, we will give an example

showing how (3.1) is violated.
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Map h Violatic ' of (3.1)
- - [ ! 1. = =
1' h(O) = h(]-) = a ¢1(r1)1 (\"‘ qz # ql ¢’l(rla)
2. h(0) = h(1) = b $,(x)0 =« ) =q; #qy = ¢,(r;b)
3. h(0) = b 4y (r,)1 1 =4, %4, = 9¢;(rya)
h(l) = a
4. h(0) = a ¢,(rg)1 = =q. #qg = ¢,(rsb)
h(1) = b
Thus M2 does realizefMl. It is ¢ :ar th: most likely
candidate for a su.. -le h map was the fou ., whic s because
the actions of a 4. b at state r, are not wmetri their actions
at T and T, By :..lowing feedback encodin, : ¢/ ear up this
difficulty. Let hiR x I1 > I2 be the map
0 1
)| 2 b
h: T a b
2
T, b a

By the above discussion it is easy to see thuat this map, together with

the map ¢1 which takes each r; to g, satisfies (3.2) in all cases,

so that M2 does indeed reaiize M1 with feedback encoding.

Example 3.2
Consider M3 = <P,13,6

example,

3

> from Figure 3.5, and M, from the previous
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Figure 3.5. A modulo six counter.

We will try to find maps ¢2 and h which define a realization of M2 by
MS' vBy the symmetry of MS’ ii does not matter which state of Mz we
take to be the image of Py under ¢2, so take ¢2(p1) =71 By (3.1),
rb=r,= ¢2(plh(b)) and r,a é'rl = ¢,(p;h(a)).
Thus h(a) must be d. If h(b) = d then ¢2(p1d) = ¢2(p2) =71, and
similarly, for all i, ¢2(pi) =T, which is impossible. Then h(b) = ¢
and ¢2(p2) = rz. Then Ty = rzb = ¢2(p2c) = ¢2(p3). But then T8 = T,
but ¢2(p3h(a)) = ¢2(p3d) = ¢(p3) = Ty, SO MS cannot realize Mz.

However, if we now define ¢2 and h by the tables

__ffi h | a b
Pi] Ty Py d ¢
Pyl T, P, d c
Pz Ts P; c d
Pal Ty Py d c
Pg| T Ps d c
Pg| T3 P c d
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then we get a realization with feedback encoding of M2 by M Next

5
we display two tables: the entries in the first are the values ¢2(pj)x

and those in the second are ¢2(pjhp (x)), where x ¢ {a,b}., Since the

J
tables
¢, (pj)x .y a b ¢, (pjhpj (x)) a b

Py %2 P, r, T,
Py Ty T3 P, r, T,
P3 1 T3 Py T, Ty
P T T

4 1 2 p4 r, T,
Pg Ty T3 Pg T, Tg
Pg B Pe T, Ty

are identical, ¢2and h define a realization with feedback encoding.

Now let ¢ = ¢,4,:P > Q and let h:P x I, » I be defined by

h(p.,x) = . P I, h
h(PJ,x) hpj(h¢2(pj)CX)) As a map from P x I, » I, h¢2(pj) as

the table
Pop) | 07
P; a b
P, a b
Py b a
P, a b
Pg a b
P b a
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Then Ftpj,x) has the table

0 1
P, d c
P, d c
Ps d c
P, d c
Pg d c
p6" d c

We see that h:P x I1 + I3 is in fact independent of the state of

M3, so that the cOmposition‘of the realizations with feedback encoding

of examples 3.1 and 3.2 is a realization of M1 by M3. It is not true
in general that the '"composition" of realizations with feedback encoding
is a realization. On the other hand, such a composition is always a

realization with feedback encoding.

Theorem 3.2
Let M3 realize M2 with feedback encoding and let M2 realize

M1 withrfeedback encoding. Then M3 realizes M1 with
feedback encoding.
PROOF:
Let machine Mi have state-set Qi and input-set Ii' Then we have
maps
$:Q, ogtoQl ¢=Q3°n§p Q2

h:?2 X I1 > 12 g:Q3 p 4 12 -+ 13
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such that
g ¢(a,)x; = ¢(q,h(q,,x;)) 4y € Q) x; € 1)
v(ag)x, = v(q;8(d55%,)) 4z € Qg X, € L.

Then, for any q5 € Qg let g, be WCqs) and let q, be ¢(q2). For
any x; € Il' qX; = ¢(q2h(q2,x1)). But h(qz,xl) € IZ’ )
$(aah(q,55%;)) = ¢(¥(qz8(a5,h(a,,%))).  Thus, letting t(qz) = ¢(¥(q5))
and f(qS’xl) = g(qs,h(w(qs),xl)), we see that the pair (t,f) defines

a realization with feedback encoding of M1 by MS'

Example 3.3
Let M be the reset machine displayed in Figure 3.6. We will

show that M realizes with feedback encoding the machine M1

of Example 3.1. X

Figure 3.6. A reset machine.

Let ¢ be the map ¢:T, > q, and define h as follows: if qjy = Qs
where y ¢ Il’ then h(rj,y) = X Since machine M is a reset machine,
so that for any state rj,rjxk = Ty, it then follows that if

¢(rj)y =45 = 9 then rjh(rj,y) = T, SO that ¢(rj)y = ¢(rjh(rj.y))'
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Theorem 3.3

Let M - <Q',I',8'> be any machine and let M = <Q,I,8> be a

machine such that
i el z e
ii. for each q; ¢ Q there is an input x, such that for

all qj, qjxi " q;.
Then M realizes M' with feedback encoding.
PROOF:

Let ¢ be any map from Q onto Q'. Then, as in Example 3.3, if
¢(qi)y' = ¢(qj) define h(qi,&')'to be the reset input xj; the resulting
pair (¢,h) defines a realization with feedback encbding. Of course,
for a given.qi and x' there may be many states whose image under ¢ is
¢(qi)x'. It does not matter which of these is taken to be the q; of

the proof.

In one sense, Theorem 3.3 would seem to be quite impressive.

We know from the Krohn-Rhodes results [24] that reset machines are quite
simple, and we have shown that they are sufficient to realize any machine
with feedback encoding. On second thought, however, we must have quite
a different opinion. Sequential machines can have quite complicated
behavior, ahd it is clear that what we are doing in Theorem 3.3 is lump-
ing all the behavior into the h-map. Any sequential machine can, in
fact, be modelled by a machine whose memory is a reset machine and whose
transition function is computed by a memoryless circuit. While it is
often desirable to transfer some of the complexities-of a machine to

a combinatorial circuit in this way there is a, perhaps ill-defihed,

point at which it becomes fatuous: if our purpose is to study the



52

complexities of sequential machines, i.e., machines with memory, it
does us no good to define a canonical form in which all the complexity
resides in a memoryless component.

It appears that the type of feedback we have defined does not
quite strike the balance alluded to in the introduction to this chapter.
We must therefore place some restrictions on the types of feedback
encoding which we shall allow.

Given machines M = <Q,I,6> and M' = <Q',I',8'> we will séy that a °
map h:Q x I' »~ I is a type I feedback encoder if, for each q e Q, the
map hq:I' + I is one-to-one and onto. Recalling Example 3.3, it is
clear that machine M cannot realize the modulo three counter M1 with
type 1 feedback encoding. Unfortunately, this example obscures the point

somewhat: M cannot realize M., with type I feedback encoding because

1
1| > |11|. Since, in studying realization, We afe interested in whether
one machine can capture the behavior of another, we certainly'do not
want to say that one machine cannot realize another solely because
thé cardinalities of their input sets are not equal. Even in the
classical realization theory, where the encoder is independent of the
state, this restriction does not appear. Thus, we relax the previous
definition in the following way: a map h:Q x I' +1is a type II
feedback encoder if there is a subset I €1 such that for each q € Q
the range of the map hq is T and hq is one-to-one. Even with a type II
encoding M cannot realize M1 in Example 3.3.

In the sequel we will rarely use the adjectives "type I'" and '"type
IT". Whenever we refer to feedback encoding we will assume it to be

type I, unless explicitly stated otherwise. Now, since if M realizes

M' with type II feedback encoding it is clear that a submachine of M
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realizes M' with type I feedback encoding, most of the results we obtain
for type I éncodings will readily translate into results for type II
encodings, and we will rarely make this translation explicit.

A word is in order here about the restriction that the maps hq
be/ono-tofone. Example 3.3 shows that’this cannot be relaxed very
much before the concept of realization with feedback encoding becomes
both unrestricted and unrealistic. However, in practice, in applying
the concept of realization with feedback encoding it might be desirable
to introduce slight relaxations, depending of course, on the resultant
increase in complexity of the h map.

We are now ready to begin our study of realization with feedback
encoding.

We first wish to point out that the composition property developed
in Theorem 3.2 has not been lost. Consider the proof of that theorem,
and suppose that both h and g are type I feedback encodings. We wish
to shoﬁ that f:Q2 X I1 > IS is type I; i.e., that for each 4z fﬁs is
both one-to-one and onto. For each qs and each Xg € Iz, we know that
there is an X, € 12 such that g(qs,xz) = Xg. Also, there is an x, such
that h(¥(qz),x;) = x,. Thus £(q4,X;) = g(45,h(¥(q5),x;D = X5, and
so £, is onto. Now, since fq3(x1) = g(qs,h(w(qs),xl)} and since both

93

gq3 and hw(qs) are one-to-one, it follows immediately that-fqz is

one-to-one. We have thus proved:

Theorem 3.4
Let MS realize M2 with feedback encoding and let M2 realize

realizes M, with feedback

M. with feedback encoding. Then,Ms 1

1
encoding.
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This theorem, of course, refers to type I feedback encodings.
On the other hand, if one of the realizations is of type II, then so will
be the composed relation.

We next show that with the restrictions we have introduced, we
have limited the power of the concept. The next theorem is important
for another reason as well; it demonstrates a relationship between real-
ization with feedback encoding and the structures of the state graphs
of the realized and realizing‘machines. Recall from Chapter II that

for any machine M, D(M) is its underlying digraph.

Theorem 3.5
If M realizes M' with feedback encoding then there is an
admissible homomorphism from D(M) ontouD(M:). Conversely,
if there is an admissible hOmomorphism’from D(M) onto D(M'),
and if |I| = |I'| then M realizes M' with feedback encoding.
PROOF:
Let the realization be defined by maps ¢:Q » Q' and h:Q x I' -~ I.
Suppose that ¢(ﬁ) = ¢(v) and that uw € D(M). We must show that there
is a w such that vw € D(M) and ¢(w) = ¢(w). Since uw € D(M) there is
an input x such that ux = w, Since hy:I' + I is onto there is an x' ¢ I'
such that hy(x') = x. Then ¢(u)x' = ¢(w) so that ¢(V)x' = ¢(w).
Let w = vhy(x'). Then by (3.3), ¢(w) = ¢(w), and, since w = vhv(¥'),
w is certainly an arc of D(M). Therefore, ¢ considered as a mapping

from D(M) to D(M') will be admissible once, as in Theorem 2.9,
we can vérify that it is full. Since M realizes M' with feedback
encoding, if there is a single arc u'v' ¢ D(M') then this arc must

have a pre-image arc in D(M). But if there is more than one arc between
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u' and v' in D(M'") then there are inputs, say xi,...,x;, such that
u'x} = u'xh = ...o=vIx] = v'. Then for each u ¢ ¢'1(u') there are
Vires Vs such that uhu(xi) =V, and ¢(vi) = y', for i=l,...,T.

Then each arc uvi e D(M) is a pre-image for one of the arcs between

u' and v'. While it may be the case that the v, are not all distinct,
since hﬁ is one-to-one we are assured that there will be r distinct

arcs from u to points in ¢'1(v'). Thus, ¢:D(M) - D(M') is admissible.

For the converse, suppose ¢ is an admissible map from D(M) onto

D(M') and that |I| = |I'|. Let u be a state of M and suppose that
P P2
v
. P
D(MS)' 3
Pe
- /[

D(Mz):

Figure 3.7: An admissible homomorphism based on Example 3.2.
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o(u)x' = w', Since ¢ is a map from D(M) to D(M') there must be s;ates

U and w in M such that ¢(0) = ¢(u), ¢(W) = w', and uw ¢ D(M). But

then, by admissibility, there is a w € M such that ¢(w) = w' and

uww € D(M). Thus, we define hy(x') to be that input x which induces the
arc uw. It is clear that once we verify that this assignment can be
done so that h,:I' - I is one-to-one and onto the pair (¢,h) will define
a realization with feedback encoding. But, the one-to-one and onto
properties will be satisfied just when the cardinality of the set of
arcs from u' to w' is the samé as the cardinality of the set of arcs
from u to points in ¢'1tw'L and we proved this property of admissible

maps in Theorem 2.12. Thus, M realizes M' with feedback encoding.

As we noted above, a type II feedback encoding is associated with
realization by a submachine. The implication*thetre was that we were
discussing spanning submachines; submachines with the same state set
but restricted input set. However, as in the classical theory of
realization we want to allow a machine M' to be realized with feedback
encoding by a machine M, where the actual realization is done by a sub-
machine of M which might have either fewer states or fewer inputs, or
both. Theorem 3.5 carries through to cover these generalizatioms in
a straightforward manner.

Corollary

If M' is realized with feedback encoding by a submachine M of

M then there is an admissible homomorphism from D(M) onto D(M').

It is sometimes common in the classical realization theory to say
that M realizes M' when, in fact, the realization is by a submachine

of M. Wo will, in general, only say that M realizes M' with feedback
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encoding when the realization is by all of M.
Corollary
If ¢ is an SP homomorphism from M to M' and |I| = |I'| then
¢ is an admissible homomorphism from D(M) to D(M').
PROOF:
We know that ¢:M + M' is an SP homomorphism if and only if M realizes
M'. But any realization is trivially a realization with feedback encoding,

as we saw in Theorem 3.1.

Although Examples 3.1 and 3.2 were presented before we had the con-
cept of type I feedback encoding, the realizations in each are easily
seen to involve type I feedback encodings. Thus, the converse to the
second'corollary is certainly false.

We have not,.thus far, distinguished thé sithations in which ¢
is an isomorphism and that in which ¢ is a homomor?hism: in the former
case ¢ and h define an igomoyphic realization with feedback encoding,
and in the latter, a hoMomorphic realization with feedback encoding.
As we mentioned in thé introductory remarks to this chaptgr, we will
eventually wish to show that, by introducing feedback encoding realizations
with extra constraints can sometimes by achieved with less cost, in
terms of the switching circuitry, than with the conventional concept
of realization. In particular, in Chapfer V we will give instances
in which such constrained realizations with feedback encoding can be
achieved by machines with no more states than the reduced machine which
exhibits the behavior we wish to realize. To this eﬁd, we will essentially
restrict our study to isomorphic realizations with feedback encoding.

Corollaiz

If M isomorphically realizes M' with feedback encoding, then

D(M) & D(M").
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In the case that D(M) = D(M'), Hedetniemi and Fleck [20] say
that M and M' are graph-isomorphic.

Much of the classical theory is concerned with realizing machines
by cascades of other machines. We can also study realization by cas-
cades, where of course the realization will involve feedback encoding.
Most of the theorems we derive will be seen to generalize results about
realizétion without feedback encoding.

Lemma 3.1
If a cascade M1 0, M2 realizes M isomorphically with feedback
encoding, then there is an admissible homomorphism from D(M)
onto D(Ml).
PROOF:
| Let the realization with feedback encoding be defined by maps
$:Q; x Q, > Q and H}(Ql x Q) xI+1,,s0 that for any input x e I
and any state (q;,q,) in Q; x Q,, ¢((a;,a,))x = 6((q;,9,)h((q;,4,),X)).
Let p = ¢-1, and for a state q € Q let q(j) be the staté projjp(q).
Now, define an equivalence relation on the states of Q by q = q' if
and only if q(1) = q'(1).
Suppose that q; = 4, and that for some x e I, 4;X = Qq- Let
{a; (DN (p(q)¥) lyeld

o = {proj o (ay) |yel} = {a,(1)h(e(ay),¥) |yel}.

| S, = {proj,p(ay) |yel}
and
s

Since ql(l) = qz(l) by hypothesis, and since {h(p(ql),y)lyeI} =
{h(p(qz),y)lysl}, it follows immediately that
| 5, = {a,(Dh(e(ay),M} = a;(Dh(e(a,y),M} = S,.
Thus there is some state q, € Q and an imput y € I such that q2§'= q
and q4(1) = qs(l); i.e., qy = qz- Thus projlp:Q > Q1 définesAan admissible

homomorphism‘from D(M) onto D(Ml).
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This lemma also follows from the Hartmanis and Stearns results [17],
for M, induces an SP partition on the cascade, and this converts to an

admissible partition on M.

Corollagz'

If M' is a submachine of a cascade M1 0, M2 such that
{projl(q')lq'eQ'} = Q1 and if M' realizes a machine M isomor-
phically with feedback encoding, where 1| = lIll, then there

is an admissible homomorphism from D(M) to D(Ml).

