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I. INTRODUCTION

The synthesis of linear systems to have prescribed transient
response has become increasingly important in recent years. Present
applications in automatic control, electronic computation, data trans-
mission, noise filtering, and measurement of linear-system characteris-
tics are concerned with input functions which are not periodic in time.
It is therefore understandable that synthesis procedures which are
stated and carried out in terms of time response, like the ones pre-
sented here, are of considerable interest.

The synthesis problem is rarely solved without error. Lim-
itations such as those imposed by noise and linear-system physical
realizability assure this. Consequently, synthesis really involves

the solution of two problems: (1) the approximation problem, the

determination of an approximate system function which matches closely

a prescribed system function; (2) the realization problem, the con-

struction of a physical linear system which possesses the approximate
system function. This investigation is aimed primarily at solving the
first problem. The approximate system function is expanded in a series
of realizable approximating functions, and the coefficients in this
series are chosen to minimize a time weighted average of the squared
response error. The theoretical development and practical application
of this weighted mean square error approximation method are the pur-
pose of this dissertation.

Before discussing the advances made in mean square approxi-
mation it is relevant to review briefly the present state of linear-
system approximation for prescribed transient response. The greater

part of past work is recent and has been restricted primarily to the
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determination of system functions suitable for realization in the
form of finite, lumped-element electrical networks with fixed para-
meters.l A number of useful methods2 have been proposed which pro-
duce time-response errors tending toward zero with increased network
complexity. No optimum is obtained, however, in the sense that a
measure of the error is truly minimized. Furthermore, the procedures
are only practicable when the prescribed input is the impulse function
and the prescribed response is an analytic expression. The mean
square error approach has been investigated by relatively few workers
[1,2,17,18,22,51]. By far the most general and complete treatment is
the report by Kautz [17], which is devoted primarily to the approxi-
mation of impulsive responses with known Laplace transforms. Certain
fairly broad classes of exponential time functions, orthonormal in the
semi-infinite interval, are developed and employed in an approximating
series. Although Kautz and others mention the approximation problem
when the input function is arbitrary they do not present wholly satis-
factory solutions.

Thus, present methods of approximation for prescribed tran-
sient response are limited mainly to the following areas: (1) approxi-
mation by systems vwhich are finite, lumped, and fixed in time, (2)
approximation of impulsive responses expressable in analytic or Laplace

transform form, (3) means square approximation by certain classes of

1 Winkler [41] gives an excellent review of the approximation problem
as applied to electrical networks for both time and frequency re-
sponse. An extensive bibliography is also included.

2 The following methods and corresponding references are noteworthy:
(1) matching of time moments [15,34,37], (2) numerical calculation
by time series [3,24,25], (3) Pade approximates and continued frac-
tion expansions [17,26,29,36], (4) Prony's method [6,28] (5) ration-
al fraction approximation along contour in complex plane [7,14], (6)
Fourier series [35].



orthonormal exponential functions.

It is felt that the contributions of this investigation
largely overcome these limitations. A summary of the more important
results includes: (1) a general theory of constrained and unconstrain-
ed mean square approximation by linearly independent butnot necessarily
orthogonal functions; (2) a practical solution of the arbitrary input
problem; (3) procedures for generating wider classes of orthonormal
approximating functions, especially orthonormal exponential functions;
(4) the application of analog computer techniques to the mean square
error approximation problem and the realization problem; (5) methods
for experimentally measuring linear-system characteristics, processing
experimental data, and experimentally synthesizing optimum filters.

In order to best develop these results the text has been
divided into two parts. The first part discusses the basic theory
involved in the weighted meen square approximation of time invariant
linear systems. It includes chapters on notation and preliminary
assumptions, the meaning of the weighted mean square error criterion,
constrained and unconstrained approximation by linearly independent
approximating functions, the orthogonalization of linearly independent
functions with special emphasis on complex exponential functions, and
the choice of suitable approximating functions. In the second part,
the theory of part one is applied to practical synthesis problems. 1In
this part there are two chapters, the first, on the impulse response
approximation problem, and the second, on the arbitrary input problem
and the handling of experimental data. An appendix tabulates various
families of exponential approximating functions and inverse matrices

useful in analytic approximations.
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BASIC THEORY







II. NOTATION AND PRELIMINARY ASSUMPTIONS

A resume of notation and preliminary assumptions is required
before the detailed discussion of basic theory can begin. This chap-
ter will consider theqry pertaining to linear-system description, a
precise statement of the approximation problem and the mean square
error approach, physical and mathematical limitations involved, and
preliminary simplifications of the prescribed response.

