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Abstract

Due to differences in server capacity, external bandwidth,
and client demand, some Web servers value cache hits
more than others. Assuming that a shared cache knows the
extent to which different servers value hits, it may employ
a value-sensitive replacement policy in order to generate
higher aggregate value for servers. We consider both the
predictionandvalueaspects of this problem and introduce
a novel value-sensitive LFU/LRU hybrid that biases the
allocation of cache space toward documents whose origin
servers value caching most highly. We compare our al-
gorithm with others from the Web cachingliterature and
discuss from an economic standpoint the problems asso-
ciated with obtaining servers’ private valuation informa-
tion.

1 Introduction

Since the inception of the World Wide Web, caching has
helped to reduce server load, network traffic, and latency
at the client end. However, among researchers no clear
consensus exists on the relative importance of these goals
or of related performance metrics such as hit rate and byte
hit rate. Furthermore, Web caches currently provide only
“best-effort” service, in the sense that they do not account
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for possible differences in the extent to which system
stakeholders (clients, servers, and ISPs) value caching.

We begin with the premise that Web cache performance
is best measured in terms of user satisfaction, and we
conjecture that system users are heterogeneous with re-
spect to the value they receive when their documents
are served from cache. Finally, we observe that storage
space insharedWeb caches—proxies serving corporate-
or campus-sized LANs and backbonecaches embedded
in high-speed networks, as opposed to browsercaches—
can be diverted to serve those who value caching most
by removal policies sensitive to heterogeneous user pref-
erences. Caches are ideal loci for variable-QoS mecha-
nisms.

Although not universallyaccepted,user-centered de-
sign is an increasingly important paradigm in computer
science. For example, it has emerged as the dominant ap-
proach in human-computer interaction and interface de-
sign [26], and as the basis for a large literature on Internet
congestion control via pricing and related user feedback
systems (e.g., [19, 29, 20, 23]). The fundamental premise
is that a computer or networking system is only as good
as its users believe it to be. When multiple objectives
or various conflicting performance metrics are proposed,
the design conflicts can be resolved by appealing to those
choices that maximize some appropriate function of user
valuations. User centricity not only provides a unifying
approach to performance evaluation, but it also suggests a
design principle: systems that are intelligently responsive
to user expressions of relative value will tend to perform
well.

In this paper we take a user-centered approach to the de-
sign and evaluation of Web caching replacement policies.
We explore a scenario in which Web content providers
(servers) reveal to a shared cache the value they receive
from cache hits on their documents. We propose a hybrid
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of the LFU (least frequently used) and LRU (least recently
used) replacement policies that is sensitive to server val-
uations and that is tailored to the measured characteris-
tics of Web client request patterns. Trace-driven simu-
lations show that our algorithm sometimes outperforms
other value-sensitive replacement policies, as measured
by aggregate user value. We furthermore show that per-
formance can be improved even more by tuning an aging
parameter, and characterize conditions under which our
algorithm doesnot work well.

When valuation declarations from servers influence
cache removal priority, we might expect servers to strate-
gically misreport their values in order to bias perfor-
mance in their favor. Successful implementations of user-
centered designs that involve contention over shared re-
sources often require anincentive mechanismthat induces
truthful value reporting. Although the design of such
a mechanism for our replacement policy is beyond the
scope of this paper, it is an important problem, and one
that will be shared byanyuser value-sensitive algorithm.
We include a brief characterization of the economic incen-
tives problem, and suggest directions in which it might be
solved.

In the next Section we discuss the nature of value-
sensitive replacement policies, and describe several from
the existing Web cachingliterature. In Section 3 we
explain how the traditional caching problem can be de-
composed into two problems—value differentiation and
prediction—and present several empirical analyses of
Web trace data to justify the design choices we made
for the prediction features of our algorithm. Sec-
tion 4 presents empirical results comparing the value-
sensitive performance of several value-sensitive algo-
rithms. Section 5 describes circumstances under which
biased frequency-sensitive algorithms such as ours do
not perform well. Section 6 discusses incentive issues
surrounding value-sensitivecaching, and Section 7 con-
cludes by surveying possible opportunities for generaliz-
ing existing value-sensitive cache management schemes.

2 Value-Sensitive Replacement
Policies

Actual productioncaches currently employ LRU-like al-
gorithms or periodic purge policies, often for reasons re-
lated to disk performance, but a far wider range of re-
moval policies has been explored in the research litera-
ture. Williams et al. present a systematic taxonomy of
policies organized by the sort keys that determine the re-
moval order of cached documents [32]. For instance, LRU
evicts documents in ascending order of last access time
and LFU employs ascending reference count. See Bahn
et al. [4] and the references therein for a recent review

of the large literature on removal policies. The early lit-
erature on Web cache replacement algorithms considered
policies intended to maximize performance metrics such
as hit rate and byte hit rate; in a sense, the implicit design
paradigm is one in which the cache designer “hard wires”
into a cache the objective function it will maximize by
specifying a fairly rigid replacement policy.