- Lemma 3.2
Suppose there is an admissible homomorphism from D(M) to D(Ml)’
“where |I| = IIII. Then there is a machine M, such that M can
be isomorphica11y~realized with feedback encoding by a submachine
of a cascade M1 62 Mz.
PROOF:
Suppose that ¢ is an admissible homomorphism from D(M) onto D(Ml).
We must exhibit a machine M2 and a connecting map Z such that M1 0, M2
isomorphically realizes M with feedback encoding. Now, the map ¢ induces
a partition m on the states of M; suppose that there are r partition
classes Pi and that the largest of these contains s states. Number
the states in each P; as 1,2,...,ni, where n, s s, and form a new
partition m' with s blocks Bi’ where Bi consists exactly of those states,
at most one from each Pj, which were numbered i. Then each state q ¢ M
can be associated with exactly one pair.(Pi,Bj) of blpcks such that
qe Pi(\Bj. Clearly the blocks Pi are identifiable with the states of
‘ Ml' We know‘ffom Theorgm 3.5 that there is a map h:Q x I1 -+ I which
is one-to-one and onto and which, taken together with ¢, defines a
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realization with feedback encoding of M1 by M. We can represent thne
state of M associated with blocks Pi and Bj by qij' Now, suppose under

. -1 - .
some input x, qijx = Qe Then, by (3.3),¢(qij)hqij(x) = ¢(qkm), we

are permitted to refer to h:l since h is a Type I feedback encoding.
i)
Machine MZ will have the blocks Bj for its states. Now if

-1 ciq '

= ' = ' = ' ' =

qijx U’ and x hqij(x), we will want (Pi,Bj)x (Pix ,BjZ(Pi,x ))
- 1 -

(Pk,BjZ(Pi,x')) = (Pk,Bm). We already know that Pix = Pk’ SO we must

define Mz and Z in such a way that BjZ(Pi,x') = Bm‘ Let M2 have r inputs

. s . SR . i
Yi If (Pi,Bj)x (Pk,Bm) then in M2 we define Bjyk ‘ Bm’ since not

every pair (Pi’Bj) defines a state of M, this may leave us with don't-care
conditions, which can be assigned arbitrarily. Now we define
Z(Pi,x') = Yo where Pix' = Pk. With these definitions it follows that

if qijx = QG then (Pi,Bj)x' = (Pix',BjZ(Pi,x')) = (Pk,Bjyk) = (Pk,Bm).

If p is the map which assigns to (Pi’Bj) the state 9 then for each
x e 1, p((Py,B)))x = O((Pi,Bj)h;ij(x)). Thus if g:({P;}x(B,}) x T is
defined by g((Pi,Bj),x) = h;ij(x), p and g will define an isomorphic
realization with feedback encoding of M by that submachine of M1 0, M2

consisting of the pairs of states (Pi,Bj) for which Pif\Bj # ¢,
Combining the lemmas, we have
Theorem 3.6
‘A machine M can be isomorphically realized with feedback encoding
by a submachine M' of a cascade M; o, M,, where 1| = 1,0,

if and only if there is an admissible homomorphism from D (M) onto

the subdigraph of D(Ml) induced by the states in {projl(q')|q'eQ'}.

~

~ Corollary

A machine M can be isomorphically realized with feedback encoding
by a submachine of a cascade M1 0y M2 if and only if there is
an admissible homomorphism from D(M) onto the digraph of a

submachine of Ml'
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Having established Theorem 3.6, it is natural to investigate what
happens if the feedback to the h map in a realization with feedback
ehcoding by a cascade is from only one of the components of the casca&e.
Unfortunately, as we shall see, there does not seem to be too much
to say about such situations.

‘Theorem 3.7

Let M and Ml be machines. Then M has an SP homomorphic image
which is graph—isomprphic to M1 if and only if M can be iso;
morphically realized with feedback encoding by a cascade

M1 0, M2 in such a way that the encoding map h has domain

Q1 x I.
PROOF:

If M, is graph-isomorphic to an SP homomorphic image ﬁi of M
then in any isomorphic realization of M by a cascade ﬁi oz MZ’ ﬁi
can be replaced by M1 together with the  appropriate feedback encoder,

which, of course, is independent of the state of MZ'

On the other hand;jlet the realization with feedback encoding be
defined by the maps ¢:Q1 X Q2-+ Q and h:Q1 x I~ 11' Let p = projlqs'l
be the admissible homomorphism guaranteed by Theorem 3.5; p:Q -+ Ql'

As in the proof of Lemma 3.1, for each state q;
¢>'1(qu = (9;(1),q;(2)). Now, suppose that play) = p(az), qjx = q,
and qzx = q,. Then ¢((q; (1),a; (2)))h(q; (1),%) = $((a,(1),4,(2))) and
¢((33(1).q3(2)))h(q3(1),X) = 0((a,(1),94(2))), where q,(1) = q; (1)h(q,(1),x)
and q,(1) = 3(Dh(q5(1),x). But since p(ay) = plag)s q;(1) = q4(1),
and therefore qz(l) = q4(1). Thus, if p(ql) = p(qs) then o(qlx) = D(qsx),
so that p induces an SP partition on M, and hence an SP homomorphism

¢ is reinterpreted as a digraph mapping, as in the proof of Theorem 2.9,

it is identical to p; thus M1 is graph-isomorphic to Mi.
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We will give two oxamples in which the encoder is independent

of the state of the front component.

Examgle 3.4

Let M be the machine

M 0 1

1 5
2 2 6
3 4 3
4 6 2
S 5 1
6 3 4

M0 M, |0 1 Z,0 1

i | % 9 LT a0 1

Q% | % 9 T2 | T2 T3 a1 0
Ts | T3 T

Then the cascade M, o, M, is

1 %2 My
M1 oZ M2 0 1

Pp=apm | @71 =P Ty = Pg
Pry=quTy | 4T, =Py q,ry =P

o
(3, ]
1]
e
[\
e
—
L
N
=
p—
1}
o
o
£
—
g}
—
]
J
—
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Under the maps ¢:Pi~+ i and h,

h 1
P, 1
P[0 1
Pr|1 0
p4' 0 1
P |0 1
Peel1 0

172 2
only on the input and the state of MZ'

M, o, M, realizes M with feedback encoding, and the encoding map depends

Notice that M has the SP partition {15;2346}. One might ask,
therefore, whether it is '"worth" using a real}zat@on with feedback
encoding when, in fact, there is a cascade which realizes M without
feedback encoding. The answer, of course, depends on the intended
application, but in this case M must be realized without feedback
encoding by the cascade of a two state méchine and a four state
machine, which certainly requires‘more state circuitry than the cas-
cade M1 o, M2.

In the next example, which will be quite similar, the realized
maéhine will have no nontrivial cascade realization.

Example 3.5

Let M2 be as in the previous example, and let M1 instead be
isomorphic to M,, with states‘{qi|i=1,2,3}. Under the connecting
map Z(qi,x) = xif i # 3 and 1-x if i = 3, the cascade M1 o, M2

is:
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M1 oZ M2 0 1
47 4971 9272
47 Gr; 973
473 4T3 90
%N 4T 437
972 4%, %373
973 4T3 937
i | 932 YT
4372 4373 47
4373 471 4473

Now, with the maps ¢(qirj) = 3(i-1)+j and h(qirj,x) =x if j # 3 and

1-x if j = 3, the following machine M is isomorphically realized with

-,

feedback encoding by M. o, M,:

1°%2 %2
Mlo 1
1|1 2
2|2 6
3014 3
4|4 8
515 9
6|7 6
708 1
89 2
9|3 7

However, in this case M has no nontrivial SP partitions, as can

be shown in the usual manner by demonstrating that for any pair (i,j)
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of states, an SP partition in which i = j has only one block.

It should be clear by this point that whether or not a machine
M has an isdmorphic cascade realization‘with feedback encoding depends
on the structure of D(M). We will now strengthen this impression by
giving a large class of families F of digraphs such that if some cascade
has a submachine whose digraph is in F then one component of the cascade

'also has a submachine whose digraph is in F. We begin by prbving a
number-theoretic lemma (Lemma 3ﬁ4).

Recall the following coﬁmon notations. If integer n divides
integer m we write n|m, and if not we write n/m. The greatest common
divisor of a set'{il....,in} of integers is denoted (il,...,in).

Lemma 3.3

Let g = (a,m). Then the congruence ax = b(mod m) has no solutions
if g[b. If g|b then for any t = 0,1,...,8-1, |
‘X = (b/g)xoft(m/g)(mod m) is a solution, where xn is'any
solution to (a/g)x = 1(mod m/g).
PROOF:

See [32, Theorem 2.13]. Note that (a/g)x = 1(mod m/g) always has a
solution Xp = (a/g)¢cm/g), where the valuevdf ¢(n) is the number of
positive integers less than or equal to nAwhich are relatively prime
to n.

Lemma 3.4

If (ig,ee0,i,m) = g then for any r there is a solution to

t
T wjij £ r(mod n) if and only if g|r.

=1
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PROOF:
The case t = 1 is just Lemma 3.3. Suppose the result to hold
s -
when t = s-1 and consider the congruence I wjij z r(mod n). For a
j=1

fixed wg, this equation has a solution if and only if the equation

:éiw.ij = r-wsis(mod n) (3.4)
has a solution.

Let g' = (il,...,is_l,n)ﬁ By hypothesis, (3.4) has a solution
just when g'|(r-wsis). Thus we must find a solution to_wsis z r(mod g'),
which, by Lemma 3.3, has a solution of and only if (g',is)lr. But

. s
(g',i_) = g, so there is a solution to Iw_i_ = r(mod n) if and only
S g 155

if g|r.

Now, recall that in Example 2.3 we presented a class of n-state,
t-input machines, each of which had an n-cycle in the automorphism
group T'D(M), and showed that the digraphs of these machines could be
completely specified by n and the numbers ij,j=1,...,t, such that
Yq, = {qi'}. We also showed, for any m|n, that there is an m-state
machine M?, with digraph D(M') = Dﬁ(M), where I'D(M') contains an m-cycle,
such that DA(M) is an admissible homomorphic image of D(M). We use
these facts in the next theorem which shows that, at least for machines
whose digraphs are sufficiently symmetric, cascade decompositions are
structure preserving.

Theorem 3.8

If M, with digraph D(M) = D(il,...,it,n) is a submachine of a
cascade M1 0, MZ’ and if the g.c.d. (il"°"it’n)‘= 1, then

there is a machine Mﬁ with digraph D&(M) such that either
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i, m|n, m > 1, and M! is a submachine of M,; or
ii., m=1 and M! is a submachine of M,.
PROOF:

Let ¢ be the admissible homomorphism of M, o, M, onto M guaranteed

dy Theorem 3.6. We first assume that [¢(M)| > 1, and consider the map
¢ restricted to M.

Let k be the smallest integer for which there are states q. 1295 4k

such that ¢(qi) = ¢(qi+k); by symmetry we can take i = 0. For each

l1<rst, there is ans;, 1 $s, < t, such that ¢(qi ) = ¢(qk+i ).
T < .

by
T

‘If, for each' 1 < r s t, s, = r then, for all j, ¢(qij) = ¢(qk+ij).
[Note: if, for some r, i, and ir+1 are the same integer we could have

S, = T+l and Sl = T without affecting this conclusion]. Otherwise,
let Ty be the smallest integer such that is ~'< i; . Then
T 0
_ N | R .
) = ¢(qk+i ) and, since i-i, < 0, (k+1S ) - i, < k, a

by ] r, 0 T
0 T, 0 - 0
contradiction, unless I{Oqu)}] = n, in which case ¢IM is an isomorphism.

¢(qi

Thus ¢(qp) = ¢(qy), ¢(q; ) = ¢(qp,; ) forall 1 <j st and, in

general, if o = w111+w212 Cees +wt1 then ¢(q ) = ¢(q k), for any

nl,...,ht > 0.
But, by Lemma 3.4, since (il,...,it,n) = 1, there is a solution to

o= ijij z r(mod n) for any r, so that for all s and t, ¢(qs) = ¢(qs+kt).

But then, if ¢(qr) = ¢(qs), where s > v, we can write s-r = hk+t, t < k

and conclude that ¢(q = ¢(qg), ~a contradiction to the minimality

r+hk)
of k since s-(r+hk) = t <k, unless t = 0. Thus ¢(q,) = ¢(q;) if and only if
s = r(mod k). Then D(¢(M)) = Dk(M).

We have shown that if |¢(M)| = m > 1 then there is a submachine

L]

M' of M1 with the desired properties. We now consider the case where

o] = 1.
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Let ¢(q0) = q*. Then, as a submachine of M, o, M,, M has states

1722
q; = (q*,qi(Z)); then the states {qi(2)} induce a submachine with digraph

isomorphic to D(M), where if x is the input which takes q; to qj in

M, the input which takes qi(2) to qj(2) is Z(q*,x). Therefore, in

fact, the states {qi(Z)} induce a submachine of M, which is isomorphic

2
to M.
Corollagx
: ! h. V(MY = D! = s #
If the machine Mm has 6(Mm) Dm(M) D(Jl,...,Jt,M), then
(jl’.."jt’m) = 1.
PROOF:

The parameter jk for M, is the residue of ik module m; that is,

11}

0 s jk < m-1 and jk ik(mod m). Now suppose g = (jl""’jt’m)' Then

g|m and for each k, g|jk. But ‘since j, = ik(hoduie m), there is an

.

k™ k"
g|n. Thus gl(il,...,it,n). Hence g = 1.

%, 2 0 such that i +mt, , so that glik. Also, since g|m and m|n,

We now proceed to consider the complexity of cascade realizations,
with feedback gncoding. These results are motivated by Zeigler's [36]
generalization of the Burks-Wang conjecture [3]. Up to now, we have
been concerned only with.cascades of two machines, but it is clear that
we can generalize our results to the more general iterated cascades
as defined in Chapter I.

Consider, for example, Theorem 3.8. Suppose that M, as defined
in the theorem is.a submachine of a cascade HNi. Genéralized cascade
is a binary procedure, so we can find the major connective and write

7 L2' The theorem guarantees the existence of a machine
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M in either L, or L,. Since the parameters for M satisfy
(jl"“’jt’m) = 1, if that component of the cascade L1 0, L2 which
contains Mr'n is itself a cascade, we can repeat the procedure.
Eventually we will find a submachine M; with digraph D;(M) of some
component Ng of the cascade IIN;. This proves
- Corollary
If Mg with digraph D(M) = D(il"“'it’n) is ‘a submachine of a
generalized ;ascade HNj, and if (il""’it’n) = 1 then there
- is a submachine M; Qitﬁ digraph D}(M) of some component Ny
of the cascade.
Suppose now that we have a cascade N = HNi, and let machine Nj
have.pi Qtates. Wé define the 8ize of the cascade, denoted size(N),
to be the max{pi}. Let S5 be the collection qf all generalized cascades
N having size(N) < 0. We will show thatS0 i; no; universal for iso-
morphic realization with feedback encoding; i.e., that (for any o)
there is a machine M which cannot be isomorphically realized with feed-
back encoding by any eiement of S;. In fact, we will show a slightly
stronger result. First, however, Qe will show that this statement is
not true for unrestricted feedback encoding, by proving the following
corollary to Theorem 3.3.
Corollary
Let M = <QM,IM,6M> be any machine. Then there is a cascade
N = <QN;IN,6N> = IN; of size 2 and maps p:Qy > Qu,» hiQy x Iy > Iy,
where p is one-to-one, such that for each q € QM and x ¢ IM’
ax = 0™ (o (O (p (@) ,X)). (3.5)
PROOF:
Note first that if h were a Type II feedback encoder then the

pair (p-l,h) would be defining a realization with feedback encoding

by a submachine of M.
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Let n = {logleM|}, and let N, have 2" states {qo,...,qzn_l} and 2"
inputs {xo,...,xzn_l}, where for any qa and xj, q.lxj = qj. By Theorem 3.3,
maps o and h certainly exist and satisfy the condition of the theorem.
We need only demonstrate, therefore, that N, is a cascade of size 2.
We do this inductively.

11y

Consider the machines N, and N,, with input sets'{yi|i=0,...,2
and {xi|i=0,l}. Modi fy Nn-l’ to get a machine Nﬂ-l by replacing each
Y4 by two inputs, Yio agd Yiqpe where for each qj, qjyiO = qjyil =q;.
It is easy to verify that with connecting map Z such that Z(qj,yio) = X,

n-1 "2 "1

we expressed Nn = Nn—l 0, N1 we would be done. As is, we must now

and Z(qj,yil) =X the cascade N' . o, N, is isomorphic to Nn' Had

show that NA_ can be further decomposed.

1
Let r be an s-bit binary number r = b1 cen bs, and let

.
-
.

