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I. INTRODUCTION

The study of linear dynamic systems with time-variant para-
meters is of increasing interest and importance. A significant class
of such systems is characterized by periodic, piecewise constant
parameters. It is the purpose of this dissertation to investigate
this class of systems with particular attention to the determination
of response and response characteristics. The resultant theory is
applicable to many physical systems including electrical networks
with periodic switching, control systems with certain periodic
variations, and time division multiplex systems. A wider range of
problems may be attacked by approximating general periodic parameters
by piecewise constant representations. |

Study of response presupposes a mathematical formulation.
The considered systems are described in every fundamental period in
a sequence of time intervals by a corresponding sequence of constant
coefficient differential equations. Additional relations are required
to establish initial conditions in each interval of every fundamental
period. In many systems these are nothing more than continuity re-
quirements; in others; variables may eghibit prescribed jumps from
interval to interval.l Essentially then, the systems are described by
a linear differential equation with periodic coefficients. Before in-
troducing the methods of analysis used, it is worthwhile to examine
the techniques used previously.

With few exceptions past workers have not considered the re-

sponse problem but have devoted their efforts to the homogeneous equation

1 Such is the case when two capacitors are switched in parallel.

-l-



dv dv d\/
at Ht)d_t.,, F(t\ + f{t) Vv , (1)
2T

where the ﬁ (t) are periodic functions of t with period -Z);
This problem is of significance, however, since if a set of n linearly
independent solutions to equation (1.1) are obtained, the method of
variation of parameters yields the desired solution to the non-homogene-
ous problem [In. 1, p. 122]. The Floquet theory [In. 1, pp. 381-382]
gives the functional form of a set of independent solutions to equation
(1.1). Assuming a distinct set of /‘-i , these may be written Vl H.):
e;l;t (Dl(t) , where the @i (t) are periodic functions of t  with
a period —%;75 . The /[,; , known as the characteristic exponents,

determine the general nature of the solution. Unfortunately, these

solutions are generally difficult to obtain and only Hill's equation,
2
dv .
dt

is discussed extensively in the literature.

f\(t)v = O ) (1,2)

1

The most widely used method of solution assumes Fourier series

representation of ‘F, (t) and V(t) = (i“ Z bn € in l..),'t ’

hz -

which leads to the evaluation of an infinite order determinant [In. 1,
ec. 15.72; Wh. 1, sec. 19.42]. For f,(t) = q f'ﬁCOS (.«)‘,t , Hill's
equation reduces to Mathieu's equation and solutions are well under-
stood and tabulated [Mc. 1; Gra. 1]. Of particular interest 1s the

work of Van der Pol and Strutt [Va. 1] who considered Hill's

1 See the book by McLachlin [Mc. 1] for a list of 226 references to

the literature of Hill's equation.
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equation for the case of rectangular variation of {;(t) (a periodic,
piecewise constant funbtion). They determined the stability of solu-
tions by using a fundamental result of the Floquet theory which states
that the characteristic exponents are determined if n independent solu-
tions and their derivatives to order n-1 are known at values of t dif-
fering by the fundamental period.

More recently Pipes [Pi. 1, 2, 3, 4, 5] developed a matrix
multiplication technique that is useful in deﬁermining the character
of solutions to equation (1.1). The solution and its derivatives to
order n-l1 are obtained at multiples of the fundamental period by de-

termining powers of an nth order matrix. Thus

—

v(k2r) V(o) |
vk £ V(o)

fh-l)' o (h-)
V (K-,;,;) v (o) - (1.3)

The matrix FVT is determined by evaluating a fundamental set of so-

2r
Wo

cases Pipes applies the method to Hill's equation where the powers of

lutions and their derivatives to order n-1 at t'= In most
the matrix may be determined quite easily by the application of Syl-
vester's theorem of matrix algebra [Pi. 3, 4, 5]. The method is parti-
cularly useful for systems with periodic, piecewise constant parameters
In March, 1955, Bennett [Ben. 1] presented a method for the
determination of the steadj—state response for electrical networks con-
taining periodically operated switches. For a single storage element
and an EPput f?jwt , he determines a solution of the form

jwt b jht
e n c . Use of matrix notation extends the results
h:-o



to networks with n storage elements. The theory is considered for two
switch positions in the fundamental period and requires determination
of two n2 functions of time before the salution may be formulated. Ex-
\tensive computations remain to»determine the Fourier coefficients.

The methods to be employed here are based on the time-variant
transfer function and the time-variant im.pulse*response.l The signi-
ficant advantage of this approach lies in its emphasis of the response
problem and in its analogy to common procedures used in the study of
invariant systems. A direct application of this theory to the differ-
ential equation formulation of the problem results in complicated no-
tation and difficulty'of manipulation. For this reason the problem is
better stated in terms of a vector differential equation. To further
simplify the problem & change in time scale is made so that the funda-
mental period is unity. Manipulation then becomes independent of
system order and fundamental period and important results are obtained
with little complication. Appendices I and II introduce this notation

and present the methods of Zadeh in vector form.

Chapter II discusses the two interval problem. Results in-
3

clude iteration formulas,2 the time-variant transfer function,” an ex-

| pression for the output spectrum, and the time-variant impuilse

1 These functions, their relationship, and application have been
" investigated extensively by Zadeh [Za. 1, 2, 3, 4, 5, 6, 7, 8].

& Fbr thevhomogenegus problem the result may be compared with the
matrix method of Pipes [Pi. 1, 2, 3, 4, 5].

-3 'The development is similar to that of Bennett [Ben. 1].
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response.l Chapter III extends the fesults of Chapter II to the
multi-interval problem. General periodic parameters are considered

as a limiting case. The chapter is concluded with a summary of results
and a discussion ofbtheir application. Chapter IV is devoted to system
stability and responsercharacteristics. A stability criterion is pre-
sented and .characteristic roots are-defined..2 Methods are presented
for simplified analysis and elementary synthesis. Chapter V appligs

the theory to several physical examples.

1 The expression for the time-variant impulse response uses the
2 transform theory of sampled-data systems [Ra. 1; Tr. 1,
Chap. 9]. »

2

The characteristic roots are actually the characteristic exponents
of the Floquet theory.



II. THE TWO INTERVAL PROBLEM

If a linear dynamic system is characterized by periodic,
piecewise constant parameters, it is possible in every fundamental
period to describe the system in a sequence of inclusive elementary
time intervals by a corresponding sequence of linear differential equa-
tions with constant coefficients. In this chapter basic results will
be developed for systems with two such intervals in the fundemental
period. Included are the piecewise solution, the time-variant trans-
fer function, an expression for the output spectrum, and the time-
variant impulse response. The application and significance of these
results will be examined but briefly in this chapter. A more detailed
discussion willibe made in the'following chapter after derivation of
similar results for the multi-interval problem.

Introduction

The work to follow assumes fhat the problem has been formu-
lated in vector notation with a fundamental period of unity. Then
the considered class of systems can be described piecewise in time by
the vector differential equations

Eili - + < < K+ 2.1
Tt Ay X kt»ka (2.1)

dy_ By + X, ka<t<kabokd o

dt

vhere K is any integer, X  and y are n dimensional column vectors
with components Xi and >ﬁ , and %\ and E5 are n by n matrices
- with finite components (i;  and kjij . Equations (2.1) and (2.2)

represent systems of linear differential equations with constant

-6-



coefficients. Therefore, assuming that the Xi are sectionally con-
tinuous functions of time, there exist continuous solutions for equa-
tions (2.1) and (2.2) in the intervals indicated, provided that the
vector initial condition for each interval is known [In. 1, pp. 71-72].
The initial condition value for each interval is determined from the
solution value at the end of the previous interval; that is, y{kf)

is determined from Y(K-) and )/(K*UJ') is determined from y(Kfa—).l
The most general possible initial conditions result from matrix trans-

formations of the end values. The transformations may be written

yﬁ: - B*ysk-: (2.3)

+ *
= A
yBk - A yﬁk J (2 )
where the initial wvalues yﬂkf and )/3: and end values ynu

and ygk_, are fixed by the definitions

YAFY“‘*)

Yor = ylkrar)
VYex ylk+a-)
Yex = y (k+1-)

A B*
and where and are n by n matrices with finite components

n

(2.5)

of

%
%

a“ and bU . Hence the vector equations (2.1) and (2.2) with

the initial condition equations (2.3) and (2.4) describe a time-variant

system with a unique solution. .The solution is continuous for all t

- y(k'r) indicates the limit of y('t) as t approaches K for values
t>K . Similarly, Y(k-) would indicate the limit of Y (%) as
t approaches K for values t<K . The notation shall be used
throughout the dissertation.
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% *
if and only if ll and E3 equal the identity matrix. Otherwise
the solution will be sectionally continuous with jumps at t=kK and//
or L=k+a .

The solution at times t = K and t =Kk+a is not defined
by the equations previously noted. Arbitrarily the solution will be

defined

V(M = Y (K-) = Vg,

yikta)= y(kra-) =Y, - | (2.6)

Then equations (2.1), (2.2), (2.3), and (2.4) are described by the

single equation

d |
a’% = Flt)y +x (2.7)

where

Fit) = (B-I)S(t-k) +A™I)§(t-k-a)

4 /3 ; 0 < t"k <a
B, a<t-k<].

The unit impulse functions §(t-k) and §(t-k-a) in F(‘t) give

(2.8)

* Bx—
the required jumps in the solution when /q - and do not equal
 the identity matrix.

The Piecewise Solution of the Problem

Since the problem is described piecewise in time by the con-
stant coefficient differential equations (2.1) and (2.2), it is feasi-
- ble to obtain the solutions interior to each interval and then piece
them together with the initial condition equations (2.3) and (2.4).

This procedure leads to a piecewise solution and to vector iteration



formulas that determine initial or end values from interval to interval.
These results are useful in themselves as a solution to the problem.
They are also important in the development of the time-variant transfer
function.

To facilitate the piecewise solution the time scale is shifted
so that zero time corresponds to the beginning of each interval., This
shift defines new functions that are more conveniently manipulated to

give desired results. Thus in equation (2.1) let T=1- K and define

Vo (T) = Y (T +K)

Yo (T) = W(T+K) . (2.9)

It is then possible to write

Yo (7 = e M fem Ka(T-1) A & S (210
In equation (2.2) let 7 =T -K-0 and define
Y, (1) = y(T+kta)
Xau (T) = X (T +k+a)
(2.11)

Then

il

Yor (T)

Further simplification is possible by defining separately the particu-

,
eB*yB,j +/681 XBK(T-A)CH : (2.12)
0

lar integrals for the solutions (2.10) and (2.12). Thus

%:(T) . ]e’“xﬁk (T-4) dA

I See Appendix 1, equation (A1.21).
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Vol () = feBLka (r- 1) dd .
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(2.13)
Since X(t) is assumed sectionally continuous,
Yae (0) = Vi (0 2 yﬂ:
X e ¥ .
Yar (b) = You (B) = Yo (214
also
eﬁ)a- _ eﬁa,
Bb- Bb
C =
¢ (2.15)

The constant vectors )@f and

will be used shortly.

Yax = Y hta-) = Yy la-) =

Y= V(K1) = Y (b)
Using equations (2.3), (2.4), (2.10),

the initial condition values

Ym+ = BX (eBb ysrc: * ya:.:)
ys: = A*(Ena%: * yﬂ:)

Alternately equations for the end values

written, resulting in

n

ybf defined in equations (2.1k4)

From equations (2.14) and (2.15) it follows that

Yo (G2)

Yar (b)

(2.16)

and (2.12) through (2.16) gives

(2.17)

(2.18)

Yax and ybk may be
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\/AA = eﬂa B* Yer. +%f (2.19)
b *
Vax = CB A Yoo ¥ }/3: : (2.20)
In many cases )/(t) does not change significantly in any
interval and the solution at t -k and L= K+a  is sufri-
cient. Equations (2.17) and (2.18) are vector iteration formulas that
give the desired values in a step by step process. The solution at
t =4 and t- K+ a- is obtained in a similar manner by equations
(2.19) and (2.20). This method is particularly useful when the vector
constants )@: and )@5 are zerol or independent of k
The iteration formulas (2.17) and (2.18) in conjunction with
equations (2.10) and (2.12) give the piecewise solution. Thus substi-

tuting for 7 in equations (2.10) and (2.12) yields

yir) = PPy fe”*x(t Ddl, o<tk<a

| ° th-a
eB““ /e x(t-A) dh, a<t-k<t,
(2.21)
where )h: and y%: are obtained from the iteration formulas.

The Time-Variant Transfer Function

Inthis section the time-variant transfer functionJﬁU@ﬂ will be
derived for systems described by the vector differential equation (2.?).
The function is useful in determination of system response and is re-
quired for the derivation of the output spectrum and the time-variant

impulse response.

