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ABSTRACT

An efficient and reliable algorithm for computing the Euclidean distance
between a pair of convex sets in R™ is described. Extensive numerical experi-
ence with a broad family of polytopes in R? shows that the computational cost is
approximately linear in the total number of vertices specifying the two polytopes.
The algorithm has special features which make its application in a variety of
robotics problems attractive. These are discussed and an example of collision

detection is given.
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1. Introduction

In this paper we present an efficient algorithm for determining the Euclidean
distance between two convex sets in three dimensional space. This problem is
important in robotics and occurs also in other fields such as computer aided
design and computer graphics. For convex polytopes and their spherical exten-
sions, the algorithm terminates finitely. Numerical experience with such prob-
lems is most encouraging. For a wide variety of examples the computational
times are nearly linear in the total number of vertices, M = M, + M,, required
to specify the two polytopes. Moreover, the coefficient of linear growth is quite
small. Because the algorithm is so efficient, we expect that it will become a use-
ful tool in solving collision detection problems and path finding problems (see,
e.g., (3], [6], [8], [10] and [4], [5], [12], [21], [28]). Our own applications of the
algorithm have been to optimal path planning in the presence of obstacles [15],
[17], [18].

Since there is an extensive literature concerning the polytope distance prob-
lem, we limit ourselves to a brief review of some representative papers. The
problem is in the field of computational geometry [20]. Consequently, many algo-
rithms are specifically designed to achieve bounds on the form of the asymptotic
computational time. For two dimensional problems [27] gives an O(log>M) algo-
rithm, and more recently, O(logM) algorithms have been exhibited [9], [13]. The
three dimensional problem has been considered in [11], but the O(M) result there
seems to be in error; the actual time appears to be O(MlogM). See [24] for
another O(MlogM) result. Because of their special emphasis on asymptotic per-
formance, it is not clear that the algorithms in the preceding papers are efficient
for practical problems where M is large, but not exceedingly large. Other
schemes have also been described: [25] presents a program which uses a
projection/combinatoric approach for polyhedra with facial representations, [5]
and (7] are concerned with “directed” or “translational’” distances (more about
this later), [23] considers boxes [22] considers line segments. It is also possible to
convert the distance problem to a quadratic programming problem and apply any
of the well-developed computer programs which are applicable.

Unlike the procedures of the previous paragraph, our algorithm has its ori-
gins In mathematical programming and treats directly the specification of the
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convex sets in terms of their support properties (for polytopes these properties are
obtained easily from their vertices). The algorithm is in the same family as the
algorithms described originally by Barr, Gilbert and Wolfe [1], [2], [29] and may
be viewed as a descent procedure which works on the distance between elemen-
tary polytopes contained in the convex sets. We have devised a special procedure
for evaluating the distance between the elementary polytopes. It contributes sig-
nificantly to the overall efficiency of the algorithm. An important feature of the
algorithm is its very general initialization features. When used in continuum col-
lision detection problems, they allow significant reductions in the total computa-
tion time. The algorithm has good numerical properties and bounds on the com-
putational errors are available. An early version of the algorithm due to D.W.
Johnson was used in the optimal path planning computations described in [18].
A detailed treatment of underlying algorithmic questions in a broader setting is
given in [16].

The plan of the paper is as follows. In Section 2 we formulate distance
measures for complex, not necessarily convex, objects and suggest how our algo-
rithm may be applied to their computation. We also review what happens when
the position and orientation of the objects is specified by a set of configuration
variables. Section 3 shows how the support properties of the Minkowski set
difference between the two sets can be computed efficiently. This leads to the
basic problem of finding the distance between the origin and a single convex set.
Section 4 describes the theoretical algorithm for solving this problem; Section 5
presents the efficient procedure for elementary polytopes; Section 6 introduces
modifications to account for the effects of numerical errors. Many numerical
experiments have been carried out; these are reported in Section 7. In Section 8
the algorithm is applied to a collision detection problem due to Canny [8]. A
conclusion summarizes the key contributions and indicates some extensions.

2. Object Representations and Distance Measures

Given two objects A and B in three space, it is convenient to represent them
by compact sets : K, , K C R3. In particular, the points in K, and Kp
describe respectively the space occupied by the objects A and B. For
z=(2!, 2%, 2% € R3, let | z| denote the Euclidean length V/(z!)’ + (%) + (2°)".
The distance between the objects A and B is defined by the closest points in K4
and Kp: |

2 : Computing the Distance
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d(KA,KB)=min{lz—ylzzem,yexg}. (@.1)

While computational considerations may suggest the use of other metries in (2.1),
the Euclidean distance |z — y | is the most natural. It conforms with the *‘phy-
sical” notion of distance and makes d invariant with respect to different choices
for the origin and orientation of the coordinate system. Because K, and Kp are
compact, the minimum in (2.1) exists and d is defined. However, it is only for
simple objects such as spheres and line segments that formulas for d may be

given. For some examples see [19].

If A and B are each composed of a collection of objects, the distance
d(K, , Kp) may be computed in terms of the distances between the constituent

objects. Specifically, suppose K;, i € I={1, --- ,N}, are compact sets in
R3, I, and Iy are disjoint index sets in /, and
Ky= \JUKi, Kp= UX;- (2.2)
fEL _ JElp

Then
d(Ky, Kp) = min{ dj:i€ly, j€ IB}, (2.3)

where
d;; =min{ Ix—ylzzEKinyKj} = d(K; ,K;). (2.4)

See the example in Figure 1. When K, and Kp are not convex, they can often
_ be represented by (2.2) where the K;, i € I, are convex. This allows our algo-

rithm, which works on convex sets, to be applied to non-convex objects.