In recent years several research efforts have indepen-
dently explored more flexible approaches to cache man-
agement. Many of these reflect a more sophisticated de-
sign approach in which a cache attempts to optimize anar-
bitrary objective function which isnotbuilt into the cache
replacement policy. The need to provide different service
levels to different content providers motivates our interest
in such algorithms. We expect different servers to value
cache hits on their objects differently, possibly with quite
large differences. Some servers will have clients who are
much less tolerant of delay, and who may be willing to pay
for a higher quality of service. Some servers may be quite
constrained in their own network connections and server
equipment, and thus may value off-loading traffic to a net-
work cache. The latter may especially make sense during
temporary surges in demand for their objects that do not
justify major capacity upgrades (e.g., following new soft-
ware or document releases, or when a site otherwise be-
comes transiently hot, such as the NASA JPL site during
the Jupiter probe fly-by). The existing market for object
mirroring and distributed replication used by, e.g., soft-
ware companies for distribution, is concrete evidence of
the differing values that servers place on distributed ob-
ject storage. Together with complementary research into
variable-QoS Web content hosting [1], the small but grow-
ing family of value-sensitive caching policies address the
needs of a heterogeneous user community.

2.1 Value Model

We assume that servers associate with each of their doc-
umentsu a numberWu indicating the value they receive
per byte whenu is served from cache: the value gener-
ated by a cache hit equalsWu � sizeu. This information
can be conveyed to a shared cache in HTTP reply headers.
We might speak ofWu as miss cost rather than hit value;
the two perspectives are essentially equivalent. Thus, we
can compare all replacement algorithms—value sensitive
or insensitive, value or cost based—in terms ofvalue hit
rate (VHR), defined as

VHR �
�hits Wu � sizeu

�requests Wu � sizeu
: (1)

This performance metric is a natural generalization of the
familiar byte hit rate measure: when allWu = c for some
constantc > 0, VHR is equal to byte hit rate.
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Several removal policies designed to maximize VHR
have been proposed. Cao & Irani’s “GreedyDual-Size”
(GD-Size) algorithm attempts to optimize an arbitrary
objective function that may be supplied dynamically, at
cache run time [8]. Given weightsWu GD-Size seeks to
maximize aggregate value (or minimize aggregate cost)
across all requests. Following a request foru, the doc-
ument’s removal priority is set toWu + L. L is an ag-
ing term initialized to zero; following a removal it is set
to the priority of the evicted document. LRU breaks ties
between documents whose removal priority is otherwise
identical [7]. GD-Size is a value-sensitiverecentistalgo-
rithm; when all valuesWu are equal, it reduces to LRU.

Our original “server-weighted LFU” (swLFU) is afre-
quentistalgorithm [14]. Removal priority is determined
by weighted reference countWu � Nu, whereNu is the
number of requests foru since it last entered the cache;
last access time breaks ties between documents with iden-
tical value-weighted reference counts. When allWu are
equal and positive, swLFU reduces to LFU; when all
weights are zero it becomes LRU. The algorithm retains
those URLs that contribute most to aggregate user value
per unit of cache space:

contribution of u to aggregate value

unit size

=
Wu � size(u)� Nu

size(u)
= Wu �Nu

Recently Arlitt et al. have introduced a frequency-
sensitive variant of GD-Size, “GD-Size with Frequency”
(GDSF) [3]. In GDSF a document’s removal priority is
set toNu � Wu + L following a hit, whereL has the
same meaning as in GD-Size. Bahn et al. have developed
a familyof value-sensitive algorithms, collectively known
as “Least Unified Value” (LUV), whose emphasis on fre-
quency and recency can be adjusted [4]. Unfortunately
we became aware of this work too late to include GDSF
in all but one of our experiments, and we present no com-
parisons with LUV.

In this paper we compare value-sensitive replacement
policies according to a value-sensitive metric. Before pre-
senting our empirical studies, we suggest a conceptual
framework in which to analyze caching policies. Using
this framework, we then uncover regularities in trace data
that guide our algorithm design.

3 Prediction vs. Value Sensitivity

One approach to designing Web caching systems, typical
of much of the earliest literature, is to implement new fea-
tures on an ad hoc basis and test performance experimen-
tally. A more refined approach, increasingly common in

recent work, is to identify regularities in Webcache work-
loads and to implement features that are well-suited to
these regularities (see Reference [27] for a sophisticated
example). To put this latter approach on a solid basis, we
suggest a conceptual framework within which to analyze
trace data and to design caching policies. We then present
empirical analysis within this framework that guides our
design choices.

The performance of any user-value-sensitive caching
system depends on how well it solves two distinct prob-
lems: predictionandvalue differentiation. Any measure
of performance will depend on having objects already
waiting in thecache before they are requested, hence pre-
diction. Since resources (network bandwidth, CPU, disk
space, human time for management) are scarce and costly,
and objects are created and changed in real time, we can-
not always haveall objects waiting incache in advance.
Therefore, of the set of objects predicted to be requested,
we need to differentiate their value to determinewhich to
cache.