L The matrix method of Pipes [Pi. 1, 2, 3, 4, 5] is basically identi-
cal for this homogeneous problem.
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H(jw;-t) and H(S,t) are defined respectively as the
Fourier and Laplace transforms of the impulse response \/\/(t,'r) . These
essentially equivalent definitions do not, however, provide a practical
method for obtaining the transfer function. The technique to be used
here will be based on the fact that y(‘t) = H(}W,'t) e}wtc is a
particular integral for the input X(t) = ejwtc . In Appendix II it
is shown that H (/‘d,t) is periodic in t if the system has periodic
coefficients, the period of H(jU,t) being identical with the period
of the coefficients. In such systems it is further shown that if any

wi
J C can be obtained

X
particular integral Y(t) = H(/‘V/t) (4
where H*()(a.g t) is periodic in t with period identical to the
coefficient period for all Jw , then H*()W,t) must equal H(j(d,t)
Thus the problem of finding the time-variant transfer function for the
system (2.7) is reduced to finding a particulé.r integral y{t) .
H(J‘o),t)ejwf: for the input X(t)= e,‘wtc where it is required that
H(let) ve periodic with a period of unity. This may be done employ-
ing the piecewise solution of the problem.

The piecewise solution requires that yﬁ: () and yﬂf (1)
be determined for the input x(t) = Cjwtc . To simplify the
work jw will be replaced by S . Then since x(t) = eStC ,

kea) ST
XAI‘(T) - eél‘l’+/§)c - GSRESTC and X,K (7_) = e${7'+k+a)= S( +a.)eS C.

By the first equation of equations (2.13)
r
) = e [eftestmhdl ¢
) *
esk es'r /8 (sI-A)A dl ¢

- et (T-AT[I- e e
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For convenience this is written

M= e*es™ Yisre (2.23)
where

K(S,T) = (51 'AY [ [- E—M‘A)TJ . (2.24)
Similarly,

Yor () = el gsT _Y;(Sﬂ’) C, (2.25)
where

Y (s 1) = (sI-B)ﬂ[I - 6'(’1'3)*] | (2.26)
The desired solution is of the form

y(t) = Hist)este , (2.27)

where H(Slt) 1s periodic with a period of unity. Since this is

true, Y(‘f) f_’.:t = y(t*/) e—S(f w1 or

vt . ytpS X _
Thus YBk-/ = yBI( e and YBh-; =

(2.17) and (2.18) may now be written

* -5 Bb
Yol = BUE (eB0yr 4y ¥)

K

ys::A*(Ha +

Solving for yﬂ: and YBIT results in

Yoot %:)'

y(t) = ylte) 3

X -S
yg,{ e . Equations

(2.28)

(2.29)

t(1- BB N [Blesy» 1BEPAESy 2 (2.50)
%}5 Bx Al
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o -l1-eme B [y o AeBeys]

(2.51)
\/ﬁk* and yBk* are obtained by evaluating equations (2.23) and

(2.25) for T=aA and T* b respectively. It is then possible to

write
- o5k D
Vay = S ZA (s) C (2.32)
+a)
it = e P Z s ¢, (2.33)
where
7A(S) : (I‘ e—sB*eBblq*eﬂaj [B*z(s,':\*B*eBbA*éSb?ﬂ(S,a)J o

Z,9-(1-eneBe™ [AVisa+Aet Byl bﬂ'(e %)

Substituting equations (2.23), (2.25),(2.32) and (2.33) into equations

(2.10) and (2.12) results in

Y () 2 esk[BHTZ(s) 4 eST-Y;(g T)] c
(2.36)

Yol T) 2 GS(km) [eBT Za(s) T —Y; (s '7')] C.
(2.37)

Substituting the respective values of 9 and arranging yields

y(t) - [ (st + ge1-AH Zletc, o<t-kea

'-'[YB(S,t’k-a} . é(SI-B)(t‘k-a)ZB(S)]estc WL t‘K<(/ '58)
2.
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The solution is of the form H(S,ﬂ GStC where H(Slf) is periodic

in t with period unity and is given by

His= Yols e +eIAKT 1 potk<a

= Y, (s t-k-a) +,€'(SI’B)(“"”)—Z.B(S) , a<t-k<].
(2.39)
The time-variant transfer function H(SJ t) is given
piecewise in time by equation (2._59). Since H(SJ t) is periodic in
t , it may also be expressed as a complex Fourier series in t with

-jemnt
matrix coefficients Ch (5) obtained by integrating H(S, f) €

from t=0 to t=1 Integration and manipulation yield the

result

L

H(st) = Z C,(s) eiemt (2.40)

h=-a®

where

C,l5)= Zirn [Y (s+j2rn, a) "Nt a)] Y(szma a Z (s)

+ é’””“zle (s+j27h,b) + “7 (s b)] ¢ (stjon, b)Z (s) 2

(2.41)
For convenience the equations for Y,,(S,'T) s 7,3(5, 7') , Z,,(S)

o

and ZB (s) are summarized below.

Ya6s,7) (sI-A)',‘[I i e‘($f~ﬁ)'r]

g

(2.42)

Y, 1) = (sI-BY [[ - C’_(SI‘B)T]

(2.43)

7,15 = (1-Be®e™ |8 Y, (50 +BePre » V5.

(2.4k)
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Z.(9=(I-e N B [A* V(s 0+ ABe* Y5 )]
(2.45)

It is also convenient to express Zﬂ (s)  and ZB(S) by

—

Z,(s) = Z,,,(e’)?,,(s,a)essl’ %753(8’)_\11(5,& (2.46)

Zy(5) = Zo@)Viisa) + Z, )0 o

where

Z,e) = Z(e)BA"

Z.sle) = Zled) B

Z.1€3) = A Zle) A" A"

Lol€) = A Zte¥) AAB =A7[°)B"' 1 (2.
if

Zles) = (I-e*BA) (2.49)
and

A= Ae™

'B’.: B*C‘Bb ‘ (2.50)

Theoretically it is possible to compute the output for any
~ input by obtaining the inverse Fourier transform of H()U,f) Y(} W) or
the inverse Laplace transform of H(S)t) X(S) , Where X()w) and

X(s) are the corresponding transforms of the input. In these

1 Observe that A 2(6’) IZY‘ = (I‘ e.sﬁ B) .




calculations t is considered as a parameter. However, such opera-
tions are not practically feasible since the inverse transform of a
function of eS and S is generally necessary. Approximations of
one sort or another are required; for example, a few terms of the
Fourier series for H(S)t) may be used and the expressions in 65 may
be apﬁroximated by polynomials of S .l It will be seen that the
functions Zﬁ {5) and ZB (5) give much insight into the behavior
of the system and an explicit solution for a particular input is not
often required.

The Output Spectrum

Since H()U,t) is a function of U as well as JW, it
may not be used directly to obtain the output spectrum y()W) for a
given input spectrum Y(ju) .  The desired result is given by equa-
tion (A2.23) of Appendix II. Substituting the required C,, (JU) from

equation (2.41) yields

y(ju = Z—i- [\—C, (ju,a) - 6" N(ju-jamn) ]Y(}w-jzrrn)
12lh
he-w )
t 7,,( )u,a)Z u,,( jw-j2rn) X(jw-27n)
- f=-
rji2Tha (— N b _ ’
+Z ,ez:m [ B(jW,b) “C’zn ﬂ()w-)Zﬁh)]X{)'w/Z”n)
h=-—@
v -jZﬂ'haZ ( ‘ )_( ‘ -n')
+ Ya(jub p @ g(jw-j2mn)X(jw-jarn). o, o\
Nz-o

This may be written

1 similar problems arise in the study of sampled data systems [Ra. 1].
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y(jw);Y; (jw,a) [a X(jw) +Z Z,(j W +jgyrn\¥(;‘w+)27rn)]
hz-00

+75(jw,b)[57(jw) +Z€Jz7rna ZB (jw+j21rn)X(jw+jz7rn)]

hz-o
:+qu[el'21rna—Z(}w+]Zﬂ'nJ a) - —Y_/J(le a)] X(jw+)277h)
hz-® :
-;Zw:a e2Tal 1B (o omn B) = Y. (jw, b)|X(iw+j
| h » B )(d'*) n) - B(Jw; )X(jw+.}z77n)x
e ® (2.52)
where
dn = I_|2~ﬁ\ )n # 0
= Q0 , h=0.
(2.53)

'Equation (2.52) shows that new frequency components
X(]w +jZTh) are created by time-variant behavior of the system. In
some problems it is valid to approximate Y()U) - by considering

only the fundamental component Y(J U) . This yields

.~

yijw = Y Gwala + Z,(jw]x;w

+Y, (ju, b) b+ _Z'B()'w)].i{ju) .
: B - (2.54)

Higher order approximations readily follow, but the computation re-
quired increases accordingly. In Chapter IV the multi-interval equiva-
lent of equation (2.52) will be used to obtain an equivalent physical

~ system useful in analysis.
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The Time-Variant Impulse Response

The time-variant impulse response \ﬁJ(t,?? gives the system
response at time t for an impulse applied 7T units previously.
‘The function is useful in determining system response for general inputs,
and a study of its functional form leads to an understanding of response
" characteristics, These aspects will be discussed in the summary of
Chapter IIT and in‘Chapter Iv.

By definition \/\/(t,T) and H(ij) form a Laplace transform
pair with respect to the variables T and S . Therefore the in-
verse Laplace transform of FJ(S,f) withrrespect to T yields the
impulse response \A/(t, ). Since F{(S,t> is given in two forms
(piecewise in time and as a complex Fourier series), it is possible
to develop two forms of \A/(th).‘ The more compact and significant
arises from transforming the terms in the piecewise in time representa-
tion given by equation (2.39). Since F{(i't) is periodic in t ,
only the fundamental interval Q< t<) will be investigated ( k=0

in equation (2.39) ). Consider first the transforms of the terms

Y,,(S, t) and ?,, (5, t -a) defined in equations (2.42) and (2.43).

Comparison with equations (Al.36) and (A1.37) yields

"

[ Yst)]= Y, (nt) = e, o<r<t
= 0 , T<o, T>t

(2.55)
E'['?B(S,t-a)] = Y, (T,t-a) = 57 0<T<t-0

b)

O ) TéO,T>t‘a

n

(2.56)
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— —

Thus the functions Yg(T,4)  and YB (r,8)  equal e’ ana eBr
respectively for dc T< d and are zero for othér T~ . The re-
maining terms to be transformed are g (SI-A) tZ,(S)= e?‘té STZ(S)and
8’(SI-B)“‘4)Z,(S) = BB(t-a)éS(t'a)Z(S). By denoting Z,. (T)

——

and ZB {T) as the transforms of Zﬁ {5) and ZQ (s) , it is possi-

ble to write

L[ Pt Z19] = e Z,(r-t) , 7ot

= 0 , T=t
(2.57)
L[ etI-BEA7 5] = B9 Z [r-it-a] , v >t-a
= 0 \ , T<t-a.
(2.58)

Study of equations (2.39) and (2.55) through (2.58) shows that for
particular 't— and T all but one of the four equations are zero,
and hence \/\/(t,']’) is simply defined. The functional form of \/\/(t,T)
is easily determined for all possible t and T~ by considering re-
gions in the t , T plane as indicated in Figure 2.1. To agree with
the convention established in defining F(t) (see equations (2.6) and
(2.8) ), the regions include boundaries as follows:

The line T=1t for 0<L<€Q 1ies in region Al,

woow T=t-a v q<t<] v v m oy
non t=a v 0<T=Q v vow o
woon t=@a 0 A<T L -3
S N .
C o tel e BT e g
noow T=0  nw QO<tE| " " the region T<0,



Dl

A2 B2

Al Bl

0 a It

Figure 2.1 Regions in the t , T Plane

’

Then it is possible to write

W(it,r) = o , T=0
= eAT , ~ region Al
= e 7,111 "o
- CB'F" ’ n Bl
- B(t'a) M+ 1" B2
e Z,[’r (t a)] - (2.59)

\/\/(t,'r) is given for other t by periodically repeating the re-
gions defined in Figure 2.1 and replacing t by t-k in equation
(2.59) when O <t-k<| . The behavior of W‘t,T) for constant

t or T is understood by considering the appropriate vertical or

horizontal line in Figure 2.1.

