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SUMMARY 
The finite element method (FEM) with local absorbing boundary conditions has been recently applied to 
compute electromagnetic scattering from large 3-D geometries. In this paper, we present details pertaining 
to code implementation and optimization. Various types of sparse matrix storage schemes are discussed and 
their performance is examined in terms of vectorization and net storage requirements. The system of linear 
equations is solved using a preconditioned biconjugate gradient (BCG) algorithm and a fairly detailed study 
of existing point and block preconditioners (diagonal and incomplete LU) is carried out. A modified ILU 
preconditioning scheme is also introduced which works better than the traditional version for our matrix 
systems. The parallelization of the iterative sparse solver and the matrix generation/assembly as implemented 
on the KSRl multiprocessor is described and the interprocessor communication patterns are analysed in 
detail. Near-linear speed-up is obtained for both the iterative solver and the matrix generationlassembly 
phases. Results are presented for a problem having 224,476 unknowns and validated by comparison with 
measured data. 

1. INTRODUCTION 

Differential equation techniques are rapidly becoming the preferred solution methods for the 
computation of electromagnetic scattering and radiation from inhomogeneous, three-dimensional 
geometries. 1.2 In the finite element method, the computational domain is at first discretized using 
node-based or edge-based finite elements. Edge-based elements are more desirable for representing 
electromagnetic fields because they exhibit tangential continuity and normal discontinuity across 
interelement boundaries and material discontinuities. Moreover, they can treat geometries with 
sharp edges and are divergenceless. The outer boundary of the finite element mesh is artificially 
truncated at some distance from the target using an absorbing boundary condition (ABC). ABCs 
are essentially differential equations chosen to suppress non-physical reflections from the boundary, 
thus ensuring the outgoing nature of the waves. They are approximate boundary conditions but 
have the important advantage of retaining the sparsity of the matrix system which leads to an 
O ( N )  storage requirement. The number of unknowns is further reduced since it is found that 
reliable results are obtained by truncating the artificial boundary only a fraction of a wavelength 
from the target. 

In our FE-ABC implementation, we use an edge-based finite element formulation coupled with 
vector ABCs on conformal boundaries to compute scattering from three-dimensional structures 
having regions satisfying impedance and/or transition conditions. The limiting factor in dealing 
with three-dimensional geometries is usually the number of unknowns and the corresponding 
demands on storage and solution time. Solution techniques which have O ( N )  storage and feasible 
solution time are, therefore, the only way that three-dimensional problems can be solved with 
the available computer resources. This is one of the principal reasons for the popularity of partial 
differential equation techniques over integral equation (IE) approaches which in contrast lead to 
dense matrices. As the problem size increases, the IE and hybrid methods (both need O ( N [ ) ,  1 
< I =s 2 storage) quickly become unmanageable in terms of storage and solution time. Another 
concern while solving problems having more than 100,000 unknowns-a scenario that can be 
envisioned for most practical problems-is to avoid software bottlenecks. The algorithmic com- 
plexity of any part of the program should increase at most linearly with the number of unknowns. 

In this paper, the implementation details of our finite element code are presented along with 

CCC 0894-3370/94/050329-14 
0 1994 by John Wiley & Sons, Ltd. 

Received 4 August 1993 



330 A. CHATTERJEE, J .  L. VOLAKIS AND D .  WINDHEISER 

the associated numerical considerations. The various tradeoffs associated with the data structures 
used to represent sparse matrices and their impact on vectorization and parallelization are dis- 
cussed. The iterative solver-a preconditioned biconjugate gradient (BCG) algorithm-is studied 
along with point and block preconditioning strategies and the tradeoffs between the two types of 
preconditioners are outlined. A modified incomplete LU (ILU) preconditioner is presented, 
which seems to work better than the original ILU preconditioner for our matrix systems. The 
computationally intensive portions of the finite element code have been parallelized on the KSRl 
(Kendall Square Research) shared-address space distributed-cache architecture with substantial 
speed-up. A full analysis of the communication patterns is presented and the solution methodology 
is validated by comparison with measured data. 