Value-insensitive algorithms have largely focused on
solving the prediction problem, ranking documents for re-
moval based on estimated likelihood of future requests.
Thus, we might expect recentist algorithms like LRU to
perform well when there is substantial temporal locality
in user requests; frequentist approaches are better suited
to time-independent requests.

In this paper, we focus primarily on the relatively new
problem of value differentiation. However, an algorithm
will not serve users well if it does value differentiation
well, but performs poorly at prediction. Therefore we an-
alyzed trace data and the prior literature to find regular-
ities important forprediction, and used these findings to
hardwire certain features into our algorithm, while allow-
ing value differentiation to be dynamically driven by user
valuations. Our value/prediction framework is similar in
spirit to an elegant approach developed independently by
Bahn et al. [4], though perhaps different in emphasis.

From our data and the prior literature, we have iden-
tified four Web request stream characteristics relevant to
prediction:

1. Low temporal locality of reference.

2. Zipf-like document popularity distribution.

3. Nonstationary request process.

4. Weak size-popularity correlation.

We measure temporal locality in a request stream with
an LRU stack distance transformation. We add the items
in the stream to an infinite-capacity stack as follows: if the
item is not present in the stack, we push it on the top (at
depth 1) and output “miss”; this increases by 1 the depth
of all items already in the stack. If an itemis present in the
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stack (“hit”), we output its depth, remove it, and replace it
at the top. For example, the symbol stream “ABBACBD”
yields “miss miss 1 2 miss 3 miss.” Maximal temporal
locality occurs when all references to the same symbol
are adjacent on the input, in which case all hits occur at
depth 1; the string “AABBBCD” has the same relative
symbol frequencies as in the previous example, but now
a stack distance transform yields “miss 1 miss 1 1 miss
miss.” See References [5] and [21] for a more detailed
explanation of the stack distance model and its application
to Web caching.

Figure 1 shows the CDF of LRU stack hits in 14-day
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Figure 1: CDF of LRU stack distances of hits.

request streams collected during August 1998 at three
NLANR caches [12]. These traces range in length from
5.5 million to 7.9 million requests; see Reference [14]
for details. The median stack depth of hits ranges from
100,000 to 200,000, indicating weak temporal locality.
This conclusion is consistent with several recent find-
ings, e.g., Mahanti & Williamson, who report consistently
low temporal locality across several shared-cache work-
loads [21], and Barford et al., who report that temporal lo-
cality inclient traces declined between1995 and 1998 [5].
The implication is that pure recentist algorithms like LRU
may not have very high predictive success.

Our second observation is that the frequency of docu-
ment requests in our traces is Zipf-like, i.e., the number
of references to theith most popular document is propor-
tional to1=i�. This is qualitatively apparent in Figure 2,
a log-log plot of reference count as a function of popu-
larity rank for six 28-day NLANR traces collected during
March 1999; Table 1 presents estimates of the� parame-
ter. If we assume that temporal locality is so weak as to be
negligible and that document references are independent,
the Zipf-like popularity distribution argues strongly in fa-
vor of frequentist prediction; see Breslau et al. for a more
thorough discussion [6].

Even if document references are independent, the dis-
tribution that generates them may change over time. This
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Figure 2: Zipf-like popularity distribution in March 1999
traces.

effect is apparent when we examine day-to-day changes
in the set of popular documents (“hot set drift”). Fig-
ure 3 shows, for each of the first 28 days in March1999
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Figure 3: Hot set drift at six NLANR sites, March 1999.

at each of six NLANR cache sites, the fraction of that
day’s 500 most popular documents that were among the
500 most popular on 1 March. We see that the compo-
sition of the “hot set” changes gradually over time (Ma-
hanti & Williamson report qualitatively similar results for
other traces [21]). The implication is that pure frequen-
tist prediction (LFU) will likely suffer a “cache pollu-
tion” problem: formerly-popular documents that are no
longer requested often will clutter thecache as time goes
on. We confirmed the pollution conjecture by a simple ex-
periment: using one of our August 1998 NLANR traces,
we simulated 4GB and 8GB caches using LRU and LFU.
We compute hit rates separately within non-overlapping
windows of 250,000 requestseach, shown in Figure 4.
LFU initially outperforms LRU, but over time its per-
formance deteriorates; the problem is more severe at the
smaller cache size. Thus, in time series terms, we have ob-
served low positive serial correlation at high frequencies
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(absence of temporal locality), and negative serial corre-
lation at low frequencies (hot set drift). Recency informa-
tion can play an important role in prediction, but policies
like LRU do not exploit it well.

Finally, no clear relationship between document size
and popularity is evident in the six traces used in our ex-
periments. In Table 1 we provide summary statistics on
the six traces we use, including size-frequency correla-
tions. In each trace the correlation between document
size and popularity does not differ significantly from zero.
The design implication is that we should not discriminate
against either large or small documents.