It is useful to obtain the impulse response W; (t) /l) ,
representing the system response at time t for a vector impulse
épplied at time l . This is done by replacing T in \/\/ (t,'r)

by t-4 . To facilitate the change of variable, the regions in the
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Al

BI

A2

Al

B2

A2
BI

Figure 2.2 Regions in the t s L Plane

T plane are mapped into the t s L plane of Figure 2.2.

t,
Then, if O<t-k<| s \/\/.(t,” is given by

Wity o , -tsk

. = eA(t“'n, region Al
= eft-kz (), v w
- eB(t-M, v om

= B(t"k'a) +q - " B2
e Lq(k+a-1), (5.0)

As before the behavior of M (t, L) - for constant t or X is

" understood by considering the appropriate vertical or horizontal line
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in Figure 2.2, As an example suppose k is a constant such that

0= A') <a ( J an integer). Then

]

o , t=l

N

Wit 1)

Alt-A) |

::6 , <t<j+a

k-a) '
6B(tk aZg(K*’a'l) , k+a<t<k+l,k>/j

it

eﬂ(t-k)zn(k_}\) , k <t = K+a, k>j.
(2.61)

It is apparent from the above expressions that Zﬁ (T) and
ZB(T) are fundamental to both forms of the impulse response, and
therefore deserve considerable attention. Z (7’) is given by the

Laplace transform of Z (S) = Zﬂﬂ (es) Y 5 a)eSb»*Z,,B (es) Y (5 b).

s
The function ZHA(C ) can be written

7..le%) - (I-e* BA)BA - [[+¢*BA +[e*BAf B (2.2
Postmultiplying by YA (5,0.) CNSb and transforming yields
U Z,, ) Y, (s0e™] -

i D.e ™ ¥, (s, a)]

h=o0
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The Dn may be obtained from the series expansion (2.62) or prefer-
ably from the closed form of the inverse &  transform of Z", (Z) .l
Define Z,m{'r) as the inverse £ transform of —Z.—M(Z) . The com-
ponents of ZM (T) exist as elementary functions since the components
of Zﬂﬂ (Z) can be expressed as ratios of polynomials in Z . The
coefficients Dn are then uniquely given by Z,,A(n) , and equaﬁion

(2.63) may be written

L"[ZM(ES)YA(S,a)e'S?= Z Z,(nY,(r-n-b,a), (2.6

whe:pe
ZM(’T’) = inverse Z transform [Z,,A(Z)]. (2.65)
Similarly, | |
'L"[Z,,{e‘)"ﬁ;(s,b)] = Z Zs(NY, (r-n,b) ,  (2.66)
: h=0
- Where |
ZﬂB(T) = inverse Z2. transform[-zns(Z)] ) (2.67)

1 Consider a coptinuous time function f(t) defined for t >0 . De-
fine f¥(t): Z f(n) S(t-n) as the sampled f(t) . The Laplace
transform of m° §*(t) is T*s)= D> f(NE€™" . In many cases 1 (8)
is expressable as the ratio of p'gfynomials in € :2 and is known
as the 2 transform of f(t) . The inverse 2 transform may be ob-
tained by tables in a manner similar to the Laplace transform tech-
nique. Note that the inverse transform is only unique for t=hn
The techniques are readily extended to matrix functions. See the
reference by Ragazzini and Zadeh [Ra. 1] for a more complete dis-
cussion of sampled-data system methods.



ZH (T) is given by

a0
o

Z,,(TFZ 1Z,,R(n)Y,,(T-h-b,a) +/, (Y, (1-n,b) y. (2:68)

h

From the definitions of YA(T, a) and YB(T' b) (equations
(2.55) and (2.56) ),it is clear that equations (2.64) and (2.66) do not
overlap for any T but instead mesh together. This is expected from

the piecewise description of the system.

Transforming equation (2.47) in the same manner gives

L M= [ZBH(HSYR{T-n,a) +ZBB(n%(‘r—n‘a,b)], (2.69)

h=0
where
ZBH (’r) = inverse 2 transformL ZBH (Z)] (2.70)
ZBB (7.) * inverse Z transformLZBB(Z\] . (2.71)
As might be expected, the functions Zen (n) Y" (T‘h’ a) and

ZBB (f')) YBB (T- h- C(,b) do not overlap for any T or N

It is seen that W(t, T) and \A/, (t, L) are expressed
piecewise as elementary functions and the output for common inputs may
be determined by use of the superposition integrals (A2.5) and(A2.6).
Such operations entail considerable work, even for relatively simple
systems. As in non-variant systems it is possible to obtain useful
results without detailed analysis for particular inputs. Techniques

of this sort will be developed in Chapter IV.



III. THE MULTI-INTERVAL PROBLEM

In this chapter results obtained in Chapter II will be ex-
tended to systems with an arbitrary number of elemeptary intervals in
the fundamental period. Systems with general periodic coefficients
will be considered as a limiting case. Since the methods and discussion
are basically identical to those used previously, the presentation will
be somewhat abbreviated in form. The chapter will close with a summary
of results and a discussion of their application.

Introduction
Consider a class of systems that can be described piecewise

in time by the finite number of vector equations

‘Ci’Y'=Ay+X , k<t<k+a

o Ao
p—

|

=By tx , kta<t<k+a+h

—

Q ...

L= Qy e, Kearbispetekoar sprgehi, 0

where K  is any integer, X and y are n dimensional column vectors

with components Xi and y( , and ;\, EBJ.” and C} are n by n

’
matrices with finite components. Assuming the sectional continuity of
the X; guarantees a unique, sectionally continuous solution of the

system if the initial condition for each interval is determined by one

of the equations

Yo Q*)’@w

yat« = A Yax

)

n

\

i

Ve = P, )

26~
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%x*, ) - +yand CQ*-are n by n non-zero matrices with finite compo-
nents and the notation }Q: s }@k, , etc. for the initial and end
values is the same as defined in equations (2.5) of Chapter II. The
solution is continuous for all t if and only if all the star matrices
are equal to the identity matrix.

The solution at L=k s k+a ,K”C“b,..., K+ a*b*"'+
is not defined by the equations (3.1) and (3.2). Arbitrarily the solu-

tion will be defined

ViKY = v (k) = v
y(kea) = ylkta) = v,

y(kratbep)=y(ksarbe-p) = yp, . 5.3
Then equations (3.1) and (3.2) are described by the single vector

equation

dy

—d—t—=F(ﬂy oy, (3-4)

(t) (Q*I)Stk)+(ﬁ* I){t-k-a) +-+[P-1)§(t-k-a-+-p)

A, o<t-k<a
B a<t-k<a+h

R

+

Q ,  Grbretpet-k<] (3.5)

The Piecewise Solution of the Problem

In the first equation of equations (3.1) let T=1-K
the second let T=1-K -a ; in the third let T=1-k-a- b ; in the

remaining continue in the same manner. Then define
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Ve (7) = Y (T+k)
¥ (T) = X(T +K)

V(T YT +kra)

'
)
!

XQK(T) = X(Tf a+bf°"fp) . (56)

The output functions of T are given by

"y +fe’”x,m(’r 1) dA
™ f B x, (- L) dl

(T =
Yk (T'

]

T .
VarlT) = €% Ve * f e*ka(r-0)dl . (5.7
(7,

The particular integrals in these equations may be defined by Ynx

Evaluating these expressions for Q ,

%

yek (7') , ==, and yot (T)
b , - -, and § determines the vector constants yﬁ: » Yex
- - -, and yaf Evaluation of equations (3.7) for the same quan-
tities and use of equations (3.2) Yield the initial condition values

-'-

YH: = G*(eaq Vor ¥ )’62::)
W= Ay )

3@; s F:%(fipr)?: * )@:)

Alternately, expressions for the end values /ﬁh )

(3.8)

Yoo 5 - - -

and ny may be written

Aa *
' yﬂn = C Q*.\/ax—: * yAk
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B
YBK: c bA*M"K * y‘;’:

' _Qqpy% *
yﬂx- € PYFK v Yax (3.9)

Equations (3.8) and (3.9) are useful as iteration formulas and permit
the piecewise solution of the problem when used with equations (3.7).

The Time-Variant Transfer Function

The time-variant transfer function H(S,t) will be ob-
s
tained by finding the response for the vector input x{t)=e’ ¢

For this input one can write

Yar ()
yu*(ﬂ - Es(km) e.ST Y (3 7)

e e Vi(s,1)

- S(K+a+b+...+P) ST —
where

Y,(s7) = (IQ [I WA
V(57 (s1-B) [ - €]

V2 N/ ~(sI-Qr

YQ(S,T) = (SI’G) [I € ] » (3.11)
Since the response can be written y{t) = H(S,f) ESTC where H (SJt)
is periodic in L with unity period, ya:; = ya; e* and ’y;;.,'— ya: e’

Then the equations (3.8) become
¥ ® -S
o = Q[ y vy )e
% [ ~Aa *
yBZ = A (e yn: t ym«)

'
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ya: = P* (EPP yPI + %«*) )
(3.12)

+
which may be solved for the initial condition vectors \/n: , \/B,( y -

+ . * x LY
- -, and Vg,  in terms of Yo 5 Yex , ---,and Ve
which are given by evaluating equations (3.10) for T=a , b , - - -

and q respectively. Thus
+ _ sk =
Vo = €7 Z,(9)

W - €20

'+ - slkta+rbt-4p) 5
yan ¢ ZQ(S) ’ (3.13)

where

7 (0= (1-eQe P - AeM [0 Vitsq)s € 0P Visp) +
&SP PP (Y (5,00 4+ €T BIQ% Y (s a)]

7, 19:(1-e*pede™.. Be® [AT 15016 A T V(s q) +
és(afq)AieﬂaQ*C,Oy Fj\"Y;(S,F) e ‘*éS(qu’mn)A*" ' B*—Y;(S/ M]

Z,(9+1-€* Per.. e [PV, ts.p) € P 0 Y500+
Y AR ST AT

(3.14)

Equations (3.7) may now be written

uk e** [eﬁr Z;,.(S) +e7 YA(SJ T)]C
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yBk('r) : es(kw)[ 65725(5) + e’T z(s,f)]c

!
t

y‘;k(T) - es{kfafbo---.-tp)[ea'rzq{s) + EST_Y;(S,'r)]C.
(3.15)

Substituting the respective values of T and arranging gives \/(t ) =

H(S,'t)esg, where

Hist): Yiigt-n + e A7 15 , 0<t-hsa

T

_YB(S t-k-a) + éISI'B)(t’K‘a)ZB(S) , a <t-f<a+h

A

o, (sT-Qt-k-a-bewri-p) 5
= Y‘I(Sjt’k'“'b“"‘P) + e sL-Qk-a f ZQ(S) s

ath+-.1p<t-kg | .
(3.16)
H(S, t ) is giveh plecewise in time by equation (5.16),
but since H(S,f) is periodic in t , 1t may also be expressed as a
complex Fourier series with matrix coefficients. These results are

summarized below. The piecewise representation is written

H(s,8) = Yyt t-k-g)+ €T OMHDZ (5) et -kegog,

G- A, B)-_..,and Q ,l (3.17)

where

g:a-&bi-"'*'f. _ (3.18)

The complex Fourier series form is

1 Replacing G by another letter also indicates that 9 and ¢ are
replaced by the corresponding letters. This notation will be used
henceforth.



(3.19)
where
Mg g
Cisi =) S55m [V ls+iamg-e"™ V5]
G:=A

AL VAT

(3.20)
VG(S, 7’) and ZJS) are given by

Y, (s,7) = (51-6”1 - e"(”"m} ey

and
=

Z.9=(I-eFe™ Q" G'e*) [F*'i(s,f) +
ETFE E Y, (s,8) 4+ e R MOV, (5,9) +

@I PR oM Y (s g)

The expression Zc,(s) for G"IQ to Q may be simpli-

(3.22)

fied by considering the solution to the homogeneous matrix equation

and condition

—3{= F(t)Y . Yo =1, | (5.23)

where F(f) is given by equation (3.5). The solution will be of
interest for the fundamental interval O < t=<]| . Considering the
piecewise constant behavior of F(t) in equation (3.23), it is easy

to see that
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Qre® P Ae™ = Y.
It follows that

FrefE™ - eM Q" 6= YignY(Yig)' ©-25)
and

(I-eF e ea e = YagI-eYin] Yigo).

Using similar relationships and changing the order of terms yields

ZG(S) = Y(g’r)[l'e—s Y(“)]-Y{qq [Y(ng?&)A“ﬁ(S, Cl) 6'5@-5) +
Y(§+)Y.(‘C+)B*78(s,b)e'“'?'t’ boor FRY (s,6)

V(g YYIRGY, (5,90 P4 . J?Y(g*r)Q*Y;(s,fﬂésgj,
(3.27)

which may be written

—— —

Zs(s) N an(es)_Y;(Saa)és“'s) J'Z-(,s (es)?e(s, b)ehs(g—-a){

.. beF (es)"Y;(SJ+) +Z“(e’),‘(c,(s,q)é‘(§”'” s

)Y -53 |
e )Y‘?(S’q)e a (5.28)

where

Zslet) = Y@ Z(e) Y(zB"

1 Y"(t) . . t
exists for all finite [Bel. 1, Theorem 2, p. 10].
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Z.1e)=Yignle) Y‘?gd F

—

Zoole) =Yg Ze@) Y Y (1) G

2,069 = Y Z(e) Q" (5.29)

l
l

and
Zie) = [1-e*YIm]. 5.5)

The Output Spectrum

The output spectrum V()w) is given by substituting equa-
tion (5 20) for C ()U) in equation (A2,23). After manipulation

K
Y(juw) Zg o(jw, 3) ™ +Ze’ "7 (}Uf}l”ﬂ)x_(}wfjﬂfh)]
6:-A

+Z ;Zﬂ'hﬂqn 2ihg Y;()w+jzrn,9) ~T{_6 (}u/,g)]iljw*)lﬂh)j)
h=-

(3.%1)

where the %p are given by equation (2.53). If only the fundamental

component X(]U) is significant, the spectrum is approximated by
Q
y(jw) zZ _Y;(jw,q)[g + Ze(jw)]i(jw) . (5.32)
G:=R ,

The Time-Variant Impulse Response

Inverse Laplace transforming H(SJ{') with respect to T deter-
mines the time-variant impulse response \/\/(t. T) . Applying the
method to the individual terms of the.piecewise in time representation

given by the equation (3.17) yields

l."[?c;(s,t-k-g)]= Y, (7, t-k-3)

e® o <T<t-k-3

0, T<0,7>t-k3
(3.33)
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and

L—l[e(SPG\(t-k-g)Ze(j)} - eG(t—K-é)ZG [T" (t‘K'g)] L T> t'k-g

O , T<t-k-g

i

(3.34)
for G = A to Q . Only one relation so defined is non-zero for
particular t and T . The appropriate functional form is easily
seen by specifying regions in the t s T plane of Figure 3.1. Boun-
daries are included in regions in accordance with the discussion of