2. FORMULATION 

We consider the problem of scattering from an inhomogeneous geometry with material discontinuit- 
ies. The scatterer is enclosed within a fictitious surface, denoted by So, where the ABCs are 
applied. The second-order vector ABC is given by Reference 3 

where a = jk, p = 1/(2jk + 2/r), E’ represents the scattered electric field, n is the unit normal 
to the surface and the subscripts t and n denote the transverse and normal component to So, 
respectively. Inside the volume, V ,  the scattered field satisfies the Helmholtz vector wave equation 
and boundary conditions associated with the material properties of the body. A detailed formu- 
lation of these boundary conditions has been given in Reference 1. The functional involving the 
scattered electric field (E”) to be discretized in connection with our proposed FE-ABC formulation 
is given by 

F ( E . ) = j [ L ( V x E 5 ) . ( V x E 5 ) - k : r r E s . E s ] d V  v Pr 

+jkoZo isk i ( n  X E’) - (n x Es)dS 

+ E” - P(E”)dS i, 

(V X E’) * ( V  X EinC) - k;€,Es - Einc 

1 
+2jk0Z,, i, (n X Es) - (n x EinC)dS 

+ f (  EinC) (2) 

where E, and kr are the respective relative permittivity and permeability of the dielectric materials, 
V ,  is the volume occupied by the dielectric (portion of V where E, or p,. are not unity), Sd 
encompasses all dieletric interface surfaces and S, represents the surface of a resistive (or an 
impedance sheet) with resistivity (or impedance) K.  Einc is the incident plane wave given by 

Eric(,.) = [(& . hi)& + (& . +i)@le-jki.r (3) 

where & = 6’ cos a + @ sin a is the polarization vector, k‘ is the propagation vector 
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k' = -k,(sin 0' cos ~$5 + sin 8' sin +i j  + cos 0%) (4) 

and 0', 4' are the usual unit vectors in the spherical co-ordinate system. f(Einc) is a function of 
the incident electric field only and vanishes on differentiating the functional. 

3. FINITE ELEMENT DISCRETIZATION 

To discretize (2), the computational volume V is subdivided into a number of small tetrahedra, 
each occupying the volume V' (e = 1, 2, ..., M ) ,  where M denotes the total number of tetrahedral 
elements. Within each element, the scattered electric field is expressed as 

m 

E' = c E;Wf = {E'}  = {E'}T { W }  
/ = I  

( 5 )  

where W; are the edge-based vector basis  function^,^ Ef denote the expansion coefficients of the 
basis and represent the field components tangential to the jth edge of the eth element, m is the 
number of edges making up the element and the superscript stands for the element number. The 
basis functions used in our implementation have zero divergence and constant curl. 

The system of equations to be solved for E; is obtained by a Rayleigh-Ritz procedure which 
amounts to differentiating F(E") with respect to each edge field and then setting it to zero. On 
substituting the basis expansion into the expression for the functional, taking the first variation 
in F(E') and assembling all M elements, we obtain the following augmented system of equations 

In this, M ,  denotes the number of triangular surface elements on S k  and S ,  whereas M ,  is equal 
to the sum of the surface elements on s k ,  S, and the volume elements in V,. The elements of 
the matrices [A'], [B"] and { CJ'} are given in Reference 1. The final system can be expressed as 

where {x} is the unknown vector representing the weighting coefficients of the basis functions. 
The imposition of boundary conditions on the finite element mesh is usually quite simple. No 

special treatment is required at material discontinuities; the mere identification of surface elements 
lying on material discontinuities or inhomogeneities kicks in the contribution from the surface 
integrals in F ( E S ) .  For perfectly conducting scatterers, the interior region is not meshed since the 
electromagnetic wave does not penetrate inside the scatterer. If the surface element lies on a 
metallic boundary, a simple modification is carried out on the element matrix to preserve the 
symmetry of the matrix system. 

4. NUMERICAL CONSIDERATIONS 

The finite element code implemented by the authors can be divided into four main modules: 

Input/output 
0 Right-hand side vector (b) generation 
0 Finite element matrix (A)  generation 

Linear equation solver 

The input to the program consists of the mesh information obtained by preprocessing the mesh 
file generated from SDRC I-DEAS, a commercial CAD software package. The right-hand side 
vector (b) is usually a sparse vector and only a small fraction of the total CPU time is required 
to generate it. The finite element matrix generation consists of too many subroutine calls and 
highly complex loops to permit any significant speed-up through vectorization. It is, however, 
highly amenable to parallelization as will be discussed later. The most time-consuming portion 
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of the code is the linear equation solver taking up approximately 90 per cent of the CPU time. 
On a vector computer like the Cray YMP, it is possible to vectorize only the equation solver. 
However, short vector lengths and indirect addressing inhibit large vector speed-ups. 