If the distance between objects A and B is known, so is the distance
between their spherical extensions [18]. The r-spherical extension of K CR?®is
defined by

K'={z:|z—y|§r,yEK},r20. (2.5)

It is easy to verify that

Computing the Distance 3
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d(K*, Kg*) = (d(Ky, Kp) -4 - ”B) (2.6)

where (a)t = a, @ > 0, and (@)t = 0, @ < 0. More generally,

= Uk Kp= (K} (2.7)
HIN JElp
implies
o, Kp) = minf (¢ i - )" i€ L, € l) (29

Spherical extensions are valuable for several reasons. They may be used to
cover an object with a shell of safety: if z @ K", it is clear that the distance
between z and K exceeds r. More importantly, they lead to a rich family of
geometric shapes, convex polytopes and their spherical extensions, for which our
algorithm is effective. Object A in Figure 1 is a simple example of how the fam-
ily can be exploited. It is the union of two spheres (extensions of points) and a
circular cylinder with end caps (an extension of a line segment). A somewhat
more complex example is a solid rectangular plate of thickness 2r with round
edges; it is modelled by an r-spherical extension of a planar polytope with four
vertices. Similarly, more general wire-frame objects can be given rounded

representations.

Often the position and orientation of the objects K in (2.2) are specified by
a configuration vector ¢ € R". For instance, if A and B are interacting manipu-
lators whose links and payloads are the K;, the components of ¢ are the joint
variables for the two manipulators. To be more precise, K;, ¢ € I, is obtained by

translating and rotating a closed point set C;:
Ki(o) ={Ti(a)w + (0 w € G}, (29)

Here: p;(g) € R3 is the translation, T;(¢q) € R3*%3 is the (orthogonal) rotation
matrix, and C; describes K; in its reference position. In practice, there are vari-
ous ways of obtaining p;(¢q) and T;(q). For example, they may be extracted
. from the usual 4X4 homogeneous transformation matrix. If C; is a polytope
with vertices w;; € R3, j=1, - |M;, the corresponding vertices of K;(q) are
given by z; = T;(q)w;; + p;(g), a simple computation. It follows from the

4 Computing the Distance
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orthogonality of T;(¢) that the reference object for a spherical extension is

independent of ¢; i.e.,
K(q) = { Ti(g)w + p;(g9): w € 0;"}- (2.10)

In [15] the dependence of d;; on g has been examined in detail. Suppose the
elements of Ty (gq) and p,(g), k=t,j are continuously differentiable in ¢. Then
d;;(q) is Lipschitz continuous and has a gradient (Frechet derivative) almost
everywhere. It is easy to give examples (K; and K; may be convex) where at a
specific ¢, d;;(g) does not have a gradient. If d;;(7) > 0 and the nearest points
7y € Ki(7), k=+,j, are uniquely determined, d;;(q) does have a gradient at 7.
In particular, v, d; (D)= v, | Tolaw’; + #i(0)- T;(ahw's - p;(0) |, o=7,
where w’y, = T(9)(z% - p (7)), k=i,j. Once 2; and #'; have been found (by
the distance algorithm) the evaluation of this expression is relatively easy to

carry out.

We conclude this section with a few remarks about a distance measure
which gives further information when K, and Kp intersect. For X, YCR3 let
X+ Y={z+y z€X, y€ Y} and let ¢ denote the empty set. The condition
Ky (Kp +{z}) # ¢ occurs if and only if 2 € Ky - Kp. Thus K, - Kp is
the set of translations z for object B which cause A and the translate of B to
intersect. Thus,

d(KA,KB)=min{|2|22€KA ‘KB} : (2.11)

may be interpreted as the smallest translational distance between A and B which
-allows A and B to touch. Similarly,

I(Ky, Kg) = inf{ |2 |: 1 (K - Kp)]
(2.12)
=min{ |z |:2€ (K4 - Kp) },

where c/(K4 - Kp)' denotes the closure of the complement of K, - Kp, is the
lower bound on the translational distances which allow A and B to be separated.
Using different notations, the measure d” has been proposed by Buckley [5] (for
convex objects) and Cameron and Culley (7] as a measure of the depth of
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intersection. Clearly, d > 0 implies d” = 0 and d” > 0 implies d = 0.
Unfortunately, d” is much more difficult to deal with than d. In general,
cl(K; - K;)' is not convex, even when K; and K; are. Thus, the computation
of d°;; is much more difficult than the computation of d;;. When K, and Kp
are given by (2.2) it is easy to see that d"(K4, Kp) > d";;, 1€, j € Ip.
But, (2.3) does not apply to d*(K,, Kp). For an example, replace K, in Figure
1 by Kg= {a}. Then dys= djs;=0, and d(K,, Kp) > 0. This shows there
is a further difficulty. Even if d” can be computed for convex objects, it is not

possible to compute d~ for the union of convex objects.

There is one case of interest where d~ can be obtained easily. Suppose the
following assumptions hold: K, and Kp are convex, d(K,, Kp) > 0 and
d(K/A, Kg?)=0. Then it is possible to prove di(K Kg')=
ry +rp - d(K4, Kg). Without the assumptions, it is only true that

d(K 2, Kg®) > ry +1p - d(Ky, Kp).