Linear System Theor;y:L

The linear-system notation used is shown in Figure 2.1. The

input is fi(t), and the response is f,(t). Laplace transforms of

LINEAR SYSTEM

) hin ¢,
—— . o

Figure 2.1 Linear System Notation

lower case letter time functions are given by corresponding upper
case letter functions of the complex variable s = o + j®, Thus
n-st (2.1)
F(s) =ﬁ £ (t) dat
O O
o)
In what follows all such transforms are presumed to exist. To avoid

omission of the time functions for t < O the time origin is chosen so

that the time functions are zero for t < 0.

1 A detailed discussion of linear-system theory is given by Gardner
and Barnes [10].

-T-



The synthesis problem is essentially an input-response
problem. It is therefore assumed that the linear system is initi-
ally at rest .ith the total response dependent entirely on the input.
In this case,

F (s) = H(s)F, (s). (2.2)
The system function H(s) may be defined either in terms of a trans-
formed input and response by equation (2.2) or in terms of the trans-

form of the impulse response h(t),

oo

-st
H(s) =j; n(t) dt . (2.3)

o)
The impulse response or weighting function is important because it
allows the response to an arbitrary input to be expressed by means of

the superposition integrals,

(o]

fo(t) =k/pfi(7)h(t—r) dr (2.4)

-0

and

(o]

£ (¢) Tffi(t-'r)h(-r) dar . (2.5)

oS
If the linear system is realizable it must not be a predictor, and
h(t) = 0 for t < 0. This causes the upper limit in equation (2.4)

to become t and the lower limit in equation (2.5) to become zero. The
Laplace transform equation (2.2) and the superposition integrals will
be used frequently in future sections.

The Approximation Problem

The approximation problem involves a prescribed system
function and an approximation to it. Problem notation is shown in

Figure 2.2. The prescribed system function is defined in terms of



PRESCRIBED SYSTEM

h(t) folt)

| we [ES
f.(n +l et
FS) | APPROXIMATE SYSTEM - E(S)

h‘(t) 178

T Wl *

RAS)

Figure 2.2 Approximation Problem Notation

a given input fi(t) and response fo(t) and is not necessarily physical-
ly realizable. 1In the special case where fi(t) is the unit impulse,
the prescribed response fo(t) is simply the impulse response h(t).

The approximate system function (note that approximate functions are
distinguished from their exact counterparts by an asterik) is subject
to conditions of realizability and is chosen to make the approximation
error e(t)(or E(s) ) small.

Two methods of error evaluation may be considered. In a
frequency doﬁain approximation the prescribed input and response are
stated in Laplace or Fourier transform notation so that a function of
E(s)(or E(jw) ) measures the approximation tolerance. In a time domain
approximation the prescribed input and response are stated as time
functions so that a function of e(t) measures the approximation tolerance.
When accurate duplication of transient response is of primary importance

the second procedure is more direct and allows better control of approx-

imation error.
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The mean square error approach to the time domain approxi-
mation depends on two things: (1) a series expansion of the approximate
weighting function, and (2) the minimization of the weighted mean square
error in time response. The series expansion includes N predetermined

approximating functions and is written as

N
h*(t) =Z a @(t) . (2.6)
n=1

Consequently, the approximate system function is given by the Laplace

transform of equation (2.6).
N

N -
H (s) :ZJ an0n(s) . (2.7)
n=1
Conditions which @, (t) and Qn(s) must satisfy if H'(s) is to be realiz-
able are considered in the next section. Factors controlling the choice
of the functions themselves are examined in Chapter VI. The weighted

mean square error is defined by

To To
: 2
I =/W(t)e(t)dt =fw(t) [f,(t) - f:(t)]2dt .
T 7 (2.8)
1 1

where T.< t < T is the interval of approximation and W(t) is a posi-

2
tive, boundedlweight function. When I is minimized with respect to
the coefficients 8 ,-==-== a the approximation problem is considered
solved.

