
     Working Paper 
             

        WP 2003-044 
 

Project #:  UM03-Q1 M R
R C  

 

 

 

 
 
 
Key equations in the Tuljapurkar-Lee model 
of the Social Security system 
 Ryan D. Edwards, Ronald D. Lee, Michael W. Anderson, 

Shripad Tuljapurkar, and Carl Boe 
 
 

MichiganUniversity of

ResearchRetirement
Center



 
 

“Key equations in the Tuljapurkar-Lee model of the Social 
Security system” 

 
Ryan D. Edwards, 

 
Ronald D. Lee, PhD 

University of California at Berkeley 
 

Michael W. Anderson, PhD 
 

Shripad Tuljapurkar, PhD 
Stanford University 

 
Carl Boe 

Stanford University 
 

 
March 2003 

 

Michigan Retirement Research Center 
University of Michigan 

P.O. Box 1248 
Ann Arbor, MI 48104 

 
 
 
Acknowledgements 
 
This work was supported by a grant from the Social Security Administration through the 
Michigan Retirement Research Center (Grant # 10-P-98358-5).  The opinions and 
conclusions are solely those of the authors and should not be considered as representing 
the opinions or policy of the Social Security Administration or any agency of the Federal 
Government.   
 
Regents of the University of Michigan 
David A. Brandon, Ann Arbor; Laurence B. Deitch, Bingham Farms; Olivia P. Maynard, Goodrich; 
Rebecca McGowan, Ann Arbor; Andrea Fischer Newman, Ann Arbor; Andrew C. Richner, Grosse Pointe 
Park; S. Martin Taylor, Gross Pointe Farms; Katherine E. White, Ann Arbor; Mary Sue Coleman, ex 
officio 



 
 
 
 
 
 
 

Key equations in the Tuljapurkar- 
Lee model of the Social Security system 

 
 
 
 
 
 

Ryan D. Edwards, 
Ronald D. Lee, PhD 

Michael W. Anderson, PhD 
Shripad Tuljapurkar, PhD 

Carl Boe 
 



Key equations in the Tuljapurkar-Lee model of

the Social Security system

Ryan D. Edwards, Ronald D. Lee, Michael W. Anderson,
Shripad Tuljapurkar, and Carl Boe∗

March 27, 2003

The Tuljapurkar-Lee (henceforth “TL”) model generates a large set of
Monte Carlo simulations of future outcomes in the U.S. Social Security sys-
tem. Four types of key macrodemographic and macroeconomic variables
are modeled as stochastic components using standard time series methods.
These include age-specific mortality rates, age-specific fertility rates, the rate
of growth in real covered wages per capita, and real rates of return on two
classes of financial assets: the special-issue Treasury obligations in the Social
Security Trust Fund, and the S&P 500 stock index.

This paper is a revision of the technical appendix in Lee and Edwards
(2002), updated to reflect the modeling techniques employed during the latest
round of revision to the TL model.

1 Population forecasts

1.1 Mortality

Let mx,t be a central death rate for age [x, x+5), and time [t, t+1). Suppose
we have a matrix of X age specific death rates over T years. The Lee-Carter
method estimates the model:

log(mx,t) = ax + bxkt + εx,t (1)

∗Stanford University and University of California at Berkeley. Corresponding author:
Boe, boe@demog.berkeley.edu
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using a Singular Value Decomposition (SVD) or some other appropriate
method. This yields estimates of the vectors ax, bx, and kt. A second stage
procedure adjusts kt so that life expectancy at birth is exactly matched by
the model for each year t. Estimates for ax and bx are listed in Table 2.2.