3. Preliminaries

In this section we introduce some notations and basic results which are
required for the algorithm. Everything is stated in R™, because the results are
not restricted to m = 3. We use z°y for the inner product of z,yeR™ and
| 2|2 = z*z. Throughout the section X C R™ is compact and YC R™ is
finite, i.e., Y={yy, - , 9, }.

The affine and convex hulls of X are given by

[
affX={gxx,-:x,- EX A4 o N =1}, (3.1)
, § =1
. l ' ) ’
coX={2)"x.':x.-€X,)\’>0,>\‘+°"+)\"'=1}- (3.2)
§ =]

It is easily confirmed that affX is the translate of a linear space. For example,
iy =Y + {y,} where Y is the linear spanof {yo -9y, **° , Y — Yy} Yis
affinely independent if dim affY = dimY = v-1. If Y is not affinely indepen-
dent, it is always possible to pick an affinely independent set Y C Y such that
affY = affY. The set coY is a convex polytope whose vertices are contained in
Y. Suppose X belongs to the translate of a linear space X. The Caratheodory
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theorem [26] states that there is no loss of generality if in (3.2) [ is restricted so
that | < dimX + 1.

The nearest point in X to the origin, 1(X), is determined by
V(X)EX,IV(X)|=min{|x|:z€X}. (3.3)

Suppose X is convex. Then the near point 1{X) is unique (otherwise it is easy to
specify 2 € X with | z| < |{(X)|) and has the representation

L, ’
UX)= YNz, 5 €X, N >0+ +)\ =1, (3.4)
' 1 =1

where | < m + 1 (use the Caratheodory theorem). If {X) 7 0, the even
stronger result, | < m, holds. (Since {X) is a boundary point of
X, v(X) € XN\H where H is a support plane of X at {X) [26]. Because
dimH = m-1, the Caratheodory theorem implies | < m .)

Often, the representation (3.4) is not unique. If the set {z,, --- , 5} is
not affinely independent, it is possible (see a proof of the Caratheodory theorem)
to obtain a representation of the form (3.4) using a proper subset of
{zy, " 3 }. Thus, in (3.4) there is always a choice for / and {z;, - , 7}
such that {z,, -, ;} is affinely independent.

The support function of X, hy: R® — R, is defined by
hy(n) = max{ ez €X } (3.5)

We use sy (n) to denote any solution of (3.5). Specifically, sy (n) satisfies
hy (n) = sx(n)n, sx(n) € X. (3.6)
Since it is easy to prove that hy = h,,x and sy = s.,x, h.,y(n) and s.,y(n)

can be determined by a simple enumeration of inner products:

heoy (n) = hy(n) = maX{ o i=1, v } a

Sox(m) =sy(mM) =y;, y;n=hy(n) .

Thus, (3.7) provides a simple procedure for evaluating hy and sy when X is the
polytope coY.

Computing the Distance 7
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It is apparent from Section 2 that the problem of finding d;; = d(K;, K;)
is equivalent to the problem of finding {K) where K is the (Minkowski) set
difference K; - K;. For convenience we set 1 =1, j =2. If Ky and K are

the polytopes coZ; and coZ, where 7, ={z,;:!=1, -+ , M.}, then
K=K,-K, is the polytope coZ, where Z= {z); -z,;:
i=1, --- , M, j=1, --- ,M,}. Since Z has MM, elements, K is much

more complex than either K, or K, This complexity appears in [21] and work
of others who have used the set difference.

Our algorithm for computing d, is stated in terms of K and requires only
the computation of hx and sy . These data are particularly simple to evaluate.
In fact, it is directly verified that

hic (1) = hg (n) + hg (-n), 8x (1) = sk (1) - s (-n)- (3.8)

For the polytope case, (3.7)-(3.8) show that the computational effort associated
with hy and sg is proportional to M + M, not M M, as might first be

expected.

When the algorithm stops, it produces the following data

I<m+LXN >0z €K, i=1, -,
L.
uK)= YNz, dp=|uK)|. (3.9)
t ==l

In the algorithm, the 2; are obtained either from initial data taken from K, and
K, or, the evaluation . of sx(y) for various n. =~ Hence,
z, = 2y — 297, 21; € Ky, 29; € K4 and (3.9) yields

dyp=|2-24 |, ©1€K,, &1EK,, (3.10)
where
, A LA
ZI'_—" ZX'ZI" ’ 22= Ex‘zm . (3.11)

With all these facts in mind we can put K, and K, aside and concentrate on the
computation of ¥(K) from hy and sy .

8 Computing the Distance
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4. The Theoretical Algorithm

We now present the iterative procedure for determining the near point (K)
of any compact convex set KCR™. When K is a polytope, it is shown that this
procedure terminates after a finite number of steps.

The basic idea is due to Barr and Gilbert [1], [2]: generate a sequence of
polytopes contained in K such that their near points converge to y(K). It is
necessary to compute the near points of these polytopes, but this is a relatively
easy calculation since these polytopes will have at most m+1 vertices.

To state the algorithm, we first establish criteria for descent and optimality
and a bound on approximation error. These results appear elsewhere (e.g. in [14]
and [29]), but proofs are given since they are brief and insightful.

