
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING : ELECTRONIC NETWORKS, DEVICES AND FIELDS,
Vol. 7, 329-342 (1994)

PARALLEL COMPUTATION OF 3-D ELECTROMAGNETIC
SCATTERING USING FINITE ELEMENTS

A. CHA~TERJEE,' J . L. VOLAKIS' AND D. WINDHEISER~

Radiation Laboratory' and Advanced Computer Architecture Laboratory,= Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, U.S. A.

SUMMARY
The finite element method (FEM) with local absorbing boundary conditions has been recently applied to
compute electromagnetic scattering from large 3-D geometries. In this paper, we present details pertaining
to code implementation and optimization. Various types of sparse matrix storage schemes are discussed and
their performance is examined in terms of vectorization and net storage requirements. The system of linear
equations is solved using a preconditioned biconjugate gradient (BCG) algorithm and a fairly detailed study
of existing point and block preconditioners (diagonal and incomplete LU) is carried out. A modified ILU
preconditioning scheme is also introduced which works better than the traditional version for our matrix
systems. The parallelization of the iterative sparse solver and the matrix generation/assembly as implemented
on the KSRl multiprocessor is described and the interprocessor communication patterns are analysed in
detail. Near-linear speed-up is obtained for both the iterative solver and the matrix generationlassembly
phases. Results are presented for a problem having 224,476 unknowns and validated by comparison with
measured data.

1. INTRODUCTION

Differential equation techniques are rapidly becoming the preferred solution methods for the
computation of electromagnetic scattering and radiation from inhomogeneous, three-dimensional
geometries. 1.2 In the finite element method, the computational domain is at first discretized using
node-based or edge-based finite elements. Edge-based elements are more desirable for representing
electromagnetic fields because they exhibit tangential continuity and normal discontinuity across
interelement boundaries and material discontinuities. Moreover, they can treat geometries with
sharp edges and are divergenceless. The outer boundary of the finite element mesh is artificially
truncated at some distance from the target using an absorbing boundary condition (ABC). ABCs
are essentially differential equations chosen to suppress non-physical reflections from the boundary,
thus ensuring the outgoing nature of the waves. They are approximate boundary conditions but
have the important advantage of retaining the sparsity of the matrix system which leads to an
O (N) storage requirement. The number of unknowns is further reduced since it is found that
reliable results are obtained by truncating the artificial boundary only a fraction of a wavelength
from the target.

In our FE-ABC implementation, we use an edge-based finite element formulation coupled with
vector ABCs on conformal boundaries to compute scattering from three-dimensional structures
having regions satisfying impedance and/or transition conditions. The limiting factor in dealing
with three-dimensional geometries is usually the number of unknowns and the corresponding
demands on storage and solution time. Solution techniques which have O (N) storage and feasible
solution time are, therefore, the only way that three-dimensional problems can be solved with
the available computer resources. This is one of the principal reasons for the popularity of partial
differential equation techniques over integral equation (IE) approaches which in contrast lead to
dense matrices. As the problem size increases, the IE and hybrid methods (both need O (N [) , 1
< I =s 2 storage) quickly become unmanageable in terms of storage and solution time. Another
concern while solving problems having more than 100,000 unknowns-a scenario that can be
envisioned for most practical problems-is to avoid software bottlenecks. The algorithmic com-
plexity of any part of the program should increase at most linearly with the number of unknowns.

In this paper, the implementation details of our finite element code are presented along with

CCC 0894-3370/94/050329-14
0 1994 by John Wiley & Sons, Ltd.

Received 4 August 1993

330 A. CHATTERJEE, J . L. VOLAKIS AND D . WINDHEISER

the associated numerical considerations. The various tradeoffs associated with the data structures
used to represent sparse matrices and their impact on vectorization and parallelization are dis-
cussed. The iterative solver-a preconditioned biconjugate gradient (BCG) algorithm-is studied
along with point and block preconditioning strategies and the tradeoffs between the two types of
preconditioners are outlined. A modified incomplete LU (ILU) preconditioner is presented,
which seems to work better than the original ILU preconditioner for our matrix systems. The
computationally intensive portions of the finite element code have been parallelized on the KSRl
(Kendall Square Research) shared-address space distributed-cache architecture with substantial
speed-up. A full analysis of the communication patterns is presented and the solution methodology
is validated by comparison with measured data.