7 *
141 0 bj' Let N1 be

prOJj(r) = bj; for.1 < j let pro;i’j(r) be bib
the machine with states {qo,ql} and inputs {yo,...,yzn-l_l} such that

q.Xx; =q Let Z, be the map Zl(qi,yj) = then the

proj, ()" *proj, ()’
* = .
cascade Nj = N} oZl N, has states {qo’ql’qZ’qs} and inputs

{yi|1=0,...,y2n-1_1} such that 975 = 4,

. X,
1]

Let Z., be the map

2

- . . _
Zz(qi,yj) xprOjS(yj)’ then N¥ = N} o, N, has state {qill 0,...,n}
and inputs {yi]i=0,...,2n'1-1}’ such that 94Y5 = qproj1 5(3)°

’
1

Continuing in this manner, we see that N; has 2" states and 2™ inputs

r0j; ,(3)°

such that the action of each yj in N; is isomorphic to the action of

. v s s . . .
yprOjl r(j) in Nr' Then Nn-l is isomorphic to Nn-l’ so that N, is a

cascade of size two.



71

We now return our attention to restricted feedback encodings.
Theorem 3.9
For ahy o and any t there is a t-input machine M which canﬁot
be isomorphically realized with feedback encoding by any
submachine of any element of S,.
PROOF:

Let p be a prime larger than both ¢ and t and consider any p-state
machine M‘with digraph D(il"“’it’p) as described in Theorem 3.8 and
Example 2.4. Such a machine ;an, in fact, always be constructed such
that it #0. IfMis isomdrphically realized by a submachine N of an

element HNi of SG then N also has digraph D(il,...,it,p). Then since

p is prime, Theorem 3.8 assures us that at least one component Ni of

the cascade contains a éubméchine with digraph Dé(N) 2 D(N). But this
submachine has p > ¢ states so ﬁhat N; has mé}e tian o states, and
hence size (HNi)‘> .
Corollary
For any o and any t, there is a t-input machine M which cannot
be isomorphically realized by any submachine of any element
of S;.

In the classical theory of realization a similar result holds for
both homomorphic realization and for simulation [36]. We will see in
the next chapter thaﬁ the correéponding result does not hold for
simulation with feedback encoding. For homomorphic realizations, we
can prove a result slightly more restricted than Theorem 3.9.

If a cascade M1 0, M2 contains an n-cyele C,, i.e., a strong,
autonomous, n-state machine, then by the corollary to Lemma 3.1,

M1 contains an admissible homomorphic image of C,. By Theorem 2.11,

any admissible homomorphic image of C, is some C;, where m|n. Thus,
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for some m|n, M, contains C;. If C_ is defined by input x and has
states <q,,...,q ;> consider the string y = Z(qo(l),x)Z(ql(l).X)---

Z(qm_l(l),x). It can be shown (see below) that ﬁho states, in MZ’

n
, , 2 m -1
q0(2),94(2)y,9,(2)y%5 -+ 505 (2)y
n
are all distinct, and that q0(2)ym = q0(2). The string y thus induces

a string cycle in M,; we call %‘the string period. If p is a prime
which divides n, then either p|m or pl%', so one of M1 or M2 must
have at leasf p states. Thus, size(M1 o, M2) > p. We would like to
be able to continue this process and show that if any cascade M contained
Cy, and p|n, then size(M) > p. If p|m and M were a cascade, we could
indeed continue, since Ml contains a cycle C,. At some point in this
"unfolding", however, we may come across the situation where the machine
which is guaranteedqto have at least p states”is the tail component
of a cascade, and then we have the problem of decomposing a string
cycle of string period t, where p|t, into string cycles, one of whose
_string periods is a multiple of p. This can always be done.
Lemma 3.5 (Zeigler [36])
Let M be a cascade M1 0., M, which contains a string cycle of

Z 2
period n. Then there is some k|n such that M contains a

string cycle of string period k and M, contains a string cycle

2
of string period n/k.
We are now ready to state a complexity result for homomorphic

realization with feedback encoding.

Theorem 3.10

For any ¢ there is a machine which cannot be homomorphically

[}

realized with feedback encoding by any submachine of any

element of SO.
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PROOF:
Let M be C,, where p > 0 is a prime. If a submachine N of IN, ¢ 5,
homomorphically realizes M then, by the corollary to Theorem 3.5, D(N)

is an admissible homomorphic pre-image of C Then, by Theorem 2.11, for

| P’
some n, N is Cnp- Applying Lemma 3.5 as outlined above, we can conclude
that one of the Ni has at least p staies, contradicting the hypothesis

that p’> ag.

We stated that this result is more.restricted than Theorem 3.9,
In fact, since for autonomous machines the notions of homomorphism
and admissible homomorphism coincide, it really says nothing new (Coro-
llary 3.6). The distinction between Theorems 3.9 and 3.10 is that we
have nb'detaiied knowledge about admissible homomorphic pre-images of
complex structures, such as the digraphs D(ilj}..iit,n) of Theorem 3.9.
Undoubtedly there is some relationship between these digraphs, their
admissible homomorphic pre-images, and the admissible homomorphic images
of these, but what this might be is unclear at present.

We stated above that simulation with feedback encoding would be
discussed in Chapter III. It is proper at this point, however, to consider
a Qeakened form of this. A b-slow simulation was defined in Chapter I.
We say that M igomorphically b-slow simulates M' with feedback encoding
if there are a constant b and maps ¢:Q + Q' and h:Q x I' + I*, where
¢ is both one-to-one and onto, and for all q,x',£(h(q,x')) = b, such
that

d(@)x' = 4(qh(q,x")) (3.6)
of courée, if b = 1 this reduces to an isomorphic realization with feed-

. ) '
back encoding. What we are doing in an isomorphic b-slow simulation
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with feedback encoding is assigning to each arc from state qi to state
qj in D(M') a walk of length b from 0" (a}) to ¢7M(a}) in DOY. The
next definition may make this clear.

For any digraph D with point set V = V(D) the absolute n-th power
D™ of D has V(D<n>) = V(D) and uv ¢ D™ if and only if there is a
walk of length n joining u to v in D.‘ Figure 3.8 shows a digraph and
its absolute square. Thus M isomorphically b-slow simulates M' with
féedback encoding if and only D(M') is a subdigraph of D(M)<b? As
an aid to determining whether M' can be isomorphically b-slow simulated
by some machine, we can give necessary ana sufficient conditions for

b>, D(M'), although these

b>_

the existence of a digraph D such that D°
conditions are unwieldy, at best, even for the case b = 2; if D° D'
we say that D is an absolute b-th root of D'.

‘Rather than directly prove the characterization theorem, we prove
a similar result, whose proof is virtually identical. If D is a digraph
with point set V = V(D), the n-th power D" has V(Dn) and uv ¢ D" if and
only if there is a walk of length at most n from u to v in D; if E" =D
then E is an n-th root of D.

Let Sl’SZ""’SZn-l be sets, not necessarily disjoint, subject

to the éonstraints that Sn # @ and if Sn-j = ¢(Sn+j = @) then for all

k>js .= ﬂ(sn+k =f). Let K = Kn(SI""’SZn-l) be the digraph

with
2n-1 n-1 2n-2

V() = Lf Sj and X(K) o L_J ij(SnU...USmj)]U[ k.J_ ij(sj+1u"USZn-1)]'
j=1 j=1 J=n
Theorem 3.11

Let D be a digraph and let n 2 2. There exists a digraph E
such that E" = D if and only if there is a collection of

subdigraphs Ki = Kn(Si,l""’si,Zn—l) of D associated with the
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Figure 3.8. A digraph and its absolute square.
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points uy of D such that

(1) Si,n = {ui}
(2) X() = X(K,)
(3) u, € Sj,n—l if and only if uj € Si,n+1
(4) for any 0 < r < n-1 and s = r+l: y € Si,n-s
if and only if there is a uj € Si _. such that
’

u € Sj,n-l; u € Si,n+s if and only if there is

au. €8S such that u, ¢ S
j k

i,n+r j,n+l’

PROOF:

Let E be a digraph. For each u, e E define Si j to be y%'n(ui);

in particular Si n = {ui}. In En, for each 1 < j < n-1, each point

b

of Si,j is adjacent to each point of Si,n’si,n+1""’si,n+j’ and if

n < j < 2n-2, each point of Si j is adjacent to each point of
, -, -

n. .
Si,j+1""’si,2n-l' .Each arc uiuj of E" is determined by a path

u.iuk...uj of length r < n, so that u, e Sk,n-l and uj e S , and

k,n+r

uiuj € Kk‘ Conditions (3) and (4) follow from the properties of PE'

Conversely, let D have such a collection. Define a digraph E

by setting V(E) = V(D) and uiuj e E just when u, € Sj,n-l' We show
" =D by demonstrating that, for each uy and each 1 < k < 2n-1,

_ Jk-n . n .. .
Si,k =Yg (ui). It will then follow that uiuj ¢ E" if and only if

u.u, € D. For, if u.u. € D, u.u. is in some K,; thus for some r and
i7j i 17j k

s, u, €8 and u, € S, , where r <n < s and s < r+n. Then there
i k,T j k,s

. (r+1)-n
isau evg (uk) such that u, € St 01’ S° that uu,

1 1’ 1

e E,

andu, €S
Y

we continue until we find ty such that utb-lutb e E and utb E_Sk,n-l’

éo that utbuk ¢ E. Similarly we find a sequence td’td-l""’tﬁ+3’tb*2

k,r+1' We then find tz such that utlut2 ¢'E and ut2 € Sk,r+2;
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where d = s-r-1, such that wu U u sese,U. U, are all arcs
: t t t t,)
b+2 “b+2 "b+3 d

of D. This defines a walk of length s-r < n between u; and u; in E;

thus u.u, € E'. If u,u, ¢ E" then u, and “j are joined by a walk

i’y i) i

o -1 -
uiuta s utkuj of length at most n. Now, u, € Yg (utl) = Stl,n-l

‘k. L3 N .
and,uj €Y (utl) Stl,n+k' Since k < n, n+k s n+(n-1); thus uiuj e D.

We proceed to show that S. X ® YE (u ). If k = n-1 then

k-n =1

Yg (ui) =Yg (ui) {u |u u € E} = {ujlu € S1 n- 1} Si,k' If
k-n _ - '
k = n+l, y‘ »(ui) -Y{YE(ui)} {u, luluJ € E} {u lu € Sj,n-1}° But
u, e Sj,n—i jgst when uj € Si,n+1’ thus YE(ui) i,n+1'
Suppose the result holds for n-r < k < n+r, and let s = r+1. Then

(n-s)-n,. | _ _-s/ ln -1,.-r _-1 | o

Yg | (ul) = YE (ul) = YE (PE (ui)) =Yg (Si,nmr) =

LJ{Yél(u.)[u. € Si }. .For any uj,yél(uj) =S, . Thus if

n-r j,n-1

-,

up € YE (u ) and u € S1 _— then up € Si,n-r-l = Si,n-s' On the other
hand, if up € S ner-1 then there is a uj such that up € Sj,n-l and

-1, -1 _ =S
u; € S nop? SO that uy € YE (u )C\rE (S1 nep) =Yg O ) = vg (ug)

S1m11ar1y we can show that S, =y (ui),establishing the theorem.

i,n+s
The results in [ 8] and [31] follow as corollaries

for the case n = 2,

2n-1
Now, let H = Hn(Sl,...,SZn_l) be the digraph with V(H) = ;:1 Sj
, n-1 :
and X(H) = U [SJ X SJ+n] The proof of the next result is virtually
j=1

identical to that of the preceding and will be omitted.

Theorem 3.12

Let D be a digraph and n 2 2. There is a digraph E such that

<>
B

= D if and only if there is a collection H; = Hﬂ(si,l""'si,Zn-l)
associated with the points u, of D which satisfies conditions

(1) - (4) of Theorem 3.11.
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Corollagz

A digraph D has an absolute square root if and only if there
are sets Si and Ti associated with the points u, of D such
that (1) each point of Si is adjacent to each point of Ti;
(2) for each arc x of‘D there is some u, for which x joins

Si and Ti; and (3) u € Sj if and only if uj € Ti'



CHAPTER IV

ALGEBRAIC STRUCTURES AND SIMULATION WITH FEEDBACK ENCODING

An important structure associated with a finite automaton M is
its semigroup, S(M). The semigroup, in fact, is quite crucial to the
decomposition theory.of'Krohn and Rhodes [24]. While it would certainly
be desirable to be able to associate an aléebraic structure with a
machine M which gives us the same information about realizations with
feedback encoding that S(M) g{ves'fbr classical realization, S(M) is
clearly not the structure we would wish to use. The semigroup S(M)
reflects quite accurately the state-behavior ofﬁM, while, as we have
shown, the theory of realization with feedback encoding depends much
less on behavioral properties than on (digraph) structural ones.
Hedetniemi and Fleck [20] defined the S*-seﬁiﬁrouﬁ of an automaton
and, with Oehmke [33], showed that it had at least some of the properties
‘'we would want any algebraic structure to exhibit for us to consider
it to be the "natural" system to study in conjunction with realizatioh
with feedback encoding. Unfortunately, as we will show, the properties
they found do not extend in the way they should. In fact, rather than
being able to apply the S*-semigroup to the present study, the converse
holds: we are able to apply the notion of simulation with feedback encoding
to a conjecture of Hedetniemi and Fleck on S*-semigroups. With the
work of Hedetniemi, Fleck, and Oehmke as motivation, we will define
other semigroups and study some of their properties vis-a-vis realization
with feedback encoding.

We first define a simulation with feedback encodi_ng. Let M = <Q,I,é8>

and M' = <Q',I',8'> be machines. Then M stmulates M' with feedback

79
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encoding if there are maps ¢:Q OQ}OQ' and h:Q x I' + I* such that for

each q € Q and x' ¢ I'
¢(q)x' = ¢(qh(q,x")). (4.1)
If |Q| = |Q'| then we have an isomorphic simulation with feedback encoding,

and, if not, a homomorphic simulation with feedback encoding.

Example 4.1

Lot M and M' be the machines in Figure 4.1.

Figure 4.1. Simulation with feedback encoding.

Then by Theorem 3.5 it is clear that M does not realize M' with
feedback encoding. But M does simulate M' with feedback encoding.
One such simulation is defined by the pair (¢,h), where ¢(qi) =T,

i=1,2,3, and h has the following table:

q 00 0
q, 101
ds 10

Theorem 4.1

If M1 simulates M2 with feedback encoding and M2 simulates M3

with feedback encoding, then M1 simulates M3 with feedback encoding.
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PROOF:
Let the simulation of M, by M, be defined by maps ¢ and h, and that
of M3 by M2 be defined by maps y and g.
Let q, € Q1 and X; € 13' Suppose that g(¢(q1),x3) = Xpp o Xous
then W(¢(q1))X3 = ‘1’(¢(q1)x21 aee xzn)° Let qll = qlh(q1»x21): ‘
qp = 1h(Qy Xgp)seeesdyy = 4y o qh(Ag 5 qs%p,) - Then
¢(q11) = ¢(q1h(q1:x21)) = ¢(q1)121» ¢(q12) = ¢(q11h(q11.122)) =
¢ﬁq1.h(q1,xél)h(qll,xzz)), etc. Thus, if we define f(ql,xs)-to be
the string h(qi,x21)h(q11)x2£) "'_h(ql,n-l’KZn)’ where
* 00 x

and X, ‘are as above, then w(¢(q1))x3 =

q1°9127 91 1 2n
w(¢(q1f(q1,x3))), so that Ml‘does indeed simulate M3 with feedback

encoding.

We now proceed to define and study the algebraic structures
mentioned above.

Let S and S' be semigroups with zero, where, without confusion,
we will use the same symbol, 0, for both the zero of S and the zero
of S'. A map ¢:S + S' is a gero-free homomorphism if it satisfies

1. Ker(¢) = {0};

2. If ab # 0 then ¢(a)¢(b) = ¢(ab);

3i. If ¢(a)b' # O then there is some b ¢ ¢"1(b')
such that ab # 0; (4.2)

3ii. If a'd(b) # O then there is some a ¢ @nl(a')

such that ab # 0.

We will see examples of zero-free homomorphisms which are not
homomorphisms later. For the present, we give some basic properties

[}
of zero-free homomorphisms.



82
Theorem 4.2

a) Let Sl,S and S3 be semigroups, and let 9:S. + S, and

2 1 2

‘i’:S2 > S3 be zero-free homomorphisms. Then
i. If ¢(a)e(b) = 0 then ab = 0,
ii. W¢:Sl + S3 is a zero-free homomorphism,
iii. If ¢ is one-to-one then‘é is an isomorphism,
b) If d>:S1 > S2 is a semigroup homomorphism with Ker(¢) = {0}
then ¢ is a zero-free homomorphism.
PROOF:

a) For (i), suppose that ab # 0. Then ¢(a)¢(b) = @(ab) # 0
since Ker(¢) = {0}. The result follows by contraposition.