4.1. Matrix generation 

The matrix systems arising from I-DEAS were very sparse: on the average, the minimum 
number of non-zero elements per row was 9 and the maximum number of non-zeros per row was 
30. The total number of non-zeros varied between 15N and 16N, where N is the number of 
unknowns. 

There are various storage schemes for sparse matrices. In this paper, we will discuss the 
ITPACK format5 and the Compressed Sparse Row (CSR) format. The ITPACK storage scheme 
is attractive for generating finite element matrices since the number of comparisons required 
while augmenting the matrix depends only on the locality of the corresponding edge and not on 
the number of unknowns. Moreover, the sparse matrix-vector multiplication process can be highly 
vectorized when the number of non-zeros in all rows is nearly equal. However, for our application, 
almost half the space is lost in storing zeros. The modified ITPACK scheme6 does alleviate this 
problem to a certain degree by sorting the rows of the matrix and decreasing the number of non- 
zero elements. However, 30% of the allotted space is still lost in zero padding. The best tradeoff 
between storage and speed for our application is obtained by storing the non-zero matrix elements 
in a long complex vector, the column indices in a long integer vector and the number of non- 
zeros per row in another integer vector. This data structure is referred to as the compressed 
sparse row (CSR) format. In our implementation, a map of the number of non-zeros for each 
row is obtained through a simple preprocessor. The main program stores the matrix in CSR 
format, thus minimizing storage and sacrificing a bit of speed. The required storage is 15N complex 
words plus integers for X and PC, respectively, and N integers for the array containing the 
pointers to the rows’ data. 

4.2. Linear equation solver 

In three-dimensional applications, the order N of the system of linear equations may be very 
large. Direct solution methods usually suffer from fill-in to an extent that these large problems 
cannot be solved at a reasonable cost even on state-of-the-art parallel machines. It is, therefore, 
essential to employ solvers whose memory requirements are a small fraction of the storage demand 
of the coefficient matrix. This necessitates the use of iterative algorithms instead of direct solvers 
to preserve the sparsity pattern of the finite element matrix. Especially attractive are iterative 
methods that involve the coefficient matrices only in terms of matrix-vector products with A or 
AT. The most powerful iterative algorithm of this type is the conjugate gradient algorithm for 
solving positive definite linear systems.’ In our implementation, the system of linear equations is 
solved by a variation of the CG algorithm, the biconjugate gradient (BCG) method. This scheme 
is usually used for solving unsymmetric systems; however, it performs equally well when applied 
to symmetric systems of linear equations. For symmetric matrices, BCG differs from CG in the 
way the inner product of the vectors are taken. The conjugate gradient squared (CGS) algorithms 
is usually faster than BCG but is more unstable since the residual polynomials are merely the 
squared BCG polynomials and hence exhibit even more erratic behaviour than the BCG residuals. 
Moreover, there are cases where CGS diverges, while BCG still converges. Recently, Freund’ 
has proposed the quasi-minimal residual (QMR) algorithm with look-ahead for complex symmetric 
matrices. 

Based on the above, the biconjugate gradient (BCG) algorithm was found to be most suitable 
for our implementation. The BCG requires one matrix-vector multiplication, three vector updates 
and three dot products per iteration. The solution scheme requires only three additional vectors 
of length N .  The vector updates and the dot products can be carried out extremely quickly on a 
vector Cray machine such as the Cray YMP, reaching speeds of about 190 MFLOPS. However, 
the matrix-vector product, which involves indirect addressing and short vector lengths, runs at 
about 45.5 MFLOPs on one processor of the eight-processor Cray YMP. As a rule of thumb, 
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the biconjugate gradient algorithm with no preconditioning consumes 4-06 microseconds per 
iteration per unknown on the Cray YMP. 

4.3. Preconditioning 

The condition number of the system of equations usually increases with the number of unknowns. 
It is then desirable to precondition the coefficient matrix such that the modified system is well- 
conditioned and converges in significantly fewer iterations than the original system. The equivalent 
preconditioned system is of the form 

The non-singular preconditioning matrix C must satisfy the following conditions: 

( 1 )  should be a good approximation to A. 
(2) should be easy to compute. 
( 3 )  should be invertible in O(N)  operations. 