From our analysis of request streams we conclude that
a mix of frequentist and recentist prediction is appropri-
ate. We implement a simple convex combination of LFU
and LRU, together with value sensitivity, for an algorithm
we call aged server-weighted LFU(A-swLFU). The de-
fault replacement policy is to evict objects based on the
value-weighted frequency count as described in Section 2;
however, on everyKth eviction we remove the LRU item.
This reduces to original swLFU and plain LRU as spe-
cial cases (K = 0 andK = 1, respectively). We are
not the first to explore recentist/frequentisthybrids: Lee
et al. [18] define a different continuum between LRU
and LFU for theunweightedcase (Wu = 1 for all u).
Bahn et al. have recently generalized this algorithm to the
weightedcase of interest to us [4]. Unfortunately we be-
came aware of this work too late to include it in our ex-
periments.

Adjustable parameters may impose a burden on admin-
istrators if they are to be well-tuned, and thus need to be
justified. OurK-aging has a nice property, however: it is
essentially an optional increment over current algorithms.
The choice ofK could be hard-wired; indeed the choices
0 and 1 are equivalent to well-known pure frequentist and
recentist approaches. Since we know that aK other than
0 or 1 can substantially improve performance, cache ad-

ministrators can make the decision whether the benefits
are sufficient to justify the additional burden of parameter
tuning.

Whereas “LRU” unambiguously specifies a replace-
ment policy, the family of LFU-like algorithms are pa-
rameterized by answers to the following questions:

1. What criteria break ties between documents with
identical reference counts?

2. Are reference counts maintained on items even after
they have been evicted from cache?

3. After a document request is processed, is the docu-
mentguaranteedto be in cache? (Is placement fol-
lowing a miss mandatory or optional?)

Figure 5 shows the impact of the last two parameters on
byte hit rate for LFU algorithms that use LRU to break
ties. Throughout this paper we use LRU as a secondary

0

10

20

30

40

50

1 MB 4 16 64 256 1 GB 4

by
te

 h
it 

ra
te

 (
%

)

cache size

LRU
mand perf LFU

mand i-c LFU
opt perf LFU

opt i-c LFU
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four LFU variants, August 1998 NLANR SV trace.

removal criterion in all algorithms. We explore variants
of LFU in which reference counts persist across evictions
(“Perfect LFU” in the terminology of Breslau et al. [6]),
and in which they are defined only for cached items (“in-
cache LFU”). While some theoretical investigations con-
sider the case of optional placement [13], we find empir-
ically that it never confers a substantial advantage over
mandatory placement and often incurs a severe perfor-
mance penalty, possibly because it ensures that a large
fraction of the many twice-requested documents in our
traces never result in cache hits. Therefore we consider
only mandatory-placement variants of LFU.

4 Experiments

We compare value-sensitive removal policies through
trace-driven simulations using Web request streams col-
lected at six NLANR cache sites during1–28 March
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Table 1: Traces recorded at six NLANR sites,1–28 March 1999.

BO1 PA PB SD SV UC
requests 11,583,087 13,548,917 19,803,754 37,085,277 23,738,274 26,024,662
documents 5,252,946 4,901,241 9,820,054 8,640,338 9,375,514 7,615,462
servers 193,422 168,082 291,410 247,459 265,305 250,484
unique bytes 104,474,161,664 76,038,927,331 188,308,442,149 204,928,271,675 159,114,665,878 150,119,984,279
bytes requested 236,150,085,697 220,658,618,173 383,130,815,921 620,283,701,022 412,899,064,992 397,548,684,913
max H.R. (%) 54.6 63.8 50.4 76.7 60.5 70.7
max B.H.R. (%) 59.4 67.3 55.2 69.1 63.2 64.4
meanNu 2.205 2.764 2.017 2.532 4.292 3.417
std. dev.Nu 37.77 25.60 29.71 34.10 74.59 43.80
Zipf � (R2) .578 (.88) .751 (.93) .560 (.89) .854 (.93) .692 (.92) .784 (.91)
meansizeu 19,888.68 15,514.22 19,175.91 16,971.30 23,717.62 19,712.52
std. dev.sizeu 337,424.3 220,990.6 269,819.6 221,649.6 289,507.6 312,418.1
mediansizeu 3895 3584 3712 3886 4080 3830
Cov(sizeu;Nu) 5158.76 4533.34 4168.46 -25,014.49 3097.10 -11,984.42
Corr(sizeu;Nu) 0.00040476 0.00080136 0.00052007 -0.00115845 0.00040978 -0.00087585

1999 [12]. Prior to simulation we pre-process rawcache
access logs by removingdynamic content and preserving
only successful requests for items not present in client
caches. Our six processed traces are summarized in Ta-
ble 1.