Before I can be minimized it must be expressed in terms of

the coefficients., This is possible through application of the super-

position integral

1 Occasionally, it may be desirable to let W(t) be unbounded. This is
permissible if the limitations of the next section are satisfied.
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. ¢ e
£3(e) - fo(t-T)h*(T)dmZ; oo Ti(trlgln) ar L (2.9

Notation is simplified by letting

o

o_(t) =ffi(t-T) o (1) ar (2.10)
then ON
£a(t) =) enon(t) (2.11)
n=1
and T2 ¥
I =fw(t)[fo(t) -Z anon(t)]gdt ) (2.12)
Tl n=1

Detailed procedures for minimizing I are taken up in Chapter IV.
The equations of the previous paragraph can be understood

more clearly by reference to Figure 2.3. The approximate linear system
¢ﬂ(t) 8 (1)

— ! (1)) S——
$(s) H(s)

ey a -
$,(s) uys)

*
0 fo(t)

F(s) FXs)

© 000 0 O
00 00O O

(1) 0
&, (s) o s Y

Figure 2.3 Block Diagram Representation of Series Expansion of H*(s)
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is divided into N parallel paths with respective system functions ®n(s),

gains a,, and outputs anQn(t) which are summed to form the approximate

n
* . 3 . 3
response fo(t). Such a representation is schematic; it does not mean

*
that H (s) must be realized in the same way.

Physical and Mathematical Limitations

If the approximate linear system is to be realizable it must be
non-predicting and stable. 1 Or equivalently, the following conditions
hold: (1) h(t) = 0 for t < 0, (2) f |n*(t)|dt is bounded or H *(s) is
bounded and analytic for o > O (s = o+j®) and has an 1ntegrable|dH|
the entire jwaxis.2 Clearly, the same two conditions must apply also
to the functions of the series expansion, mn(t) and Qn(s).

Conditions (2) means, among other things, that H*(s) is bounded
at the point at infinity; i.e., the approximate system has finite gain
at infinite frequency. This excludes certain ideal devices such as
perfect differentiators. Actually, most practical systems have the
even greater restriction of zero gain at infinite frequecy.

In the majority of useful approximation problems it is further
specified that the approximate sysfem be lumped and finite. Unless
otherwise noted this assumption will be made in the following work.
Mathematically, the lumped and finite condition demands that: (l) H*(s)
be a real, rational function of s with a finite number of poles, (2)
h*(t) be a real, finite sum of complex exponential functions with a
possible impulse added at t = 0. Stating these conditions in equation

form for a Mth order system yields

1 A stable system is defined as one producing bounded responses for
bounded inputs.

2 These conditions are discussed more fully by James, Nichols, and
Phillips [16]
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M
% s-§l s-§é o s-§?
Floy o a CTDETR) o )
(s-sl)(STSE)"_'(S-SM) m=ls-sm (2.13)
and M
* st
h(t)=Au(t)+Z Aem
[ele) m 1,2
] (2.14)
whereﬁb »8m, and Ay, occur in conjugate pairs when complex, and
where oy < O (sm =0, + jo ) form=1,----- M. If H*(s) has zero

gain at infinite frequency, P < M and Ay = 0. The series expansion
of the approximate system function given in equation (2.7) must contain
the same poles as H*(s). Since the approximating functions in the series
are predetermined, this means that the poles of the final approximation
are predetermined. The zeros of H*(s) depend, of course, on the coeffi-
cients 8yy----- ay-

In addition to the above system limitations, solution of the
minimization problem requires I to be bounded (and hence, in this case

continuous) for finite a,,----- ay - From equation (2.12) it is evident

l)
that this is assured if and only if all the integrals
‘I‘2 T T2
fW(t)fOE(t) at, fw(t)ei(t) at, --- fw(t)eﬁ(t) at
T T T
1 1 1

(2.15)

are bounded. The first integral depends on the prescribed response.

If it is unbounded a preliminary simplification of the prescribed

1 An nth order pole in H¥(s) will cause equation (2.13) to have the

terms Ay, Ay 4 1 Anin-1 and equation (2.14) to have the
) ) Bnad
s-sp  (s-sp)° (s-s, )"
terms
st t - -1 st
e Rl

2 up(t) is the unit impulse function.
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response is necessary. Such simplications are described in the next
section. The remaining integrals depend on the approximating functions
Qn(t) and the prescribed input fi(t)' For realizable, finite, lumped
element systems the integrals always will converge provided the energy

in fi(t) between T. and T2 is finite, i.e.