The preconditioners that we discuss below are the diagonal and the ILU point and block precondi- 
tioners. Block preconditioners are usually preferable, owing to reduced data movement between 
memory level hierarchies as well as decreased number of iterations required for convergence. 
Block algorithms are also suited for high-performance computers with multiple processors since 
all scalar, vector and matrix operations can be performed with a high degree of parallelism. 

4.3.1. Diagonal preconditioner. The simplest preconditioner that was used in our implemen- 
tation was the point diagonal preconditioner. The preconditioning matrix C is a diagonal matrix 
which is easy to invert and has a storage requirement of N complex words, where N is the number 
of unknowns. The entries of C are given by 

( 9 )  C . .  ,, = 6.  l I f l ,  A , .  i = l ,  ..., N ;  j = 1 ,  ..., N 

where 6, is the Kronecker delta. The matrix C-' contains the reciprocal of the diagonal elements 
of A. The algorithm with the diagonal preconditioner converged in about 35 per cent of the 
number of iterations required for the unpreconditioned case. This suggested that our finite element 
matrix was diagonally dominant since the reduction in the number of iterations was rather 
impressive. The diagonal preconditioner is also easily vectorizable and consumes 4-1 microseconds 
per iteration per unknown on the Cray YMP, a marginal slowdown over the unpreconditioned 
system. 

A more general diagonal preconditioner is the block-diagonal preconditioner. The point-diagonal 
preconditioner is a block-diagonal preconditioner with block size 1. The block-diagonal precon- 
ditioning matrix consists of m x m symmetric blocks as shown in Figure 2. The inverse of the 
whole matrix is simply the inverse of each individual block put together. If the preconditioning 
matrix C is broken up into n blocks of size m, the storage requirement for the preconditioner is 
at most m x N .  However, this method suffers a bit from fill-in since the inverted m X m blocks 
are dense even though the original blocks may have been sparse. For this reason, large blocks 
cannot be created since the inverted blocks would lead to full matrices and take a significant 
fraction of the total CPU time for inversion. However, since the structure of the preconditioning 
matrix is known a priori, this preconditioner vectorizes well and runs at 194 MFLOPS (line 5 of 
Figure 1 )  on the Cray-YMP for a block size of 8. For a test case of 20,033 unknowns, a block 
size of 2 caused the maximum reduction in the number of iterations (14 per cent) and ran at 197 
MFLOPS. 

4.3.2. Modified ILU preconditioner. The next step was to use a better preconditioner to 
improve the condition number of the system resulting in faster convergence. The traditional ILU 
preconditioner1° was employed with zero fill-in; however, the algorithm took a greater number 
of iterations than the diagonal preconditioner to converge to a specified tolerance. This was 
probably because the ILU preconditioned system may not have been positive definite." The 
preconditioned conjugate gradient method usually converges faster if the preconditioner is positive 
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Initialization: 

x given 
r = b - A x  
p = r  
tmp = r r 

Repeat until (resd d tol) 

Step 3 
tmp = P x tmp 
P = q + P P  

EndRepeat 

A is a sparse complex symmetric matrix. 
C is the preconditioning matrix. 

q,p,x,r are complex vectors. 
a.P,tmp are complex scalars. 

resd,toZ are real scalars. 
Figure 1. Symmetric biconjugate gradient method with preconditioning 

C =  

Figure 2. Structure of block preconditioning matrix 

definite, although this is not a necessary condition. Higher values of fill-in were not attempted 
since the preconditioner already occupied space equal to that of the coefficient matrix. 

A modified version of the ILU preconditioner was next employed by eliminating the inner loop 
of the traditional version. The algorithm is outlined in the Appendix and basically scales the off- 
diagonal elements in the lower triangular portion of the matrix by the column diagonal. Since 
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the matrix is symmetric, it retains the LDLT form and is also positive definite if the coefficient 
matrix is positive definite. This preconditioner is less expensive to generate and converges in 
about one-third of the number of iterations taken by the point-diagonal preconditioner. It has 
been tested with reliable results for N 5 50,000. However, the time taken by the two precondition- 
ing strategies is approximately the same since each iteration of the ILU preconditioned system 
is about three times more expensive. The forward and backward substitutions carried out at each 
iteration runs at 26.5 MFLOPS on the Cray YMP and proves to be the bottleneck since they are 
inherently sequential processes and the vector lengths are approximately half that of the sparse 
matrix-vector multiplication process. The triangular solver is also extremely difficult to parallelize. 
Techniques like level scheduling and self-scheduling have been used to exploit the fine grain 
parallelism in the sparse system but without much success. '* 