2. FORMULATION

We consider the problem of scattering from an inhomogeneous geometry with material discontinuit-
ies. The scatterer is enclosed within a fictitious surface, denoted by So, where the ABCs are
applied. The second-order vector ABC is given by Reference 3

where a = jk, p = 1/(2jk + 2/r), E’ represents the scattered electric field, n is the unit normal
to the surface and the subscripts t and n denote the transverse and normal component to So,
respectively. Inside the volume, V , the scattered field satisfies the Helmholtz vector wave equation
and boundary conditions associated with the material properties of the body. A detailed formu-
lation of these boundary conditions has been given in Reference 1. The functional involving the
scattered electric field (E”) to be discretized in connection with our proposed FE-ABC formulation
is given by

F (E .) = j [L (V x E 5) . (V x E 5) - k : r r E s . E s] d V v Pr

+jkoZo isk i (n X E’) - (n x Es)dS

+ E” - P(E”)dS i,

(V X E’) * (V X EinC) - k;€,Es - Einc

1
+2jk0Z,, i, (n X Es) - (n x EinC)dS

+ f (EinC) (2)

where E, and kr are the respective relative permittivity and permeability of the dielectric materials,
V , is the volume occupied by the dielectric (portion of V where E, or p,. are not unity), Sd
encompasses all dieletric interface surfaces and S, represents the surface of a resistive (or an
impedance sheet) with resistivity (or impedance) K. Einc is the incident plane wave given by

Eric(,.) = [(& . hi)& + (& . +i)@le-jki.r (3)

where & = 6’ cos a + @ sin a is the polarization vector, k‘ is the propagation vector

PARALLEL COMPUTATION OF 3-D ELECTROMAGNETIC SCAlTERING 33 1

k' = -k,(sin 0' cos ~$5 + sin 8' sin +i j + cos 0%) (4)

and 0', 4' are the usual unit vectors in the spherical co-ordinate system. f(Einc) is a function of
the incident electric field only and vanishes on differentiating the functional.

3. FINITE ELEMENT DISCRETIZATION

To discretize (2), the computational volume V is subdivided into a number of small tetrahedra,
each occupying the volume V' (e = 1, 2, ..., M) , where M denotes the total number of tetrahedral
elements. Within each element, the scattered electric field is expressed as

m

E' = c E;Wf = {E'} = {E'}T { W }
/ = I

(5)

where W; are the edge-based vector basis function^,^ Ef denote the expansion coefficients of the
basis and represent the field components tangential to the jth edge of the eth element, m is the
number of edges making up the element and the superscript stands for the element number. The
basis functions used in our implementation have zero divergence and constant curl.

The system of equations to be solved for E; is obtained by a Rayleigh-Ritz procedure which
amounts to differentiating F(E") with respect to each edge field and then setting it to zero. On
substituting the basis expansion into the expression for the functional, taking the first variation
in F(E') and assembling all M elements, we obtain the following augmented system of equations

In this, M , denotes the number of triangular surface elements on S k and S , whereas M , is equal
to the sum of the surface elements on s k , S, and the volume elements in V,. The elements of
the matrices [A'], [B"] and { CJ'} are given in Reference 1. The final system can be expressed as

where {x} is the unknown vector representing the weighting coefficients of the basis functions.
The imposition of boundary conditions on the finite element mesh is usually quite simple. No

special treatment is required at material discontinuities; the mere identification of surface elements
lying on material discontinuities or inhomogeneities kicks in the contribution from the surface
integrals in F (E S) . For perfectly conducting scatterers, the interior region is not meshed since the
electromagnetic wave does not penetrate inside the scatterer. If the surface element lies on a
metallic boundary, a simple modification is carried out on the element matrix to preserve the
symmetry of the matrix system.

4. NUMERICAL CONSIDERATIONS

The finite element code implemented by the authors can be divided into four main modules:

Input/output
0 Right-hand side vector (b) generation
0 Finite element matrix (A) generation

Linear equation solver

The input to the program consists of the mesh information obtained by preprocessing the mesh
file generated from SDRC I-DEAS, a commercial CAD software package. The right-hand side
vector (b) is usually a sparse vector and only a small fraction of the total CPU time is required
to generate it. The finite element matrix generation consists of too many subroutine calls and
highly complex loops to permit any significant speed-up through vectorization. It is, however,
highly amenable to parallelization as will be discussed later. The most time-consuming portion

332 A. CHA’ITERJEE, J . L . VOLAKIS AND D. WINDHEISER

of the code is the linear equation solver taking up approximately 90 per cent of the CPU time.
On a vector computer like the Cray YMP, it is possible to vectorize only the equation solver.
However, short vector lengths and indirect addressing inhibit large vector speed-ups.