Chapter II. \/\/(t, T) is then given by

T
A2 B2 CZ’ P2 |Q2
XM Pl /4
K k¢b  Kk+C Y kg kel ,

Figure 3.1 Regions in the t , T Plane

W(t,T) = o . Te<o

(Chd
= e , region Gl

= GG(M' 9) ZG [T'H'k'?)} , region G2 (5-55)__

for G’ A to Q
\/\/ t /l) is obtained by replacing T by t -1 in \/\/(t,T)
| )
and considering the regions defined as they appear in the 't s ,L

plane of Figure 3.2. The result is



K+ /

Pl

Q2
P2

ce2

k| /Al )
k k+b k+c ktq [k+|
A

t

Figure 3.2 Regions in the t s }\ Plane

| W, (t, 1)

=0 , b=l
= Ge(t"l) ’ region Gl
k- 3.36
. = eG(t * Q)ZG (K"’g‘-A) , region GE( )
for G=A to Q . . '

In the manner previously indicated, it is possible to write

an equation for Z(,(’r) . Thus -

L

YGE Z S Zop (M YalT-(n1g-b)al + Z (MY, [T-(h+g-2), b]

h=o

to +ZeF‘h)Y;['f‘n;F] * Z%(h)YG[’I*(h*gH'M,qJ
$eoh Zba(mYQ['r-(nfq), q]} -0



for G’A to O , Where

—

ZGF(T) % inverse Z transfo@[ ZGF (Z\} (3.38)

for G , FZA toO . Examination of equation (3.37) shows that only
one term is non-zero for any particular value of T . This means that
\/\/{t,'ﬂ may be expressed simply for certain values of t and T

For example, when t"k=g+ ~and T=h+ v, it is noted that \'\/(t, T) =

ZG (h*') = pr(h\ . From equations (3.29) it is then seen that

| W, 1 = Y(gs) Z(n Y-'(gw) F* (3.39)

where

Z(T) = inverse 2 trqnsform [—Z(Z)-] . “ (3.40)

Systems with General Periodic Coefficients

By consideration of limiting forms it 1s possible to extend
results to systems with general periodic cbefficients. Such systems
are described by the vector differential equation

dy -

- Flly +x, | (3.)
~ where _F-(t ) is periodic with unity period and is assumed to be
sectionally continuous. If the Xi (ﬂ are sectionally continuous, y
is a continuous function of time and equation (5.41) may be approximated
to any degree of accuracy by a system with coefficients constant in an
arbitrarily large but finite number of equal intervals of the funda-
mental period. Thus @& = b =C= -+ = q = At . The approxi-

mating equation may be written



d
.J%/: Fg(t)y + X ’

(3.42)

where F;)(t) is given by

Fit)= F(rat), (r-at<t-k<rat, rel ok s

The Time-Variant Transfer Function

The limiting form of equation (3.17) defines the desired time-
variant transfer function. Consider the first term of the equation for
all G . The. argument t‘k"g will always be less than At Thus
YC-: (5) t ‘k‘ﬁ) will be negligible in comparison with the second term

|
which includes a summation of Zf _such terms with argument At (see
, -(sI- G)(t-k-3)
equation (3.22) ). It is also seen that the coefficient €
of the second term approaches I for At arbitrarily small. To

any required accuracy

H(st) = ZG(S)‘ , g<t-k,gsat (5.44)

—

for all G . The expression for Zb(S) may be simplified since
for all G R YG(5, At) may be approximated by

-sat

—— '_
Y, (s,at) = _._5_91_1 , - (3.45)
Y(r,at) = 1, o<t=<st
= 0 . T<0  T>at

(3.46)
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for A't arbitrarily small. Substituting equation (3.45) in equation
(3.27) for all values of G and noting that ‘the star matrices equal

the identity matrix (Y is continuous) yields

2,9 Yig [I-€* Y0l Yig § Y Yisne™ ., Yig Y™™
+ "+Y(g)Y"(q) Y YNY fgat) @519+ -1

-sat

.+ Y(GYIY'(e 3(9+1 ')} [- € (3.47)

S 1

. After manipulation
Z,(9) =5 Yl -e"Y{()]-‘Yi'g)ﬁI-éSY(q)Y(nY'fgut)] + Yigle™
{H Y 1t} + Y Tat-Yieath €+ -+ Y(g-a0-Yiges T ]+
XY | [Yigat-Yigraat} 4% - it Yie ],

(3.48)
H(S t) is given in the limiting case by replacing § with t-K
J

and the sums with appropriate integrals. Thus

-5(t-kK)

His,o=+1- & Yie-n]l-€'Yio] Ues*dY(A 1+ Yine' fe“dmz

o<t-k<l,
(3.49)

where Y(t is the solution of the equation and condition

dY
dt

It should be noted that Y(t) has an inverse [Bel. 1, Theorem 2,

FiY R ((BESE (3.50)

p. lO] so that the integrals indicated do exist. In most cases H(S,ﬂ

1‘ Y (o) for all & is replaced by Y(O(\ since Y is continu-
ous for Flt)= F(t) in equation (3.23).
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cannot be obtained in terms of elementary functions since \/(t\ is
usually transcendental,

The Time-Variant Impulse Response

The time-variant impulse response is given by the inverse La-
place transform of equation (3.49) with respect to T . This equation

may be written

His ) = Y-l - e'sy(,)]"g[l‘é Yol

tk g[A-(t-K] ., I sleivtk]
-/‘gg“—dY(A) - Y(l)fi’s‘“deB
t-k

' (3.51)

-]

Let u(77 be the unit step at T = 0 . The inverse transform of

the three terms in the last bracket of equation (3.50) then gives

0 T <0

)

g {[1 : éswgm]Y?t-m} _

n

Y-k, o<t <l

Y (t-k) - Y(:)Y'('t-k) T2 (5.52)

U

"

E‘: r-kess- (t-K)] d Y? A)}

/u[k-(t-k-r)]dY"m = 0 , T <O

0

= Y{t-K-Ylt-k-1), 0<T<t-k

=Y (t-8) -1, *>t-k 59
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Yo ain]

Y(t)/u[A-(Ht-xw)]dY'fA% 0 . T<t-k

t-k

= [-Y)Y1#t-k-1), t-h<rel

=1-Y)Y(t-k), 751 .
(3.54)

Adding these three terms with the correct signs yields the transform

of the bracket,

l_"‘[g 2]= 0 ,7T=<0

Y'(t-k-7) |, o<T<t-k

H

YIOY ' (1+t-k-7), t-k<T<I

=0 , T >I.
(3.55)

The expression for W(t ) ’7’) readily follows.

WI(t, ) = Y(t-K)ZZ(n) Y"[(t-k\-('r- W], 0<T-n<t-k

h=0

= Y(t~K)}: Z YN [(+t-K- 1] | t-k<T-nel

(3.56)
for 0<t-k=<|

, where

Z(’T) = inverse Z transform [Z(Z)] . (3.57)
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Summary

For convenient reference the general results determined in
this chapter will be summarized. The results of Chapter II are included
as a special case. The summary is followed by a discussion of the sig-
nificance and application of the results as they apply to the response
problem,

System Description

The considered systems have periodic, piecewise constant
parameters and are described in every fundamental period in a sequence
of time intervals by a corresponding sequence of vector differential
equations with constant coefficients. Thus any fundamental period,
which is taken as unity, can be divided into the intervals k<t <ke+a s
kta<t <K+a+b ,.. .. ana K+Q+b+--p<t <krasbs sprq=k+l
where K s any integer. Defining g= a+ bt -+ f , a typi-
cal interval becomes q<t"K<9+9 . All intervals are defined by
considering g values from d +o q . The system is then des-
cribed by the vector differential equations

%¥= Gy X, g<tm<g+g. (3.1)
for G = A to Q ,l where X and y are nth order column

vectors and the G are n by n matrices. Initial conditions for every

" interval are determined by the equations

%:Fy“ . G#A

%EG%H' | &Q

I Replacing (O by another letter also indicates that Q and g
are replaced by the corresponding letters. :
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there Yc,; =Yy (k+ g*) and VY, = Y (K +g‘> 3\/(‘(*;‘*{”) . The
initial condition matrices G;* must all equal the identity matrix if
the solution is to be continuous for sectionally continuous X . If
the y(k+g) are defined equal to y(K+§-) = Ve , it is possi-

ble to describe the system by the single equation

dy Flt)y

LD S (3.4)
where
Flt) = (G*-I)X(t-K-q—g) 0, gr<t-k<g+g+ (3.5)
G=A «w Q

The Piecewise Solution

The solution in any interval can be obtained by substituting

for T in equations (3.7) and using the definitions (3.6). Thus

t-K

YGK f e’ Xt”dl g<t-k<g+g, (5.58)

0

y(h - O t-Kd

(Chey
where the matrix functions e , defined in Appendix II, are

e®” = L {j(SI -6, | (3.59)

+
The values Vg are obtained from the previous interval by the

iteration formulas

ye:" ’“'}F* (eFf y;: + YFf), G # A

% ( Qq ,
y3: Q (e yQ::l * yat-:)- (58)
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* .
The constant vectors >%K are given by

9
yGK*=feG*x(t—k—g—L)clL .

‘ (3.60)

It is also possible to write iteration formulas for the y(,“
Thus

Yok e"? F*yrn F VYex G#A

Yax

1

eAa O* y(u-, + yA:

(3.9)
The Time-Variant Transfer Function
The piecewise representation of F4(S,t) is given by
H(s,t) = Yo(st-k-g) * 6-(5['6)”-/('9)26(5) . (5.17)
g<t—K<9+g.
The complex Fourier series form is
= yarnt
His,t) = Z C,He . (5.19)
h:—P
where Q
-j2Thg _2Tng\y ]
: J
G=A
v . —_
Klsemg Z"(S)}' ' (3.20)
The functions .§Z(i¢ﬁ and ZZG(S) are defined by
i BI-60T |
Y,(s,7) = (sI-6) [I - C( ] (3.21)

and

Z(,b) _ Z )7(56« s(§-) +ZGB€)Y(€;) s(g 2,

+ZGF(€S)YF(5¢H +76 (ES)Y Sq)es(gﬂ h)
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beon 7 (@) Valsqle

(3.28)

where

Z.,e) = YgnZie)Y (A"

Z.le) = Yigy Z(ef)Y"ran*

7..(e) = Y(g) Z(e)Y0aY (h G

7.0 = Yig)Ze) Q' (3.29)
and '

2 = [1-€Y0] (5.0)
The function‘ \/(t) is the solution to the matrix equation and
condition v

dy. . |

qt FeY o Yien =1 (3.23

The Output Spectrum

The output spectrum S?(ju) is determined by the equation

o

Q ) o
Vi(jw Z g'yﬁ(]w, 9)|9 X(jw) +Z€’M"9ZG (jwtj2mh) K(jw+j2mn)
6-A

h= -0

+Z e?lfﬂéo(h{ejlﬂhﬁz(j‘w +}'zrrn,9) ? (jw, q)} ju();)ii)h

Nz-0®

}
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where

Xy, = m y h#0
= O ; h-;o
(2.53)
The Time-Variant Impulse Response
The impulse response \A/(t,7d is given by
Wit = o , T <0
or
= € ’ ) region Gl
G(t-k-3) _
e 9ZG[T—(t-k-3ﬂ’ region G2.
| (3.35)
The regions Gl and G2 are defined in Figure 3.1, The im-
pulse response \«Z(t,L) isvexpressed
Wity = o, t<d
= Efe(t-}) , region Gl
_ Glt-k-3) - . :
= e Z(y(k-rg-,k)’ region G2.
(3.36) -

In this case the regions are defined in Figure 3.2. The 236(77 can

be written

°Q

ZG(T)"Zgz‘,A(h)ﬂ[’T-( +g-b ]+ZGB n Y, [r-(h+g-2) ), b]

"
(o]

tok 2 MY [ren £] 4 Z oo (MY, [7-(n+g+1-h), 9]

(3.37)
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whefe the

ZeF (7) =1inverse 7 transform [ZGF (Z)} (3.38)

These functions may be expressed in terms of the inverse Z  transform
of ZT(Z) using the relations (3.39).

Systems with General Periodic Coefficients

The time-variant transfer function of systems with general

periodic coefficients is

-sﬁﬂ : -t
His,t) =<1 - S—Ye-n|l-€°Y0)] {S‘dYumné%f‘def,

o<t-k=l, (5.49)

where Y«t) is the solution of the equation and the initial condition
(3.23), where FYt) is' now a general periodic matrix coefficient.