Theorem 4.1: Consider a compact convex set¢ KCR™ and an arbitrary
point z€ K. Then: (1) if |z|®+ hg(-2) >0, there exists a point
z € co{z, g (-2)}CK satisfying |z]| < |z]| ; (2) 2 =¢(K) if and only if
2]+ hy(-2) = 0; and (3) |2 - {K) |* < | 2 * + hg(-a)

Proof: Result (1) is obvious if |sx(-2z)] < |z| so assume
| s (-2)| 2 |=z| and define z =1z + Msg(-2) - 2),
A=(|z|*+ hg(-2))/ |z -8x(-2)|®%. Note that 0<X\<1/2 since
|z -sx(-2) |2 2> 2] 2]|*+ hg(-2)). Hence, z € co{z, sx(-z)}  and
|z|2= |z|*-M]z|®+ hg(-2)) < | 2|2 To show result (2), first let
|z|%+ hg(-2) = 0. Since |z|?= -hg(-2z) = min{z'3: 2 € K}, it is clear
that |z|?< |z|?+ |z-z|’= |z|*+2(|z|?-22) < |z|% for all
2z€ K. Therefore, z=1{K). Now let z=u»K) and assume
| 2|2+ hg(-z) > 0. Since result (1) implies z # Y K), we must have
2|t + hg(-z) L 0. However, |z |2+ hg(-2) >0 since
min{z'z: 2 € K} < | z|® Therefore, | z|®+ hg(-z) = 0. Result (3) follows
since result (2) implies |UK)|* < z{K) for all z € K and consequently
|z-uK)|*< [2]*-2UK) < |2]|*+ hg(-2).

Distance Algorithm. Given a compact convex set KCR™ and
v €{l, -+ , m+1}, perform the following steps:

(1) select Vo={y; - ,¥,}CK and let k = 0;

(2) determine v, = 1{coV});

Computing the Distance 9
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(3) if | v |+ hg(-v) =0, set {K) = v, and stop;
(4) let Vi, = 1 k U{8k (-4 )} where 14 ¢ CV, has m elements or less and
satisfies v, € coV § , increment k£ and proceed to step 2.

If the algorithm does not stop in step 3, then v, # 0 and
| v |*+ hg(-vp) > 0. Hence, the existence of 1?,, in step 4 is guaranteed (see
the comment following (3.4)), and V,,, will always have m + 1 or fewer ele-
ments. Furthermore, descent in the next iteration is guaranteed since result (1)
of Theorem 4.1 implies |vp,,| = |UeoVipy)| < [ Aco{vy, sg(-v )} | <
| v, |. The choice of V is quite arbitrary. Ideally, v(coVy) =~ /(K). In the
absence of any such insight, a variety of single point initializations, such as the

one in Section 6, may be used.

For K C R™ compact and convex, the algorithm generates a sequence
{v, } which converges to {K). The proof follows from the same arguments used
in the convergence proof for the method of Barr and Gilbert (see [1], [14]). The
convergence proof is simpler when K is a polytope because 1{K) is obtained after
a finite number of steps.

Theorem 4.2: Let K be the convex polytope coZ, where ZC R ™ is finite. If
3g(n) € Z for all n € R™, the Distance Algorithm generates ©(K) in a finite
number of steps.

Proof: Clearly, K = co(Z| V) and Z|JVoCR™ is finite. Assume v(K) is
not generated in N steps where NV is the number of nonempty subsets of Z| JV,.
In this case, |vg |?+ hg(-v4) > 0and |vpy | < |y | forall 0 < k < N.
Since near points are unique V, # V, for any 0 <! < k < N, and since
Vi CZ|yV, for all 0 < k < N every subset of Z| JV, must have entered the
algorithm. However, {K) € coV for some VC Z| JV¢ (see Section 3). There-
fore, K) = VcoV} ) for some k < N.

The requirement that sy (n) € Z is easy to obtain even when K is the set
difference of two polytopes. This is clear from (3.7) - (3.8) and the associated dis-

cussion.
If s(n) € Z and V(CZ, it follows from the steps of the algorithm that
V. CZ for all k> 0. Thus, when the algorithm terminates, 1((K) has a

representation of the form (3.9) where the z; € Z. This observation is useful for

initializing the algorithm in continuum problems. See Section 8.

10 Computing the Distance
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5. The Distance Subalgorithm

Each iteration of the Distance Algorithm requires the determination of
eoY), Y=1{yy, '+ ,9}JCR™,1< v < m+l. In this section we describe
a procedure originated by Johnson [17] for doing this. It is particularly efficient
when m is small (say, m < 4) and yields a representation of the form

oY) = TNy , SN =1,N >0,ie [ C{1, -, v},
i€l i€l
(5.1)

Y, ={y;: € }CY is affinely independent,

where s indicates a particular member of the family of all nonempty subsets of
Y. That such a representation exists follows from Section 3.

Since m is small, it is effective to take a combinatoric approach where the
c=Y.,L, [v!/(r!(v-r)!)] subsets of Y are successively tested until a representa-
tion of the form (5.1) is found. Geometrically, this test involves checking the
open subsets of the polytope coY (e.g., a vertex, an open line segment or an open
face) to see if they contain 1{coY). If m=3, there are at most ¢ = 15 such sub-
sets to examine. To develop the approach, we first consider a simpler problem:
the determination of AaffY;), ¥; CY.