4.1. Matrix generation

The matrix systems arising from I-DEAS were very sparse: on the average, the minimum
number of non-zero elements per row was 9 and the maximum number of non-zeros per row was
30. The total number of non-zeros varied between 15N and 16N, where N is the number of
unknowns.

There are various storage schemes for sparse matrices. In this paper, we will discuss the
ITPACK format5 and the Compressed Sparse Row (CSR) format. The ITPACK storage scheme
is attractive for generating finite element matrices since the number of comparisons required
while augmenting the matrix depends only on the locality of the corresponding edge and not on
the number of unknowns. Moreover, the sparse matrix-vector multiplication process can be highly
vectorized when the number of non-zeros in all rows is nearly equal. However, for our application,
almost half the space is lost in storing zeros. The modified ITPACK scheme6 does alleviate this
problem to a certain degree by sorting the rows of the matrix and decreasing the number of non-
zero elements. However, 30% of the allotted space is still lost in zero padding. The best tradeoff
between storage and speed for our application is obtained by storing the non-zero matrix elements
in a long complex vector, the column indices in a long integer vector and the number of non-
zeros per row in another integer vector. This data structure is referred to as the compressed
sparse row (CSR) format. In our implementation, a map of the number of non-zeros for each
row is obtained through a simple preprocessor. The main program stores the matrix in CSR
format, thus minimizing storage and sacrificing a bit of speed. The required storage is 15N complex
words plus integers for X and PC, respectively, and N integers for the array containing the
pointers to the rows’ data.

4.2. Linear equation solver

In three-dimensional applications, the order N of the system of linear equations may be very
large. Direct solution methods usually suffer from fill-in to an extent that these large problems
cannot be solved at a reasonable cost even on state-of-the-art parallel machines. It is, therefore,
essential to employ solvers whose memory requirements are a small fraction of the storage demand
of the coefficient matrix. This necessitates the use of iterative algorithms instead of direct solvers
to preserve the sparsity pattern of the finite element matrix. Especially attractive are iterative
methods that involve the coefficient matrices only in terms of matrix-vector products with A or
AT. The most powerful iterative algorithm of this type is the conjugate gradient algorithm for
solving positive definite linear systems.’ In our implementation, the system of linear equations is
solved by a variation of the CG algorithm, the biconjugate gradient (BCG) method. This scheme
is usually used for solving unsymmetric systems; however, it performs equally well when applied
to symmetric systems of linear equations. For symmetric matrices, BCG differs from CG in the
way the inner product of the vectors are taken. The conjugate gradient squared (CGS) algorithms
is usually faster than BCG but is more unstable since the residual polynomials are merely the
squared BCG polynomials and hence exhibit even more erratic behaviour than the BCG residuals.
Moreover, there are cases where CGS diverges, while BCG still converges. Recently, Freund’
has proposed the quasi-minimal residual (QMR) algorithm with look-ahead for complex symmetric
matrices.

Based on the above, the biconjugate gradient (BCG) algorithm was found to be most suitable
for our implementation. The BCG requires one matrix-vector multiplication, three vector updates
and three dot products per iteration. The solution scheme requires only three additional vectors
of length N . The vector updates and the dot products can be carried out extremely quickly on a
vector Cray machine such as the Cray YMP, reaching speeds of about 190 MFLOPS. However,
the matrix-vector product, which involves indirect addressing and short vector lengths, runs at
about 45.5 MFLOPs on one processor of the eight-processor Cray YMP. As a rule of thumb,

PARALLEL COMPUTATION OF 3-D ELECTROMAGNETIC SCATTERING 333

the biconjugate gradient algorithm with no preconditioning consumes 4-06 microseconds per
iteration per unknown on the Cray YMP.

4.3. Preconditioning

The condition number of the system of equations usually increases with the number of unknowns.
It is then desirable to precondition the coefficient matrix such that the modified system is well-
conditioned and converges in significantly fewer iterations than the original system. The equivalent
preconditioned system is of the form

The non-singular preconditioning matrix C must satisfy the following conditions:

(1) should be a good approximation to A.
(2) should be easy to compute.
(3) should be invertible in O(N) operations.

The preconditioners that we discuss below are the diagonal and the ILU point and block precondi-
tioners. Block preconditioners are usually preferable, owing to reduced data movement between
memory level hierarchies as well as decreased number of iterations required for convergence.
Block algorithms are also suited for high-performance computers with multiple processors since
all scalar, vector and matrix operations can be performed with a high degree of parallelism.