The time-variant impulse response is

W(t,7) = Ylt- k}:Z K-(n] , 0< T-n<t-k

i

il

Y(t—k)}: 7 (YU YLt-R-Or-n)] | t-k<7-n<]

(3.56)
for 0<t-K<|

, Where

Z (1) = inverse Z transform{ Z (z )]
(3.57)
Discussion
Before considering the individual results and their applica-
tion, é few general comments are in order. First, the determination

of response for the considered time-variant systems is inherently much



~148-

more complex than for time-invariant systems. It 1s therefore to be
expected that the solution of the response problem will be beset with
computational difficulties, especially when the system order is high.
Second, varied methods of attack exist. In particular problems one
technique méy be more meaningful and manageable than another. This
is especially true when an approximate solution is acceptable. Fin-
ally, computational difficulties do not detract from the physical
understanding that is dbtained by examination of the different solu-
tion forms.

Equation (3.58) gives the solution interior to any interval.
\ It does not give insight into the general behavior of the system.
Such insight is obtained from the iteration formulas (3.8) and (3.9).
These formulas give the response at the interval boundaries. The
main difficulty in applying these formulas is computational in nature.
This is due to the many matrix multiplications fequired, especially
when there are ﬁany elementary intervals in the fundamental period.
The work is greatly simplified when the }@: are zero.l In-this

case }Q: = Y(“’)K y,,: , Wwhere Y(i+) = Q*EQq T A*ena

The powers of Y(l*) are con\}eniently obtained using Z notation.
-

Thus \/{H)Kz Z(K\ where Z(’T) = inverse Z transform H‘Z—' Y( I+)]
This is seen by writing [I "Z-'Y(H)—J-_’: I + 7! Y(H) +Z‘ZY(|*)2+"' and
applying the inverse Z transform to individual terms.

System response, at least theoreticaliy, is obtained from
the inverse Fourier transform of F4(jw,t) Y(juﬁ or the inverse Laplace
- transform of H(Sjt) X(s) N whére X (}w) and X (S) are

the transforms of the input and t is considered as a parameter.

T This unforced problem is solved by Pipes [Pi. 1, 2, 3, 4, 5], but
not using the 2 notation.
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Practical difficulties arise because the transforms involve rational
functions of S and es . Tables of such transforms are not
available. In some instances a valid approximation is obtained by con-
sidering a few terms in the Fourier series for H(Sjt) and approxi-
mating the function of es by polynomials in S . The Fourier
series terms to be used depend upon the application and the accuracy
required. In many problerﬁs the fundamental term CO(S) is the most
important. In modulating circuits, it is probable that the term C,(S\
would be more significant.

The time-variant transfer function isbparticularly useful in
the sense that it determines the response for an exponential input.

-xt

For example, suppose that X(t)=e ¢ for t>0  and is zero
for t<o , and that the system is initially at rest. A parti-
cular integral for t >0 is H (‘“, f)é«E . In general this
particular integral is not zero for t=o0t and is therefore not
the required solution. The solution 'may be made equal to zero at
t = o+ by adding the correct amount of a solution to the homogene-
ous equation. Such a solution is the impulse response \/\/,(t, l)d
Since \/\/, (0*, 6) = I , 1t is seen that the desired solution is
y(t) = Hieat) e e =W (t, o Hlx,00¢c, t>0

Sinusoidal response for the system is determined by taking
jwt

the real part of the solution for the exponential input & C

e ‘ j(emnrw)t
The Fourier series form of this solution, y(t) ‘ch {JW) e’ ’

fNz-c0
has therefore considerable physical significance. First, the periodic

cheracter of the system generates the new frequencies W +2Th

Second, each new frequency component appears in the output to an extent
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determined by the matrix functions Cn (}w) , which particularize
a given system.

The output spectrum y() ) is given by equation (3.31).
In agreement with the remarks of the preceding paragraph, it is ob-
served that the output contains new frequency components Y()U*]ZTh) .
The given expression is primarily useful when the spectrum is required
per se. This is because application of the inverse Fourier transform
to equation (3.31) to obtain y{t) involves the same complications
present in transforming H(J w,t) X(jw) . However, the spectrum does
give a clear understanding of the approximations previously considered.
For example, approximating H()U,ﬂ by C,()w\ e;zrt corresponds
to neglecting all terms in equation (3.31) except the term for h=1

The time-variant impulse response is defined in two forms.
\/\/('t, 'T) is the response at time JC for an impulse applied T units
previously; \/\/,(IL, }) is the response at time t  for an impulse
applied at time L

The form \/\/,(t) i) is particularly useful as a solution
to the homogeneous equation. By definition \/\/l “’, “ C is a solu-
tion to the unforced system for any. C and for t > 1
since W, (At, 1) =1 | tne solution for the initial condition Y(4)

The form \/\/(f, ’T) is more useful for determining system
response. The superposition integral (A2.6) gives the desired solution
for any input X(t) . PExamination of this integral and the expres-
sions for \/\/(IL,T) and Z(,(T) (equations (3.35) and (3.37) ) shows
that integrals of the form [EG(T—“) X(t-T) dT  are required.

The value of (X  depends on N (the index of summation in equation
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(3.37) ) and the time at which the response is desired. The integral
is always evaluated over a finite interval. Since the components of
the E?Gq' are expressed as a linear combination of products of poly-
nomials and exponentials in T , the integrations are frequently
straightforward, but often formidable.

From the above discussion, it is quite obvious that a solu-
tion to the response problem is possible. However, it is also clear
that the computational difficulties are substantial. In some appli-
cations the required effort may be warranted; in many others it is
not. The following chapter will introduce more manageable techniques.

These techniques will not give the response for particular inputs but

will give an understanding of the response characteristics.



IV. SYSTEM STABILITY AND RESPONSE CHARACTERISTICS

Application of the methods and results of the previous chap-
ters permit the determinatioﬁ of system output for particular inputs.
Unfortunately, the effort involved in these computations is considerable,
even for re;atively simple systems. This practical infeasibility indi-
cates the need for less general but more facile techniques. Therefore,
it is the purpose of this chapter to investigate more easily deter-
mined system properties that give insight into the behavior of system
response. Considered will be (l) the definition and condition for sy-
stem stability and (2) the system characteristic roots and their in-
fluence on response.

An Equivalent System

The subject of stability and response characteristics is
conveniently introduced by considering an equivalent system in which
the time-variant operations are simple and isolated. It is necessary
to define these operations mathematically and schématically. Define

first the sampling function

STlﬂ= Z C(t-n-r , o<T=l. (%.1)

The operation of sampling occurs when a function is multiplied by

537-(t) + . Thus

glt) =Z ftn+7)§(t-n-1) (h.2)

Nz-o0
< ig the sampled {(t) , Where {(t) and g(f) can be scalar, vector,

or matrix time functions. Equation (4.2) may be written in different
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form by replacing fir(f) by its Fourier series representation, giving

o0

9(H - Z e.)zrn're,‘zrnt f(t) | | (4.3

n:-oo
The spectrum of the sampled function is then

0

?(}w) = Z (f')zrnr TF()‘w-)znn)=Z€)z,”nr1f()w+)zlrn§ (k)

[d
h=-ob h=-@
Define next the scanning function. This periodic function is the saw

tooth wave

|
w0
=~
1

- (t-n-7) +-£— , T<t-n<T+

"

t
fST(t) dt - (t-1) +5 (4.5)

The operation of scanning occurs when a function is multiplied by firﬁ).

It ST(t) is replaced by its Fourier series representation, this

yields
o e'.)zrrn? ;
12Th
hit) = Z jzin € ft), n+o (4.6)
h=-o
the scanned 'f(t) . The spectrum of the scanned function is then
T - 2ThT 7 ) =
h(jw) =ZO(,1 e’ " {()w—)zvrn)=—};O(,,€'UW1((W+)ZTM), (%.7)
‘ h=-c0 Nz-o

where the O} are given by equation (2.53). These operations are shown
schematically in Figure 4.1. Examination of equation (5.31) shows that
the output spectrum is expréssed in terms similar to those of equations
(4.4) and (4.7) This leads to the block diagram of Figure 4.2, which

is an exact representation of the considered systems. The only time
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variant operations in this equivalent system are the sampling and scan-

ning operations.

f(t) — _/07 > g(t)
St

f(t) - /r - h(1)
St

Figure 4.1 Sampling and Scanning Operations

The block diagram is heuristically useful in determining
a stability criterion. If the time-invariant operators 7(,(5) are re-
moved from the block diagram, the system is stable since the components
of the functions -Y—(,(SJ 9) s défined by equation (5.21), have no
poles for all S . Stability is then assured if all the poles of the
components of the Zb(s) lie in the left half of the S plane.
Equa;tions (3.28) and (3.29) indicate that such poles are commoﬁ to the
components of 7(65) . The poles of 7(65) are determined by the
zeros of the determinant H - €-SY(I+)\ , where Y(14) s given
by equation (3.24). Thus the system is stable if the equation
\I -e’Y( “)I = 0 hes every root in the left half of the S
plane. Equivalently, the corresponding roots in Z’-es » must be less
than one in magnvitude or lie within the' uﬁit circle of the Z  plene.

It seems likely that these S and Z roots are fundamental
to the character of the system response. Thus if some roots were just
‘;lef’t of the imaginary axis, the response would be highly oscillatory

with little damping; if the roots ‘were far left of the imaginary axis,
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the response would be quickly damped. For this reason the J values
in the strip % ) T and the Z values, such that Z= e’ satisfies
the equation lZI ..)/(rﬂ{-= o) ", will be known as the characteristic
roots of the time-variant system. The ideas introduced here will be
more fully developed in the follbwing section.
Stability

A‘rigorous concept of stability is given by the stability
definition. - Systems described by equations (3.1) and (3.2) are stable
if and only if every bounded vector input, produced a bounded vector
output. If some bounded vector input produced an unbounded vector out-
put, the system 1is unstable.ls2

This definition agrees with the engineering concept of sta-
bility except that it is occasionally somewhat more restrictive than
desired. For example, suppose a system has an unbounded output for
some bounded input if and only if the vector component X, ~ is non-
zero, Suppose further that the formulation of the original problem
is such that X, is identically zero. By the above definition the
system would be unstable; in the usual sense it would not. This sort
of behavior.indicates a lack of coupling between different parts of
the system and seldom occurs in practice.

Returning to the stability criterion mentioned eaflier, it

is possible to state more rigorously the stability theorem. - Systems

described by equations (3.1) and (3.2) are stable if and only if every

root of the equation

h
1 A vector X(t) is considered bounded if | X” =§:)Xil is
-bounded for all t . =1

2 fThis definition of stability is an extension of that proposed by
James, Nicholls, and Phillips [Ja. 1, p. 38]. ,



| &1 - Y| =
(4.8)

lies in the left half of the S plane, where Y( I+)  is given by the
equation (3.24).

Proof. The characteristic roots of the matrix Y("f) are
the values 4= e’ satisfying equation (4.8). Since the transformation
2= es transforms the left half S plane into the unit circle of
the Z plane, it is possible to replace the theorem by the following
equivalent: Systems described by equations (3.1) and (3.2) are stable
if and only if the magnitude of every characteristic root of Y“*) is
less than one. The sufficiency of this statement is proved by exami-

ning the superposition integral for bounded inputs. Thus by equation

(3.35)
y(t) = [\/\/(t,T) dr
e G(t-k-3)
=[€xtrd*r+f€ "7 [r-ltx-gllx{t-1) dr
t-k-3
o< (t-k-§)<9g.
(+.9)
- Define the notation " C “ ~Z , C‘J for an nth order matrix C
IE
with components CU , and the notatlon “ d"’“ )d l for an nth
order vector d . Then it is seen that -
t-k-§ '

Iyl < | eI Ixe-nll dr

e 1Z, 00k Dxlheg-l dL
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o<t-k-g<g

< el [IZIN | o<tk-g<g,

(4.10)
where 0(,‘—'"(:," and O(Z>”X(t)” for all t . ,C, is the

matrix whose components equal the largest magnitude of the respective

6T

components of c for all G and for O<T <l | & ang X,

are finite, Examination of equations (3.37) and (3.29) shows that

1Z, 101 )IYigall AZa (IG5 + 1Y T B

Eo | YA F T+ Y YRG T+ -+ Q‘fl}«. (r-nl,

(b.11)
where
o<|(T‘= 0<| ’ O<T<[
=0 , T<0,T>l (#:22)
Hence
I Z, (0l < «Z IZ(mlo(r-nl, (5.1

where 0(3 is finite. Then

lyll < o o (1 + oo ) 1Z(n), o<t-k-geq. (411

Similar bounds on y(t) can be found for other G . It remains to

* be shown that Z”Z(n\" is bounded. This will be done assuming that
h=0
the characteristic roots are distinect, although this is not necessary.