It is straightforward to solve for affY,). If ¥, is a singleton the solution

is trivial, so assume Y; has r > 1 elements and let z,, - - - , z, represent an
arbitrary ordering of these elements. In this case, {affY,) = ¥;2, \' z; where
M=1-%,2,)\ and the ), -+ A" €R result from the unconstrained
minimization of f(\}, - -+ ,\) = |z, + 2L, N (z;-z,) | % Since f is con-
'vex, the necessary and sufficient conditions for optimality are
f (N, -+ ,\")/ON =0, i=2, --- ,r. Consequently, \E€ R" solves the

linear system

AN=0b,A, ER™" bER" (5.2)

where

Computing the Distance ,‘ 11
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F 1]
(z,—la‘,)'z, v (Z2-2))2, r(l).‘

AS(Z1, 1zr)= , b= . (5°3)
L(xr —.1'1)‘21 R € —.‘tl)'zrj 0]

To determine X\, define A;(Y,), €I as the cofactor of element
Aq (g, -+ ,z,) where 5 satisfies z; = y;. This is notationally correct since
one may show, using elementary row and column operations on the matrix
A (zy, * -, 2,), that these cofactors are invariant with respect to the selected
order of the elements of Y. If we define A(Y;) as the determinant of Ay, then a

first row expansion yields

M%) = T (%) (5.4)
i€l

If A(Y,) > 0 then the solution to the linear system (5.2) is unique, and express-
ing it by Cramer’s rule yields

vati) = 3 [a(%)/805) ] - (55)

i€l

This representation holds when Y, is affinely independent.

S

Theorem 5.1: A(Y;) > 0if and only if ¥ is affinely independent.

8
Proof: If to each row ¢ > 1 of A; we add the product of the first row times
(z;-2;)'z,, then it is clear that A(Y;) is equal to the determinant of QT Q,

where @, = [(xz -z, (2, - :t,)] € R™X(r-1) Thus, A(Y,) is the grammian of
the vectors (zo—-4), - , (2, - z,) and (z,-2,), - , (2, - z,) are linearly
independent if and only if A(Y;) > 0. By the sentences below (3.2) the proof is
complete.

We may efficiently calculate the near point to any affinely independent sub-
“set of Y using (5.4) - (5.5) and a recursive formula for the cofactors. This for-
mula is developed by appending a row and column to A; using z,.,, =y;
(j € L', I being the complement of [ in {1, - - , v}) as additional data,

12 Computing the Distance
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and expanding the cofactor A;(Y;| J{y;}) of this larger matrix about the first r
elements in the appended row. The result is given by

A (G Uly ) = Z,)A.-(lé)y;'(m -y;), kel jEL'
i€l
(5.6)

Al({yi})=11 i=1) T, v,

This equation is valid for any k € I (i.e., A ;j does not vary with k), so we set
k = min{si € I;} to be definitive. When v=4, only 36 multiplies and 10 inner-
product evaluations are required to evaluate all the cofactors of all the subsets of
Y. Moreover, these data coupled with the evaluation of A(Y,), ¥, CY are all
that is needed to determine the subset of Y required for (5.1).

Theorem 5.2: Consider a finite set Y ={y, -,y }JCR™ and a
nonempty subset ¥, C Y. Then 1{coY) may be written in the form of (5.1) using
Y, if and only if (1) A(Y;) >0, (2) A;(Y;) >0 for each + € I, and (3)

A; (Y Uly;}) < 0foreach j € ;' . Furthermore,

veol) = 3 [8:(%)/80% )] (57

i€l

whenever Y, satisfies these conditions.

s
Proof: It is geometrically obvious, and can be proved from (5.2) that
y = Y(aff),)if and only if

vy (y-u)=0 kel . | (5.8)

Let y = (affY; ), and suppose (1) and (2) are satisfied. Then from Theorem 5.1
and equations (5.4)-(5.5), y has the form of the right hand side of equation (5.1).
In addition, (1), (3), and (5.5)-(5.6) imply y - (y; - ¥;)<0, ;e ke,
Using this and (5.8) we obtain y - (y - 3,) < 0,4 € {1, - - - ,v}. Hence, for any
r€coY we have z= E;Lla"y,-, Nl =1a >0 i€(l, - v}
y:(y-2)= 9;L0'y - (y-1y;) <0. Therefore, by result 2 of Theorem 4.1,
UcoY) =y.

Computing the Distance 13
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We now show the converse. Assume y = 1{coY) is given by (5.1). Theorem
4.1, result 2, implies y - (y-9;) <0,s€{l, - - ,v}. Since N >0, i€ I
and ¥ e, Ny -(y-9)=0, it is clear y-(y-y)=0,i€L and
UaffY,) = y. However, Theorem 5.1 yields A(Y;) > 0. Therefore, the coeffi-
cients in (5.5) and (5.1) are unique, N o= A ()g )JA(Y,), s € I, and, since
A\ >0,i€, we have A;(Y;) >0, i€ L. Finally, subtracting (5.8) from
Yy (y-9,)<0j€{l, -~ ,w)resultsiny-(y -9;) <0, jEL', kEL.
Hence, using A(Y,) >0 and equations (5.5)-(5.6), we must have
A;(Uly; ) L0, ek’

Distance Subalgorithm. Given a finite set ¥ = {y, --- ,y9,} C R™, per-
form the following steps:

(1) select an ordering Y, s=1, - - - ,o of all subsets of Y and set s = 1;

(2) if A(Y;) >0 and A;(%)>0,j €L and A;(%ly;)) <0, 5 €L,
then calculate {coY) using (5.7) and stop;

(3) if s < o, increment s and proceed to step (1);
(4) stop and indicate failure.

From Section 3 we know 1{coY) can be written in the form of (5.1).
Thus, according to Theorem 5.2, there exists a ¥, C Y, 1 < s < o, satisfying
the conditions in step (2). Since the algorithm can evaluate every ¥, C 7V, it
must terminate in step (2) with the correct value of v(coY) regardless of the
order selected in step (1).