For (ii) we must verify the four properties of (4.2). First,
suppose that ¥¢(s) = 0. Then ¥(¢(s)) = 0 so ¢(s) € Ker(¥) and hence
¢(s) = 0. But then's ¢ Ker(¢), so s = 0. Next, suppose that, in
Sl’ st # 0. Then ¢(s)o(t) = ¢(st). By (i), ¢(st) #'0, SO
Y(e())¥(8(£)) = ¥(6(s)9 (1)) = ¥(o(st)). |

Finally, suppose Y¢(a)b # 0, where b ¢ SS' Then ¥(¢(a))b # 0
so there is a d ¢ S2 suéh that ¥(d) = b and ¢(a)d # 0. Then, there
is ane ¢ ¢-1(d) such that ae # 0; Yo(e) = ¥Y(d) = b. This verifies
3i, and the proof for 3ii is virtually identical.

For (iii) we need only check that if ab = 0 then ¢(ab) = ¢(a)e(b).
In fact, ¢(ab) = ¢(a)e(b) = 0; for, since ¢ is one-to-one it follows
from 3i and 3ii that if ¢(a)¢(b) #.0 then ab # 0, a contradiction.

Thus ¢(a)®(b) = 0, and ¢(ab) is certainly zero sincevab = 0 ¢ Ker(9).

b) Suppose that <l>:S1 > S2 is a homomorphism, and that Ker(?) = {0}.
Since ¢(ab) = ¢(a)®(b) for all a,b € Sl’ condition 2 of (4.2) certainly
holds. If ¢{a)b' # 0 then for any b such that ¢(b) = b', ¢(a)é(b) = ¢(ab).

‘Thus ab # 0 since ¢(0) = 0 # ¢(a)o(b).
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Let M=<Q,I,6> be a machine. An ordered three-tuple (s,x,t) is
a triple for M, or simply a triple, if s,t € Q, x ¢ I*, and sx = t.
A triple is elementary if the length £(x) = 1; i.e., if x ¢ I.
Let S(M) be the set of all triples of M together with a distinguished
zero element 0. We introduce an operation on S(M) by the following
rules:
1. (s,x,tl)(tz,y,r) = (s,xy,r) if t1 = t2
0ift #t,

2. b0 =0b =20 for each’db € S(M).

Lemma 4.1
For any machine M, S(M) is a semigroup.
PROOF:

Clearly the operatibn is defined for each pair of elements in S(M).
Thus, we need only show associativity. Let bl’bZ’bz e S(M). Since
0 commutes with every element of S(M), if any of the b, are 0 then

certainly (blbz)b3 = bl(bzb3) = 0. Suppose that b1 = (q,x,rl),
b2 = (rz,y,sz), b3 = (ss,z,t). If r, =T, and Sy = Sg then
byb, = (4,xy,8,), bybs = (r,,yz,t), and (b;b,)by = (q;,(xy)z,t) =
(q,x(yz),t) = bl(bzbz)’ If r # r, and S # s, then blb2 = b2b3 =0,
so (blbz)b3 = b1(b2b3) =0, If r, =T, and o # S, then b2b3 = 0 and
bl(bzbs) = 0. Now, blb2 = (q,xy,sl) and so (blbz)b3 = 0. 'Similarly,
if T # T, and S = 52 then (blbz)b3 = b1(b2b3) = 0._ Thus S(M) is

a semigroup.

Suppose that M realizes M' with feedback encoding, where the

realization is defined by maps ¢ and h. Although, for each s & Q,
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hg is a map from I' to I, h  can be extended to a map»ﬁg from I'* to
I* in the following way. If x' ¢ I', F;(x') = hs(x'); if x',y' € I'*,
E;(x'y') h (x )hSh (x! )(y ). We must, of course, verify that if
w'z' is a different way of writing x'y' then E;(w'z') = F;(x'y').
Lemma 4.2 |

a) For each s € Q, E; is a fUnétion.

b) For each s € Q, x' € I'*, ¢(s)x' = ¢(sﬁg(x')).

c) For each s € Q, x ¢ I* there is a unique x' ¢ I'*.

such that hs(x') = X.

PROOF:

a) We proceed by induction. The result is true for strings of
length 1 since hS is a function, and true for strings of length 2
since, for such a string, there is only one decomposition into smaller
strings. Suppose it to be true for strings of length n-1 and let
x' =W} ... w!, where each w! e I'. Choose 1 < i <j sn-1. We
must show that E;(wi ces w!)ﬁ(sﬁg(wi .

n
: E'(w' e w!)FIsE'(w' cee W! ), wﬁ). Let s, = E;(w

J+1 ces

Y = h (W '
By induction we can write h (wl+1 cee wn) hsl(wi+1 ces w )h (wJ+l ces wn),

where s, = 1 s (w!

2 X HREEEE wj). Also by induction,
E;(wi cee W! )h 1(w1+1 e wg) = H;(wi e wj). Thus, -
h (Wi ... wi)h (w1+1 coe W) = R (o) .o whR z(wJ*l ... W!), and
the two expre551ons are equal.
b) Let s € Q and x' = wi - wﬁ, where each w{ e I'. If

£(x') = 1 then the result holds since E;(x') = hs(x'). Assume the

m. Choose 1 < i <€ n-1. Then

result holds when n < m-1 and let n
- - i '

o(s)x' = [¢(s)wi coo W! ]w1+1 vee WD = ¢(shs(wi ceu W! )) LIFORERRI AL
- ch - '

If S, = sh (wl ces wi) then ¢(s)x' = ¢(sl)wi+1 ces wn

= ¢(51h (w ces wé)), which, by part a), is equal to ¢(sﬁ;(x')).
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c) This follows immediately from part a) and the fact that it

is true for hs by the properties of a Type I feedback encoding.

From this point, we will use the symbol h_ for both h_ and K;.
For a state s ¢ Q and a string x ¢ I* we will write hs'l(x) for the unique
string x' ¢ I'* such that hS(x') = X,

Theorem 4.3

If M realizes M' with feedback encoding then there is a zero-free
homomorphism from S(M) ‘onto S(M').

PROOF:

Let the realization be defined by maps ¢ and h. If b = (s,x,t)
is a triplg of M, define é(b) = (¢(s),hs'1(x),¢(t)). By Lemma 4.2,
¢(s)h§'l(x) = ¢(sx) = ¢(t), so that ¢(b) is a triple for M'. Also,
define ¢(0) = 0. We will prove that ¢ is a zero-free homomorphism from
S(M) onto S(M'). First, we show that ¢ is onto. Let b' = (s',x',t')
be a triple of M'. Choose s ¢ ¢-1(s'), and let x = hs'l(x'). If
t = sx theh o(t) = ¢(sx) = ¢(s)x' = t', so ¢((s,x,t)) =b'.

Clearly Ker(®) = {0}. Suppose that b1 = (s,x,t) and b2 = (t,y,r),
So that byb, = (s,xy,7) # 0. Now 6(b)e(b,) = (4(s),h,™ (x),6(t))*
(08,0, 0),8()) = (6(),h, 7 OB, ORI ) ,0(x)). By Lemna 4.2,
hghh, ) = B, s0 0b))a(,) = (6(s),h T (9),6(8)) = 0By

Suppose that‘¢(b)d' # 0, where b = (s,x,t). Then
o(b) = (¢(s),x',9(t)), so that for some y' € I'*, r' € Q',
d' = (¢(t),y',r'). Ifd-= (t,ht(y'),tht(y')), then ¢(d) = d' and
bd # 0. Similarly, if d'¢(b) # O then there is a d sﬁch that ¢(d) = d'
and db # 0.

Corollary

If M isomorphically realizes M' with feedback encoding then

S(M) ¥ S(M).
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PROOF:

This follows from Theorem 4.2.2.

We can now give the examples mentioned above of zero-free
homomorphisms which are not homomorphisms. Consider the map ¢
guaranteed by Theorem 4.3. If $; and s, are two states.of M for
which ¢(sl) = ¢(52) then any triples of the form b1 = (r,x,sl) and
b2 = (sz,y,t) have product b

# 0.

(b, = 0, while 0(b)0(b,) = (4(r),x,6(t))
We will also prove a converse to this theorem. If b = (s,Xx,t)
is a triple of machine M define i(b) = s and f(b) = t. A state s of
M is reachable if there is a triple b such that f(b) = s.
Let S be a semigroup with zero. For any s € S define

s = {t|st # 0} and s” = {t|ts # 0}. We can then ‘define equivalence

relations =, and 5, on Sis £, t if s* = t*, and s =, t if sT = tT.
Lemma 4.3

For any machine M in which every state is reachable the relation
=, on S(M) has finite index which is equal to 1 + IQI. In fact,

b

b, if and only if f(bl)

1% b, £(b,), and [0], = {0}.

PROOF:

Clearly 0* = @, while for any b = (s,x,t) there is some triple
(t,y,r), so that bt # @. Thus [0], = {0}.

Note that, by definition, bd # 0 if and oniy if £(b) = i(d). Thus
if bl* = bz* then f(bl) = f(bz), and conversely. Therefore under =

there is one equivalence class for each reachable state of Q1 and one

for 0 and so, if every state is reachable the index of =; is lQ|+1.
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Lemma 4.4
For any machine M in which every state is reachable the relation

<. on S(M) has finite index, equal to 1+|Q|; [0]. = {0}, and

by = b

PROOF:

if and only if i(bl) = i(b

2 2

The proof is similar to that for Lemma 4.3. In this case we need

the reachability criterion to guarantee that [0], = {0}.

Theorem_4.4
Let M and M' be machines in which each state is reachable. If
|1] = |1'| and there is a zero-free homomorphism ¢:S(M) °3° S(M'),
then M realizes M' with feedback encoding.
PROOF:
We first show that b, =, b, implies that‘b(bi) =, o(b,). Suppose
that b1 54_52 and that.¢(b1)d' # 0, so that d' ¢ @(bl)J2 Then there
is a d such that ¢(d) = d' and bld # 0 by (4.2). Since b1 N bz,
b,d # 0. Then ¢(b,)¢(d) = &(b,))d' = ¢(b,d) # 0 since Ker(d) = {0}.

Thus d' ¢ o(b,)". Similarly, #(b,)"Ce(b)", s0 ¢(b))" = ¢(b)" and

2)
hence ¢(b1) =0 é(bz). By a similar argument, b1 E,.bz implies
¢(b1) S o(bz).

It then follows from Lemmas 4.3 and 4.4 that f(bl) = f(bz) implies
that f(¢(b1)) = f(o(bz)) and i(bl) = i(bz) implies that
i(¢(b1)) = i(@(bz)). Therefore, ¢ induces maps ¢i:Q + Q' and
¢f:Q + Q' such that ¢((s,x,t)) = (¢i(s),x',¢f(t)).  Now, suppose that
b, = (1,x,5) and by = (s,¥,t), so that byb, # 0. Then o(by) = (9,E)X0:6),
¢(b2) = (¢i(s),y',¢fft)). But we know that ¢(bl)¢(b2) # 0; thus,

for each reachable state s, ¢i(s) = ¢f(s). Since every state is reachable,

¢i = ¢f = ¢, a map from Q to Q'. Furthermoré, ¢ is onto, since ? is.
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Let x ¢ I*, x" ¢ I', be such that for some triple b = (s,x,t),
¢(b) = (¢(s),x",9(t)). If we write x = yz, where neither y nor z is
empty, then b = (s,y,sy)(sy,z,t). Thus
o((s,y,sy))o((sy,z,t)) = ¢(b) = (¢(s),x',¢(t)). But this is an
impossible situation: the second components of ¢((s,y,sy)) and
d((sy,z,t)) are nénempty strings, say y' and z', so that x' = y'z',

a contradiction of the hypothesis that x' ¢ I'. Thus, every pre-image
of an elementary triple of M' is an elementary triple of M.

We now show that if b' = (s',x',t') and ¢(s) = s', then there
is a triple b with i(b) = s such that ¢(b) = b'. Since s is reachable,
there is some triple d = (r,y,s). Now, ¢(d) = (¢(x),y',4(s)),
so ¢(d)b' # 0. Thus, since ¢ is a zero-free homomorphism, there is a
triple b such that db # 0 and ¢(b) = b'. But db # 0 implies
i(b) = £(d) = s.

Now let [I] = |I']| = n. Choose any s' € Q' and any s such that
¢(s) = s'. If the n elementary triples b3 with i(bj) = s' are
b! = (s',xj,tj) then for each b3 there is a triple bj with ¢(bj) = b5

v J
and i(bj) = s. Furthermore, as we have shown, each such bj is an

elementary triple. Also, since |I| = |I']| = n: there are exactly n
elementary triples b with i(b) = s. Therefore, for each s € Q and
each x' € I' there is a unique x ¢ I such that ¢((s,x,sx)) = (¢(s),x',9(sx));
we can then défine a map h:Q x I' » I by setting h(s,x') = x, where

o((s,x,sx)) = (¢(s),x',¢(sx')). The pair (¢,h) defines a realization

with feedback encoding.

Corollagz

If Msand M' are machines in which each state is reachable, with

|1| = |1'], and if S(M) ¥ S(M), then. M isomorphically

realizes M' with feedback encoding.
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We can get a result parallel to Theorem 4.3 for the case in which
one machine simulates another. Let S ‘and S' be semigroups with zero;
we say that S' zero-free divides S if there is a subsemigroup S; of
S which contains the zero of S such that there is a zero-free homomorphism
from S; onto S'.

Theorem 4.5

Let M and M' be machines such that M simulates M' with feedback
encoding, where the simulation is defined by maps ¢ and h. If
the extended map h:Q X I'* + I* is one-to-one for each s € Q,
then S(M') zero-free divides S(M).

Note: A sufficient condition for the extended map to be one-to-one

will be given as Theorem 4.15,

PROOF:

For each triple b' = (s',x',t') define
¥(b') = {(s,h (x'),sh (x"))[6(s) = s'}, and define ¥(0) = 0. Let
Sy = Y(SM")). We first show that S; is a subsemigroup of S(M). What
we must verify is that if b1 5 = b3 in S(M) and if bl,b2 € Sl’ then

blb2 = b3 € Sl' This is immediate if any of b,,b b3 are 0. Suppose

1’72
;hat b1 = (s,x,t) ¢ ¥((s',x',t")), and b2 = (t,y,r) € Y((t',y',t")).
Then (s',x',t")(t',y',r') = (s',x'y',r'). Since x = hs(x') and
y = ht(y'), xy = hg(x'y') and s(xy) = r. Thus
b,b, = (s,xy,1) ¢ W((s},x'y',r'))SESI. Now, for each b ¢ S;, define

o(b) = Wf1(b); ¢ is properly a function since if b = (s,x,t) is in

W((si,xi,ti)) and also in W((sé,x',té)) then s! = sé ¢(s) by definition

1

! = y! @i s -t ' Iyl = ¢!
of ¥ and X = X;, since hS is one-to-one, so that tl slx1 tz.

The proof that ¢ is a zero-free homomorphism is now identical to the

proof of Theorem 4.3, once we note that, by the assumption that each
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hg is one-to-one, for each s ¢ Q, x ¢ I* such that (s,x,sx) e S; there
is a unique string x' = hsﬁl(x) e I'* such that hg(x') = x; this is,

of course, the analogue of Lemma 4.2c.

Let M and M' be two machines, and h:Q x I' + I*; we say that a
subset ngQ is closed under h if, for each s ¢ Q, x' e I',
shg(x') € Q). If there is also a map ¢:Q ONfO o which satisfies (4.1),
then we will say that M? dividea'M with feedback encoding; we call
Q, the core of the division.

Corollang

"If M' divides M with feedback encoding in such a way that the

map hS:I'+ + I* is one-to-one for each s, then S(M')
zero-free divides S(M).

It is the coroilary to Theorem 4.5, rather than the theorem itself,
which has a converse. To prove it, we need one additional concept
from the theory of semigroups. If S is a semigroup and s,t ¢ S then
s divides t, written s|t if there is an r such that either sr = t or
rs = t; t is prime if Fhere is no s which divides it. Note that for
any machine M the only primes in S(M) are the elementary triples.

Theorem 4.6

Let M and M' be machines such that every state of M' is
reachable and S(M') zero-free divides S(M). Then M' divides
M wifh feedback encoding, and the extended mab hs:I'+ > 1t
is one-to-one for each s.