4.3.1. Diagonal preconditioner. The simplest preconditioner that was used in our implemen-
tation was the point diagonal preconditioner. The preconditioning matrix C is a diagonal matrix
which is easy to invert and has a storage requirement of N complex words, where N is the number
of unknowns. The entries of C are given by

(9) C . . ,, = 6. l I f l , A , . i = l , ..., N ; j = 1 , ..., N

where 6, is the Kronecker delta. The matrix C-' contains the reciprocal of the diagonal elements
of A. The algorithm with the diagonal preconditioner converged in about 35 per cent of the
number of iterations required for the unpreconditioned case. This suggested that our finite element
matrix was diagonally dominant since the reduction in the number of iterations was rather
impressive. The diagonal preconditioner is also easily vectorizable and consumes 4-1 microseconds
per iteration per unknown on the Cray YMP, a marginal slowdown over the unpreconditioned
system.

A more general diagonal preconditioner is the block-diagonal preconditioner. The point-diagonal
preconditioner is a block-diagonal preconditioner with block size 1. The block-diagonal precon-
ditioning matrix consists of m x m symmetric blocks as shown in Figure 2. The inverse of the
whole matrix is simply the inverse of each individual block put together. If the preconditioning
matrix C is broken up into n blocks of size m, the storage requirement for the preconditioner is
at most m x N . However, this method suffers a bit from fill-in since the inverted m X m blocks
are dense even though the original blocks may have been sparse. For this reason, large blocks
cannot be created since the inverted blocks would lead to full matrices and take a significant
fraction of the total CPU time for inversion. However, since the structure of the preconditioning
matrix is known a priori, this preconditioner vectorizes well and runs at 194 MFLOPS (line 5 of
Figure 1) on the Cray-YMP for a block size of 8. For a test case of 20,033 unknowns, a block
size of 2 caused the maximum reduction in the number of iterations (14 per cent) and ran at 197
MFLOPS.

4.3.2. Modified ILU preconditioner. The next step was to use a better preconditioner to
improve the condition number of the system resulting in faster convergence. The traditional ILU
preconditioner1° was employed with zero fill-in; however, the algorithm took a greater number
of iterations than the diagonal preconditioner to converge to a specified tolerance. This was
probably because the ILU preconditioned system may not have been positive definite." The
preconditioned conjugate gradient method usually converges faster if the preconditioner is positive

334 A. CHATTERJEE, J . L . VOLAKIS AND D. WINDHEISER

Initialization:

x given
r = b - A x
p = r
tmp = r r

Repeat until (resd d tol)

Step 3
tmp = P x tmp
P = q + P P

EndRepeat

A is a sparse complex symmetric matrix.
C is the preconditioning matrix.

q,p,x,r are complex vectors.
a.P,tmp are complex scalars.

resd,toZ are real scalars.
Figure 1. Symmetric biconjugate gradient method with preconditioning

C =

Figure 2. Structure of block preconditioning matrix

definite, although this is not a necessary condition. Higher values of fill-in were not attempted
since the preconditioner already occupied space equal to that of the coefficient matrix.

A modified version of the ILU preconditioner was next employed by eliminating the inner loop
of the traditional version. The algorithm is outlined in the Appendix and basically scales the off-
diagonal elements in the lower triangular portion of the matrix by the column diagonal. Since

PARALLEL COMPUTATION OF 3-D ELECTROMAGNETIC SCATTERING 335

the matrix is symmetric, it retains the LDLT form and is also positive definite if the coefficient
matrix is positive definite. This preconditioner is less expensive to generate and converges in
about one-third of the number of iterations taken by the point-diagonal preconditioner. It has
been tested with reliable results for N 5 50,000. However, the time taken by the two precondition-
ing strategies is approximately the same since each iteration of the ILU preconditioned system
is about three times more expensive. The forward and backward substitutions carried out at each
iteration runs at 26.5 MFLOPS on the Cray YMP and proves to be the bottleneck since they are
inherently sequential processes and the vector lengths are approximately half that of the sparse
matrix-vector multiplication process. The triangular solver is also extremely difficult to parallelize.
Techniques like level scheduling and self-scheduling have been used to exploit the fine grain
parallelism in the sparse system but without much success. '*

As with the diagonal preconditioner, a block version of the ILU preconditioner was also
attempted. This strategy distributes one block to each processor in a multiprocessor architecture
thus achieving load balancing as well as minimizing fill-in. The modified ILU decomposition
outlined earlier is then carried out on each of these individual blocks. Further, since the blocks
are much larger than the block-diagonal version, the preconditioner is a closer approximation to
the coefficient matrix. Moreover, the triangular solver is fully parallelized since each processor
solves an independent system of equations through forward and backward substitution. In our
test case of 20,033 unknowns, the number of iterations was reduced by approximately half the
number required by the diagonal preconditioner. Since the work done is less than twice that for
the diagonal preconditioner, we achieved a marginal savings of CPU time. However, the number
of iterations required for convergence is highly sensitive to block size as shown in Table I for N
= 20,033. Table I clearly shows that a larger block size (smaller number of blocks) does not
guarantee faster convergence. However, there is an approximately 50 per cent decrease in the
number of iterations over the point-diagonal preconditioner, regardless of block size. The optimum
block size is dependent on the sparsity pattern of the matrix and can only be determined
empirically. The savings in the number of iterations over the point diagonal preconditioner for
28 blocks is given in Table I1 for a system having 224,476 unknowns.