If there are numerical errors in the computation of the data in step (2), it
may turn out on rare occasions that the conditions of step (2) are not satisfied for
1 < 8 < 0. We need to account for this possibility in the next section. Thus we
have added step (4).

Suppose we obtain (5.1) with v = m+1 and ¥, = Y. Then coY is a sim-
plex and {coY) € interior coY. Hence, 1{coY) =0 and there is a sphere of
maximum radius, centered on the origin, contained in coY. The radius of this
sphere is d”({0}, coY) and it is given by the distance to the m dimensional face

of coY which is closest to the origin. Hence,

d™({0},c0Y) = min{ | f(affY,)]|: ¥, C Y has m elements( . (5.9)
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From y = y(affY]), (5.5) and (5.8),

1
2

IMa1) | = (AOG T 8:(K)nw)?, kEL - (10
i€l :

The data A(Y), A;(Y;), 4 'y are all needed in the determination of 1fcoY)
and require no additional computational effort. Thus (5.10) is evaluated with
only m multiplies and one divide. If m =3, this means (5.9) takes 12 multiplies
and 4 divides.

When the distance algorithm of Section 4 stops with v, =0 and
Vi = coY, where Y has m+l points, it is clear that coY C K and
d”({0}, coY) in (5.9) is a lower bound in d~ ({0}, K). The lower bound may be

important in applications (see, e.g., Section 8) and is computationally inexpen-

sive.

6. The Numerical Algorithm

Having fully established the theoretical algorithm for computing the distance
between compact convex sets, we now present modifications of the algorithm to
make it totally reliable in the presence of round-off errors. This is followed by
some comments on the efficient implementation of the algorithm.

Errors do not accumulate in our algorithm since at every iteration £,
v, = coY}) results from the explicit evaluation of formulas which are only
dependent on the set Y,. This helps the ultimate accuracy of the results and

simplifies the error analysis.

Inner product evaluations are one source of error. When
K = coZ -coZy, Z; = {%;: j=1, -~ ,M;}, i=1,2, we reduce these errors by
moving the origin of the system to a point located on the line segment joining the
centroids of the sets Z, and Z, That is, we replace Z;, and Z, by

Zi = {zt'j — P j=l, e ’A/Ii }7 i=1w2 where
o, =L (3,475 =+ %z--,i:lﬂ. (6.1)
¢ =3 I TAPR B

1 ]=1

Since coZ,- coZ,= K, all our previous notations apply to the transformed

problem.

Computing the Distance 15



RSD-TR-26-88

Other sources of error include the evaluation of the sums in (5.4), (5.6)-(5.7)
and step 3 of the Distance Algorithm. To account for these errors and those
from the inner products, it is reasonable to replace the convergence criterion in
step (3) by

|ve |2+ hg(-vp) < € DXK) (6.2)

where ¢ > 0 is related to floating-point accuracy and

D(K)=max{|z|:z€K} . (6.3)

Since € D? is very small, result (3) of the Theorem 4.1 shows that the effect on
the accuracy of the final result should be small. If K = coZ -coZ, as in the
last paragraph, and the origin of the system is translated as indicated, then the
upper bound on D(K), given by

D(K) < D(coZy- () + D(coZs - (Z) + |Ti-Te| ,  (6.4)

may be appropriately used in (6.2). When Z; and Z, are dependent on ¢ (see the
paragraph containing (2.9)), the first two terms in (6.4) are independent of ¢ and
may be computed from the w;; which specify C;, i=1,2.

Numerical errors may also cause the Distance Subalgorithm to fail, especially
when Y = V, is affinely dependent or nearly so. For example, if y;, j € ! , is
close to affY, A;(¥|J{y;}) is close to zero. If the numerical value of
A; (Y |Uly;}) is positive when the actual value is negative, the exit through step
(4) may occur. If the Distance Subalgorithm does fail, we resort to a Backup
Procedure which always runs to completion.

Given Y = {y; - ,9,}, the Backup Procedure determines 1{coY) by
evaluating {affY]) for all ¥, C Y such that A(Y) > 0,4;(%)>0,j€L.
Clearly, such ¥ -are all candidates for the representation (5.1). The Backup Pro-
cedure merely picks the best of the ¥, and sets v(coY) = p(aff)]):
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(coY) = argument min{ ly|:y=vaffY), ¥ CY,
(8.5)

A§) > 0,8;(%) >0, j € 4|

where | /{(affY])| is calculated using (5.10). In most cases (6.5) involves more
effort than the Distance Subalgorithm, but it always succeeds since
A(Y)>0,4;(%)>0,j€L when X is a single element of Y.

The above comments lead to the following algorithm.

Numerical Algorithm. Given a compact convex set K C R™ and
v € {1, - -+ ,m+1}, perform the following steps:

(1) select Vo={yy, - ,9,} C Kandlet k =0;

(2) set Y=V, and apply the Distance Subalgorithm; if it succeeds set
alg = DS, otherwisAe use the Backup Procedure (6.5) and set alg = BP; set
v, = v(coY)and V, = Y, where X satisfies (5.1);

(3) if (6.2) holds, set {K) = v, and stop;

(4) if (k=0 or |ve | < |ve1]|) and (17 ; has m elements or less), then let
Vier = Vi |UJ{8k (-¥¢ )}, increment k and proceed to step (2);

(5) if alg = BP, set K) = v, , indicate the error tolerance (6.2) is not satisfied

and stop;

(6) if alg = DS, recalculate v, = ¥{coV}) using the Backup Procedure (6.5),
set alg = BP and proceed to step (3).