As with the diagonal preconditioner, a block version of the ILU preconditioner was also 
attempted. This strategy distributes one block to each processor in a multiprocessor architecture 
thus achieving load balancing as well as minimizing fill-in. The modified ILU decomposition 
outlined earlier is then carried out on each of these individual blocks. Further, since the blocks 
are much larger than the block-diagonal version, the preconditioner is a closer approximation to 
the coefficient matrix. Moreover, the triangular solver is fully parallelized since each processor 
solves an independent system of equations through forward and backward substitution. In our 
test case of 20,033 unknowns, the number of iterations was reduced by approximately half the 
number required by the diagonal preconditioner. Since the work done is less than twice that for 
the diagonal preconditioner, we achieved a marginal savings of CPU time. However, the number 
of iterations required for convergence is highly sensitive to block size as shown in Table I for N 
= 20,033. Table I clearly shows that a larger block size (smaller number of blocks) does not 
guarantee faster convergence. However, there is an approximately 50 per cent decrease in the 
number of iterations over the point-diagonal preconditioner, regardless of block size. The optimum 
block size is dependent on the sparsity pattern of the matrix and can only be determined 
empirically. The savings in the number of iterations over the point diagonal preconditioner for 
28 blocks is given in Table I1 for a system having 224,476 unknowns. 

From the table, it is clear that the block ILU preconditioner is very effective in reducing the 
iteration count; however, the CPU time required is about 10 per cent less than that required by 
the point-diagonal preconditiones for the best case. 

4.4. Parallelization 

The different versions of the FE-ABC code were parallelized on a KSRl massively parallel 
machine which implements a shared virtual memory, although the memory is physically distributed 
for the sake of scalability. The basic strategy for the parallelization of the code is described on 
the biconj ugate gradient solver with diagonal preconditioning. The other versions use the same 
parallelization scheme with slight modifications. We also comment on the parallelization of the 
matrix assembly phase. 

The symmetric biconjugate gradient method iteratively refines an approximate solution of the 
given linear system until convergence. Figure 1 shows the method in terms of vector and matrix 

Table I. Number of iterations versus number of 
blocks for a block ILU preconditioned biconjugate 

gradient solution method 

No. of blocks No. of iterations 

1 
2 
4 
8 

12 
16 
24 
28 

127 
176 
185 
172 
162 
174 
223 
177 
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Table 11. Number of iterations required for convergence of a 224,476 unknown system 
using the point-diagonal and block ILU preconditioning strategies 

Angle of incidence No. of iterations Ratio (II/I) 

point diagonal ( I )  block ILU (11) 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

2943 
5985 
5464 
6048 
5770 
5107 
6517 
5076 
5305 
2898 

2758 
3834 
3984 
3651 
3256 
3720 
4162 
4108 
3551 
2832 

0.937 
0.641 
0.729 
0.604 
0-564 
0.728 
0-639 
0.809 
0.669 
0,977 

operations. For a system of equations containing N unknowns, all these vectors are of size N and 
the sparse matrix is of order N .  The number of non-zero elements in the sparse matrix is denoted 
as m e .  Table I11 shows the operation count per iteration for each type of vector operation. In 
the FE-ABC code, each vector operation is implemented as a loop. The program is parallelized 
by tiling these loops. For P processors, the vectors are divided into P sections of NIP consecutive 
elements. Each processor is assigned the same section of each vector. This partitioning attempts 
to reduce communication while balancing load. To guarantee correctness, synchronization points 
are added after lines 2, 7, and 9. Lines 2 and 7 require synchronization to guarantee that the dot 
products are computed correctly. Note that the dot products in lines 6 and 7 require only one 
synchronization. The line 9 synchronization guarantees that p is completely updated before the 
matrix multiply for the next iteration begins. 

In the sparse matrix-vector multiplication, each processor computes a block of the result vector 
by multiplying the corresponding block of rows of the sparse matrix with the operand vector. 
Since the operand vector is distributed among the processors, data communication is required. 
The communication pattern is determined by the sparsity structure of the matrix, which in our 
case is derived from an unstructured mesh. Therefore the communication pattern is unstructured 
and irregular. However, since the sparse matrix is not modified during the iterative process, the 
communication pattern is the same at each iteration. Vector updates and dot products are easily 
parallelized using the same block distribution as in the sparse matrix vector multiply. 