From the table, it is clear that the block ILU preconditioner is very effective in reducing the
iteration count; however, the CPU time required is about 10 per cent less than that required by
the point-diagonal preconditiones for the best case.

4.4. Parallelization

The different versions of the FE-ABC code were parallelized on a KSRl massively parallel
machine which implements a shared virtual memory, although the memory is physically distributed
for the sake of scalability. The basic strategy for the parallelization of the code is described on
the biconj ugate gradient solver with diagonal preconditioning. The other versions use the same
parallelization scheme with slight modifications. We also comment on the parallelization of the
matrix assembly phase.

The symmetric biconjugate gradient method iteratively refines an approximate solution of the
given linear system until convergence. Figure 1 shows the method in terms of vector and matrix

Table I. Number of iterations versus number of
blocks for a block ILU preconditioned biconjugate

gradient solution method

No. of blocks No. of iterations

1
2
4
8

12
16
24
28

127
176
185
172
162
174
223
177

336 A. CHAlTERJEE, J. L. VOLAKIS AND D. WINDHEISER

Table 11. Number of iterations required for convergence of a 224,476 unknown system
using the point-diagonal and block ILU preconditioning strategies

Angle of incidence No. of iterations Ratio (II/I)

point diagonal (I) block ILU (11)

0
10
20
30
40
50
60
70
80
90

2943
5985
5464
6048
5770
5107
6517
5076
5305
2898

2758
3834
3984
3651
3256
3720
4162
4108
3551
2832

0.937
0.641
0.729
0.604
0-564
0.728
0-639
0.809
0.669
0,977

operations. For a system of equations containing N unknowns, all these vectors are of size N and
the sparse matrix is of order N . The number of non-zero elements in the sparse matrix is denoted
as m e . Table I11 shows the operation count per iteration for each type of vector operation. In
the FE-ABC code, each vector operation is implemented as a loop. The program is parallelized
by tiling these loops. For P processors, the vectors are divided into P sections of NIP consecutive
elements. Each processor is assigned the same section of each vector. This partitioning attempts
to reduce communication while balancing load. To guarantee correctness, synchronization points
are added after lines 2, 7, and 9. Lines 2 and 7 require synchronization to guarantee that the dot
products are computed correctly. Note that the dot products in lines 6 and 7 require only one
synchronization. The line 9 synchronization guarantees that p is completely updated before the
matrix multiply for the next iteration begins.

In the sparse matrix-vector multiplication, each processor computes a block of the result vector
by multiplying the corresponding block of rows of the sparse matrix with the operand vector.
Since the operand vector is distributed among the processors, data communication is required.
The communication pattern is determined by the sparsity structure of the matrix, which in our
case is derived from an unstructured mesh. Therefore the communication pattern is unstructured
and irregular. However, since the sparse matrix is not modified during the iterative process, the
communication pattern is the same at each iteration. Vector updates and dot products are easily
parallelized using the same block distribution as in the sparse matrix vector multiply.

Although sparse computations are known to be hard to implement efficiently on distributed
memory machine, mainly because of the unstructured and irregular communication, the previous
scheme was easily and efficiently implemented on the KSRl MPP thanks to the global address
space.I3 Table IV shows the execution time of one iteration (in seconds) and the speed-up for
different numbers of processors and for two problem sizes.