4.1 Heterogeneous Valuations

To explore the relative performance of value-sensitive re-
moval policies, we conducted experiments of the follow-
ing form: Randomly assign toeach servers a weightWs

drawn uniformly from the setf1; 10; 100; 1000;10000g,
then setWu = Ws for all documentsu hosted by
servers, and finally compute value hit rates for various
algorithms at different cache sizes. We use a a high-
variance weight distribution because, as Section 5 ex-
plains in greater detail, weighted-LFU algorithms behave
very much like ordinary unweighted LFU when weights
span a narrow range. Intuitively, weight-sensitive algo-
rithms aren’t very helpful in the relatively uninteresting
case when all weights are similar. In Figure 6 we show
mean VHR over five weight assignments at cache sizes
ranging from 64MB to 16GB for perfect and in-cache
variants of A-swLFU withK = 100; no attempt was
made to tuneK to particular traces or cache sizes. We
present LRU at cache sizes from1–16GB to illustrate
the gap between conventional and value-sensitive algo-
rithms. Our results suggest that even without a well-tuned
aging parameter A-swLFU offers negligible performance
advantages over GD-Size at larger cache sizes (4-16GB),
but consistently yields better VHR at smaller cache sizes
in most of our traces.

In Figure 7 we show the potential gains from tuning
theK parameter. We computed VHR averaged over 20
random assignments ofWu for GD-Size, in-cache GDSF,
and perfect and in-cache A-swLFU withK values of
0; 10; 20; : : :; 150; at each cache size we present the A-
swLFU with the highest VHR. Perfect A-swLFU per-
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Figure 7: Tuned perfect & in-cache A-swLFU, in-cache
GDSF, and GD-Size. March 1999 UC trace.

forms the best for caches that are 4GB or smaller, con-
sistent with what Breslau et al. predict and empirically
find in theunweighedcase where all weights are 1 and
the performance metric is byte hit rate [6]. However the
gains over in-cache A-swLFU and GDSF are modest and
may not justify the extra cost of retaining frequency ta-
bles on evicted documents. Optimally-tuned in-cache A-
swLFU and GDSF perform almost identically; since both
are value-sensitive combinations of recentist and frequen-
tist approaches, this is not surprising. GD-Size, which
does not exploit frequency information, performs notice-
ably worse except at large cache sizes. Figure 9 and the
accompanying text in Section 4.2 discuss tuning theK

parameter in greater detail.

Aged weighted LFU appears to work best when cache
space is moderately scarce. This performance advantage
might be especially important if main-memory caches be-
come common. At least some current caching systems
appear to be disk I/O constrained [28]. It is conceivable
that Web demand and network bandwidth will grow so
rapidly that disk bandwidth cannot keep pace, in which
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case RAM-only caches would become a reasonable de-
sign option. The absence of disks would remove many
practical constraints that currently limit cache designers’
choice of removal policy. A value-sensitive replacement
algorithm would enable a modest-sized diskless cache to
provide “premium” service for those willing to pay for
minimal latency. Our results show that GDSF and A-
swLFU are good replacement policies for such a cache.

4.2 Homogeneous Valuations

As a “sanity check” we also consider the degenerate case
where all documents have equal weight,Wu = 1 for
all u.1 As noted in Section 2, GD-Size reduces to ordi-
nary LRU in this case, and our VHR performance met-
ric reduces to byte hit rate. Figure 8 presents byte hit
rates at cache sizes ranging up to 16GB generated by
GD-Size/LRU and four LFU variants (all combinations
of aged (K = 10) vs. ordinary (K = 0) and perfect vs.
in-cache). Our results confirm Breslau et al.’s conclusion
that (un-aged) in-cache LFU performspoorly in terms of
byte hit rate [6]. However, we find that the addition of
aging without any attempt to tune the aging parameter
improves the performance of in-cache LFU beyond that
of un-aged perfect LFU. As expected, aged perfect LFU
generally performs best. Finally, in three of six cases (PA,
PB, and SD) LRU outperforms un-aged perfect LFU at
all cache sizes, contrary to Breslau et al.’s claim that per-
fect LFU generally performs better than LRU in terms of
BHR. We attribute the difference to the size of Breslau
et al.’s traces, which are too small for the cache pollution
effect we see in Figure 4 to affect LFU. More remark-
ably, aged in-cache LFU outperforms aged perfect LFU
on two traces (PA and SD), and performs roughly as well
one other (SV).

How much can we potentially gain by tuningK at a
particular cache? Figure 9 shows byte hit rate asK varies
from zero to 25 for in-cache LFU (solid lines) and perfect
LFU (dashed lines) at cache sizes ranging from256MB
(lowermost solid/dashed pair) to 16 GB (top pair). (The
solid and dashed lines meet atK = 1 because both al-
gorithms reduce to LRU at thatK value.) Remarkably,
at everycache size in-cache LFU with optimalK outper-
forms perfect LFU with optimalK. In other words, it ap-
pears that well-tuned aging might eliminate any advantage
of maintaining reference counts on evicted documents in
the heterogeneous valuation (unweighted) case. Figure 9
furthermore appears to confirm our earlier conjecture that
the optimal amount of aging depends oncache size; larger
caches require more aggressive aging (lowerK).

1GDSF appeared after we conducted this series of experiments and
could not be included in this comparison.
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5 Limits to Biased LFU

We can identify at least two situations in which weighted-
LFU algorithms do not perform much better than their
unweighted counterparts: when value differences are un-
done by the law of large numbers, and when weights span
a narrow range.