»
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m m
On page 48 it was shown that Z(l’h) = Y(H) . But ,Y(H) =
m I .
T D T , Where D is a diagonal matrix with components equal to
the n distinct characteristic roots 2i and T is a non-singular

matrix with finite components. Thus

IZiml = 1Yl < ITH) 2 BT (515

It /O is the largest magnitude of any of the characteristic roots

I Zm)l < o n/om , (1.16)

where 4 is finite. Then

) 1 2ml < = ”i o -

The right hand side of the inequality converges since /O must be less
than one. The sufficiency is proven. To prove the necessity of the
theorem, it is sufficient to show that if any characteristic Z root
has a magnitude of one or greater, then there is some bouﬁded input
which produces an unbounded output. Consider \the output at t =0+
Suppose that X [_(O”"T]:O for h+q <T<htl , where h=0 ,
|, 2 , --,° ., Then by the superposition integral and equations

(5.25), (5.37) and (5.29)

ylo = [ Z,(T) xllen-11dT

V fmi LoalM Yo (-0, Q% (-1 dT
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- /wi ZnQ Ye(r-n,q)x-1d T

(4.18)
X ;

The matrix  Q YQ (’T‘h,q) is non-singular so for N <7T <Nt(Q

the vector equation

Q' Y, (r-n, g x(-1) = d (4.19)

has a bounded solution X(“7') for any vector constant d . Thus

y(0+) = q[}i Z(n)] d. C (4.20)
n=o . . .
The geometric matrix series R :nZZ(m = Z Y(H’)n converges if

and only if the magnitude of every characteristic ro.s of \((]+) is
less thaﬁ unity [Ma. 1, Theorem 49, p. 98]1 If the series does not
~converge at least one component of FQ s say rlj , does not approach
o finite limit. The vector O 1is then chosen so that dy= 0, K#j
and Ch = | . byi (04)  is then obviously unbounded and the
bounded input given by equation (h.l9)‘produces an unbounded‘output.
This comple£es the proof.

| The first step in determining system stability is to comﬁute
the matrix \/“*\ given by equation (3.24). Although the calcula-
tions may be extensive, they are straightforward. The second step is
to determine the magnitude of the roots 2= es of the nth degree
polynomial with real coefficientsl given by equation (4.8). This may
be done without determining the values of the characteristic roots by

applying Routh's criterion [Ga. 1, pp. 197-201] to a transformed

L Tne coefficients are real since every component of \{(l” is
real. '
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w + |

equation.l The transformation 2 = maps the inside of the

w =
unit circle in the £ plane into the left half of the W plane. Sub-
s
stituting this expression for 2= € into equation (4.8) yields an
nth degree polynomial equation in W . This equation must have no

roots in the right half of the W plane. Applying Routh's criterion
to the equation in W determines system stability. As an example

suppose that the characteristic equation is
2+ Cz +(,=0. (4.21)
The equation in W is
(we) +w+Dlw-IC + (w-I'C,= 0, (4.22)

which may be written

(1+C,+Clwe v 2(1-Cw +(1-C+C)=0 . (b.29)
The Routh array becomes

(1+C,+C) (1-¢ +C)

2(1-C,)

(1-¢ +cC)) . (o2

If the system is stable, all terms in the first column must be greater

than zero. GSlight manipulation yields the conditions

1C,] <
lC,l < 1+C2 : (k.25)

This method is used by Truxal [Tr. 1, p. 523] but was developed
independently by the author.
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The technique is perfectly general. For convenience equations in Z
and W  to the fifth degree are tabulated in Table I. Also shown are
general stability conditions to degree three.

Response Characteristics

In linear time-invariant systems the characteristic rootsl
determine the time behavior of the impulse response \A/(t) and thus
the general response character of the system; that is, roots just left
of the imaginary axis indicate an oscillatory \A/(t\ and thus oscilla-
tory response characteristics while roots far left of the imaginary
axis indicate a quickly damped \A/(t) and thus quickly damped response
characteristics. In linear time-variant systems described by equation
(5.&) it is possible to define analogous characteristic roots that de-
termine the time behavior of the impulse response bNA(t, i) at in-
tervals of unity. This result is particularly indicative of the gen-
eral response character of the system in many practical problems where
the response changes little in one unit of the independent variable.
Examinstion of equations (5.36) and (5.37) shows that the
functions ZZGF(rh) for all (3 and F- are of principal interest
"in evaluating \N4 h}/() ut intervals of unity. The components of
the ZZGF(nﬁ are given by the inverse 2  transform of the compo-
nents of the ZTGF(ZJ . These components are ratios of polynomials
in Zfl where the denominators are the common polynomic.l II"Z,\QVﬂL
Thus the components of the 2ZGF(nﬂ are all of the form }i:¥3j€90h~jx
=0

where the scalar function

L If the system is described by a vector differential equation, the
‘characteristic roots of the system are given by the equation |L[-A|
= 0 , where A is the constant matrix of the system.
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l
6 (T\ = inverse 2 transform[ml]

| g | | (4.26)

and where ZBJ Z.J is the numerator of the particular component.
)

Consequentlyi E}(ﬂﬂ governs the intrinsic behavior of \N‘(t,k) .
Therefore if 69(/T) is oscillatory, the system has oscillatory re-
sponse; if E;(ﬁﬁ is quickly damped, the system has qﬁickly demped
response.

The function 69(7q can be expressed as & linear combina-
tion of products of polynomials and expﬁnentials in T by equation
(4.26). The values of the exponential coefficients are given by the
location of the roots of , e’] - \{“+\‘= 0 in the fundamentel
strip T ju' of the S plane. If these characteristic roots of the
system are just left of the imaginary axis in the S plane, 69(74 is
highly oscillatory; if the roots are far left of thé imaginary uxis,
E)('T) is quickly damped. Thus the characteristic roots determine
the response characteristics of the system.

If the system is first ordér, the characteristic root is de-

termined by the equation

z +(C=0. | - | (4.27)
The S value of the characteristic root is

5= In -C) . (4.28)

, the root

1 -1<C <0

s-hl-Cl=-% (2
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'is located on the negative real uxis and EB&T) exhibits damped expo-
nential character with a time constant T . If | >C, >0 , the

two roots

semicl-Lar .0

are determined and 69(7ﬁ exhibits an exponentially damped oscillation
with a time constant T and a frequency of T radfsec. Thus a
first order system with time-variant coefficients can have an oscilla-
tofy response.

It is useful to compare such a set of complex conjugate roots

to & similar set of roots for a second order linear time-invariant

system. The roots for such a second order system are of the form

5= - wlyej/iFs), S (wa)

where CJN is the undamped natural frequency and J  is the damping

ratio. The damped natural frequency is defined

Wy = [1-¥2 Wy - (k.32)
Figure 4.3 specifies these quantities geometrically in the S plane.

In this terminology the roots of equation (4.50)»have a damped frequency

of T radfsec and a damping ratio

In IC

f = :
/T2 +InIC) (5.53)

If the system is second order, the characteristic roots are

determined by the equation

2 +Cz + C,=0 | (L4.34)
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s plane

W

wp = JI- Czwu

Re

Figure 4.3 Complex Conjugate Roots in the S Plane

The characteristic roots are
2

The corresponding S values are given by the natural logarithms of
the Z values. Various C, and Ca. established different classes
of such roots. Consider the regions in the C,, C?_ plane of Figure

4.4, The S values then have the form

s = -o tjp ' in region A

= -d, , -9 in region B

= ~O(,i)Tl',-0(ztj7T in region C

= =0 , -d,* )T in region D,
(4.36)

" where X , o , D(Z , and /8 are positive real values. For C.

and CZ values outside the triangle the real part of the S values



-67-

Cl2 N\ \)
C2=(‘2'|' S\ A )

Figure 4.4 Regions in the C,, Ca Plane

is greater than zero and the system is unstable. The , &, and
0(2_ values are exponential damping coefficients for G(T\ and ﬁ
and T , when they apply, are the oscillatory frequencies of e(’r) .
X, A, 0, andﬁ values are conveniently obtained
for particular C, and CZ values by plotting contours for constant
X s &, s 0(3 , and /3 in the C, s Ca plane. This is done in
Figure 4.5. It is not really necessary to plot contours for constant
O(, and 0(2 (regions B , C , and D of Figure 4.4) since equation
- (4.34) may then be factored into two first degree terms with real co-
efficients and the previous discussion of first order systems applies.
_ W
Contours for constant S <l and FN - '2'}', are more useful
in most problems. This establishes the general approach in Figure 4.6.
In region A of this plot, 'F= ﬂ . In region B , ZH = X, ,
the most important root since 0(, < 0(2 ; the J curves do not

£
appesr in the region. In region C , D 2_'", = 5 and the J
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curves give the damping ratio of the least damped set of the two sets
of complex roots. In region D , ZTrF::a,, the real characteristic
root and J’ gives the damping ratio of the complex roots which have

f-5

Systems with C; and (: such that J 1is constant exhi-

2
bit approximately the damping characteristics of a corresponding lineur
invariant second order system. Systems with C; and C; such that 'F
is constant exhibit approximately the time of response characterized by
linear invariant systems with the constant bandwidth F . Figure

4.6 is therefore very useful in the design of second order time-variant
systems for particular response characteristics. For example, suppose
that one parameter in the time-variant system is allowed to vary de-
fining a curve in the (:,, C:Z plane. A plot of this curve on Figure
4.6 would then give the required parameter value.

If a system is third or higher order, it 1s possible to fix
response characteristics by factoring the characteristic equation into
first and second degree terms. The S values of the characteristic
roots are then easily obtained from equation (4.28) for the first degree
terms and from Figure 4.5 for second degree terms. These 9 values
yield the general behavior of 69PT) and hence the response character-
istics of the system. |

Application to Systems with General Periodic Coefficients

The methods of this chapter have assumed that the considered
time-variant system could be described by equation (3.4), where the co-
efﬁicients are piecewise constant in time. If the number of intervals
‘in which the coefficients are constant is increased, it is possible to

closely approximate a system with continuously variable periodic
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coefficients. For tnis reason it seems more than likely that the me-
thods to determine stebility and response characteristics are extendable
to systems with general periodic coefficients.

In this general case the fundamentul matrix \(“+) would be
obtained by evaluating at =1+ the solution to equation (3.23) with
the piecewise constant FXt) replaced by the continuous period matrix
Ff(t) . The only difficulty is that this solution does not usually
exist in closed form. Two alternatives are possible. First, the value
of \7'*) could be approximated by considering a system with piecewise
constant coefficients; second, the value of \7’*) could be obtained
from an analog computer solution of the equations represented by the

matrix equation (5.25). From this point on the application of the

methods of this chupter would be straightforward.



V. EXAMPLES

This chapter will consider several examples illustfating the
methods of Chapter IV. It will be seen that the determination of parti-
cular response by the more involved techniques of earlier chapters is
not often required or justified. To minimize the complexity of compu-
tation the examples are of the second order, two interval type. This
does not indicate a lack of generality since the -techniques are basic-
ally independent of the number of intervals and of the system order.

A General Second Order System

Consider a general second order system with two elementary
time intervals in the fundamental périod, which is taken as unity.

The equations describing the system are

vV o+aqVv +aVv=uw , k<t<kea

V +bV rhy=u , keact<kearbekel,

where it will be assumed that V and ‘V» are continuous. The equa-
tions could represent a mass-spring-damier system with time-variant
damping and spring parameters or an RLC circuit with time-variant
resistance and capacitance.

Suppose that the stability conditions are required for the
system. The first step is to formulate the problem in vector notation.

This is done by defining Y, = v o, y& =V ,and X,=W . Then

n

Yi= Y

Y, = -qy ~QY, % , k<t<k+a



Y, =Y

Ya :—b'

Yo - bZ Ya

v X o kea<t<Ktl
(5.2)

Equations (5.2) are now in the form of equations (2.1) and (2.2) where

A and B are given by

0 |
A =

:a, -ﬂz_

0 1]
B= "bt 'bz

(5.3)

A* B*
The matrices and equal the identity matrix since y, and

-)
yz are continuous. Determination of the matrix (SI"A\ and appli-

cation of the Laplace transform yields

-

~

) (cosh ah%—-—-—-—f’”g at) (________singdt )
e =
L (—a,i%h_@f ) (coshﬁT-%inC:T—gI)J |
(5.4)
where
ar (%—)2~ 4 (5.5)
Bt

The matrix 6

n_n

is obtained by replacing the "a” values by the

corresponding "b" values. The matrix Y(H) is given by the product
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Bb Aa
C € , and finally, the characteristic equation is determined
by computation of the determinant lZ];"\{(’+)‘ . After manipula-

tion this yilelds

22 +Cz + (=0, (5.6)

where
a,a+bb = LT
- = azba
C, = _e'—?~*ﬂ_ﬁ__arh)swgaa,smgbb
+2 coshaa - coshb b] 5
and
- -(a,a+b,b)
Gm e (5.8)

The conditions for stability are given by the inequalities

(4.25). For this system the conditions may be stated

a,a +b,b >0
. b, sinhd@a sinh bb
C COSh——-———-—azqg b, > (______Cl Zb - a.‘bu) md B

+2cmshda-cosh5t)(. (5.9)
A necessary condition for stability is that the average damping over
the fundamental period must be greater than zero. However, the nore
complicated second relation must also be met to assure stability.
1f (d, and b, are zero, and Q equals b , and the
system is unforced, equations (5.1) reduce to the Hill-Meissener equa-
| tion. Van der Pol and Strutt [Va. 1] determined the conditions for

bounded solutions of this equation. It is interesting to note that the



result is the same as indicated by the second inequality of (5.9) if
Cl.l = bz = O and a = b

An Electrical Network with Switching

One of the most important applications of the theory is to
electrical networks with periodic switching. Such networks possess
interesting properties that do not occur in thé usual time-invariant

networks.