PROOF:

Let S&S(M) be the subsemigroup for which there is a zero-free
homomorphism'®:3 op»toS(M'). We first show that if ¢(b) is prime, then
b is. For suppose b is not prime; since 0 is not prime and ¢(0) = 0,

b#0. Thenb = ble’ so that ¢(b) = ¢(b1)¢(b2) is also not prime,
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Next, we show that {i(b)|beS} = {f(b)|beS}. Let b = (t,x,s) and
¢(b) = (t',x',s'). Since every state of M' is reachablo, there is a
-d' = (¢',y',t'). Since d'¢(b) # 0 we can find d such that ¢(d) = d'
and db # 0. Thus £(d) = i(b) and {i(b)|beS}IS{f(b)|beS}. The other
direction follows similarly, except that there we rely not on the fact
that every state of M' is reachable, but rather only on the fact that
M' is a (complete) machine. Let Q1 = {f(b)lbeS}. Since for each
s € Qi there are triples bl.and b2 such that i(bl) =§ = f(bz) we have
all the machinery needed to prove the natural analogue of Lemmas 4.3
and 4.4. The relations =y and él_have finite index, equhl to 1+[Q1|;
b1 N b2 if and only if f(bl) = f(bz), b1 =¢ b, if and only if
i(b,) = i(bz), and [0], = [O]L = {0}. Exactly as in Theorem 4.5, we
can now show that b1 Er,bz implies ¢(bl) Ze @(bz) and b1 =, b2 implies
¢(b1) =, ¢(b2), so that there is a map ¢:Q1°n£° Q" such that
o((s,x,t)) = (4(s),x',0(t)).

Let |I'| = n and suppose that for some s' e Q' the elementary
triples b5 for which i(bj) = s' are bj = (s',x&,té). Choose any
S € QI such that ¢(s) = s'. We show that for each j there is a triple
bj with i(bj) = s such that °(bj) = bj. For, if d is any triple with )
f(d) = s then ¢(d)b§ # 0, so there is a bj € ¢'l(b5) for which dbj # 0;
certainly i(bj) = s,

Then, as we have shown, each such bj is pr;me in S.

Now, for each s ¢ Ql’ x' ¢ I', define hs(x') to be that string
x for which ¢((s,x,sx)) = (¢(s),x',4(sx)). Then ¢ and h satisfy (4.1),
so that M' divides M with feedback encoding, where the core of the
division is Q;. Since ¢ is a function, each hg:I' > I* must be

4
one-to-one.
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We now show that the map h which we have defined extends so that
for each s € Ql’ hS:I'+ + I* is one-to-one. We have already shown
that hg:I' + I* is one-to-one. That argument, which shows that the
preimage of a prime is prime, can extend to show that for each n,
hg:I'M = I* is one-to-one, but this is not sufficient. What we need
to prove, as in Lemma 4.2, is that for each x € I* such that
(s,x,sx) € S, there is a unique string x' e I'* such that hg(x') =
As noted, this is true if (s,x,sx) is prime. We show that each triple °
b € S which is not prime has 4 unique prime decomposition; i.e., if
b=b ... b =‘dl +o+ dy, where each b and d; is prime, then n = m
and bi = di’ for i = 1,...,n. This is certainly true in S(M'). If

b' = (s',x',t') is prime then £(x') = 1. Thus if the b' = (P ’ 1 1)

and the d{ = (ui,yi;vi) are primes and (s',x',t') = bi cee b' di cee dé
then n = m = £(x'). Then x' = xi . xﬁ = yi”}..°yﬂ, so that for
i=1,...,n, xi = yi. Ifb' = bi ces bﬂ = di v dﬁ then pi = ui =s',

so that uiyi = pixi = qi = vi = ué = pé, etc. With this at our disposal, -
suppose that b = b1 e bn = d1 . dm. Then

o(b) = ¢(b1) cos @(bn) = ¢(d1) ces ¢(dm). Since each bi and«dj is
prime, each ¢(bi) and ¢(dj) is, so that n = m and, fori =1,...,n,

¢(bi) = ¢(di). Now i(dl) = i(bl) = i(b), and since hg is one-to-one

on I', this means that d1 bl' It then follows that i(dz) = i(bz),

so that d, = b,, etc. Hence, each element of S has a unique prime

decomposition.
Now, for s e Q and x' = X] e xﬁ e I'* define
= ' !
hg (x') h(s,xl)h(sxl,xz)
hs(xi cee xﬁ) = hs(yi ces yé) then

(s,x,sx) = (s,h (x]),sh (x{)) by = (s,h (y]),sh (¥]))b,.

1 ! 1 ’
ces h(sx1 ves xn-l’xn)' If
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Since (s,hs(xi),shs(xi)) and (s,hs(yi),shs(yi)) are primes, they must
be equal, since (s,x,sx) has a unique prime decomposition, and hence
xi = yi. It follows inductively that xé = yé,..., and finally that
n=mand X} ... X} =y] ...y}, so that hs:I'+ + I* is one-to-one.

1
We should note that it is possible for M to simulate M' with feedback
encoding without having each map hs:I'** I* be one-to-one, even if

every state in each machine is reachable.

Example 4.2
Let M and M' be as in Figure 4.2, Let ¢(p;) = s; and suppose

that h has the following table:

h(ao B8
P,| @ ab
Pyl 2 be
P3 ¢ b

Figure 4.2. Another simulation with feedback encoding.
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It is easy to verify that ¢ and h define a simulation with feedback
encoding, and, in fact, that hp :I'" > I* is one-to-one for each i. But
h(py,@h(pyh(py,0l8) = ah(py,8) = abe = h(p,B)h(py,0) = hipy,O)h(p1h (P A)a),
so that hpl(aB) = hpl(Ba).

We have thus shown that the semigroups S(M) reflect quite accurately
the relationship of M to other machines as far as realization or.simu-
lation with feedback encoding. One important feature of the classical
semigroup of a machine is that for every finite semigroup S there is a
machine such that S = S(M). A similar result cannot be possible for
the semigroups S(M); for example, it is clearly impossible for S(M)
to ever be a group. We can, however, characterize those infinite semi-
groups S such that,-for some machine, S = S(M). To do this, we need
some preliminary definitions.

Let P be a partially ordered set under the relation <. If
a,b € P we say that b covers a if a < b and there is no ¢ € P such
tpat a < ¢ < b; the cover of a, cov(a), is the set of all b which cover
a. We will call a partially ordered set P an n-tree if it has the
following properties:

i. P has a least element;

ii. for each a ¢ P, |cov(a)] = n;
(4.3)
iii. if a # b then cov(a)Ncov(b) = @.

For any semigroup S we can define a relation < by defining a < b

if there is an element c such that ac = b, and a < b if either a = b

or a <b., This relation may, but need not, be a partial order, since

it is not necessarily antisymmetric.
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Theorem 4.7

Let S be an infinite semigroup. Then there is a machine M with
|1] = n such that S = S(M) if and only if |
i. S has a zero, 0.
ii. The relations g and =, have the same finite index, and
’[O]T'= [0], = {o}.
iii. Ifst#0 then st ¢ [s]Tlﬁ[t]L.
iv. - Each block of the equivalence relation =y except for
(0],, is a disjeint union of n n-trees under the
relation <.
PROOF:

We have already shown the necessity of each condition except iv.
Notice first that < must be antisymmetric, for if (s,x,t)<(u,y,v) then
s = u and, more important,-l(y) > £(x). For ®ach’state s ¢ Q we can
find exactly n primes, the elementary triples bi = (s,xi,sxi),
i=1,...,n. For each triple by, cov(bi) ='{(s,xixj,sxixj)lxj e I},
etc. Thus, under <, each elementary triple is the least element of
an n-tree, and each block B of =_is the union of the n n-trees gener-
ated by the elementary triples in B.

To prove sufficiency, let m+l be the index of =,. We will define
a méchine with state set Q = {q;,...,q;} and input set I = {xl,...,x }

n
such that S(M) = S.

Let the blocks of =y be B0 = [O]T, Bl""’Bm’ and let the n-trees

of Bi be Til""’Tin'

Let the blocks of =, be D0 = [0]y, Dl""’Dm’ There is a natural

correspondence between the B, and the Dj' If s € tT then st # 0,
so t ¢ s*, and conversely. With each B, = [si]T associate that Dj

for which Dj = [tj]J_and tj‘ = Bi‘ If necessary, renumber the Dj S0

that Bi is associated in this manner with Di'
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With each s € S we will associate a triple. If s ¢ Bif\Dj then
s will be associated with (qi,-,qj); the second element of the triple

is yet to be assigned. For each block Bi’ let s Sy be the least

170
elements of the n-trees of Bi’ and assign as the sccond element of
the triple associated with s:j the symbol xj. We proceed inductively;
suppose that the string y has been assigned to element t, and let
itl,...,tn} = cov(t). Then assign as the second element of the triple
for tj the string yxj..

This association between triples and elements of S is an isomorphism

between S and S(M), where M is the machine whose elementary triples

are exactly the mn least elements of the n-trees of S.

Before proceeding we mention one interesting auxiliary property
of the semigroups S(M). Suppose that the machine M is actually a
finite-state acceptor; that is, there is a starting state d and a
set of final states F € Q, so that we can associate with M the event
E(M)CSI* of strings x for which qyx € F.
Theorem 4.8
If M is a finite state acceptor then there is a right ideal
R and a left ideal L of S(M) such that
E(M) = {projz(s)lé e LNAR-{0}}.
PROOF:
Let L = {s|f(s) ¢ F}U{0} and R = {s|i(s) = qy} U{0}. Then L is
a left ideal since, for any t ¢ S(M), s ¢ L,if ts # 0 then
f(ts) = f(s) € F. Similarly, R is a right ideal. Then LNR-{0} is
the set {sli(s) = q, and f(s) ¢ F}, so that the second components of

the strings*of LNR-{0} are all the walks from qq to F; i.e., EM).
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We now discuss briefly a new finite semigroup for a machine M.
Let H(M) be the set of ordered pairs (s,t) € Q x Q such that, for some
x, (s,x,t) € S(M), together with a zero element, 0, with the same
multiplication rhlo as in SM); i.e., (s,t)(u,v) = (s,v) if t = u, and
@e),y) = 0 if t # u. We call H(M) the reachability semigroup of M.

Theorem 4.9

For any machine M, H(M) is a homomorphic image of S(M).

PROOF:

Let ¢:S(M) » H(M) be defined by ¢((s,x,t)) = (s,t) and ¢(0) = O.
Let bl,b2 be elements of S(M); if either is zero then blb2 = 0, and
¢(b1)¢(b2) =0 = ¢(b1b2). SuppoSe that neither b1 nor bz.is Zero.
If their product is zero then f(bl) # i(bz), so that certainly
¢(b;)e(b,) = 0 = o(b;b)).. Finally, if “?1 = (s,x,t), and b, = (t,y,7),
then Q(bl) = (s,t), ¢(b2) = (t,v), and ¢(b1b29 = 9((s,xy,r)) = (s,1) =
¢(b1)¢(b2). Thus ¢ is a homomorphism. Note, incidentally, that since

Ker(¢) = {0}, ¢ is also a zero-free homomorphism by Theorem 4.2b.

Because the map ¢, as defined in the theorem, is so obviously
important in studying the H-semigroups we find it convenient to also
consider it as an operator 9 on S-semigroups, so that for any M,
A(SM) = HM).

Not surprisingly, zero-free homomorphisms between S-semigroups
tend to induce zero-free homomorphisms between the corresponding
H-semigroups. We state this in the context of Theorem 4.3.

Theorem 4.10

If M realizes M' with feedback encoding then there is a

zero-free homomorphism from H(M) onto H(M').
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PROOF:

Let ¢:S(M) > S(M') be the zero-free homomorphism guaranteed by
Theorem 4.3. Note that we showed in the proof of Theorem 4.3, although
we did not have the notation to express it, that if a(bl) = a(bz)
then 8(¢(b1)) = 8(¢(b2)). Thus, for each (s,t) e H(M) choose b e S(M)
such that 3(b) = (s,t) and define ¥((s,t)) = 3¢(b); by the preceeding
discussion the value of ¥((s,t)) is independent of the choice of
bea l((s,1)).

Certainly Ker(¥) = {0}. Suppose that d1 = (s,t) and d2 = (t,r)
are elements of H(M); for any choice of bi € a-l(di), b1b2 # 0, and
9(bb)) = d;d,. Since ¢ is zero-free, o(b;)¢(b,) = ¢(byb,), and so
8¢(b1)8¢(b2) = a¢(b1b2) # 0. But 3¢(b1b2) is just W(dldz), and so
w(dl)w(dz) = a¢(bl)a¢(b2) = w(dldz).

If ¥(d,)d} # 0, choose bl ¢ 37}(¥(d})) and by ¢ 37 (d3); then
biby # 0. In particular, if b e > (d;) then ¢(b)) ICICRIR
so that ¢(b1)bé # 0 for any bé € a_l(dé). Then, since ¢ is zero-free,
there is a b, ¢ ¢-1(bé) such that ble # 0. Let d2 = a(bz), then

2

dld2 # 0 and, by definition, ¥(b,) = dé. Similarly, if diW(dz) #0

2)

then there is some d, ¢ ?'l(di) such that d,d, # 0. Thus, ¥ is a

zero-free homomorphism.

The converse of this theorem is not true. As an example, let My
and M, be two machines whose digraphs have the same tranéitive closure,
Then H(Ml) g H(MZ)’ but it is not necessarily true that M; isomorphically
realizes M2 with feedback encoding. For an example, see Figure 4.2;
since the two digraphs D(M) and D(M') are strong they have the same
transitive closure. Thus the progressive relationships we found between

the S-semigroups and the concepts of realization and simulation with
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feedback encoding do not hold for the H-semigroups. In fact, Theorem 4.10
is a special case of

Theorem 4.11

If M simulates M' with feedback encoding then there is a
zero-free homomorphism between H(M) and H(M').
PROOF: ‘
Let the simulation be defined by maps ¢ and h. Define ¢((s,t))
to be (¢(s),s(t)), and ¢(0) = 0. If we have (s,t),(t,r) € H(M) then
o((s,t))0((t,x)) = ($(s),0(t)I(8(t),4(x)) = (4(s),0(r)) = ¢((s,t)(t,T)).
The other properties of zero-free homomorphisms follow as in previous

proofs, and will be omitted.

As with the S-semigroups we can define the relations =, and =,
and the functions f and i. We also need the hotién of an elementary
element of H(M); (s,t) is elementary if st € D(M).

Theorem 4.12

If M and M' are machines in which every state is reachable,
and if H(M') is a zero-free homomorphic image of H(M), then
M simulates M' with feedback encoding.
PROCF: |
Let ¢:H(M) -+ H(M') be a zero-free homomorphism. We must first
show that ¢ induces a map from Q to Q' as in Theorem 4.4. Since the
relations =, and z, on S-semigroups were shown to be directly dependent
on the functions i and f, most of the results we obtain about them
carry through directly‘for H-semigroups, and the proofs'will be omitted.
In particular, f(bl) = f(bz) implies f(¢(b1)) = f(@(bz)), and
i(bl) = i(bzy implies i(Q(bl)) = i(¢(b2)), so that ¢ induces maps ¢35

and ¢z, and 9((s,t)) = (4;()sdg()). I£by = (5,1) and b, = (£,D)
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are elements of H(M), then @(b1)®(b2) # 0, so that ¢i(t) = ¢f(t).
Since every state of M is reachable, ¢i and ¢f agree on each t ¢ Q;
call the function thus'defined 0.

Let (s',t') be elementary in H(M'), and let x' be an input such
that s'x' = t'. We claim, first of all, that for each s ¢ ¢'l(s')
there is a t ¢ ¢'1(t') such that (s,t) ¢ H(M). To see this, we first
show that if ¢(s) = s' then there are elements b1 and b2 in H(M) such

that s = i(bl) = f(b Certainly, there must either be a b1 for which

2)'
i(bl) =S or a b2 for which f;bz) = s. Suppose the former. Since s'

is reachable, there is an element (r',s') € H(M'). Then
(r',s')@(bl) # 0 so there is some (r,s) € H(M).
A similar argument completes the demonstration. Now, to show that there
is an element (s,t), where ¢(t) = t', we need only choose some element
(r,s) and note that since o((r,s))(s',t') # O_there is an element (s,t)
such that ¢((s,t)) = (s',t') by the properties of zero-free homomorphisms.
But as we have shown, if ¢((s,t)) = (s',t') then ¢(t) = t'.

Thus if s'x' = t', for each s such that ¢(s) = s' there is a state
t reachable from s such that ¢(t) = t'. Choose any string x ¢ I* for
which sx = t and define hs(x') = t'. Then the pair (¢,h) defines a
simulation with feedback encoding. Note however that hg may not even

be one-to-one on symbols.

We now turn our attention to the third and final algebraic structure
which we will study. We will first discuss its relationship to real-
ization with feedback encoding, and some of its shortcomings in that
regard, and then go on to show how the concept of simulation with
feedback encqding applies to a conjecture about these semigroups.

For any machine M, the S*-gemigroup S*(M) has for its elements all

finite sets of triples [we will write 0 for the empty set § of triples],
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where if U = {bili =1,...,n} and V = {djlj’= 1,...,m} are elements
of S*(M) then UV = {bidj]i'= 1,...,n;j = 1,...,m}. We list some of
the properties of S*(M) in the next theorem; for proofs see [33] and
[20]; a state s is terminal if for all x € I, sx = s.