To see the first point, consider aclient-weightedvariant
“cwLFU” in which client i supplies weightwi indicating
the utility per byte it receives when its requests are served
from cache. Removal priority in cwLFU is determined by

Vu �
X

clients i

winiu

whereniu is the number of requests for URLu by client
i. The problem with this approach is that when client
weightswi are uncorrelated with reference countsniu, the
law of large numbers causes the quantity

V u �
Vu

Nu

where Nu �

X

i

niu

to converge toward the mean of the distribution from
which thewi are drawn for URLs with high overall ref-
erence counts. If weights are uniform overf1; 2; : : : ; 10g,
for instance, popular URLs will tend to haveV u close to
5.5. Ordinary LFU and cwLFU differ only insofar asV u

differ substantially across objects, and this does not hap-
pen when client weights are uncorrelated with reference
counts. It is conceivable that such correlations do exist
in the real world, e.g., we might imagine that impatient
clients who value cache hits highly have similar reading
habits. However, such correlations are difficult to model
and we do not speculate further about them.

We have also found that swLFU does not perform well
with weights drawn from a narrow range, e.g., 1–10. The
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Figure 8: Cost = size case: byte hit rates as function of cache size for GD-Size/LRU and four LFU variants: perfect
vs. in-cache and K=10 aging vs. no aging. March1999 NLANR traces. Note that vertical scales vary.
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reason is that URL reference countsNu vary over many
orders of magnitude (Figure 2). If weightsWu span only
one order of magnitude, their influence on the behavior of
swLFU may be negligible.

We can illustrate both of weighted LFU’s difficul-
ties through a simple experiment: obtain URL reference
countsniu from an actual Web cache access log, and as-
sign to the clients in the log weightswi drawn randomly
from f1; 2; : : : ; 10g. Create two lists of URL tuples of
the form(u;Nu; Vu), one sorted in descending order of
reference countsNu and the other sorted on cwLFU re-
moval priorityVu. Examine the overlap in the topk URLs
on both lists as a function ofk. If the two lists are very
similar, the topk sub-lists will overlap substantially even
for small values ofk; if the lists are very different, the
overlap will be small except for large values ofk. This
exercise provides a crude way to compare the contents of
weighted and unweighted caches: the topk items on our
two sorted lists are roughly those that would be contained
in unweighted LFU and cwLFU caches of sizek after pro-
cessing the request stream in the access log. This experi-
ment can be performed for swLFU as well as cwLFU; in
both cases removal priority is weighted reference count.
Figure 10 shows list overlap as a function ofk in two sce-
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Figure 10: Overlap among topk items in lists sorted on
weighted and unweighted criteria.

narios: client weights drawn from a narrow ranges (top),
and server weights drawn from our high-variance distribu-
tion (bottom). Reference countsniu are from the NLANR
SV log of 17 March 1999. For acache capable of holding
between 10,000 and 100,000 documents, weighted and
unweighted LFU yield very similar cache contents (80%
overlap), and therefore similar hit/miss behavior, in the
narrow-weight-range cwLFU case. By contrast, the simi-
larity between weighted and unweighted cache contents is
far lower (25% overlap) in the wide-weight-range swLFU
case.

6 Incentives

User-centric value-sensitive replacement policies require
information about user valuations. By measuring perfor-
mance (VHR) using server announcements of their val-
ues (Wu), we have been implicitly assuming that these
announcements are truthful. Unfortunately, whencache
replacement is directly affected by the announced values,
it will generally be in each server’s private interest to sys-
tematically misreport its valuations: no matter how low
their true values, they would like their objects to get bet-
ter treatment than another server’s objects. The problem
of strategic announcements is generic and confronts any
value-sensitive replacement policy: a reliable source of
user value information is needed to improve on insensi-
tive policies.2

A powerful approach to this problem is known asmech-
anism design; see Reference [22] for a good introduction.
The approach is to provide participants with economic in-
centives such that it is in their rational self-interest to pro-
vide useful valuation information. The search over pos-
sible incentive schemes is considerably simplified by the
Revelation Principle [25], which states that any aggregate
user value that can be achieved by some incentive scheme
can be equivalently achieved by a scheme in which it is
rational for participants to tell the truth. Nonetheless, the
design of incentive mechanisms is technically challeng-
ing, and is beyond the scope of this paper. We merely
offer some observations on the possible shape of a good
scheme.

One important result originally due to Vickrey [31] and
generalized to a much richer set of problems in Refer-
ence [30] lends some intuition for the problem. Vickrey
proposed the second price auction: charge the winner of a
single good auction the second highest bid. The bidder’s
announcement affects onlywhenshe wins, not how much
she pays, and it can be shown that the bidder’s dominant

2The problem of inducing servers to truthfully reveal private valua-
tion information is distinct from the problem of preventing acachefrom
over-reporting hits in a scheme in which servers pay for cache hits. Eco-
nomics offers insight into the former problem (“bid shading”), but not
the latter (fraud).
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strategy is to bid her true valuation for the good being
sold.