R

Figure 5.1 An Electrical Switching Network

Consider the circuit shown in Figure 5.1. The switch is in
position one for KT <t < (k*‘Cl)T and in position two for
(K+G)T<t<(K+G+b)T = (K*l)T . It is possible to write circuit
equations for each switch position. The dependent variables will be
taken as the current through the inductance and the voltage across the

capacitance. In position one the equations are

o

|

'__ i‘"lR*’Gi

o 9O

.0

C a—](- ' (5.10)



In position two they are

di_

Ldt - 6
de .
C ——=-1 .
dt (5.11)

t
A change of time scale T = :T puts the equations into the desired

vector form. Thus

—j-/%-——ﬂy + X . k<T <Kk+a
d
where
y o=
y, = €
T e, (m | k<t<k+a
X, = L . (5.13)
' 0 Ckra<t<Kk+l
X, = O
and
A o
A =
| O O |
- Tq
B 0 t (5.1k)
= T ]
C




The switching is assumed instantaneous so € and L are continuous
¥ _ % Bb _Aa
and hence A = B - I . Then Y( [ty =e~e and the deter-

minant IZI "'Y(H) ‘ gives the characteristic equation Za’f C.Z + Ca ,

where
-ETa T
C = ‘(l +e b )cos/*[—éb (5.15)
and

(5.16)

Consideration of the stability conditions shows that the system is
stable if R s L- , and C are greater than zero. This. is expected
since only passive components are present in the circuit.

Response characteristics arev obtained by plotting values of
C. and Cz in the C, , Cz planes of Figure 4.5 and Figure 4.6. A
little thought indicates that the characteristic oscillatory frequency
is changed by varying the ratio of (0 to b . This is easily seen by

assuming that R= O . The characteristic equation is then

2 T =
z5 - Zcos——b)z +] =0 1
( JC (5.17)
tj J.I.b
Solving for Z yields 2= € LC The S valuesof the char-

. T
acteristic roots are then 5'—'1]'/-"5-6 b . The system may be considered

Hl

‘neutrally stable"" and possess an undamped oscillatory response

1 The system is unstable in the defined sense, but only barely so.
Thus systems with roots on the imaginary axis will be defined as
"neutrally stable". Actually, if R is very small but not quite
zero, the system will be stable in the defined sense and exhibit
slowly damped response characteristics.
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character with a frequency ;I* b rad/gec. It is apparent that this
JLC

frequency may be changed by varying or more precisely the ratio of
a to tD . Figure 5.2 shows differential analyzer solutions of the
system equations for a unit step input applied at time t = 0 when
T= 1 s L‘S s C‘"-fra_a s R=0 , and b=21!, “a,‘ ,and’gl‘
The responses are sustained oscillations with the predicted frequencies
of 0.375, 0.25, and 0.125 cps. It is to be noted that the characteris-
tic roots do not predict the waveform or the magnitude of oscillation,
but only the frequency of oscillation. The more involved techniques

of Chapter II would be required to determine these factors.

A Control System with a Continuous and Clamped Error Signal

A final example will consider a control system with a con-
tinuous and clamped error signal. A block diagram of the system is
shown in Figure 5.3. The continuous and clamped error signal € is

glven by the equation

E(t)= Et) =B,(t)- B,(t) , k<t <k+a
= E(kta)= B lkra)-B,(kta), kta<t<kta+b =k+|.

(5.18)
' e CONTINWOUS |
6 —Q—— Ao — Yols) —1— 8
| 4 CLAMPED ERROR olS °
OPERATOR

L

Figure 5.3 Control System Block Diagram
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The transfer function Y°(5) is given by

. K
% (3) S(Ts +1) (5.19)

In order to hold the values QO(K*'G) it is necessary to add an addi-

tional coordinate to the system. For k<t<K+ a , let Y, = 90 (t) ,
: - _K

ya = eo(t) ) y3 - O ) and XZ - ~’F e( (T) . Then

g%“—'fv. -2yt %
dt (5.20)

ror Kra<t<k+a+b = K+l 1et Y, = 90(’() y Y, F éo(t) )
y3 = 90 (K*C\) , and X;_ = %SL(K*’C‘) . Then

0 , k<t <k+a

a'{':ya

dy,

E%_—Tlr; | -T‘:{éyB t X
dx

—== 0 k+a<t<kel .
‘ | (5.21)

-~

Since € 1is piecewise continuous, y, and y‘,_ are continuous.

This and the required initial values of y3 determine the matrices
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l O 0
B = |o a 0
0 o 0]
(5.22)
and
[ A
l 0 0
A¥= 10 I 0
1 0 0
(5.23)

System characteristics are fixed by the characteristic equation -
- _ _ D¥.Bb nx _Aa
,ZI —Y(M\‘O, where Y('*) = B e IQ € . The result is of the

form
2(7_a +Cz +Ca)=0. | (5.24)

The root Z= 0 is introduced by the clamping requirement and is

not significant. The values of the remaining two roots are determined

sinh/1~4KT o
[~ 4KT

by

C = e é[( |-€ $)(|~3K'r)—l<T-PF}
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[I ety Kr{I- 2 )] coshm”}

(5.25)
and
C=€" ge *krfi-e s B ralkal [€7(1+ b)-!]g-
gﬂ@—ﬂﬂ_f:s_@—r} 5 K’r{lef(H ?cosh,/ -4KT &
(5.26)

A study of system response is conveniently introduced by con-
sidering two limiting forms. First, let A->1 and b0 reducing
the system to a conventional control system with a continuous error

signal. The values ‘(; and Cé become

- L
C, = -2€#cosh/l-4KT Z"r

(5.27)

Solving for the S values of the characteristic roots yields the

well-known result

5= -57 t (5171)1--?: . (5.28)

Second, let A0  and P->! reducing the system to a closed-

loop sampled-data system. The values of (:, and > then become

]

-

C - -[ue‘* TKrll-% -¢€

H=
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U~

C,=jet +Kr[1-€7(1+4)

(5.29)
This result is readily obtained by application of sampled-data theory
to the limiting form of the control system [Ra. 1].

A frequent design problem is to determine P( ‘for favorable
response when T and _Cl are fixed. This may be done by plotting (;a
vs. (:, on tracing paper for different y< values and overlaying the
result on Figure L4.6.

Equations (5.27) and (5.29) show that these contours are
straight lines for the continuous system and the sampled-data system.
This is not true for the more general case, howéver. ‘Figure 5.4 shows
~such contours for variable K when T=5 and (A= O*,.5,~ and |
The values of Pﬂ for neutral stability are determined by the inter-
section of the contours and the stability triangle. In a control sy-
stem it is desirable that the response be as rapid as possible without
being unduly oscillatory.\ This griterion will be met by requiring that

324 /in Figure 4.6. Overlay of Figure 5.4 on Figure 4.6 deter-
mines values of K and ffﬁ:—?—f for @ =0 | O ana |
when T=.9 . These values and the values for neutral stability
are tabulated in Table II. Figure 5.5 shows differential analyzer
solutions for a unit step input and the indicated P< values. Per-
cent‘overshoot and damped frequencies are measured and compared with
theoretical values in Table II. It is obvious that the approximate

theoretical method yields excellent results for this system.
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Table II

STEP RESPONSE DATA

|

a¥ Y * K* £,* £ %* % overshoot**

0.0 0.0 2.92 - - -

0.5 0.0 5.35 .5 - -

L0 0.0 o0 o0 - -

0.0 A .89 .168 .170 23.8

0.5 b 1.8 273 .269 25.9

1.0 A | 3.125 .367 .367 D5, GR¥%-
* Values obtained from overlay of Figure 5.4 on Figure L.6.

*%¥  Values obtained from Figure 5.5.
*¥*¥% TIn this case percent overshoot = 25.4% by theory.
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VI. CONCLUSION

This dissertation has investigated the response of linear
dynamic systems with periodic, piecewise constant parameters. The
methods of analysis have been based on the time-variant transfer func-
tion and on the time-variant impulse response. The resulting theory
has the significant advantage of being directly analogous to the fa-
miliar operational methods employed in the analysis of linear time-
invariant systems.

The results obtained provide a variety of solutions to the
previously unsolved general response problem. The piecewise solution
with the iteration formulas yields a step by step solution of the
problem. Fourier and Laplace transform procedures involving the time-
variant transfer function offer another solution. Usually, simplify-
ing approximations are required to obtain the inverse transforms. The
time-variant transfer function is particularly useful in that it gives
directly an exact solution for the important exponential input. The
time-variant impulse response permits a direct solution to the homo-
geneous problem and through the superposition integral gives the re-
sponse for an arbitrary input. These varied methods furnish a system-
ized and straightforward approach to the response problem. Their main
disadvantage is the excessive length of the required computations.
This is not so much a fault of the methods as it is an indication of
the problem complexity.

Fortunately, much can be learned about system response with-
out determining the response for particular inputs. The methods are

based on the characteristic roots given by the determinant equation

_87_
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|21 ‘Y(H)l = 0 , vhere Z.° e . he stability of the system
response is assured if the S values of the characteristic roots lie

in the left half of the O plane. Stability can be obtained directly
without determining the S values by examination of the characteris-
tic equation in £ . The response characteristics of the system are
determined to a great extent by the location of the roots in the S
plane. A graphical method is presented for determining these Jocations
from the characteristic equation in < . The technique is valuable

in the synthesis of second order systems for desired response
characteristics.

It is hoped that the application of the theory will prove
fruitful. A study of electrical networks with switching offers parti-
cularly interesting possibilities. The electrical network considered
in Chapter V is an illustrative example. The steady state response
for b = .25 is obviously greater than unity. Thus the network ex-
hibits a voltage gain. As was observed, it is also possible to change
the characteristic frequency of the system by changing the ratio of

a +to b . These qualities have obvious practical application.



APPENDIX I, THE LINEAR VECTOR DIFFERENTIAL EQUATION
WITH CONSTANT COEFFICIENTS

The purpose of this appendix is to.investigate the vector
equation g_t.yz Ay + X and thereby obtain the solution and certain
properties of the solution pertinent to the text‘of the dissertation.
With this in mind the treatment shall be as concise as possible con-
sistent with an understandable development.l‘ |

dy

Solution of the Vector Equation az = Ay ¥ X

The following system of linear differential equations with

constant coefficients is specified:

(A1.1)

_,=Ay‘+x, | (A1.2)

where X and y are nth order column vectors and /A isann byn
matrix with components (lij . It will be assumed that the Xi, are
sectionally continuous in time. The problem is completely specified

by imposing the initial conditions

+ . .
Yo(od=sy, L=1,2,...,Nn (A1.3)
on the equations (Al.l) or the equivalent vector condition

+

y(o#) =y (A1.4)

L No attempt will be made to give completely rigorous proof of some of
the results. The reader is referred to the book by Belman [Bel. 1,
pp. 1-31] for a more complete presentation.

-89-
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on equation (Al.2). Under the conditions stated there exists a unique

set of continuous solutions of the system (Al.l) which assume the values

+
)Q at t=:0+ or equivalently there exists a unique continuous vec-

. . . + t: O+
tor solution of equation (Al.2) which assumes the value y' at

[In. l) Pp. 7]-‘72].
These solutions are conveniently obtained by applying the
Laplace transform method to equations (Al.1l) and (Al.2). Denoting

transformed quantities by bars it is possible to write

h
SHIS -y =) Gy F09 + R[S, o2 (@)
Jj=1
or in vector notation
sy(s) -y" = Ayls) + X9 (A1.6)

The set of linear algebraic equations (A1.5) may be solved by conven-
tional techniques; however, manipulation of the equivalent vector equa-
tion (Al.6) is simpler and yields the same result. Solving equation

(A1.6) for V(S) gives
-1 ) ~l_
yis) = (sI-A)y" + (sI-A) (). (AL.7)
Obtaining the inverse transform gives the desired solution

o e
vl = Wiy [ WUx(t-0di, (1.9

where the matrix function VV(t) is determined by

wit) = L[(sT-AT']. (12.9)
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Equations (A1.8) and (Al.9) allow a straightforward approach in ob-
taining the solution although the effort involved increases rapidly

as n becomes large.

CL

Solution of the Matrix Equation "jf [\\{
dt
Certain properties of \N/ ) are not apparent from equation

(A1.9) but may be uncovered by investigating the homogeneous matrix

equation

%X: AY (A1.10)

with the initial condition
Y(O*r) = I ) (A1.11)

where \Y/(t) is an n by n matrix with components Sﬁj (t ) . Equa-
tion (A1.10) is a matrix representation of the system of linear differ-

ential equations with constant coefficients

dyL .
l Z:G'kakJ ' L>J=/,Z,...,h | (Al.lE)

with the initial conditions

Y =1, L=
-0, L#] (41.15)

Under the conditions stated there exists a unique continuous matrix
solution of the equation (A1.10) which assumes the value I at 1= 0F
[In. 1, pp. T1-72].

Laplace transforming the matrix equation (AL.10) results in

sY(s) -1 = AY(s) , (A1.14)
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which solved for -Y‘_(S) gives
—_ -
Yisy= (sI-A).