Although sparse computations are known to be hard to  implement efficiently on distributed 
memory machine, mainly because of the unstructured and irregular communication, the previous 
scheme was easily and efficiently implemented on the KSRl MPP thanks to the global address 
space.I3 Table IV shows the execution time of one iteration (in seconds) and the speed-up for 
different numbers of processors and for two problem sizes. 

For both problems, the performance scales surprisingly well up to a large number of processors. 
For the 20,033-unknown problem, the speed-up for the parallelized sparse solver varies from 1 
to 19 as the number of processors is increased from 1 to 28 (Figure 3). The overall performance 
of the solver on 28 processors is more than three times that of a single processor on the Cray-YMP. 
The large problem (224,476 unknowns) exhibits superlinear speed-up which can be attributed to 
a memory effect. As a matter of fact, the large data set does not entirely fit in the local cache 
of a single node in the KSR which results in a large number of page faults. However, as the 

Table 111. Floating point operations per iteration 

Operation Complex Real * * + + 
Matrix multiply nze nze - N 4nze 4nze - 2N 
Vector updates 4N 3N 16N 12N 
Dot products 3N 3N 12N 12N 
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Table IV. Execution time and speed-up for the iterative solver 

Procs N = 20,033 N = 224,476 

Execution time Execution time 
(seconds per iteration) Speed-up (seconds per iteration) Speed-up 

1" 
8 

16 
29 
60' 

0.515 1 
0.071 7.3 
0.040 12.9 
0-027 19-1 

10.8 1 
1.4 7.7 
0.671 16.1 
0.304 35.6 
0.149 76.2 

"For 1, 8 and 16 processors, only the first 100 iterations were run 
"Code run on a 64 node KSR at Cornell University. 

Figure 3. Speed-up curve for the linear equation solver on the KSRl 

number of processors increases, the large data set is distributed over the different processors' 
memories. 

The global matrix assembly is the second largest computation in terms of execution time. The 
elemental matrices are computed for each element in the 3-D mesh and assembled in a global 
sparse matrix. A natural way of parallelizing the global matrix assembly is to distribute the 
elements over the processors, have each processor compute the elemental matrix of the elements 
it owns and update the global sparse matrix. Since the global sparse matrix is shared by all 
processors, the update needs to be done atomically. On the KSRl this is done by using the 
hardware lock mechanism. The performance for the matrix assembly is given in Table V. 

4.4.1. Analysis of communication. In the main loop (Figure l), significant communication 
between processors takes place only during the sparse matrix vector multiply (line 1) and the 
vector update of p (line 9). The rest of the vector operations incur little or no communication 
at all. The distribution of the non-zero entries in the matrix affects the amount and nature of 
communication. In this section, we present an analysis of the communication pattern incurred by 
the sparse matrix vector multiplication as derived from analysis of the sparsity structure of the 
matrix. 

Line 1. In the matrix-vector multiply, each processor computes an NIP-sized subsection of the 
product q. The processor needs the elements of p that correspond to the non-zero elements found 
in the NIP rows of A that are aligned with its subsection. Because the matrix A remains constant 
throughout the program, the set of elements of p that a given processor needs is the same for 
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Table V. Execution time and speed-up 
for the matrix generation and assembly 

(20,033 unknowns) 

Procs Execution time Speed-up 
in seconds 

1 24.355 1 
2 13.376 1.8 
4 6.811 3.6 
8 3.744 6.5 

16 1.89 12.9 
25 1.625 15-0 
28 1.276 19.1 

all iterations in the loop. However, since p is updated at the end of each iteration, all copies of 
its element set are invalidated in each processor's local cache except for the ones that the processor 
itself updates. As a result, in each iteration, processors must obtain updated copies of the required 
elements of p that they do not own. 