The Varian & MacKie-Mason generalization [30] sug-
gests that charging a server for each hit the valuation
announced for the object that was most recently evicted
might be incentive compatible. This would work if
caching decisions were a one-shot activity. Unfortunately
it is not, and in this example, the server’s bid would af-
fect future payments, and thus it will not be optimal to
tell the truth. For example, if the current price is less than
the server’s true value, it will want to overbid in order to
increase its object’s duration in the cache, since each hit
will produce value greater than its cost.

In another paper we proposed a quite different approach
to value-sensitive caching, in which a cache periodically
auctions off disk space [9]. In that setting we were able to
provide an incentive-compatible scheme.

7 Lessons Learned

The research on value-sensitive approaches to network
transport priorities and guarantees (for admission and ser-
vice) continues to be an extremely active area.3 That
user demand for variable QoS is substantial seems evi-
dent from the wide variety of prices that users pay for In-
ternet connections with varying bandwidth. Policies that
can be implemented within the network to allocate scarce
resources offer the possibilityof greater flexibility and dy-
namism, and thus the opportunity to increase the aggre-
gate value of the network to its users. Policies that offer
greater degrees of (possibly stochastic) QoS guarantees
also would support the widespread deployment of inelas-
tic, latency-sensitive applications such as real-time audio
and video.

One of the main points of our research is that network
admission and transport are not the only scarce resources
that can be managed to offer variable QoS. For any given
topology of servers, links and switches, and any given al-
location of bandwidth and transport priorities, QoS for
object delivery (e.g., Web usage) will be affected by the
location of servers and their local congestion conditions.
Therefore, the level and variability of network latency will
be affected by the topology of object storage. Our re-
search is part of a much smaller QoS literature that has
recently begun to consider the use of value-sensitive ap-
proaches to distributed network file storage as a means to
improve network value through user-responsive variable
QoS.

We have focused on replacement policies at a single L3

3For just a few recent theoretical and empirical examples, see, e.g.,
References [10, 2, 16, 15, 17], and indeed most of the papers at the MIT
Workshop on Internet Service Quality Economics, December 2-3, 1999,
Cambridge, MA.

Web cache as one target for value-sensitive file storage. A
few other recent papers have also explored value-sensitive
replacement policies for aggregator Web caches. In par-
ticular, Cao & Irani introduced the first explicit value-
sensitive approach of which we are aware [8], and Ar-
litt et al. suggest a variant that performs slightly better
than our A-swLFU without requiring a tunable aging pa-
rameter. However, in our view the literature is far too
immature to focus on horse races between specific algo-
rithms; the important result is that value-sensitive algo-
rithms deliver substantially higher value to the user com-
munity than their insensitive counterparts.

Our results underscore the importance of workload
characteristics for the effectiveness of value-sensitive Web
caching algorithms. The temporal and spatial distribution
object requests can have first-order effects on the poten-
tial gain from any value-sensitive replacement policy over
an insensitive policy. Further, effective design within the
class of value-sensitive policies is likely to be driven by
workload characteristics (e.g., the importance of an aging
mechanism for frequentist replacement policies). Inter-
estingly, the network transport QoS pricing literature has
not been uniformly attentive to the empirical character-
istics of offered traffic. However, it is worth noting for
any value-sensitive QoS policy research, whether directed
to network transport, file storage or some other network
resource, that users are responsive and adaptive agents,
and that workloads observed under unpriced conditions
will change if prices are introduced. Thus, a critical need
for all such research is to develop more data on the re-
sponsiveness of users (at various levels of aggregation) to
quality-sensitive pricing for network resource usage.

A closely related lesson for Web caching replacement
policies—value-sensitiveor otherwise—is that we need to
understand the interaction between usage aggregation and
cache allocation. We have studied caching at the L3 level
of the NLANR shared cache hierarchy: that is, for caches
that are designed to serve only L2 organizational shared
caches, which in turn serve individual workstation caches.
Obviously, the organizational hierarchy of shared caches
will have dramatic effects on workload distributions. For
example, if a user at the University of Michigan requests
a cacheable document, it will be cached at the L2 cache
serving UM. Thereafter, until the document is removed,
future requests for it from users at UM will be served by
the UM L2 cache. In other words, within any reasonable
time horizon, the L3 cache should only see a single re-
quest for any cacheable object from a given L2 cache.
If an L3 cache typically serves twenty L2 caches, then it
would be unusual to see more than 20 requests for a single
object during a typical time window. Indeed, the median
number of requests for objects in our datasets was one,
which drastically limits what even the most clever cache
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replacement policy can accomplish.4 On the other hand,
the L2 cache at Michigan serves approximately 80,000 ac-
tive user accounts, and might see thousands of requests for
a popular object. Obviously, workload characterizations
will be quite different at different locations in a shared
caching topology. But, since the topology is also a de-
signed feature, caching to implement variable QoS needs
to consider simultaneously the replacement policies at in-
dividual cachesand the design of the sharing topology.