‘ It is easy to see that the algorithm always terminates, even if ¢ = 0. If ¢ is
small but reasonable (say 100 X machine error), the algorithm generally stops in
step (3) and rarely passes through steps (5) and (6). Entrance to steps (5) and (6)
implies the occurrence of a numerical result which is inconsistant with theory.
The condition, |v, | > |vey|, k 21, contradicts the expected descent.
Furthermore, by the design of the Distance Subalgorithm and the Backup Pro-
cedure, 17,‘ has m+1 elements only if ¥, = 0. But v, = 0 contradicts the
failure of (6.2) which is necessary for entrance to step (5). The algorithm exits in
step (5) only after both the Distance Subalgorithm and the Backup Procedure
have been tried. Step (6) guarantees that the Backup Procedure is always tried
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before stopping in step (5).

In practice; the Distance Subalgorithm almost always succeeds and produ
a near point of high accuracy. This is in part due to the structure of the num:
cal algorithm. Theoretically, both the Distance Algorithm and the Backup P
cedure produce affinely independent sets vV g, and 8g (-v; ) should be affin
independent of ﬁ,,. Thus, the Vi, k > 1, should be affinely independent. Er
if V, is affinely dependent, or V., k > 1, is nearly so, the Distance Algorit
usually functions well. We have confirmed this independently of the numeri
algorithm by extensive experimentation with the Distance Algorithm.

When K is the set difference of two polytopes it is not obvious how the
tial set V, should be chosen. We have tested a variety of schemes. In
absence of additional information about K such as that described in Section
the single point initialization V= {sg (-Z; + Z,)} has worked as well as a
Here, 7; - Z, is the direction between centroids (see (6.1)) and serves as a rou
estimate of /{K). Note that the initialization is easy to compute using the p

cedures outlined in Section 3.

Attention to details in the implementation of the overall algorithm adds ¢
siderably to its efficiency. For example, the inner products of the elements
1?,‘ appear in the Distance Subalgorithm (or Backup Procedure) for b
Y=V, and Y = Vi, and can be saved for the Y = V|, computati
Hence, if 17k has v elements, only (v + 1) new inner products need to be cal

lated when 1{coV},,) is determined.

Another aid to efficiency is the choice of ordering in step (1) of the Dista
Subalgorithm. The sets most likely to produce the near point should be put
the beginning of the list. Some of the subsets of Y = V) have already b
tested in ¥ = V,_,, and théy are put at the end of the list (essentially, they
eliminated). We have also found it effective to put one face of coV, at the h
of the list. Itis Y, C Y =V, = V, | {sg(-v41)) such that V, = Y|
and y maximizes y - 8g (-v_;) over all y € V ;. Our experiences indicates t
coY, contains v{coV} ) about 80% of the time. The complete description of

ordering procedure is too lengthy for inclusion here.
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7. Numerical Experiments

The algorithm described in the previous section has been programmed as a
Fortran subroutine and applied to a large number of examples in three space.

Figure 2 summarizes the main results.

The examples were generated by selecting 20 pairs of polytopes from a fam-
ily of 12 polytopes. The members of the family were centered on the origin and
were of varying size (contained in spheres of radius 1 to 4). They included: a line
segment (M,=2), an equilateral triangle (M,=3), a rectangular box (M;=8), a
truncated cone with hexagonal ends (M 4=12), truncated cylinders with octagonal
and decagonal cross sections (M ;=16 and M¢=20), and a collection of irregular
polytopes generated by placing an equal number of vertices randomly in two
parallel planes (M; =20, 40, 50, 60, 100, 100). The twenty pairs selected were:
(1, 1) = (¢, 2), (¢, 4), (1, 5), (#, 10) with ¢=1,3,6,8 and (7,9), (7,12), (11,9),
(11,12). For each of the 20 pairs three cases were considered: polytopes
separated, just touching, or intersecting. In each of the cases there were 100 dif-
ferent examples, generated by random translations and rotations of the two
polytopes. For the separated cases the expectation of the relative translation
between the two polytopes was 10/3. The just touching and intersecting exam-
ples were generated by appropriate translations of the polytopes along the line
joining the near points for the separated examples. The total number of exam-
ples was 6000.

The examples were run on a Harris 800 computer. The machine precision is
10" and the parameter e was set equal to 10°. In every example the program
ran to completion and did not require the use of Steps (5), (6), or the Backup
Procedure. The accuracy of the final results as measured by |z |+ hy (-z) was

excellent; typical values were in the order of 1077

The actual number of operations (multiplies NM, adds N, , divides Np, and
comparisons N;) were counted for each example. These were converted to

equivalent flops, EF, by the following formula:
EF = (ty Ny + ta Ny +ipNp + toNo)/(ty + ta), (7.1)

where the ¢'s denote the times required for the operations. For the Harris the

times in microseconds are: ¢ = 3.8, t, =21, tp = 6.7, {; = 1.7. For a
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different machine, EF would be different because the relative times required for
the operations would be different. However, the variation of EF from machine to
machine should not be very great. The EF’s plotted in Figure 2 are the averages
over the 100 examples in each case. The approximate times in seconds for the
Harris computer can be obtained by multiplying EF by 6X10°. See the CPU

scale in Figure 2.

The results can be summarized as follows. For problems of moderate size,
M = M; + M; < 40, the intersection cases are the most difficult. They require
approximately 24 EF /M. For larger problems the just touching cases are most
difficult, with EF/M ranging between 24 and 27. There is some evidence that
EF/M grows slightly with M, but the increase is definifely less than log M.
When the data for the three cases are averaged together the performance is more
uniform with EF /M ranging between 14 and 19 for all values of M.