Theorem 4.l3

a) If M isomorphically realizes M' with feedback encoding
then S*(M) & Sv(M') |

b) If M and M' are machines in which each state is reachable
and there is at ledst one nonterminal state, and if
S*(M) 5 S*(M'), then M isomorphically realizes M' with

feedback encoding.

These results make it seem reasonable to eibect that we can find
generalizations in the sense of Theorems 4.3 :.4.2. Suppose, for
example, we had M realizing M' homomorphically with feedback encoding,
the realization being defined by maps ¢ and h. It would be natural,
as would in fact be done in proving Theorem 4.13a, tb define, for each
triple b = (s,x,t) of M, ¢*(b) = (¢(s),h;1(x),¢(t)) (¢* is just the
map ¢:S(M) » S(M') of Theorem 4.3.) We would then define
¢({bi|i =1,...,n}) to be {o*(b;)}. Let § = {bj} and T = {d},

S,T € $*(M), and suppose ST # 0. For each pair bj_and dk for which
byd # 0, it will follow that ¢* (b5 ) = ¢*(0,)¢%(&), so that

(ST) € ¢(S)e(T). But, should there be a pair bj,ak such that bjdk =0
but ¢* (bj)¢* (d.k) # 0, then ¢(ST)S 9(S)¢(T), so that ¢ would not even
be a zero-free homomorphism. Such a pair bj’dk would .certainly exist
unless |Q| = |Q'1.b

The prequing discussion, of course, only shows that one particular
approach'to the problem is inféasiblg. Recalling the proofs for previous

theorems, as well as the proof of Theorem 4.13b which provided much
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of the motivation for the work in this chapter, where we showed that a
zero-free homomorphism between two S-semigroups or two H-semigroups
induces a map between the state-sets of the two machines, we can show

Theorem 4.14

Let M and M' be two machines where M is strong. If there is
a zero-free homomorphism ¢:S*(M) + S*(M') and a map ¢:Q +~ Q'
such that for each singleton b = {(s,x,t)} € S*(M),
2(b) = {(6(s),x",6(t))}, then [Q] = [Q'].
PROOF -
Suppose not, and let ¢(q1) = ¢(q2) = q'. Since qi is reachable
there is some b1 = {(r,x,ql)} e S*(M). For y,z ¢ I*, let
b2 = {(ql,y,qu), (qz,z,qzz)}. Since blb2 0,
0(b,)0(b) = {(6(r),x'y",4(a,y)), (4(x), X2',8(a,2))} = @(bjb,) =
{(¢(r),(xy)';¢(q1y))i. Among other thing§, this w;uld imply that if
45 is reachable from 4 and qy is reachable from d, then ¢(q3) = ¢(q4).

Since M is strong, every state is reachable from every other, so that

¢ must be one-to-one.

The hypothesis that M be strong is probably more than is needed
to reach the concluéion of the theorem, but it certainly does show
that the S*-semigroups are not especially useful in a study of reali-
zation, with or without feedback encoding. On the other hand, Hedetniemi
and Fleck [20] made the following conjecture, which we can use the
concept of simulation with feedback encoding to settle in almost all

cases:
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Let M and M' be any two strong machines with the same number of
states. Then S*(M) is isomorphic to a subsemigroup of S*(M'),

and S*(M') is isomorphic to a subsemigroup of S*(M).

We first prove a crucial result, to which we alluded earlier.
It gives both the sdfficient condition which we mentioned in connection
with Theorem 4.5, and also shows, as we promised in Chapter III, that
simulation with féedback encoding is an essentially uninteresting concept.

Theorem 4.15

Let M be a strong machine with at least two inputs, and let
M' be any machine with |Q'| s |Q|. Then M' divides M with
feedback encoding, and the feedbéck encoding can be chosen in
such a way that the maps hg:I'* + I* are one-to-one.
PROOF:
Since M is strong, for any s,t € Q there is a string We with

t

l(wst) 2 1 such that sWg, = t.

Let Q be any subset of Q with cardinality |Q'|, and $:q OBt
be any map. Let I' = {xi,...,xé} and let n # n be two elements of I.
For each s ¢ Q, xj e I', let t = ¢'1(sx5) and define hs(xg) = nJﬁhqt,
where q = snin. Then ¢(sh5(x5)) = ¢(s)x5, so that M' divides M with

feedback encoding; if |Q| = |Q'| then M simulates M' with feedback
encoding. Each map hg is certainly one-to-one on strings. We show
that the extended maps are also one-to-one.

Let j; ... jyand ky ...k, be two strings from (I')*

1

and let hs(j1 een jo) = hs(k1 veo km,) = w, Then, by definition, there

m
are states r,t € Q such that w = hs(jl)hr(jz cen 3p) = hg (k)hy(ky ooe k)
But there is‘a unique positive integer n such that the prefix of w

having length n+l is the string n. This uniquely determines
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j1 = k1 = xa, sothat r =t = SXL . Then hr(jz cos jm) = hr(k2 . km,),
and we can repeat thc above process until we arrive at m = m' and

i =k ,p=1,2,...,m
Jp p P

Corollary
If M is strong, with at least two inputs, and M' has |Q'| < [Q],

then S(M') zero-free divides S(M).
Corollary | ‘
If M is strong, and M' has |Q'| < |Q| then M' divides M with
feedback encoding.
PROOF:
We need only cover the case in which |I| = 1. As in the theoren,
we choose any Q < Qwith |Q] = |Q'| and any map 6:q °3*%Q'. For s € Q
and x} ¢ I', let t = ¢'1(¢(s)x3), and define hy(x}) = Wse. Then

¢(s)x3 = ¢(shs(x5)), so M' divides M with feedback encoding.

Theorem 4.16

Let M be a strong automaton with n states and at least two

inputs, and let M' be an automaton with n' < n states.

Then S*(M') is isomorphic to a subsemigroup of S*(M).
PROOF:

We use the maps ¢ and h of Theorem 4.15 to define the isomorphism.

Let b' = {(s',x",t')} be a singleton in S*(M') and set
g®') = {(s,hg(x"),t)|¢(s) = s'}; since ¢ is one-to-one, g(b') is a
singleton. Note that this implies that ¢(t) = t'. Also since hs‘is
one-to-one for eaéh ses, g(b}) = g(by) if and only if'bi =bl; i.e., g
is one-to-one. Let bi = {(ﬁ,xi,r')} and bé = {(r',xé,té)}. Let
by = {(s,,%,1)} = g(b]), b, = {(r,x,,t,)} = g(b}). Then
blob2 = {(sl,hsl(xixé),tz)} is a singleton of S*(M) and, as

’¢(t2) = té, b1°b2 = g(biobé). Thus
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g(d])og(by) = g(djeb)). On the other hand, if b' = {(s! ,xi,ti)},
by = {(s5,x,t1)}, g} = {(s,,x,,t)}, 80Y) = {(s,,x,,t,)} and
ti # sé then t1 # Sys SO that biobé;= 0 and g(bi)og(bé) = 0.

Now let V' be any element of S*(M'); V' is a finite set of triples
of M'. Extend g to g* by g*(V') = {g(b')|beV'}. Let $* 1 (M) be
{g* (V) |V'eS*(M") )
~ Now, if V' V' e S*(M ),
£ DoV = [Ula0o}) [bjeviHe[U (g |ajevy]

5}

u {g(b}) og(d!)lb!eV',d:ieV

u {g(b'od')lb'eV' d5ev'}

2
5}

U {g(£f )If'eV’oV

g*(Viev)).

Thus S*M,(M) is a subsemigroup of S*(M), and g* is a homomorphism.
We wish to show that g* is 1-1. Suppose g* (V') = g*(V ). Choose a
triple bieV], and let {b} = g({b'}). Then there is a triple bjeVy

such that {b} = g({b'}). If b = (s,w,t), b' = (¢(s),x! ,¢(t)) ‘and

(=2
]

2 = (0(s),x),6(t)), where w = hg(x7) = ho(x}).

xi = xé, so bi = bé and V": V). The symmetric argument gives V! = V!

Then, by the lemma,

2° 1 2
so that g* is 1-1, and hence g* is an isomorphism between S*(M') and
Sty (M) |

Corollary

Let M and M' be strong}machines, with |Q| = |Q'|. Then, unless
M is autonomous but M' is not, S*(M') is isomorphic to a
subsemigroup of S*(M).

JOF:

If M is not autonomous then S*(M') = S*M,(M), by the theorem.
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On the other hand, if both machines are autonomous then they are isomorphic,
so the result follows from Theorem 4.13a.

This corollary settles the Hedetniemi-Fleck conjecture except
that it does not decide the case in which M is the unique (up to
isomorphism) autonomous, strong, n-state machine C, and M' is not
autonomous. Due to the dependence of Theorem 4.16 on the fact that M
had at least two inputs, we prefer to make the following counter-conjecture:

Conjecture

There is a strong, n-state machine M' such that S*(M') is not

isomorphic to any subsemigroup of S*(C,).



CHAPTER V

DISTINGUISHING SEQUENCES

Having presented some of the theoretical proporties of realizations
with feedback encoding, we now turn our attention to a specific
applicatiohs area. Actually, we have already discussed one application
in Example 3.4, where we showed that the use of feedbagk encoding
can lead to more efficient cascade realizationms.

Given a behavior which is to be realized, one often p:aces additional
requirements on the realizing machine; perhaps the simplest such
requirement is that the machine be reduced. Another réquirement is
that the machine have a distinguishing sequence, an input string whose
output sequence uniquely identifies the machine's starting state.

In this chapter we.will develop techniques for realizing some machine
M', with feedback encodiﬂg, by a machine M having a distinguishing
seuence. It is important to note that the machine which has the
distinguishing sequence is M, and not M together with the feedback
encoder.

Up to now we have been concerned only with the realization of
state-behaviors, but in this chapter, where we will be studying dis-
tinguishing sequences, we will instead study the realization of
input-output behaviors. We will need to define the realization with
feedback encoding of a machine having outputs in two ways, one for
the Moore case and one for the Mealy.

If M = <Q,I,8,A,Y> and M' = <Q',I',8",)',Y'> are Moore machines,
then M reali?es M' with feedback encoding if there are maps ¢:Qongp Q',

h:Q x I' + I, a type I feedback encoder, and g:Y + Y', such that

¢(q)x' = ¢(qhq(x'))

107
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and

N (@) = g (). (5-1)
Since in most of what follows the realizations will be isomorphic,
the output decoder, g, may often be just a one-to-one correspondence,
and can be omitted if we assume, without loss of generality that
A'(¢6(q)) = A(q), giving the alternato conditions
¢(q)x' = ¢(qhg(x'))
A'(¢(q)) = A(q)

(5.2)

Similarly, if M and M' ave Mealy machines, then M realizes M'
with feedback encoding if there are maps ¢:Q°n£° Q', :QxI'~>1I, a
type I feedback encoder, and g:Y » Y', such that

¢(@)x' .= ¢(qhg(x'))

(5.3)
At (e(q),x") = g(A(q,hg(x'))
or, if we take Y = &' and g to be the identity map,
¢(q)x" = ¢(qhg (x"))
(5.4)

At (6(a),x") = A(q,hq(x"))

Example 5.1

Let M1 and M2 be the Mealy machines in Figure 5.1. Then M2

realizes M1 with feedback encoding. For example, we

Figure 5.1, Realization with feedback encoding.
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check (5.4) at state Ty where ¢(ri) =q;. For x! = 0,.hr2(x') =1,
so that q20 =q, = ¢(r21), and‘Al(qz,O) = b ='A2(r2,1); for x' = 1,
hrz(x') =0, q,l = q = ¢(r,0) and A (4,,1) = & = A,(r,,0).
- From Example 5.1, we can see the relationship between the state
' transition graphs of two Mealy machinés when one realizes the other
isomorphically with feedback encoding. Not only are the digraphs iso-
morphic, but the isomorphism preserves the output labels, so that only
the input labels are permuteds
As is well known, the concepts of Mealy and Moore machines are
esgentially iﬁterchangeable. We show in Theorem 5.1 that this inter-
changeability carries over to realizing machines.
Theorem 5.1
Let M and M' be Mealy machines, and mfpﬁ' their Moore equivalents.
If M.realizes M' with feedback encoding then ﬁ realizes ﬁ'
with feedback encoding.
PROOF:

ogtOQ, and h:Q x I' + I such that

We are given maps ¢:Q
"
¢(@)x' = ¢(qhq(x')) and A'(4(q),x') = A(q,hq(x')). Now, M has states
qpr’ where 9 is a state of M and some transition into qp has output
v - "
Wps A(qpr) = W Similarly, M' has states qét.

Let 3 be the map defined by $(qpr) = q;t if and only if r = t and

N 4"
¢(q,.) = q'. Let h be defined by h = h

4"
Then, for any state qpr and input x' ¢ I', qprﬁ

N
for all states qpr e M.

G " Ot
(x") = dg and A(qp,h (x")) = W Thus

b ki

By 00 = ¥ay) » 0(,) = olaphy () = #lepx's

so that %(qprﬁqpr(x')) = $(qpr)x'; and also,

and only if qph



110
n " n, " . _ " _ - NN = LYY '
x<qpr.hqprcx')) " Mlapghy 1) - X(age) = wy = X' (8lage)) = X' (B, ) %)
Hence M realizes M' with feedback encoding.

Recall that for a state q and string Xpoeee X, Bq(x1 vee X ) =

n n

k(q,xi)x(qxl,xz) . A(qx1 ces xn_l,xn); of course, in a Moore machine
this reduces to Bq(x1 ces xn) = A(qxl)k(qxlxz) cen A(qx1 ces xn).
Defining B in this manner we are omitting the output associated with
the current state, q, and therefore ignoring a potentially useful item
of information. Since this i;formation is usually available, especially
in actual circuits, it is worthwhile to examine the effects of this
omission on the work t§ follow., All the constructions which we give
will be valid for either definition of B, but bounds involving the lengths
of input sequences will be larger by 1 than they Qould be with the
"usual" definition of 8. The advantage to the form taken here, as we
shall see, is to make it possible to treat certain behavioral character-
istics of a machine as though they were strictly structural.

We say that a string x is a distinguishing sequence for a machine
M if for any states q # q', Bq(x) # qu(x). Clearly [21] any machine
which has a distinguishing sequence is reduced, but the converse doeg
not hold. We will first preseﬁt some examples of machines taken from
the literature which do not have distinguishing sequences, and show
how each can be isomorphically realized with feedback encoding by a
machine having a distinguishing sequence.

Example 5.2 [21, p. 116]

The machine M1 of Figure 5.2 has no distinguishing sequence.

However, machine M2 certainly realizes M1 with feedback

4

encoding, since the onlyAdifference is a permutation of the

input labels at q;- The string x =11 00 1 is a distinguishing
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‘Figure 5.2. A diagnosable realization.

sequence for MZ; in fact, the B-function has the values

B (x) =abaab
4
B (x) =babaa
9
B (x)=bababd
3
%4&)

BqS(X)

abbab

aabab

Note that the action of x is to carry every state to qg, SO that
X is also a synchronizing sequence [21]; in general, however, a dis-
tinguishing sequence need not be synchronizing, and a synchronizing

sequence certainly need not be distinguishing.

Example 5.3 [21, p. 120]

Consider Figure 5.3. Again M1 has no distinguishing sequence,
while‘Mz, which realizes h&with feedback encoding, has one.

In fact if x = 00 then



]
o
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Figure 5.3. Another diagnosable realization.

In the case that all the Symbols in a distinguishing sequence x
are identical we say that x is a repeated symbol distinguishing sequence
[27].
" Example 5.4 [27, p. 325]
Referring to the machines in Figure 5.4, M1 has no distinguishing
sequence, M, realizes M., with feedback encoding, and M2 has a

2 1
repeated symbol distinguishing sequence; in fact, if x = 14, then

Bql(x) =baaa
qu(x) =aaaa
B = b
q:”(x) aaa
B (x) =aabbd
9%
B (x) =abba
95

bbaa

™w
L
(=)}
~
ta]
~
]



Figure 5.4. A repeated symbol diagnosable realization.

Before we begin our study in detail, a word is in order about
just what it is that we wish to accbmplish. The existence of a dis-
tinguishing sequence is properly a behavioral, rather than a structural,
property. Nevertheless, as the previous examples show, feedback encoding
techniques can, for some machines, produce realizing machines with
distinguishing sequences and yet cause no increase in state size,
input set size, or output set size. Wé will develop some results which
will give techniques, in some cases, for finding realizing machines
with distinguishing sequences. These techniques will not cover all
the possibilities, however. For example, while they could be success-
fully applied to machine M1 of Figure 5.2, they would not produce the
same realizing machine as is given in Example 5.2. Rather than simply
giving techniques, we are more concerned with trying to demonstrate
that feedback encoding techniques can be an effective tool. The

‘usefulness of these techniques does not lie solely in the theorems
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which we are presenting.

In a machine M, two states q; and q, are said to merge if, for some
input X € I, QX = q,X; states q; and q, converge if, under some input
X, they merge and if, also, A(ql,x) = A(qz,x). If qy and q, converge
™ g under x we write (ql,qz)x = Q. Note that in a Moore machine
two states converge if and only if they merge.