(A1.15)

Applying the inverse transform results in

R CERNIBEN (A1.16)

It is seen that \A/(t) and \((t) are identical; therefore, properties
of \A/(t} may be obtained by investigating the solution of equation
(A1.10) with the initial condition (A1.11). '

The matrix (SI"' A)‘, may be written S-L(I - éAy’ , and

assuming convergence, it is possible to write formally
(I‘SLA)LI’f%A*'SLZAZ oo A (A1.17)

[ J— |
ORINEIREY: R Y Far

2
[+ At +RL+

This matrix power series in t is analogous to the scalar power series

(A1.18)

]

for the exponential function; hence the definition

2 = Ntk
=1+ At +A ét';"‘ = ZART (A1.19)

K=0

o
where A is understood to be the identity matrix. That the matrix

At
function e is indeed the solution of the equation (Al.10) and the

At
initial condition (A1.11) can be verified by differentiating e to

give

1 Power series of matrices are discussed by MacDuffee [Ma. 1,

pp. 97-9].



(A1.20)

-1

t=0
The operations indicated are permissible because of the uniform con-

At

substituting in equation (A1.10), and noting that C

vergence and continuity of the series (A1.19) for finite /A' andft .l
At

Henceforth \N“t) will be written € where it is understood that

is given in closed form by equation (Al.9). Thus the solution of the

vector equation may be written

t
y(t) = eAty* +f€MX(t-Udl. (A1.21)

At

Some Properties of the Matrix Function e

At .
The importance of the matrix series € lies in its ease

of manipulation independent of the system order. It will be seen that,

for the most part, these manipulative properties are directly analo-

gous with those for the scalar exponential function.

At
The Convergence of the Matrix Series €

At
To assure the convergence of the matrix series - it

At
must be shown that the components of C defined by the nz series

occurring on the right side of equation (A1.19) converge. Consider

as a measure of the magnitude of /A the summation

”A” = Z'aij‘ (A1.22)

Lj=! ) i
It is not difficult to prove that “/x ”'$ ”/\” . Then each of the

kK th

o0
h? series is majorized by the series Z:;”/\l| 7;7 , and they are
=0 '

therefore uniformly convergent and continuous for finite Lx and t

L See the following section.
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At
Differentiation and Integration of e

Since the matrix series is uniformly convergent and continu-

/\ ~ At
ous for finite and t , it is possible to differentiate €  tem

by term obtaining equation (A1.20). Similarly it is possible to inte-

At
grate c from O to t obtaining

f@gtdt ZA f:,l - (eAt ‘I) (A1.23)

At
The Inverse and Nonsingularity of c

Suppose the matrix equation

dZ
"CT{" /A | (A1.24)

with the initial condition

Z(O*) = I (A1.25)

is given. By substitution it is seen that the solution is

® N
Z(t) = €—At = }: —(—%ﬂ , (A1.26)

k=0
where Z(t) exists for finite A and t . Premultiplying equation
(AL.10) by Z and postmultiplying equation (Al.24) by Y and adding

gives
Zijl * “d'—Y = 0 (AL.27)

Integrating and using the conditions (A1.11) and (A1.25) results in

ZY = I : ‘(A1.28)

It follows that Z and Y are inverses of one another; that 1is,



(A1.29)

Since inverses exist, C and € are nonsingular for finite

A and JC

Product Functions

At AT
Using series representation it can be shown that 8 e =

| - t" = w1
et et - (ZA‘(T!)'(ZA L )
k=0 . m=o

< . m-k __m
m t T
) A )
w m
T, Alt+T)
Y AL et
m=0Q

!

(A1.30)

n

fl

The operations indicated are permissible because of the convergence of

At Ar
the series for € and e . By manipulation of the series for

At Br ' At BT At +B*
c and € it is possible to show that € € =€

if and only if AB = BA As an example consider EAt‘QSt

st , At st)
where € is a scalar. The expression may be written C (Ie s

st Ist
bt 1€ =@ by the definition (Al.19). Thus

t v .
SAt . est - eAt ' GIS. (AL.51)

Since IA = AI | it is possible to write

At st (A+sI)t

e e’ = e (A1.32)

At
The Laplace Transform of c

At
The Laplace transform of €7 is given by

fen] - [ereta.



which may be written

L[Em] :[we-(sl-mt dt ‘
Cim (ST-A)[L -]

g

For Re[S] large enough the second term in the bracket vanishes as

(A1.34)

1
the limit is taken giving

L[em] = (SI'AY . (AL.35)

Suppose the function

Yalt,a) = e . o<t=a
= 0 , téo’?f?a (A1.36)
is given. The Laplace transform of YA (t, a) is then
‘\—(;(s,‘a\ = [s[-A) {I - €'(SI'A)C‘] , (AL.37)

1 If l-t are the roots of the equation “-I A(

, then
Re [S] must be greater than Re [A;] for all { .



APPENDIX II. THE TIME-VARIANT IMPULSE RESPONSE AND THE
TIME-VARIANT TRANSFER FUNCTION

The first problem in investigating a physical system is to‘
represent the system mathematically. The systems considered here will
be described by the linear time-variant vector differential equation

%{n Floy  +x - (2d)
where X and ‘Y' are nth order column vectors and FYt) is an n
by n matrix time function. Such an equation coanveniently describes a
set of simultaneous first order differential equations with time-
variant coefficients. The second and main problem is to find some
functional characterization of the system response. For linear time-
variant systems one such functional characterization involves the time-

variant impulse response or weighing function; another involves the

time-variant transfer function, It is the purpose of this appendix to

study the properties and relationships of these two functions as they

apply to the solution of equation (A2.l).l

The Time-Variant Impulse Response

In the work to follow, unless particularly noted, it will be
assumed that the system described by equation (A2.1) is unexcited or
in a relaxed state; that is, there is no output if there is no input.

If the input is

x(t) = S(t-1) ¢, (A2.2)

N\

1 The reader is referred to papers by Zadeh and Miller for a general
treatment of the time-variant impulse response and transfer function
(Za, 1, 2, 8, Mi. 1].
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where g(tf"i) is the unit impulse func¢tion at time i and C is

an arbitrary constant vector, the corresponding response may be written

y(t) = Wit t-Ac | (A2.3)

where \A/(t,'t’A) is an n by n matrix function of t and A o.oIf
the system is time-invariant ( F{t) is then a constant matrix), equa-

tion (A2.3) reduces to the familiar equation

yit) = Wit-dc. (a2.4)

The function xV«t,Tq defined by equation (A2.3) is the time-variant
vimpulse response, where T is the so-called age variable. That is,
\\A/(f, 75 represents the system response at time t to an impulse
vector applied T  units previously. As seen in equation (A2.4)
the impulse response for invariant systems reduces to the familiar
function of a single variable, the age variable T . It is also
interesting to note that \A/h)7) is periodic in t ir F(t) is peri-
odic in T

The principle of superposition permits the determination of

Y‘t) for any X (t) . rhus

t
y(t) = /W(t,t-ﬂx(k\dl (A2.5)

or by change of variable

ylt) = [wit,xlt-1) dr (2.6

Alternately, equation (A2.3) could be written

y(t) = W (t, 4 c. (2.7)
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Thus \/\/,{t,M represents system response at time t for an impulse
occurring at time 1 . It is seen that \/\/, (T) l) =0 for t< A
and that W(t; T) = \/\/, (t, t’T) . \/\/(T,T) and \/\/p(t) /0 are essen-
tially equivalent and both appear in the literature of time-variant
systems. W(t, T) is similar to the impulse response for invariant
systems and maintains similar forms in relations yet to be derived.

\/\/l ('tj A\ is more closely associated with classical mathe-
matical techniques. If X(t\ =0 for t< 0 , equation (A2.5)

may be written

- [wit, Dxthdi 4.

From the purely mathematical point of view [Bel. 1, p. 12], the solu-

tion of equation (A2.1) may be written

[Y (t) YA x (k) dA (22.9)

if the system is initially at rest, if x(t)=0 zor t<0 , and

if Y(t) is the solution of the matrix equation

_d_.l/- A2.10
37 c FwY (h2.10)

i -
and the initial condition Y(O*) = I . Y(t} Y(“ is essen-
tially the one-sided Green's function [Mi. 1] for the vector equation
(A1.1). Equations (A2.8) and (A2.9) are similar in form except that

-1
Y (ﬂ Y(/O is not necessarily zero for t < * .l Thus

Wt A = YYYID , t>4
= 0 , t<*

n

(A2.11)

1 Note that Y (t) Y(A) is not actually required for t <4k
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The Time-Variant Transfer Function

Assuming that the Fourier transform of X(t) exists and
that the order of integration may be interchanged, the superposition

integral (A2.6) may be written

Q o0

g0 = [Wit 1)k (70 e dw d

(A2.12)

= zl—f \/\/H e’ d’r] X(jw)E’ d@

- o0

where X (juﬂ indicates the transform of X (t) . Suppose that the
integral in the bracket exists. It is then possible to define the time-

variant transfer function

Hijwt) = f\/\/(t,ﬂ e'jde. / (A2.13)

The matrix Pﬁ(ij,t) is the Fourier transform of the time-variant

~

impulse response matrix with respect to the age variable T . It is
seen that F4(jhh t) and VV(t,1ﬁ form a transform pair where t

is considered a parameter. Thus
°Q
| - . jwr N
WI(t, 1) = 57 H(Jw,t)ﬁ dw. (A2.14)
Substituting the definition (A2.13) into equation (A2.12) gives

| it _ .
) = ﬁ_[H()w,t) X (ju) e dw, (42.15)

wt
: _ ) W
Consider next the vector input X (t) =€ C which has

\existed for all t . By the superposition integral
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gty = [Wit, 1) e g7 - ¢

]

[ fW(t,T) e‘jmd"r] e'e
0 (A2.16)

jwt

]

H(jwt) e’ ¢

Hijw t) et
It is seen that (JUJ. ) e C is a particular integral of equa-

T

tion (A2.1) for the input X(t) = e€1“¢C .

In some problems it is possible to determine a particular
jwt
integral for the input X(t) =@ C . Suppose that this particular

integral may be written

)wt
C (A2.17)

vt = H¥juw,t) e

Under what conditions will this particular integral agree with the
particular integral given by equation (A2.l6) or equivalently, when
will FJ*kJOU,t) = Fi(jugt) ? This question will not be answered in
general but will be answered only for the case when [:(t) in equation
(A2.1) is periodic with period _T' . Then a necessary and sufficient
condition that H*(jw,ﬂ < H(jw,t) is that H*() w,t)  ve peri-
odic in t  with period —r for all jUJ . The proof follows. The
two purticular integrals can differ only by a solution of the homo-
geneous eqﬁation corresponding to equation (A2.l). The most general
solution of this homogeneous equatisn is \YYT) d where \/(t) is
the solution of equation (A2.10) and the condition Y(o+) = and

d is any vector not a function of t . It follows that

H¥ju,t) €C = Hjube™t +YmGhec, (2.9
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where G()w) is some matrix function of jw . Then

HGw,t) = Hijw,t) + Y G el (42.19)

Since F{f) is periodic in t , \N/(t,7ﬁ 1s periodic in t . Then
by equation (A2.13) it is seen that }JUUAT)is periodic in t with
period | for all jw . The tem Y (t) G(jw 61 canmot ve
periodic in t ﬁith period T for all j W . and hence must be zero
if F{*(ﬂﬂ,t) is periodic in t with period T for all ju».
This requires that the matrix (;Ghﬂ be zero. The proof is completed.
Since r+(j(d,t) Y-{jhd is a function of time it cannot
represent the frequency spectrum of y'(f) . If F#(jugt) is peri-
odic in t with a fundamental frequency W, ,4it is possible to obtain
the spectrum in the following manner. Being periodic, Fi(jﬁht) may

be written as the complex Fourier series

H(jw,t) =£ C, (jw) et (42.20)

N=- o0

Substituting equation (A2.20) in equation (A2.15) and manipulating

gives

= Z Fot) et (a2.21)
where
Fa(t Z—I'[ C, (jw) Y(Jw)E” ‘dw. (A2.22)

Finally, the spectrum of y(%) is given by the Fourier transform of

equation (A2.21); viz.,
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o0 o0

V(ju) = ( F ) e g

-~ o0 = - 00

(A2.23)

—_-Z Cn(Jw -jnwo\i(]w—jnwo).

By assuming X('H =0 for t <0 and replacing jw
by S , it is possible to obtain Laplace transform equivalents of
the above expressions and assure convergence fdr a wider class of func-

tions. For example,

ylt) = L"[H(s,ﬂi(s}], o  (2a)

where t is again considered a parameter. H(S,t) and \A/(t,’r)
form a Laplace transform pair with respect to the variables T and S
Similarly, H(S,t)eStC is a particular integral for x(t)= EStc wheré
S is any complex number. '

Initial Condition Problems

In the above work it has been assumed that the system was
initially unexcited. In other words, non-zero initial conditions in
equation (A2.1) were not permitted. Suppose that X(“ is sectionally
continuous and equal to zero for t <k It .is then apparent that
y ( /l +) =0 if the system is initially unexcited. A non-zero
initial condition at t = A"' will then add a solution of the homo-
geneous equation to that given by the superposition integral. Such a

solution is the impulse response for T >0 . Thus

' t
J16) = Wit t-4) y (4 + Wi t-mxmdr 22
A



-10k4-

is the solution to the problem for the initial condition y(M since

\/\/ (,(*, O*) = 1 . An equivalent expression for y(t) is

1 - )W wt
y(t) =Z%{H()w,t)h(jw) te’ iluq]e’” Ju.  (h2.26)
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