We now have a time series of kt over T years. This time series is modeled
using standard Box-Jenkins methods. (Tests for covariance with the residuals
from the fertility model described below showed no association, so they were
modeled independently). In most applications, it is well-fitted by a random
walk with drift. In the Tuljapurkar-Lee model, Lee-Carter is estimated on
mortality rates by single years of age and time, with both sexes combined,
from the Social Security actuarial tables from 1950 to 1997. Model estimates
are

kt = kt−1 − 1.279864 + ηt,

(0.224871) (1.574093)
(2)

where standard errors are in parentheses.
The fitted model for kt can then be used to forecast k for each sex sep-

arately over the desired horizon, together with a probability distribution for
each forecast year. A fixed additive offset factor is used for male and fe-
male kt’s throughout the entire forecast period. The level of the offset is
set so as to match the male/female mortality differential in 2001; for males,
k2001 = 21.87738, and for females, k2001 = −28.359.

Using these sex-specific forecasts of k and equation (1), probability distri-
butions and mean or median values of mx,t and the implied life expectancies
can be calculated, along with probability distributions. These probability
distributions reflect the innovation error in k, η, along with the uncertainty
of the estimate of the drift in the k process. They typically will not include
the ε terms, nor the uncertainty in the estimates of the ax and bx vectors,
which do not add much to the uncertainty after the first decade or two. On
all of this, see Lee and Carter (1992) and Lee and Miller (2001).

1.2 Fertility

A similar approach is followed, but the fertility rates themselves, rather than
their logs, are modeled. The model for age specific fertility F is:

Fx,t = cx + dxft + νx,t, (3)

which is again estimated using a SVD. Estimates for cx and dx are listed in
Table 2.2. Time series models applied to the history of fertility in the U.S.

2



do not provide a plausible model or forecast for fertility for various reasons,
so the mean of the forecast is constrained to equal a level specified ex ante,
and in practice taken to equal the ultimate level of fertility assumed by the
Social Security Actuaries, currently 1.95 children per woman. The fitted
time series model then provides crucial information about the variability and
autocovariance of fertility. See Lee (1993) for a discussion of all these issues,
and exploration of some alternative modeling strategies.

The model is fitted to fertility rates by single years of age from 1933.
Several sources are used to construct these data, including Whelpton (1954),
Heuser (1976, 2003), and for more recent years, vital statistics data from the
National Center for Health Statistics. The NCHS data on fertility among 5-
year age groups is converted to data by single years of age using interpolation
techniques. The fitted fertility time series model is a constrained ARMA that
takes the following form:

ft = −0.0924(1 − 0.9600) + 0.9600 ft−1 + νt + 0.5232 νt−1,

(0.0315) (0.0315) (0.1101) (0.0959)
(4)

where the −0.0924 value is hard-wired in order to achieve a long-run TFR of
1.95. In order to start generating trajectories with these estimates, the last
innovation value is required. It is given by

f2001 + 0.0924 − 0.9600(f2000 + 0.0924)

0.5232
= 0.0137. (5)

Combining the forecast of ft with estimates of cx and dx using (3) yields a
set of stochastic fertility projections.

1.3 Formulating population forecasts

Immigration was projected deterministically following the intermediate cost
assumption of the Social Security Actuary, since it was thought better to treat
it as a policy instrument than to attempt to forecast future policy. Population
forecasts are constructed by setting initial conditions using the base period
population age distribution from Social Security data. A single stochastic
sample path is generated by drawing random numbers for the errors in the
fertility and mortality equations, and thereby generating a trajectory of age
specific fertility and mortality rates over the desired horizon, say 100 years.
Sample paths containing a total fertility rate below 0 or greater than 4 are
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discarded. In remaining paths, any negative age specific birth rates are set to
0. These are combined with the deterministic immigration rates. Using well-
known accounting identities, the population forecast by age group is then
calculated for this single sample path. The procedure is then repeated many
times, sometimes 1,000 times and sometimes 10,000 times. The frequency
distributions of outcomes of interest then provide estimates of the probability
distributions for these outcomes, and joint distributions can be provided in
a similar way.