To

f fig(t) dt < » (2.16)
T

1

1
For a bounded input and a finite interval (Tl,Te)equation (2.16) is

obviously satisfied. In an infinite interval the entire input must
have finite energy. Thus, the infinite interval may be used for pulse
-like inputs but not for ever present random inputs.l Useful, unbounded
inputs are the unit impulse u_(t) and its successive derivatives ul(t)
ug(t), ----- . If they occur in (Tl’TQ) the integrals will be unbounded
unless H*(s) falls off at a sufficient rate as s— ». The exact condi-
tion required is M-P > n+l where n 1is the subscript on the highest
order impulse appearing in (Tl’TE); that is, H*(s) must have at least an
(n+1)th order zero at s=ow.

Last of all, the approximating series fo*(t) must not contain

any redundant terms which can be expressed as linear combinations of the

other terms of the series. More prec%sely, the functions Ol(t), ----- ON(t)
*
must be linearly independent or fy = anQn(t) must be zero only when all
= *
the coefficients a),----- ay are zer8.~ But fo (t) = h*(T)fi(t-T) dr is

identically zero only when h*(t) is zero (excluding the trivial case where
fi = 0). Thus, the linear independence of the system approximating func-

tions @ (t),-=-=--- ¢N(t) is a sufficient condition for the linear independ-

ence of Ql(t), ————— GN(t). Therefore, it will be assumed that @l(t),-—-@N(t)

1 The input energy may even be infinite if W(t) goes to zero at a
sufficient rate as ltl-»w.
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are always linearly independent. Since M poles can generate only M
independent functions, this further requires that N < M.

Preliminary Simplifications of the Prescribed Response

In order to satisfy the previously mentioned integral restric-
tion on fo(t) and to reduce approximation complexity and error, it is
desirable to simplify the prescribed response fo(t) before the actual
approximation process begins. Possible simplifications include:

1. Change of time scale. The prescribed input and response

are replaced by fi(%) and fo(%) and the approximation completed.
The resulting system function is H*(Ts). Through a logical
choice of T, notation and numerical work is much simplified.

2. Extraction. This technique is feasible when h(t) is
approximated directly (fo = h) and is expressed in analytic
form. Terms which are realizable (the impulse, real and com-
plex exponentials) or better handled by direct approximation
(the derivatives or integrals of the impulse)'are subtracted
from h(t) and realized separately. The remaining part of h(t)
is then approximated by the mean square error method.

3. Delay removal. The prescribed response is replaced by

fo(t+T) and the approximation completed. The resulting
system function is H*(s)e Ts expressed as a rational function
of s. If a shift in the time origin of the response 1s un-
important the result may be used directly. H*(s) is realized
by following H*(s) eTS by an ideal delay of T seconds. Delay
removal allows more accurate approximation when the approxi-

mated system possesses a delay-like character.
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k. Integration removal. The prescribed response is replaced

by f;(t) and the approximation completed. The resulting system
function is s H*(s), and multiplication by % achieves the desired
approximation. Integration removal is important in approximating
prescribed systems known to have an integrating behavior. The
multiplication by % tends to produce an f:(t) which is smoothed

and has less approximation error ripple.

5. Differentiation removal. The procedure is similar to L4 ex-
t

cept J[\fo(t) dt is approximated and the multiplication is by s.
o)
The error in f;(t) has increased approximation ripple.
To
One or more of the above operations will usually mseke J/hfozdt

T
bounded; if not, the problem statement should be again inspected. Per-

haps, an equivalent but more suitable prescribed input and response can
be chosen. Subsequent chapters assume that the above conditions are

satisfied and that the preliminary simplifications are completed.



ITI. THE WEIGHTED MEAN SQUARE ERROR CRITERION

As seen in Chapter II the weighted mean square error criterion
(abbreviated WME criterion) is fundamental to the approximation process.
Therefore, it is important to investigate the criterion and the reasons
for its choice. In addition to doing this, the following sections will
examine the resulting errors in the frequency domain and in system
function approximation.

The WME Criterion

In order to solve the minimization problem it is necessary to
define a suitable measure of the approximation error. Such a measure
should meet the following requirements: (l) be zero for zero error,

(2) be positive for non-zero error, (3) decrease with decreasing error,
(h) permit mathematical solution of the minimization problem. While
the first three conditions are easily satisfied, it is the last con-
dition which really forces the choice of the WME criterion. All other
proposed criteria fail on this count and lead invariably to trial and
error solutions of the minimization problem [13]. The WME criterion
has a number of other important characteristics.