For both problems, the performance scales surprisingly well up to a large number of processors.
For the 20,033-unknown problem, the speed-up for the parallelized sparse solver varies from 1
to 19 as the number of processors is increased from 1 to 28 (Figure 3). The overall performance
of the solver on 28 processors is more than three times that of a single processor on the Cray-YMP.
The large problem (224,476 unknowns) exhibits superlinear speed-up which can be attributed to
a memory effect. As a matter of fact, the large data set does not entirely fit in the local cache
of a single node in the KSR which results in a large number of page faults. However, as the

Table 111. Floating point operations per iteration

Operation Complex Real * * + +
Matrix multiply nze nze - N 4nze 4nze - 2N
Vector updates 4N 3N 16N 12N
Dot products 3N 3N 12N 12N

PARALLEL COMPUTATION OF 3-D ELECTROMAGNETIC SCATTERING 337

Table IV. Execution time and speed-up for the iterative solver

Procs N = 20,033 N = 224,476

Execution time Execution time
(seconds per iteration) Speed-up (seconds per iteration) Speed-up

1"
8

16
29
60'

0.515 1
0.071 7.3
0.040 12.9
0-027 19-1

10.8 1
1.4 7.7
0.671 16.1
0.304 35.6
0.149 76.2

"For 1, 8 and 16 processors, only the first 100 iterations were run
"Code run on a 64 node KSR at Cornell University.

Figure 3. Speed-up curve for the linear equation solver on the KSRl

number of processors increases, the large data set is distributed over the different processors'
memories.

The global matrix assembly is the second largest computation in terms of execution time. The
elemental matrices are computed for each element in the 3-D mesh and assembled in a global
sparse matrix. A natural way of parallelizing the global matrix assembly is to distribute the
elements over the processors, have each processor compute the elemental matrix of the elements
it owns and update the global sparse matrix. Since the global sparse matrix is shared by all
processors, the update needs to be done atomically. On the KSRl this is done by using the
hardware lock mechanism. The performance for the matrix assembly is given in Table V.

4.4.1. Analysis of communication. In the main loop (Figure l), significant communication
between processors takes place only during the sparse matrix vector multiply (line 1) and the
vector update of p (line 9). The rest of the vector operations incur little or no communication
at all. The distribution of the non-zero entries in the matrix affects the amount and nature of
communication. In this section, we present an analysis of the communication pattern incurred by
the sparse matrix vector multiplication as derived from analysis of the sparsity structure of the
matrix.

Line 1. In the matrix-vector multiply, each processor computes an NIP-sized subsection of the
product q. The processor needs the elements of p that correspond to the non-zero elements found
in the NIP rows of A that are aligned with its subsection. Because the matrix A remains constant
throughout the program, the set of elements of p that a given processor needs is the same for

338 A. CHA'lTERJEE, J . L. VOLAKIS AND D. WINDHEISER

Table V. Execution time and speed-up
for the matrix generation and assembly

(20,033 unknowns)

Procs Execution time Speed-up
in seconds

1 24.355 1
2 13.376 1.8
4 6.811 3.6
8 3.744 6.5

16 1.89 12.9
25 1.625 15-0
28 1.276 19.1

all iterations in the loop. However, since p is updated at the end of each iteration, all copies of
its element set are invalidated in each processor's local cache except for the ones that the processor
itself updates. As a result, in each iteration, processors must obtain updated copies of the required
elements of p that they do not own.

These elements can be updated by a read miss to the corresponding subpage, by an automatic
update, or by an explicit prefetch or poststore instruction. Figure 4 lists the number of subpages
that each of the 28 processor needs to acquire from other processors. Automatic update of an
invalid copy of a subpage becomes more likely as the number of processors sharing this subpage
grows. The number of processors that need a given subpage (excluding the processor that updates
the subpage) is referred to as the degree of sharing of that subpage. Figure 5 shows the degree
of sharing histogram for the example problem. Since the only subpage misses occuring in Step 1
of the sparse solver are coherence misses due to the vector p , the use of the poststore instruction
to broadcast the updated sections of the vector p from step 3 should eliminate the subpage misses
in step 1. However, the overhead of executing the poststore instruction in step 3 offsets the
reduction in execution time of step 1. On a poststore, the processor typically stalls for 32 cycles
while the local cache is busy for 48 cycles. As a result, the net reduction in execution time is
only 3 per cent.

Line 9. Before proceeding with the updates of the NIP elements of p for which it is responsible,
each processor must acquire exclusive ownership for those elements. Because a cache line holds
eight consecutive elements, each processor will generate N/8P requests for ownership (assuming

Number of Subpags
350

300

250

200

150

100

50

0
2 3 4 5 6 7 8 9 1011121314

Thread ID

Figure 4. Counts of p subpages required by each processor for sparse matrix-vector multiply (total copies = 5968)

PARALLEL COMPUTATION OF 3-D ELECTROMAGNETIC SCATTERING

Number of Subpages
900

805
800 -i

700 -

536 600 - 56 1

500 -
400 -

293 300 -
200: 174

100-

0-
0 1 2 3 4 5 6 7 8 9 10

Degree of Sharing

Figure 5. Degree of sharing histogram of p subpages during sparse matrix-vector multiply (28 processors)

339

all subpages are shared). In order to hide access latencies, the request for ownership can be
issued in the form of a prefetch instruction after step 1. This could lead to an eightfold decrease
in the number of subpage misses. However, as with the poststore instruction, the benefit of
prefetching is offset by the overhead of processing the prefetch instructions in step 2. This is
because the processor stalls for at least two cycles on prefetch and the local cache cannot satisfy
any processor request until the prefetch is put on the ring. The overall execution time is reduced
by only 4 per cent in this case.