The interaction between topology and replacement al-
gorithms highlights another important question for fur-
ther research: value-sensitive inter-cache allocations. For
example, within a cooperative set of sharedcaches, it
is necessary to have policies to determine which caches
will store which objects, and which caches (or lower-
level users) are permitted to retrieve those objects. Based
on our experience with workload characteristics and the
strong interactions between sharing topology and work-
load, we think there may be significant gains from value-
sensitive, dynamic sharing protocols rather than static hi-
erarchies. Price or value messages between caches would
typically provide an efficient, terse summary of the infor-
mation necessary to implement more efficient distributed
caching. The gains from a more adaptive, responsive
storage topology could well be greater than from minor
improvements in single-cache replacement policy algo-
rithms. Therefore incorporating value concerns into ex-
isting inter-cache protocols appears to be a promising di-
rection for future research.

We also envision the possibility that noncooperative
caching servers might be simultaneously active within the
network; indeed, this is already true in today’s commer-
cial Internet. In a market setting with noncooperative,
self-interested cache managers competing to provide QoS,
the case for value-sensitive inter-cache protocols and re-
placement policies is quite natural. For example, when a
given cache manager finds that one of its regional caches
is becoming dangerously congested, it might find it more
effective to temporarily rent caching space or priority on a
nearby independent server rather than route client requests
back to the object owner’s originating server.

Extending the scope of the problem yet another step,
it should be evident that there is not necessarily any-
thing that limits value-sensitive allocation policies to Web
caches (or network links). By recognizing that the en-
tire range of network resources involved in object stor-
age, manipulation and transport have an effect on the
user’s perceived QoS, we open the possibility that other

4The observant reader might have noticed from our Figure 2 that we
appear to have at least 1000 objects for which there are an implausi-
bly large number of requests. Our NLANR log files do not allow us
to identify and remove uncacheable content prior to simulation experi-
ments, and we suspect that many of the documents in our filtered traces
are actually uncacheable. We thank John Dilley and Duane Wessels for
helping to bring this anomaly to our attention.

resources might be usefully guided by value-sensitive al-
location policies. The obvious extension to our work—
and another area in which we expect the net gains may
be greater than from continued marginal improvements
in single Web cache replacement policies—is to consider
value-sensitive protocols and allocation mechanisms for a
greater range of distributed file storage systems. One ap-
plication might be the sharing of unused workstation disk
space to provide a distributed LAN file storage server;
Douceur & Bolosky’s study of disk usage on a large cor-
porate network indicates that roughly half of all disk space
is unused [11], so the potential gains from tapping this re-
source are large. Likewise, at the LAN or Internet level
value-sensitive protocols might be able to implement ef-
ficient distributed file backup systems. A recent applica-
tion of considerable interest is the provision of network
file storage for roaming or mobile users [24].

One very important issue for any value-sensitive
scheme, as we discussed in the previous section, is how
to obtain information about users valuations. In systems
with autonomous agents it is generally true that at least
some user valuation information is private and users can-
not be compelled to truthfully reveal that information.
This provides quite a challenge to resource allocation ap-
proaches that try to use valuation information in order to
achieve the sensible goal of maximizing aggregate value.
We have learned from mechanism design theory that it is
quite difficult, and in some seemingly simple situations
provably impossible, to design allocation mechanisms—
market-based or otherwise—that induce value revelation
in such a way as to permit allocations satisfying reason-
able requirements, e.g., voluntary participation or budget
balance. Such mechanism design problems are especially
pernicious in situations with costly computation and re-
peated interactions.

However, we do not mean to suggest too much pes-
simism. In the simple case of single-cache replacement,
value-sensitive replacement policies have the potential to
improve performance substantially compared with value-
insensitive policies. Therefore, even if information reve-
lation incentives can induce only approximately complete
revelation, the QoS gains may be worth pursuing. The
additional gains potentially available from taking into ac-
count interactions with the storage topology, inter-cache
transactions, and other types of file storage strengthen the
case for research on market-based (and perhaps other) in-
centive schemes.

Indeed, the significance of information sharing points
to a set of distributed file system policies that have re-
ceived almost no attention thus far: service, as opposed
to replacement, policies. Replacement policies determine
what objects are placed and or retained in a particular file
store. Service policies determine which objects are deliv-
ered to users from the store, and with what service qual-
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ity. Pricing for packet scheduling priority is an example:
when a user pays a particular price, it is granted a par-
ticular level of service (priority). Likewise for file stor-
age: Users (possibly aggregators or lower level caches)
or competing caches might pay different prices to obtain
different levels of file delivery service. The payments and
the service quality parameters can be adjusted to induce
users to reveal information about their valuations for file
service QoS.

To summarize, our work on value-sensitive single-
cache replacement policies teaches several important
lessons for the design and implementation of QoS-
enabling allocation policies in the Internet. Those lessons
apply to the design of specific algorithms such as ours for
Web caching, and also guide us towards other research
problems that seem likely to be at least as rewarding.
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