A most important characteristic is the square weighting of error
amplitude, which tends to reduce strongly large errors at the expense
of increased small errors. The error magnitude criterion is better in

this respect but does not allow mathematical solution of the minimization

T2

1= [ leol a (3.1)

Ty

_l’T_
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problem. Fortunately, the deficiency is not severe in most applica-
tions where the prescribed response is fairly smooth. The square weighting
may even be preferred when large peak errors are particularly undesirable.
Because of the heavy weight placed on large errors the unweighted
mean square error criterion (W(t) = 1) has a tendency to cause approxi-
mation errors which oscillate symmetrically about zero with relatively
constant peak amplitude. This property seems characteristic of most
mean square approximations, especially when the approximated functions
are continuous. The Fourier series expansion of a triangular wave is
a good example, the peak error deviations being almost equal with
slight increases at points of slope discontinuity. An exception occurs
when the prescribed response and approximating functions are both small
for any length of time, since then the error amplitude must also be small.
But in time regions where both the prescribed response and the approxi-
mating functions have appreciable value, the error does tend to oscil-
late with approximately constant peak deviations.
The WME criterion permits the peak deviations to be varied
in a prescribed way as a function of time and is therefore superior to
the simpler, more commonly used, unweighted mean square error criteriont
The variation is achieved by making W(t) large in the time regions
where the error is to be made small. In the weighted error integral

1 1

W§fo -W §fo* is equivalent to fo - f *

o in the unweighted error

integral and has as a result approximately constant oscillation peaks
1 1

in regions where W§f0 and ngg have appreciable value. Thus, the

envelope of the oscillating error is approximately proportional to
-1
W2 (t). While W may be any bounded, positive function there are certain

1 A good example of WME criterion application is given by Westcott [40]
where W(t) =t.
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more desirable choices, discussed in part two, which reduce numerical
and analytic work in impulse response approximation.

Although it is impossible to calculate the error e(t) without
evaluating the approximating series, it is possible to make a rough
estimate of its maximum value from the quanity I. From the discussion
of the previous paragraph the following somewhat crude approximation

to e(t) seems reasonable:

1

MW 2(t)sin Qgt, T. <t < T (3.2)

e(t) w e*(t) 1 < S

< .
0, t Tl’ t > T2 . .
- 1 *
The interval (Tl’TE) is the region in which W 2f (t) and W 2 (t) have
appreciable value, and sin Qot represents approximately the rather

21
oscillatory nature of e(t) within the envelope W 2(t). Substituting

equation (5.2) in the WME integral gives

T T

2 1 5 2
T Y f W(t)[AwE (t) sin .t at = A2f [—é—' - % sin 2 Q.t] dt.
Ty T1 (3.3)

Assuming an integral number of periods of sin 2 Qot in (TI,TQ),

(T, - T,).
e 1 (3.4)

Finally, eliminating A between equation (3.l4) and equation (3.2) yields,

1
W2 (t) sin Qt

max

(3.5)
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the estimate of the maximum error deviation. Despite the rather gross
assumptions made in deriving equation (3.5),1t has glven in many cases
accuracies of better than 50%. Application of equation (3.5), including

the choice of (Té,T , is demonstrated in part two, Chapter VII.

1)

Frequency Domain Errors

Minimization of the WME integral brings about an approximation
in the frequency domain as well as in the time domain. To see the re-
lation between frequency domain errors and time domain errors, consider

first the infinite interval, unweighted mean square error integral,
(oo}
*
I =f [fo - fo Fat . (3.6)
=00

By means of the complex convolution integrall of the Laplace transform

I may be written as .
C+ Joo
I- 211TJ [F (-s) - F *(-s)1[F_(s) - F *(s)]as .