2 Economic projections

2.1 Productivity (growth in covered wages)

The relevant concept of productivity growth in the Social Security system is
the real rate of growth in average covered wages. Although there are crucial
differences between average covered wages and productivity, or total output
per worker or per worker-hour, the TL model treats them as essentially in-
terchangeable for several reasons. First, Social Security taxes and benefits
both grow according to the same concept, rather than some mixture of the
two. Second, it is difficult to obtain a time series of average covered wage
growth, while productivity growth measures are quite abundant. Third, we
believe that the variability in the two measures over time has been similar.
Fourth, since we choose to assume a fixed long-run trend growth rate in av-
erage covered wages identical to that assumed by the Trustees, we believe
there is little precision lost by using historical productivity series to estimate
the variance structure of covered wage growth.

For modeling purposes, a demographically adjusted productivity growth
series was constructed. First, an average wage profile by age and sex was
calculated from the 1997 March CPS. Data on the age-sex composition of
the labor force were also taken from CPS, from 1948 to the present. The effect
of the changing age-sex composition of the labor force, based on these age-
sex weights for wages, was then calculated for each year since 1948 and used
to adjust the official measure of productivity growth in the private nonfarm
business sector to remove the effect of changing demographic structure of the
labor force. The adjustment made relatively little difference in general, and
is discussed in greater detail in Lee and Tuljapurkar (1998).

Next, a constrained mean time series model was fit to the adjusted pro-
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ductivity growth series. As with fertility, the time series model provides
information about the variance, autocovariance and cross covariance of the
series, but not about the long run mean, which is imposed as a value of 1.1
percent. An autoregressive model of order one was found to fit the data best:

gt − 1.1 = 0.5327 (gt−1 − 1.1) + εg,t.

(0.1197) (1.3962)
(6)

Productivity growth gt is expressed in percentage points.

2.2 Asset returns

The bonds held in the Social Security Trust Fund are a special Treasury Issue
with a rate of return equal to an average of rates on longer term Treasury
bonds. The Social Security Administration’s website contains a time series of
the effective interest rates on Trust Fund assets from 1940 to 2002.1 We use
this special issue rate, minus the rate of inflation as measured by the CPI-U,
as our baseline real interest rate. Historical stock returns, defined as total
returns on the S&P 500 Index adjusted for the reinvestment of dividends,
are available over the same period from Ibbotson Associates (2002) as well
as from other sources. The jump-off points for the two series are 3.8 and
−15.84 percent respectively.

We fit a VAR of order three that recognizes the conjoined behavior of
real bond returns, rt, and real stock returns, st, subject to the assumption
that they will tend to revert to their respective long-run means of 3 and 7
percent. The equations take the following form, where an asterisked variable
denotes its level minus its long-run mean:

r∗t =







1.1555
−0.7993

0.4772





 ·







r∗t−1

r∗t−2

r∗t−3





 +







0.0131
−0.0165

0.0093





 ·







s∗t−1

s∗t−1

s∗t−1





 + εr,t (7)

s∗t =







1.4392
−0.3591

0.0091





 ·







r∗t−1

r∗t−2

r∗t−3





 +







0.0227
−0.2088

0.0039





 ·







s∗t−1

s∗t−1

s∗t−1





 + εr,t. (8)

The 144-element variance-covariance matrix is not presented here due to
space considerations. Shocks for the probabilistic trajectories are generated
by resampling from the residuals.

1http://www.ssa.gov/OACT/ProgData/effectiveRates.html
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Table 1: Estimates of mortality SVD: ax and bx

age ax bx age ax bx age ax bx

0 −4.9255 0.0254 41 −6.1166 0.0096 82 −2.5803 0.0086
1 −7.5241 0.0223 42 −6.0476 0.0101 83 −2.4786 0.0085
2 −7.9330 0.0201 43 −5.9764 0.0105 84 −2.3757 0.0083
3 −8.1690 0.0202 44 −5.9093 0.0107 85 −2.2731 0.0081
4 −8.4324 0.0207 45 −5.8332 0.0109 86 −2.1724 0.0079
5 −8.5048 0.0204 46 −5.7568 0.0110 87 −2.0736 0.0076
6 −8.5304 0.0193 47 −5.6760 0.0111 88 −1.9766 0.0075
7 −8.5827 0.0187 48 −5.5875 0.0113 89 −1.8813 0.0073
8 −8.6393 0.0189 49 −5.4976 0.0114 90 −1.7875 0.0071
9 −8.7618 0.0195 50 −5.4045 0.0115 91 −1.6948 0.0069