Lemma 5.1 [21]

If a reduced machine is convergence-free then it has a
distinguishing sequence€.

The converse is not true; a machine need not be convergence-free
to have a distinguishing sequence (see, for example, machine M2 of
Figure 5.2). However, if a machine is reduced and k states converge
to a single state then by state-splitting techniques;-and adding additional
output symbols, the ;onvergence can be eliminated; ‘this requires adding
on the order of {éJ new states and output symbols [27]. Of the two,
addition of new states is the more costly, and, as we have noted above,
the techniques we present wiil be geared towards producing no increase
in state-set size, although some increase in output-set size will not
always be avoidable. We will first concentrate on the problem of
designing realizing machines which have repeated symbol distinguishing_
sequences.

Let 5> = <50’51”"’Sm-1> be a sequence of symbols, where it
is understood that any reference to sj is for j moduio m. For any
integer n, we say that <s.> has property P(n) if there is an integer
i, for which S5 # S wn’

n n
Let M = <Q,{1},6,A,Y>: be a strong autonomous machine with m states,

, and let A(M) be <A(q0,1),;..,k(qm_1,1)>.

where qil =45,
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Theorem 5.2
A strong autonomous machine M .is reduced if and only if, for
all n = 1,2,...,[%], A(M) has P(n).
PROOF:

Suppose first that A(M) has P(n) for each 1

A

n g [gﬂ, but that

sTates qq and q are equivalent. Then for any x ¢ {1}*,

i+k
x(qi,x) = A(qi+k,x), so that for r = min{k,m-k}, 1 s r s [gﬁ and for
every state qj,'x(qj,l)-= A(qj+r,1), which would indicate that A (M)
does not have P(r), a contradiction.

On the other hand, suppose that M is reduced, and choose 1 < n ¢ [%H.
Since 9 and qn are not equivalent, there is some input sequence x,

£(x) 2 1, such that A(qq,x) # A(qn,x). Thus if r = £(x), then

A(qr_l,l) # A(qn;r_l,l),~so that A(M) has P(n).

0f course, Theorem 5.2 just says that A(M) has no proper
subperiods. If <s;> has P(n) for each 1 < n ¢ [%H we say that it has
prbperty P; conversely, if <s;> does not have P(n) for some n we say
that P fails (for n).
Lemma 5.2
Let <s;> = <SO’51’f"’sm-1>'
a) If-P fails for n it fails for the g.c.d. (n,m).
b) If P fails for‘n1 and n, it fails for (nl,nz).
PROOF:
a) Let g = (n,m). It will be sufficient to show that Sy = sg.
Since, by hypothesis, Sp ™ S, B Sy, ® rees We need oniy show that;
for some k, kn = g(mod m). By Lemma 3.3, this congruence has a solution

when (n,m)|g; but g = (n,m), so that 5" Sy



116

b) Let g = (nl,nz). In this case we look for k1 and.k2 which

satisfy n1k1+n2k2 = g(mod m). Since (nl,nz,m)lg, Lemma 3.4 guarantees

a solution to the congruence, so that, again, S = sg.
Theorem 5.3
5 . < LN ) >.
Let So # e If St 251 does not have P then

<§b,sl,...,sm_1> has P.

PROOF:

Let n* = min{n|P fails for n}. We show that for n < n*,
<§b,sl,...,5n_1> has P(n).

If n* = 1 then the s; are identical, and hence the new sequence

has P. If n* =2, thenm 2 4. Thus §a # 52 so P does not fail for

n = 2, But since So must have been different from s., as otherwise we

1

would have had n* = 1, we still have Sy =8, # Sq» SO the new sequence

also has P(1). In general, we know m > 2n*. ‘Now suppose for k < n*,

-

. . .- Then since P fails forn*, s, ., =s. #s, s
i, 1k+k 1k+n i i
Furthermore ik+n* 3 ik(mod m) and i

Thus if we change s

ok

+k(mod m), since m > 2n*,.

ik+k+n*'
k+k+n* 3 ik

0 to §6’we can not, for n < n*, cause P(n) to fail

for the Sequence <S,,S,,S,,...,5 1>+ But, since 5o # So° Sp # S+ = Sg
so the new sequence has P(n*).

Now, let n¥ = min{n|P(n) fails for <s;>} and n3 = min{n|P(n) fails

* * ’ ;
for <§b,si,...,sm_1>}. Then n3 > nj. But could have started with

o1’ and changed So

This is impossible, so <§b,sl,...,sm_1> has P,

<50’5i""’s to Sg» giving <si>. Thus n% < n*.

2 1

The next result holds for both Moore and Mealy machines.

Lemma 5.3
Let M be a machine and suppose that in the labelled digraph

consisting of D(M) together with state and output labels,
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there is a spanning cycle whose output sequence has property P.
Then M can be isomorphically realized with feedback encoding
by a machine M' with a repeated symbol distinguishing sequence.
PROOF:
We choose M' to have the same labelled digraph as M. Let the

states, in their order along the cycle, be CPYLPERRRL We will

m-1"
define an h map such that at such state q;, one input X for which

Q% = Q5.4 is coded as hqi(xi) =1'e ?', and assign the other values
of h arbitrarily, preserving the type I property. Then in M' the input
symbol 1' will define a strong autonomous submachine M" of M', which,
by hypothesis will be reduced. But it is known [27] that a reduced.
autonomous machine has a (repeated symbol) distinguishing sequence, y.
Since M" has the same state-set as M', y is a repeated symbol distin-

guishing sequence for M'.

A 2-factor of a digraph is a spanning subdigraph in which each
point u has id(u) = od(u) = 1; a 2-factor is a union of directed cycles.
Suppose that a machine M has a 2-factor Z = ZfJ..&JZt consisting of
t directed cycles. As in Lemma 5.3, we can define a machine M' which
realizes M isomorphically with feedback encoding, such that Z is the
subdigraph induced by a single input symbol, x'. We no& need only make
sure that the autonomous submachine defined by x' is reduced. This-
can be dpne, in the worst case, by adding t new output symbols,
wl,...,wt. By Theorem 5.3, if we change one output label ih Zi to
wi, Zi will be reduced. Furthermore, since Wo 7 wj, ?o state in Zi

can be equivglent to a state in wj. Of course, in general we could

expect to need fewer than t new output symbols. In the next lemma
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we summarize the known conditions for a digraph to have a 2-factor:
if D(M) satisfies any of these conditions then M can be isomorphically
realized with feedback encoding by a machine with a ropoated symbol
distinguishing sequence.
Lemma 5.4
a) A digraph D-has a 2-factor if and only if for each set S
of points, |S| < [y8] [2].
b) If a strong digraph D has p points and, for each point v,

id(v)+od (V) 2 p, then D has a spanning cycle [9].

Of course, the fewer the number of cycles in a 2-factor, the
fewer the number of output symbols which will have to be changed.
On the other hand, fhe more cycles in the 2-factor, the shorter will be
the length of the distinguishing sequence. This trade-off is expressed
in the next theorem: by [r > 0] in the theorem we mean the logical
variable which takes the value 1 if r > 0 and 0 otherwise.
Theorem 5.4
Let M be a machine with p states and suppose that D(M) has
a 2-factor which contains t cycles, of which r are l-cycles
(loops). Then M can be isomorphically realized with
feedback encoding by a machine which has a distinguishing
sequence. Furthermore, the length L of the distinguishing
sequence and the number N of output symbols which must be
changed satisfy

L < p-2t+r+l

-4
7N

t-[r > 0]

L+N < p.
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PROOFi

We have already indicated how the existence of a 2-factor implies
the existence of a realizing machine which has a distinguishing sequence.
In the worst case, we neéd to change one output symbol on each of the
t-r cycles of length greater than one, both to reduce the cycle (see
Theorem 5.3) and to make the cycles inequivalent. In the worst case
this requires adding t-r new output symbols, although this can undoubtedly
be'reduced in practice. Each of the r loops is already reduced, so we
need add or change at most r-1 output symbols to make them inequivalent.
This gives N s (t-r)+(r-1) = t-1 if r > 0 and N s t if r = 0; hence
N < t-[r > 0]. The length L of the distinguishing sequence is at most
the length of a &istinguishing sequence for the.largest cycle, which
is one less than the length of the cycle ([27], [30]). For a given
t and T the longest cycle is attained when all but one of the t-r cycles
of length greater than 1 are 2-cycles, usihg 2(t-r-1) of p-r states.
 The remaining cycle then has length p-(2(t-r)-2)-r = p-2t+r+2, so that
L svp-2t+r+1. No&, if r > 1, L+N < t-1+p-2t+r+l = p-t+r, which takes
its maximum when all cycles are l-cycles, so that t = r, Ifr =0,
then L+N s tfp-2t+1 = p-t+l, which takes a maximum when t = 1, and the

2-factor is a spanning cycle. Thus, L+N s p.

The bound L < p-2t+r+l < p compares quite favorably with the bound
Ls (p-l)pp given in [10], although it is not known if the latter is a
best possible upper bound. |
| Notice that while the theorem describes a sufficient procedure,
it is certainly not necessary. The machine in Example 5.4 has a spanning
cycle, but w; were able to find a shorter distinguishing sequence by

inspection.
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The simplest way for a machine to satisfy the conditions of the
theorem is for each of its states to have the same indcgree; such a
machine is called homogeneous in [29], where it is shown that any machine
whose reduced machine is strong is behaviorally equivalent to a homo-
geneous machine. Theorem 5.4 could then be applied to the homogeneous
machine. Of course, the homogeneous machine has a much larger state
set, but this disadvantage may be offset, as Miller and Winograd [29]
note:

McNaughton and Booth [26], however, found that in the
2-input case a particularly uniform circuit structure
(for the homogeneous machine) resulted for the state
to state circuitry ... the uniform structure may be
quite advantageous in practice, and ... can be
readily seen to extend to the p-input case.

On the other hand, even if the condition of Lemma 5.4a does
not hold, we can use the techniques outlined above to produce a realizing
machine with a distinguishing sequence.

Note first that any machine can be isomorphically realized by a
machine with a repeated symbol distinguishing sequence, by choosing
an autonomous submachine and adding output symbols so as to make it
reduced [28]. With feedback encoding a similar technique applies,

but there is more freedom in choosing the substructure to reduce, and

consequently less output augmentation may be necessary.
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Any aﬁtonomous machine, whether or not it is a union of directed
cycles, is a funetional digraph: a digraph in which each point has out-
degree exactly 1. Given any functional subdigraph D of D(M), we can,
with feedback encoding, make D the digraph of an autonomous submachine
M, and thén add output symbols to make M reduced. Thus, for a machine
M, we would choose a functional subdigraph D which was as "close to"
being reduced as possible, and then add output symbols so as to make
it reduced. The technique in doing this is first tb make each cycle
of D reduced, and to make the cycles inequivalent, as we would if
D were a 2-factor. We then continue, making each component of D
ieduced.b Two states can be equivalent only if they belong to the same

component and there is a homomorphism which identifies them;

homomorphisms of autonomous machines (as we noted in Chapter II the
notions of SP and admissible homomorphisms coincide for autonomous

machines) have been studied in detail in [34]. We can therefore state:

Remark

Any machine can be isomorphically realized with feedback encoding
(in the sense of (5.1) or.(S.S)) by a machine with a repeated

symbol distinguishing sequence.

Example 5.5

The machine M of Figure 5.5 is reduced, has no distinguishing

sequence, and has no 2-factor, since

IY{qlnqznqan4:q5}| a I {QZ:Q30Q4lq5}I = 4 < I{ql;qz.qs.q4.q5}l~

Suppose that we choose the functional subdigraph D of Figure 5.6;

the outputs, but not the inputs, associated with the arcs are shown.
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Figure 5.5. A machine without a 2-factor.

D
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If we change the output label on the arc qgd, to a new symbol, c,
then the lower component in Figure 5.6 will be reduced. To reduce
the upper component, we need only change the symbol on one of the arcs
q;45 OF G453 since we already know that ¢ must be decoded to an a,
we can relabel 4,95 with ¢. The resulting reduced autonomous machine
D' is shown in.Figure 5.7, and the machine M' which realizes M isomor-

phically with feedback encoding is given in Figure 5.8.

Figure 5.7. A reduced autonomous machine.
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M'

Figure 5.8. A machine with a distinguishing sequence.

In fact, x = 111 is a distinguishing sequence, for

Bql(x) =cbb
qu(x) =abb
qu(x) =bbb
Bq4(x) =aca
qu(x) =cac
Bqé(x) =ach
Bq7(x) =aac

A reduced machine will fail to have a distinguishing sequence only
if two states converge under some input. sting classical techniques,
as we noted above, once a convergence is found to interfere with the
existence of a distinguishing sequence, state-splitting and/or augmentation

of outputs must be employed. With feedback encoding, however, it is
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often possible to eliminate the convergence without adding states or
output symbols. We first state a theorem indicating when this can
be done for a 2-input (Moore) machine.

Theorem 5.5

Let M be a Moore machine with two inputs X and_x2 and exactly
one convergence: (qi,q;)xl = qf,_ Then, if there is no state
q such that qx, = qf, M can be isomorphically realized with
feedback encoding by a convergence-free machine with the same
output function.

PROOF:

Note first that since M has only one convergence, qix2 # qéxz.

Let q%x2 = qg and qixz = qg.(see Figure 5.9).

Figure 5.9, A convergence.

We can recode inputs at qi, eliminating the convergence, unless
there is a state dé such that qtl)x1 = qg; similarly, we can recode at
q; unless there is a qé such that qéx1 = qg. Suppose that we can recode

neither at qi nor at q; (see Figure 5.10).
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Figure 5.10. A step in the proof of Theorem 5.5.

- If, for example, there is no state qi such that qix1 = q:l,,x2 then
we can recode the inputs at qg without causing a new convergence;
this, in turn, permits us to recode the inputs at q%, and hence
eliminate the convergence.

Continuing in this manner gives rise to sequences of states

1 1 1 11
e lq 1’q0’q1 aqz ’q3:q4) .

2 2 2 2
'-'sq l’qO’ql’qZ’qS’ ..
such that

if j>1 q%x1 = q
and if j <1

Since M is finite the process of extending these sequences must
have repetitions. Suppose the first repetition is that'two of the
q§ coincide., If we aré at the stage of choosing q? and find that it
is the same as some previously chosen qi then qi must be an X, image
of two distinct states, by virtue of the way q? is chosen, unless
k = 1. If k*# 1 this implies that M has two convergences, which is

‘a contradiction., If k = 1 then assume without loss of generality that
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j > 0 and continue the process at the 'other end" of the sequence.
" It then becomes impossible for the process to fail for lack of a new
q}n, for this would have to imply that M has a second convergence.

The process therefore must stop because of an inability to choose
a new q;‘l_(or q;_l). lNuc-thon wo can progressively relabel inputs
at qj,qj_l,....(or at q;
(Qr qi), eliminating the convergence. At no time have we changed any

Lab, .q;+1,...) until we finally relabel at q;

output label: this proves the theorem.

The technique used in Theorem 5.5 is applicable to Moore or Mealy
machines. More important, it may be used successfully with machines
which have.more convergencegthan specified in the theorem. One straight-
forward generalization is given by the following corollary.

Corollary

If M has exactly n convergences (qi,qg)ki = ql, where the

xi, i=1,...,n are distinct, and if there are n additional

inputs xg such that there is no state q for which qxé = qi,
then the convergences can be éiiminated.
PROOF:
For each i, apply the theorem to that submachine of M defined

by ‘the two inputs xi and x;.

The corollary, of course, was phrased to insure that the n appli-
cations of the theorem would not conflict. Certainly, we can expect
that the same techniques will apply to many machiﬁes which do not
meet the strict condition of the corollary, by breaking up the
convergences one at a time. Unfortunately, the extent to which the
technique can be reapplied depends both on behaviorél and structural

properties of the given machine. While useful as a heuristic, this
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approach to eliminating convergences cannot easily be expressed in
algorithmic form, with clearcut rules for choosing, given at some
stage a convergence (ql,qz,...,qn)x1 = q, which subconvergence
(qi,qj)x1 = q to break up, and which input X, # X, to use.

In contrast to this essentially local attack on the problem of
eliminating convergences, we will develop a global procedure for reducing,
not the ﬁumber of convergences, but rather the number of merges. With
Moore machines as we have defined them the concepts of 'merge' ahd
"converge" are, of course, idéntical, but this, as has been pointed
out, is not always a useful identification to make. Thus, fhe global
technique we propose may often be inefficient, as it will reduce many
merges which are not convergences. For machines which have a large
number of convergences, however, wé can expect the technique to

substantially decrease the number of additional states or outputs which

are required for a diagnosable realization. Unfortunately, since the
technique deals with merges and not convergences, exact results on the
number of additional states or output symbols which will be saved are
not available. In fact, it is possible to devise examples where the
procedure, while reducing the number of merges, increases the number
of convergences. This will become clearer as we get into the actual
mechanics of the procedure.