C-joo
(3.7)

Evaluating equation (3.7) on the imaginary axis (real frequency axis)

. ld ©0
yields N N

N2
1= _1 /[Fo(jw) - F(jo)° aw . (3.8)
2 &
Thus, the unweighted mean square approximation in the time domain is a
mean square error-magnitude approximation in the frequency domain.
But frequency domain approximation errors are more usually

measured in terms of magnitude error, phase error, real part error,

and imaginary part error. The mean square integrals of these errors

are respectively: 0

Iy = 2—11;/ [IF,|-]F 128, (3.9)

-0

1 See Gardner and Barnes [10], page 275.
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I_ =21 [angF_ - angF_*]aw , (3.10)

R 2% (3.11)
I - ;L\/[[ImFO - I F, Paw . (3.12)
LA

Expansion of equation (3.8) into imaginary and real parts of Fo and Fo*

gives
I=1Ig + Ig, (3.13)

so that T > Ig and I > I;. Reference to Figure 3.1 shows that

Fo- Fo'|> |Fo|- |Fo®| so that I > Iy- Tt is seen that I, I., and I,

JFo| =Jro]

Figure 3.1 Vector Diagram of Fo, Fo¥, and Fy - F ¥

are not minimized by minimizing I. They do converge toward zero, how-
ever, as I converges toward zero.
No similar bound on the mean square phase error Ip is possible.
* *
When |Fy - Fg I,IFOI and [FO ]are all small, then the angular error

* *
between F, and F, may be large though F, - F, |is small. Unfortuna-

tely, all three quantities often become small together as @ —»
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and the minimization of I (a measure of FO - Fo* ) allows large
phase errors at high frequencies. This 1s what happens in practice.
The phase of Ef‘(jw) as W o is dependent on the approximating func-
tions used and not on the phase of Fy(j®) as ® - ». This limitation
of the mean square error approximation can be eliminated by constrained
approximations of the type described in the next chapter. Good phase
approximation, as well as good magnitude, real part, and imaginary part
approximation, is then possible.

The introduction of the weight factor W(t) and the finite interval
(T2, Ti)makes the above relations much more complicated. One interpre-
tation of the WME integral is to consider I as a weighted average of
frequency domain errors arising froﬁ time errors which exist in small

time intervals. Thus,

N 0
N o
I Z W(T + nAt)El— f [Fon - Fon |74 (3.14)
“ - 00
n=1
where NAt = T2 - Tl and

Tl+nAt

-st
Foo (s) = e fo(t) at . (3.15)

T, +(n-1)A¢

Though this representation is admittedly strained it does allow the
previously developed results to be extended to the WME criterion.

System Function Approximation Errors

It is useful to know how the prescribed impulse response func-
tion h(t) is approximated. If fi(t) is the unit impulse, the WME criter-
ion applies directly to the impulse response error eyp(t) = h(t) - n™(t).
Ir fi(t) is an arbitrary input the approximation criterion which spplies

to ep(t) is not as simple.
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Again, the initial development will be restricted to the infinite
interval, unweighted mean square error criterion. Substituting Fo= HFi
and Fo*= H%Fi in equation (3.8) yields

(o]

(o]
1 * 1 * 2
I-= gﬁFiH- FiH |26w=2—ﬁf]Fi|2 |H-H | “av . (3.16)
-00

-0
The effect of an arbitrary input is now clear. The mean square error
in the h(t) approximation is weighted in the frequency domain by |Fi!2.
The result seems reasonable, for the best approximation would be ex-
pected in the frequency range where theiinput amplitudes are greatest.
It should be noted that the weighting depends only on lFi | and
not on the phase of Fi' Thus, when the unweighted mean square error
criterion is used, the input need not be the prescribed input fi(t) but
may be any time function which possesses the same spectral magnitude.
For example, a random input with spectral energy |F1|2 = —jt? may be

1+
replaced by the exponential pulse

£3(t) = et , >0
= 0 , t<0©0
which has the same IFiI . The approximation independence of input phase

does not indicate, though, that phase characteristics of the prescribed
system function H(s) are ignored. A change in the phase of H(jw) does
change I as given by equation (3.16).