10 −8.8642 0.0206 51 −5.3116 0.0115 92 −1.6029 0.0067
11 −8.8641 0.0204 52 −5.2224 0.0114 93 −1.5121 0.0064
12 −8.6099 0.0168 53 −5.1391 0.0111 94 −1.4225 0.0062
13 −8.1828 0.0120 54 −5.0575 0.0107 95 −1.3370 0.0060
14 −7.8184 0.0085 55 −4.9758 0.0103 96 −1.2571 0.0058
15 −7.5044 0.0061 56 −4.8891 0.0100 97 −1.1815 0.0058
16 −7.2948 0.0048 57 −4.7973 0.0097 98 −1.1121 0.0058
17 −7.1536 0.0043 58 −4.6993 0.0096 99 −1.0467 0.0058
18 −7.0707 0.0045 59 −4.5992 0.0095 100 −0.9815 0.0058
19 −7.0336 0.0050 60 −4.5009 0.0095 101 −0.9156 0.0058
20 −7.0034 0.0056 61 −4.4047 0.0094 102 −0.8499 0.0058
21 −6.9632 0.0060 62 −4.3100 0.0091 103 −0.7796 0.0058
22 −6.9459 0.0062 63 −4.2186 0.0088 104 −0.7146 0.0058
23 −6.9397 0.0060 64 −4.1291 0.0083 105 −0.6418 0.0058
24 −6.9393 0.0055 65 −4.0380 0.0079 106 −0.5807 0.0058
25 −6.9391 0.0050 66 −3.9485 0.0076 107 −0.4853 0.0058
26 −6.9440 0.0046 67 −3.8670 0.0075 108 −0.4414 0.0058
27 −6.9277 0.0043 68 −3.7937 0.0074 109 −0.3560 0.0058
28 −6.8907 0.0041 69 −3.7238 0.0075 110 −0.2207 0.0058
29 −6.8451 0.0040 70 −3.6508 0.0076
30 −6.7874 0.0040 71 −3.5733 0.0077
31 −6.7328 0.0041 72 −3.4929 0.0078
32 −6.6768 0.0043 73 −3.4099 0.0079
33 −6.6197 0.0047 74 −3.3240 0.0080
34 −6.5620 0.0051 75 −3.2341 0.0081
35 −6.5004 0.0056 76 −3.1416 0.0081
36 −6.4354 0.0061 77 −3.0495 0.0082
37 −6.3741 0.0068 78 −2.9587 0.0084
38 −6.3131 0.0075 79 −2.8674 0.0085
39 −6.2500 0.0083 80 −2.7746 0.0086
40 −6.1876 0.0090 81 −2.6790 0.0087
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Table 2: Estimates of fertility SVD: cx and dx

age cx dx

15 0.0079 −0.0025
16 0.0205 −0.0037
17 0.0381 −0.0010
18 0.0606 0.0082
19 0.0840 0.0233
20 0.1012 0.0420
21 0.1115 0.0591
22 0.1136 0.0722
23 0.1141 0.0793
24 0.1142 0.0814
25 0.1147 0.0768
26 0.1154 0.0679
27 0.1157 0.0567
28 0.1144 0.0487
29 0.1116 0.0404
30 0.1059 0.0358
31 0.1009 0.0260
32 0.0909 0.0246
33 0.0804 0.0225
34 0.0695 0.0248
35 0.0593 0.0251
36 0.0501 0.0256
37 0.0407 0.0257
38 0.0319 0.0264
39 0.0244 0.0251
40 0.0180 0.0234
41 0.0130 0.0180
42 0.0088 0.0146
43 0.0055 0.0109
44 0.0031 0.0086
45 0.0017 0.0058
46 0.0006 0.0038
47 0.0002 0.0024
48 0 0.0012
49 0 0.0006
50 0 0.0003
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