Let D be a digraph, and number the points ul,...,up so that
id(ul) 3 id(uz) < ud € id(up). The indegree gequence of D is the
seQuence <id(u1); id(uz),...,id(up)>. Suppose that D is the digraph
of a Mealy machine, D = D(M), and let M have t inputs: Let é(D) be
the quantity .g max{O,id(ui)-t}. For any arc uv, let {(uv) be the
input label ;nlgie arc. We will say that there are n merges

at a state u if there are n+l arcs V{U,Volseee,V U such that
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s(vlu) = E(VZu) s L., = g(vn+1u); note that if all these arcs had the
same output label it would be necessary to add n new output symbols
to eliminate all the convergences. Let Z(u) be the total number of
merges at u, and (M) be the total number of merges in M.

Lemma 5.5

For any machine M with t inputs, E(M) 2 EDM)).

PROOF: |

We will show that for each state u, Z(u) > max{0, id(u)-t}
Clearly, the equation holds for each state u with id(u) ¢ t. If the
ﬁumber of different input labels on arcs leading to state u is m s t, where

.id @>t, then E(u) = id(u)-m. Thus, if id(u) > t then E(u) = id(u)-m 2 id(u)-t.

TheoremA5.6
Any machine M can ‘be isomorphically realized with feedback encoding

by a machine M' with E(M') = Eom).

To prove this theorem we need to investigate those properties
of the assignment function £ which will guarantee that Z(M) = Eom).
To this end, we introduce some additional notions from graph theoxy.

A bigraph [12, p. 17] is a graph G whose point-set V can be
partitioned info two sets V1 and V2 such that all lines of G join
points of V, with points of v, A line-coloring of a graph is an
assignment of_colors to the lines in such a way that any two lines
which are incident with the same point receive different colors. The
smallest n such that G can be line-colored with n colors is the
line-chromatic number x'(G). Clearly, the line-chromatic number of a
graph G is not less than A(G), the maximum of the degrees of the points
" of G. Fora bigraph, a stronger statement can be made. |
Lemma 5.6 ([23, p. 171])

For any bigraph G, x'(G) = A(G).
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Now, let M be a machine with states {vl,...,vp}, and form a bigraph
G with points {v,;,v,.|i=1,...,p} where v, is adjacent to v,; if and
only if A D(M); these are the only lines in G. Note how
the degrees of the points of G arc rclated to these of the points of
D(M): deg(vli) = od(vi) and deg(in) = id(vi). If we "color'" each line
VliVZj of G with the corresponding input symbol g(vivj), then if two
lines are incident with the same point Vi3 they are colored differently,
since M is a deterministic machine. If lines x and y with £(x) = £(y) are
incident to  point Voi there is a merge. As Lemma 5.5 shows, there
must be merges at states Vo with id(vi) > t, the number of inputs.
To prove Theorem 5.6 we will show how to assign inputs to the arcs of
D(M) in such a way that the resulting machine is complete and determin-
istic, hence realizing M with feedback encoding, and the only merges
occur at v with id(%i) > t. If the line-cherat{c number of the
associated bigraph G is x'(G) 2 t, we will color the lines of G from
a set of colors {Bl""’BA(G)} in such a way that only colors from
{81""’Bt} are used to color lines incident with points Vos with
deg(v,.) s t. If we translate each color B, in‘{Bl,...,Bt} to the
input symbol X5 and assign input Symbols from'{xl,...,xt} to lines

colored from {8 "BA} in such a way as to give a complete

t+1’"°
deterministic machine M', then there will be no merges at states Vi
with id(vi) < t. Furthermore, if id(vj) > t then since in the coloring
of G each color 81""’8t appears once on a line incident with V2j’
the number of merges at vj will be exactly id(vi)—t. Thus we will
have =(M') = §(D(M)). To prove Theorem 5.6, it is thén necessary only

to demonstrate that a coloring of the prescribed type always exists.
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Theorem 5.7
Let G be a bigraph in which max{deg uluevl} =n= do, and suppose
that the degrees greater than n which are realized in V2 are
n < d1 < d2 <iea< dr = A, Then there is a line coloring of G

from {81,...,BA} such that all lines colored
B V ’.'l’B
di*l di+1
are incident to points of degree greater than di’ for

i = 0,...,1"'1.

To prove the theorem we fifst?develop a sequence of lemmas.
Lemma 5,7
Let G be a bigraph such that all points of maximum degree are
in V,. Then G can be line colored fromv{Bl,...,BA} such that
the only lines colored'BA are incident with points of maximum
degree.
JF:
We suppose the result to be true for bigraphs with q-1 lines.
Let G have q lines and let all points of maximum degree be in VZ; let
X = uv be incident with one such point v. If A(G-xj < A(G) = A then
Vv was the onlyvpoint of maximum degree in G. So any line-coloring of
G=x from'{Bl,...,BA_l} extends to a line-coloring of G in which only
x is colored 8,. |
If A(G-x) = A(G) = A then we can color G-x with A colors so that
all lines colored 8, are incident with points of maximum degree; in
particular, no line colored By is incident with v. If there is no
BA-line at u, then x can be colored BA in G. Otherwise, therg is a
BA-line uv, (where deg v = A). Since deg u < A there is some color

a which does not appear at u. Clearly however, there is a line viy,
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colored a. Thus we get a sequence <u = uo,vl,ul,vz,..., > such that
egch vy has maximum degree, each ujvj+1 is colored BA and each vjuj is
colored a. At each step of this process we are choosing a new point.
If we have just chosen Vj then uj cannot be a previously chosen U -
u # uy as a does not appear at u, and u, cannot be some other previously
chosen uk for otherwise there would be two lines colored a incident
to . Similarly, if uj has just been chosen, vj+1 cannot be a previously:
<hosen v or otherwise there would be two lines colored By at vi. of
course, since G-x is a Bigrapﬂ, no vj can be equal to any L Then,
since G-x is finite, this proceés must terminate when we are unable
to choose a new uj Or a new Vj+1' Since deg vj = A, the process cannot
stop with a Vj’ so it must stop at some uj, at which there is no
BA-line. We have thus defined a component of the subgraph G-xla,BA,
and can interchange the colors a and BA in this sﬁbgraph, preserving
the validity of the coloring. But now BA does not appear at u, so x
can be colored with By
Lemma 5.8
In a bigraph G, suppose max{deg ulueVl} = n and that there are
at least two degrees greater than or equal to n realized by
points of V2, the two largest being n s A' < A, Then there is
a line-coloring of G from {81,...,6A} such that all lines
colored BA'+1""’BA are incident with points of maximum degree.
PROOF:
Clearly the result is true whenever n = 1. Suppose it to be true
for n-1, and suppose that in G, max{deg uluevl} = n. ‘Note that if
A-A" =’1 then the result holds by Lemma 5.7.

Suppose now that the result is true for A-A' = t-1, and that in

G, A-A' = t, where ViseeesV, aTE the points of degree A. We remove
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an independept set X of r lines, one adjacent to eéch of ViseresVpo
to get G':A(G') = A(G)-1. "If, in G', max{deg uluevl} = n then G' can
be colored with 4(G)-1 colors in the prescribed mannor: the only lines
colored BA5+1""’BA-1 are incidont with the V. Now, the lines of X
can be colored 8,.

Otherwise, max{deg u|ueV1} = n-1. By induction on n, a line-coloring

of G' with the desired properties can be achieved, and this coloring

uses only A-1 colors, as above. Again, the lines of X can be colored

BA‘
Lemma 5.9
Let G be a bigraph in which max{deg u|usV1} =n, A(G) = A > n,
and su@pose fhere are no points of degree n+l,...,A-1. Then
G has a line-coioring from'{Bl,...,BA} such that all lines
colored Bra1se 2By are incident with pdints of maximum degree.

PROOF:

By Lemma 5.7 we know the result is true, for any n, if A = n+l.
Also, the result is trivially true whenever n = 1. Suppose that the
result holds when max{deg u|ueV,} = n-1, and let G have max{deg uluev;} = n.
Since we know the result holds for A = n+l suppose that it holds for
A = n+k-1, and let G have A(G) = A = n+k. Suppose the poiﬂts of degree
A are Vvi,...,V.. Remove an independent set X of lines which covers
{VI"f"vr}’ and let G-X = G'. If in G', max{deg u|ueVi} = n then the
resulting graph satisfies the conditions of the theorem with 4 = n+k-1,
so there is a line-coloring where all lines colored B ;,..¢sB8 1
are incident’with the Vi Then the lines in X can be colored B ook

and the result holds.
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Otherwise, in G', max{deg ulueVl} = n-1. Then the result holds
for G' by induction unless there were points of degree n in Vz. If
so, G' satisfies the conditions of Lemma 5.8 with 4'(G') = n,
A(G') = A-1, and so there is a line-coloring of G' from {80,...,6A_1}
such that all lines colored BA'+1 = Bn+1""’BA-1 are incident with the
v, By coloring the lines of X with Ba the result holds. If V2 had
no points of degree n, then by the inductive hypothesis on n, in the

L . . . L

line-coloring of G' all lines colored Bn’8n+1""’BA-1 are incident
with the Vi We can again color the lines of X with BA, proving the

theorem.

PROOF OF THEOREM §.7:
The result is trivial for n = 1. Also, by‘Lemma 5.9 it holds
whenever r = 1, so we can assume it true for Pigrgphs in which
max{deg ulueVl} s nll and also for bigraphs in which max{deg u|ueV1} =n
and r-1 degrees greater than n are realized in V2. Let G have
max{deg uluevl} = n and let degrees n < d1 <iaa¥ dr = A be realized
in VZ’ We first prove the result in the case dr-dr_1 = 1. Suppose
we remove an independent set X covering the points of degree dr’ to
get a graph G'. If the maximum degree of the points in Vl is reduced

to n-1, then G' has a line-coloring of the desired type; in particular,

all lines colored Bd ,...,Bd are incident with points of degree
r-2 r-1

dr-l in G', those being the points of degree dr;l

by coloring the lines of X with BA’ the desired coloring results. If

or dr in G. Then

in G' the maximum degree of the points in V1 is n, then the inductive
hypothesis on r guarantees the desired coloring for G', and again we
can color the lines of X with BA.

Now, suppose the result holds for dr-dr_1 = t-1 and suppose that,



135

in G, dr-d t. Let ViseresVg be the points of degree dr = A, We

r-1"
‘can remove an independent set of lines X which covers {vl,...,vs},

giving a graph G' with maximum degree A-1, and next largest degree

d._,i note that (a-1)-d__, a_t-l' If, in G', max{deg uluevl} =n

we yget a line coloring-of G' from {813""BA-1} with the desired properties
by the inductive hypothesis on t. If not, we get a line-coloring by

the inductive hypothesis on n. Either way, we can color the lines of

X with BA.

We state, without proof as it bears no direct relationship to our
study, the following generalization of Theorem 5.7.
Theorem 5.8
| Let G be a bigraph which has points of degree
dl < d2 <i4e< dr = A, Then G has a liﬁe-céloring from

{81,...,BA} such that all lines colored

Bdi+1,...,8di+1
are incident to points of degree at least di+1'
PROOF:
See [6].
Example 5.6

Consider fhe machine M in Figure 5.11. There are convergences

at states 5,9, and A5 and M certainly does not have a
distinguishing sequence. The associated bigraph G has A(G) = 3,
and so can be line-colored with three colors. Two such colorings
are given in Figures 5.12 and 5.13. In Figures 5.14 and 5.15

we show the deterministic incomplete machines with three inputs

which the colorings induce.
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Figure 54d1. A machine with convergences at three states.
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941 QQ a |
b /
| . D 422
92 .Q;: .
93 @<a ' : 23

9, 0<2 “ 9y

Figure 5.12. A line coloring of a bigraph.
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9:8<, _® %21

e > e

;@b "» D 4,5
P \

94 0<"1b ‘ D 924

95 @%b '\ Aps

Figure 5.13., A line coloring satisfying the conditions of Theorem 5.7.
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Figure 5.14. An incomplete machine derived from Figure 5.12.
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Figure 5.15. An incomplete machine derived from Figure 5.13.
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In each machine we would change the labels ¢ to an a or b so as
to make the resulting machine both complete and déterministic. For
the machine 6f Figure 5.14 there would still be three convergences.
However, .as the coloring in Figure 5.13 satisfies the conditions of
Theorem 5.7, the only arcs labelled c are incident to one of the states
q, or qg having maximum indegree, when the labels on the machine in
Figure 5.15 are changed, the resulting machine, shown in Figure 5.16,

has only two convergences.

As we have noted, the procedure which we have outlined reduces
merges rather than convergences, and for machines M in which §(D(M))
is small but nonzero may actually increase the number of convergences.
Nevertheless there are two cases in which the procedure can be shown

to be of definite advantage. We state these as corollaries to Theorem 5.6.
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Figure 5.16. A machine M with é(D(M)) convergences.
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Corollary
If M has t inputs then M can be isomorphically realized with

feedback encoding by a convergence free machine if and only

if every state q has id(q) = t.

Such machines, of course, also satisfy Theorem 5.4; this corollary,
therefore, provides an alternate method of attack.

Any machine M can ye isomorphically realiied with feedback encodiqg
by a machine which has at most EoM) convergences, since every
‘convergence is a merge. Of special interest is the case when M has

more than é(D(M)) convergences.

Corollary

If M has more than §(D(M)) convergences then M can be isomor-

phically realized with feedback encoding by a machine with

fewer convergences.



CHAPTER VI

SUMMARY

We have studied both properties and applications of realization
with feedback encoding, and, at this point, we should look back to see
what we did, and did not, do.

Most of the study of the properties of these realizations was
motivated by the classical theory of automata. Thus, for example,
admissible homomorphisms play the same role for realizations with feed-
back encoding that SP homomorphisms play for realizations.  There are
subtle differences between these two classes of mappings, however.

On one hand, as we pointed out in Chapter II, admissible homomorphisms

do not exhibit all the lattice properties of SP homomorphisms. Thus,

the full power~of the Hartmanis-Stearns techniques [17] cannot be applied
to admissible homomorphisms. On the other hand, admissible homomorphisms
being defined on digraphs rather than on machines, are somewhat easier

to manipulate and study. In this regard, an added advantage is that,

as mappings between digraphs or graphs, they have interest independent
of their applications to machines; Theorem 2.15 is one example of this.
Another advantage of admissible maps is the procedure for checking
admissibility which is embodied in Theorems 2.7 and 2.13.

0f course, we have actually only scratched the surface in studying
admissible homomorphisms. One major question which is still
outstanding is, which digraphs have no admissible homomophic images;
related to this is the problem of finding those digraphs which have

no walkwise.images. We could also ask, what properties of digraphs

144
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are preserved by admissible homomorphisms, in the sense that the
property '"m(D) 2 k" is preserved?

~ There appears to be little more that can be said about the basic
properties of realizations with feedback encoding. One problem upon
which- we did not touch is the meaning of realization with feedback
encoding when applied to logical nets. For example, Zeigler [36] shows
that for any integer r fhere is a machine M such that any logical net
which isomorphically realizes M has a strong component S which contains
a point whose indegree, in S, is greater than r. While we strongly
suspect that a similar result would hold for isomorphic realization
with feedback encoding, it is not clear how to attack the problem.
Zeigler's proof techniques depend heavily on behavioral properties, which
of course are blurred by realization with feedback encoding, and so
resolution of the problem would probably depend on a better understanding
of the relationship between net structure and transition graph structure.

Thé semigroup of a machine is quite important to the theory of

realization. While we studied the S-semigroups in great detail in
chapter IV, our mdtivation was to be able to develop decomposition
properties, and we must conclude that this goal is very likely unattain-
able. For, we showed that zero-free homomorphisms or divisions between
S-semigroups are both necessary and sufficient for realizations or
divisions with.feedback encoding, which make§ it difficult to suppose
that a finite algebraic structure with similar properties could be
found. And certainly, even if decomposifion properties could be related
to the S-semigroups, there is no real hope of usefully applying these

infinite styuctures to the problems of finite automata theory.
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We also discussed two applications of realizations with feedback
encoding. In Chapter III we showed that cascade realizations with
feedback encoding can be more economical, in terms of the sizes of the
state sets of the component machines, than realizations without feed-
back encoding,.and in Chapter V we showed how to apply feedback encoding
to the design of realizing machines with distinguishing sequences.
Perhaps other applications could have been developed, but these are
sufficient to show the value, and limits, of realization with feedback
encoding. For, and this cannot be stressed too strongly, there are no
clear rules on when to use the techniques we have developed. Even when,
as with the distinguishing sequence problem, we can guarantee the
applicability of the techniques to any machine, whether or not they
are of any value will depend quite strongly on the specific problem.

We have shown the potential power of realization with feedback encoding,
but in any application it will be just one of a number of tools which

can be tried, and will work better in some cases than in others.
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