The extension of these relations to the WME integral requires
techniques similar to those used in the previous section. A preferable
alternative is to consider two block diagrams which are equivalent to
the diagram of Figure 2.2. Figure 3.2 shows the first modification of
Figure 2.2. The input is replaced by a unit impulse followed by a

system function Fi(Jaﬁ(not necessarily realizable). Since the system



ol

M

t)

Figure 3.2 Equivalent Block Diagram of Approximation Problem with
Input Replaced by F;(j®) and u_(t)

is linear from point A to point B, the order of the operations is im-
material, and Fi(jd$ may be shifted from A to B as in Figure 3.3. Fig-
ure 3.3 shows that the error €y in impulsive response approximation is

first frequency weighted by Fi(jw) and then squared and time weighted

-

udt) . 2 I

e Pl Rg@ L0 fwets o
T,

Figure 5.3 Equivalent Block Diagram of Approximation Problem Showing
the Weighting of e, by F,(jo)
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by W(t). Since the phase of Fi(jw) affects the time distribution of
the filtered error e(t), it must also affect the value of I. Thus,
contrary to the unweighted approximation, the weighted approximation
is sensitive to forcing function phase.
In summary, the following statements concerning the WME approxi-
mation can be made:
1. The WME criterion is the only practical error criterion per-
mitting mathematical solution of the minimization problem.
2. Large approximation errors are weighted heavily compared
with small approximation errors.
3. Thi approxi?ation error tends to oscillate about zero and
when Wéfo and Wéfoi are reasonably large has an envelope roughly
proportional to .hg(t).
4. Good time domain approximation assures good frequency domain
approximation of the magnitude, the real part, and the imaginary
part of the response Fo(jui.
5. Good phase approximation of Fo(jw) for small Fo(jaﬁ generally
lemands a constrained WME approximation.
6. TFor arbitrary inputs the impulse response error ey is weighted

frequency-wise by Fi(jdﬁ.



IV. THE MINIMIZATION PROBLEM

The preceding sections have described in detail the approxi-
mation problem, mathematical and realizability restrictions, and prop-
erties of the WME approximation. This chapter will develop the general
theory of WME approximation and derive the equations necessary to solve
the minimization problem for simple and constrained approximations.
Practical applications of the results are delayed until part two.

Before beginning‘it is advisable to review briefly the condi-
tions specified in Chapter II. They are: (1) H¥*(s) must be physically
realizable, (2) the weighted square integrals of f,, 6;, - - - 6y
must be bounded (to assure the continuity of I for finite &1, = = - aN),
(5) the system approximating functions Py, = - - @N must be linearly
independent (to prevent 91, - - - QN from being linearly dependent).

The first section that follows is devoted to the simple or unconstrained
WME approximation.

The Unconstrained Approximation

The WME integral is given by

T, T, N
* 2 | ¥ 2
I=/ WI[fy - £ %17 dat = W[fO—Lan o ] dt
T T n=
T2 NooT NN Tz
2 ' ‘ '
=/w f5 dt-ELan/W fogndt+§ Eanamfw 0,8,dt .
Tl n=1 Tl n=lm=1 T

1 (4.1)

Since the integrals of equution (4.l1) appear frequently it is desirable

to introduce the following notution:

-26-
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T
dn=/Wfoendt, n=1, ---N, (k.2)
T
o
Com =\j[ W oepe, dt = Cun? =4, ---N,m=1, - - -N
Ty (& 3)

Substituting these expressions into equation (4.1) yields
T2 N N

N
I=/ﬁ%%ﬁ-22ﬁﬂn+ Z%ﬁfm : (4.%)
n n m=1

T = =
1 1 1

To obtain the WME approximation I must be minimized with re-
spect to ay, - - - ay Since I is continuous for finite al,-——— aN it

possesses continuous derivatives with respect to the a, which may be

set equal to zero to find the stationary point. Thus,

N
__=_2dn+2231ncmn=o, n=l,---N- (14-.5)

m=1
These N equations defining the stationary point coefficients may he

expressed more simply in matrix notation by

d] =¢C a] . (4.6)

If the matrix C is non-singular (det C f 0) a unique solu-

tion of equation (4.6) results. But the det C is the Gram® determinant

1/2

of the functions W en, which are linearly independent because the

See Courant and Hilbert 8],page 61.
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functions ©, are linearly independent. The determinant is therefore
non-zero,and equation (4.6) does define a unique stationary point.

Furthermore, the quadratic form

is positive definite.s Hence I can be made arbitrarily large by in-

L\/Jz

=

2
creasing lall, - - - ]aNI indefinitely. Since the stationary point
is unique it must therefore be a minimum.
The value of the minimum may be calculated by expressing equa-

tion (4.4) in matrix notation and substituting the known value of d].