Lines 2, 6, 7. The rest of the communication is due to the three dot products. Each processor
computes the dot product for the vector subsection that it owns. These are then gathered and
summed up on a single processor.

5. RESULTS

The parallelized code was run for a 1.5h X 1X X 1X (see inset of Figure 6) perfectly conducting
rectangular inlet and the radar cross-section computed for both polarizations of the incident plane
wave. The radar cross-section (RCS) of a target is given by

The backscatter RCS is obtained when the angle of incidence is the same as the angle of
observation (i.e., 0" = 0', +O = @). In Figure 6, the 0-component of the scattered field is used
to compute the backscatter RCS (aoo) of the inlet geometry from a 0-polarized incident wave
(i.e., a = 00) taken in the yz plane and compared with measured data.14 In Figure 7, the
backscatter pattern (a++) from a +-polarized incident wave is compared to measured data.14 For
the results shown in Figures 6 and 7, the ABC was enforced on a sphere of radius 1.3% The
discretized geometry had 224,476 unknowns and converged in an average of 3600 iterations on
the KSRl when using the block ILU preconditioner. The agreement is indeed quite good over
the entire angular range.

340 A. CHA'ITERJEE, J . L. VOLAKIS AND D. WINDHEISER

0 30 60
Observation w e 8,. deg.

1

Figure 6. Backscatter pattern of a metallic rectangular inlet (l h X 1h X 1.5A) for HH polarization. Black dots indicate
computed values and the solid line represents measured data

20

15

10
m
- 5 C

s
.r(

m -
0

-5

-10

-15 I " " ' I " " '
30 60 I

Observation Angle 8,, deg.

Figure 7. Backscatter pattern of a metallic rectangular inlet (l h x 1 A x 1.5A) for VV polarization. Black dots indicate
computed values and the solid line represents measured data

6. APPENDIX

In this appendix, we present the algorithm for the modified ILU preconditioner. It is assumed
that the data is stored in CSR format and that the column numbers for each row are sorted in
increasing order. The sparse matrix is stored in the vector X and the column numbers in PC.
SZG(i) contains the total number of non-zeros till the ith row. The locations of the diagonal
entries for each row are stored in the vector DZAG. The preconditioner is stored in another
complex vector, LU.

PARALLEL COMPUTATION OF 3-D ELECTROMAGNETIC SCATTERING 34 1

f o r i=1 s t e p 1 un t i l n-1 do
begin

lbeg=diag (i)
lend=s ig (i)
f o r j = l b e g + l s t e p 1 un t i l lend do
begin

j j =pc (j 1
i j = s r c h (j j , i)
i f (i j . n e . 0) then
begin

end
l u (i j) = l u (i j) / l u (l b e g)

end
end

ACKNOWLEDGEMENTS

This work was carried out on the facilities provided by NSF Grant CDA-92-14296 and the U-M
Center for Parallel Computing and NASA-Ames Grants NAG 2-541 and NCA 2-653.

REFERENCES

1.

2.

3.

4.

5 .

6.

7.

8.
9.

10.

11.
12.

13.

14.

A. Chatterjee, J . M. Jin and J. L. Volakis, ‘Application of edge-based finite elements and ABCs to 3-D scattering’,
IEEE Trans. Antennas Propagat., AP-41, 221-226 (1993).
D. S. Katz, M. J . Picket-May, A. Taflove and K. R. Umashankar, ‘FDTD analysis of electromagnetic wave radiation
from systems containing horn antennas’, IEEE Trans. Antenna Propagat., AP-39, 1203-1212 (1991).
J . P. Webb and V. N. Kanellopoulos, ‘Absorbing boundary conditions for finite element solution of the vector wave
equation’, Microwave and Opt. Tech. Letters, 2, 370-372 (1989).
M. L. Barton and Z. J. Cendes, ‘New vector finite elements for three-dimensional magnetic field computation’, 1.