These elements can be updated by a read miss to the corresponding subpage, by an automatic 
update, or by an explicit prefetch or poststore instruction. Figure 4 lists the number of subpages 
that each of the 28 processor needs to acquire from other processors. Automatic update of an 
invalid copy of a subpage becomes more likely as the number of processors sharing this subpage 
grows. The number of processors that need a given subpage (excluding the processor that updates 
the subpage) is referred to as the degree of sharing of that subpage. Figure 5 shows the degree 
of sharing histogram for the example problem. Since the only subpage misses occuring in Step 1 
of the sparse solver are coherence misses due to the vector p ,  the use of the poststore instruction 
to broadcast the updated sections of the vector p from step 3 should eliminate the subpage misses 
in step 1. However, the overhead of executing the poststore instruction in step 3 offsets the 
reduction in execution time of step 1. On a poststore, the processor typically stalls for 32 cycles 
while the local cache is busy for 48 cycles. As a result, the net reduction in execution time is 
only 3 per cent. 

Line 9. Before proceeding with the updates of the NIP elements of p for which it is responsible, 
each processor must acquire exclusive ownership for those elements. Because a cache line holds 
eight consecutive elements, each processor will generate N/8P requests for ownership (assuming 

Number of Subpags 
350 

300 

250 

200 

150 

100 

50 

0 
2 3 4 5 6 7 8 9 1011121314 

Thread ID 

Figure 4. Counts of p subpages required by each processor for sparse matrix-vector multiply (total copies = 5968) 
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Number of Subpages 
900 

805 
800 -i 

700 - 

536 600 - 56 1 

500 - 
400 - 

293 300 - 
200: 174 

100- 

0- 
0 1 2  3 4 5 6 7 8 9 10 

Degree of Sharing 

Figure 5. Degree of sharing histogram of p subpages during sparse matrix-vector multiply (28 processors) 
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all subpages are shared). In order to hide access latencies, the request for ownership can be 
issued in the form of a prefetch instruction after step 1. This could lead to an eightfold decrease 
in the number of subpage misses. However, as with the poststore instruction, the benefit of 
prefetching is offset by the overhead of processing the prefetch instructions in step 2. This is 
because the processor stalls for at least two cycles on prefetch and the local cache cannot satisfy 
any processor request until the prefetch is put on the ring. The overall execution time is reduced 
by only 4 per cent in this case. 

Lines 2, 6, 7. The rest of the communication is due to the three dot products. Each processor 
computes the dot product for the vector subsection that it owns. These are then gathered and 
summed up on a single processor. 

5. RESULTS 

The parallelized code was run for a 1.5h X 1X X 1X (see inset of Figure 6) perfectly conducting 
rectangular inlet and the radar cross-section computed for both polarizations of the incident plane 
wave. The radar cross-section (RCS) of a target is given by 

The backscatter RCS is obtained when the angle of incidence is the same as the angle of 
observation (i.e., 0" = 0', +O = @). In Figure 6, the 0-component of the scattered field is used 
to compute the backscatter RCS (aoo) of the inlet geometry from a 0-polarized incident wave 
(i.e., a = 00) taken in the yz  plane and compared with measured data.14 In Figure 7, the 
backscatter pattern (a++) from a +-polarized incident wave is compared to measured data.14 For 
the results shown in Figures 6 and 7, the ABC was enforced on a sphere of radius 1.3% The 
discretized geometry had 224,476 unknowns and converged in an average of 3600 iterations on 
the KSRl when using the block ILU preconditioner. The agreement is indeed quite good over 
the entire angular range. 
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Figure 6. Backscatter pattern of a metallic rectangular inlet ( l h  X 1h X 1.5A) for HH polarization. Black dots indicate 
computed values and the solid line represents measured data 
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Figure 7. Backscatter pattern of a metallic rectangular inlet ( l h  x 1 A  x 1.5A) for VV polarization. Black dots indicate 
computed values and the solid line represents measured data 

6. APPENDIX 

In this appendix, we present the algorithm for the modified ILU preconditioner. It is assumed 
that the data is stored in CSR format and that the column numbers for each row are sorted in 
increasing order. The sparse matrix is stored in the vector X and the column numbers in PC. 
SZG(i) contains the total number of non-zeros till the ith row. The locations of the diagonal 
entries for each row are stored in the vector DZAG. The preconditioner is stored in another 
complex vector, LU. 
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f o r  i=1 s t e p  1 un t i l  n-1 do 
begin 

lbeg=diag ( i )  
lend=s ig  ( i ) 
f o r  j = l b e g + l  s t e p  1 un t i l  lend do 
begin 

j j  =pc ( j  1 
i j = s r c h ( j j ,  i )  
i f  ( i j . n e . 0 )  then  
begin 

end 
l u ( i j )  = l u ( i j )  / l u ( l b e g )  

end 
end 
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