Thus
T2
2
I =\/pW fo dt -2 2, dl + &, C a]
T1
T2
2
= [ W £," dt - a; 4]
T
(%.7)
Other equally good expressions are
T2
2
I =L/FW fo dat - a Ca] , (4.8)
Tl
T2
2 -1
I —\/FW f, dt - 4, ¢~ 4] (4.9)
T
1

1 1big.
For large 'a l the quadratic form in equation (4. 4) increases much
more rapidly than ﬁi

andy
n=1
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Because the quadratic form .ELC a] is positive definite

equation (4.8) shows that

2
I efw fo at . (4.10)

It is therefore logical to define the worst possible WME as

To

2 .
Tnex =L/PW fo at (4.11)
T

which exists.when there are no terms in the approximating series. The
relative error I/Imax is less than or equal to one and is particularly
»useful because it provides a normalized indication of approximation ac-
curacy which is independent of the amplitude or time scaling of the
approximation problem.

To summarize, the solution of minimization problem is unique
and involves the following steps: (1) the evaluation of the 1/2 N(I+3)
integrals (equations 4.2 and 4.3) which are the elements of matrices
‘d] and C, (2) the inversion of the matrix C and the calculation of the

column of approximating coefficients from

(4.12)

(3) the calculation of I from known a] and d] by equation (4.7).
Usually, the inversion of C entails the greatest amount of work, es-
pecially when C is large. It should be noted, however, that C depends

only on the approximating functions Gl, - - - GN and not on the
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prescribed response f,. Thus, a single inverse matrix suffices for

the approximation of any number of prescribed responses.

It would be particularly fortunate if

1]
-
.

T2
Com =/w 8,8, dt n=m (k.13)
T

for then the coefficients would be given simply by

T
2
an=dh=fooendt’ m=l---0 (k.14)
Tl
and the WME by
N
1= Imax = a] = Imax 'zan * (M.IB)

n=1

While such "orthonormal" function approximations are valuable they are
not necessarily easier to implement since the generation of orthonormal
families of functions may be as difficult as matrix inversion. Ortho-
gonalization procedures are discussed fully in the next chapter. Rela-
tive merits of orthogonal and non-orthogonal approximation depend on
application and are treated in part two.

Since the generation of families of orthonormal functions
depends on the linear combination of linearly independent functions,
it is important to investigate the approximation properties of approxi-
mating functions which are linear combinations of Gl’ - - - GN' The

most general set of such functions 51} - - -‘BN is given by the matrix

equation
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6] =R 8] , (4.16)

where the matrix R is any matrix whose determinant is non-zero. The
latter requirement is necessary to assure the linear independence of
the new functions 6]. By substituting 6] in the previously developed
equations it is readily shown that approximation by 8] is exactly
equivalent to approximation by ©]. Hence, it makes no difference in
the final approximation whether or not the approximating functions
are first orthonormalized.

The Constrained Approximation

Frequently it is necessary for the approximate response to
satisfy exactly certain specific conditions which stem from important
properties of the prescribed response or from the requirements of a
particular application. Unfortunately, such specific conditions can
only be approached, not equaled, by the finite, unconstrained approxi-
mation of the previous section. It is therefore desirable to formulate
a WME approximation which is constrained.

Typical conditions which can be enforced by constrained ap-
proximation are: (1) the values of £ *(t) or its derivatives at
specified instants of time, (2) the values of F *(s) or its deriva-
tives at specified points in the complex plane, and (3) the asymp-
totic behavior of F_*(s) at s = ». The last condition is especially
important when the asymptotic phase is to be exact, or when

lim
lsl . an*(s) = const is figed by practical realizability limita-
tions. 1In any event, none of the above conditions are normally ob-

tained with a simple WME approximation, They must be forced on
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£ *(t) by restricting the way in which the approximating functions are

combined.

Symbolically, a constraint condition may be written as
k = K {r*(t)} | (4 .17)

K 4{ } is the operator which measures the desired condition, and k is
its specified value. For a particular set of approximating functions
equation (h.l?) is a relation between the approximation coefficients.
To distinguish these constrained approximation coefficients from the

unconstrained coefficients, they will be denoted by b], i.e.,

N
fo* = Z by Op (t) - (4.18)

n=l

The following examples show how constraints restrict the way
in which the coefficients can vary:

1. The value of £ *(t) equals the value of f (t) at t =t,.

£o(t)) =k = £.%(t)) =Z b,oe, (t))

2. The area under f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>