D. R. Kincaid and T. C. Oppe, ‘ITPACK on supercomputers’, Numerical Methods, Lecture Notes in Mathematics,
Vol. 1005, Springer, Berlin, 1982, pp. 151-161.
G. V. Paolini and G. Radicati di Brozolo, ‘Data structures to vectorize CG algorithms for general sparsity patterns’,

M. R. Hestenes and E. Stiefel, ‘Methods of conjugate gradients for solving linear systems’, J. Res. Nail. Bur. Stand.,

P. Sonneveld, ‘CGS, a fast solver for nonsymmetric linear systems’, SIAM J . Sci. Stat. Cornput., 10, 35-52 (1989).
R. Freund, ‘Conjugate-gradient type methods for linear systems with complex symmetric coefficient matrices’, SIAM
J . Sci. Stat. Comput., 13, 425-448 (1992).
H. P. Langtangen, ‘Conjugate gradient methods and ILU preconditioning of non-symmetric matrix systems with
arbitrary sparsity patterns’, Int. J. Numer. Mefh. Fluids, 9, 213-233 (1989).
J . R. Lovell, ‘Hierarchical basis functions for 3D finite element methods’, ACES Digesf, 657-663 (1993).
E. Rothberg and A. Gupta, ‘Parallel ICCG on a hierarchical memory multiprocessor-addressing the triangular solve
bottleneck’, Parallel Computing 18, 719-741 (1992).
D. Windheiser, E. Boyd, E. Hao, S. G. Abraham and E . S. Davidson, ‘KSR1 multiprocessor: analysis of latency
hiding techniques in a sparse solver’, Proc. of the 7th International ParaNel Processing Symposium, Newport Beach,
April 1993.
A. Woo, M. Schuh, M. Simon, T. G. Wang and M. L. Sanders, ‘Radar cross-section measurement data of a simple
rectangular cavity’, Technical Report NWC TM7132, Naval Weapons Center, China Lake, CA, December 1991.

Appl. Phys., 61, 3919-3921 (1987).

BIT, 29, 703-718 (1989).

49, 409-436 (1952).

Authors’ biographies:

Arindjam Chatterjee was born in Calcutta, India, in 1966. He received the B. Tech.
(Honours) degree in electronics and electrical communication engineering from the
Indian Institute of Technology, Kharagpur, in 1989 and the M.S. degree in electrical
engineering from the University of Michigan, Ann Arbor) in 1991. Currently, he is
working towards the Ph.D. degree at the Radiation Laboratory of the University of
Michigan.

His research interests include partial differential equation methods like finite elements
for electromagnetic field simulation in open and closed domain problems, sparse matrix
techniques and parallel computing.

342 A. CHA'ITERJEE, J . L . VOLAKIS AND D. WINDHEISER

John L. Volakis was born in 1956 in Chios, Greece, where he also attended the
Gymnasium of Males. He obtained his B.E. degree, summa cum laude, in 1978 from
Youngstown State University, Youngstown, OH, the M.Sc. in 1979 from the Ohio State
University, Columbus, Ohio, and the Ph.D. degree in 1982, also from the Ohio State
University.

He has been with the University of Michigan, Ann Arbor, since 1984 where he is
now a Professor in the Electrical Engineering and Computer Science (EECS) Depart-
ment. From 1982-1984 he was with Rockwell International, Aircraft Division, and
during 1978-1982 he was a Graduate Research Associate at the Ohio State University
ElectroScience Laboratory. His primary research interests are in the development of
analytical and numerical techniques as applied to electromagnetics. In 1993 he received
the University of Michigan EECS Department Research Excellence Award.

Dr Volakis has served at various posts of the local IEEE AP/MTT/ED Southeastern
Michigan Chapter from 1985 to 1988, as an Associate Editor of the IEEE Transactions on Anfennas and
Propagation from 1988 to 1992, and chaired the 1993 IEEE Antennas and Propagation Society Symposium
and Radio Science Meeting. He is currently an associate editor for Radio Science and the IEEE Antennas
and Propagation Society Magazine. He is a Senior member of the IEEE and a member of Sigma Xi, Tau
Beta Pi, Phi Kappa Phi, and Commission B of URSI.

Daniel Windheiser graduated from the Ecole Polytechnique, France, in 1988 and received his doctoral degree
from the University of Rennes I in May 1992. From July 1992 to July 1993, he was a Visiting Research
Fellow with the Department of Electrical Engineering and Computer Science at the University of Michigan
in Ann Arbor. Currently, he is in charge of High Performance Computing at DRET (Direction des
Recherches et Etudes Techniques) in France and is a scientific adviser at SEH (Site Experimental en
Hyperparallelisme). His research interests are in the area of parallel processing, compilers and software
environments for massively parallel processors.