Additional examples have been considered. When the algorithm is run on
polytopes which are very near to each other the computational times become
close to those for the just touching cases; but on the average, never do they take
more time than the just touching case. When the polytopes are widely separated
the times drop significantly, with EF/M < 7.

Pairs of line segments were tried using the same cases and numbers of runs
described above. The results for EF were: separated, 36; just touching, 39, inter-
secting, 96. For line segments the intersecting case (both segments contained in a
common line) is truly pathological and should probably be discarded. It is
interesting to compare our algorithm with the efficient algorithm developed by
Lumelsky [22] for the special case of line segments. When his algorithm is
arranged to produce the same results as ours, EF ranges between 38 and 40
(using the Harris time weights). Thus, our algorithm appears to be competitive

even though it is designed to handle the general polytope problem.

In general, one might expect the computational effort to be dependent on
the shape of the objects and, for fixed M, M; and M;. In a variety of experi-
ments which have been performed to test such behavior, some variation has been
noted. But, it is not very great; about 25% at most. The fact that the effort is
proportional to M; + M; is most encouraging. In combinatoric procedures it is

proportional to M; M; . ’
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8. An Example of Collision Detection

In this section we consider an object which is continuously translated and
rotated through a field of obstacles. Specifically, its position and orientation are
given on a configuration space path defined by a continuous function g¢(s). The
initial position corresponds to s = 0 and the terminal position to s = 1. To
locate approximately the points of collision on the path, the distances between
the object and each of the obstacles is evaluated for s = ¢/T, where ¢ and T are
integers and t =0, - -+ ,T. If T is large, the collision points are located closely
by the values of ¢ where the distance just goes to zero.

The computational time can be decreased by using the general initialization
feature of the distance algorithm. Suppose, for instance, d;o(q(s)) has been
determined for s = ¢/ T and the corresponding near points are given by (3.11).

From the comments in Sections 3 and 4, it is reasonable to assume the z,; and
the z,; are points taken respectively from the finite sets Z,(q(s)) and Z4{q(s))
which generate K, = coZ; and K, = coZ, If T is large the geometry changes
only slightly in one time increment and it is likely that the elements from
Z(q((t+1)/T)) and Z{q((t+1)/T)) which have the sameindices as those in
(3.11) for s = t/T can be used in (3.11) when s = (¢+1)/T. Thus, the algo-
rithm is started at s = (¢+1)/T with Vo= {z,; - z,,1=1, - -+ ,I} where
2 € Z{q((t+1)/T)) and z,; € Z4q((t+1)/T)) have the same indices as the ele-
ments in (3.11) from the previous stage. Of course, the A change to account for
the motion of the sets and the algorithm must determine these changes. But it
does not have to spend time finding the points in (3.11). Even if new points
must be found by the algorithm, the starting set Vg is likely to be more effective
than the single point initialization described in Section 6.

Figure 3 shows a particular example. It was provided to us by John Canny
who used it to demonstrate his quaternion technique [8] for computing collision
times. The initial and terminal positions of the moving object, Ky = K4 JK 1
together with the fixed objects, K, - - Kj, are indicated. The configuration
variables specifying the motion are the cartesian position and the quaternion
representation of rotation given in [8]. The configuration variables vary linearly
in s from the initial position to the terminal position.

Figure 4 shows the results of the computations. The distances between Ky

and each of the five obstacles are denoted by d;, - - - ,ds For all values of s it
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turns out that dy; < dg,, 1, -+ 5 so that & =dg,i=1, --- 5. The
computational times are shown in Table 1 for both the special initialization
described above and the single point initialization of Section 6. The improve-
ment due to the special initialization is significant, and as expected, gets better as
T increases. Since Canny’s algorithm is a root finding procedure on s, it locates
the collision points precisely but does not determine the separation distances. His
computational time is 11.6 seconds on a Symbolics 3600 computer.

When dg = 0 or dg = 0, we have tabulated the lower bounds on d"g and
d"ss produced by the algorithm. The absolute value of the negative distances in
Figure 4 correspond to these lower bounds. It is not known how closely they esti-
mate d"g and d g, but they do determine that significant collision penetrations

have occurred.

We have run a simple test problem where d3{q(s)) can be obtained analyti-
cally. The computed lower bounds range from good to poor, and are best when

d'i]{q(s)) is not too large. Fortunately, this is the situation of greatest interest.

Table 1. CPU times (Harris 800) in seconds for the
example of Figure 3.

Number of Intervals | Time with Single Time with Ratio of
in Grid (T) Point Initialization | Special Initialization | Times
10 22 A3 1.7
100 2.00 .69 29
1000 19.81 6.32 3.1

9. Conclusion

We have presented an algorithm for determining the Euclidean distance
between compact sets in R™. The emphasis has been on polytopes in R? since
this is the single most important case in applications. Input data for the algo-
rithm are in the form of finite sets of points whose convex hulls define the
polytopes. This data format is particularly convenient in robotics applications
where the position and orientation of the polytopes may be functions of confi-
guration variables such as joint angles. Extensive numerical experience shows

that the algorithm is efficient and reliable with a computational cost which is
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approximately linear in the total number of points specifying the polytopes.

The algorithm has some other special advantages. It provides the nearest
points in the two polytopes. These are of direct interest and can also be used to
compute the gradient of the distance with respect to the configuration variables.
In continuum problems the algorithm may be initialized in a special way so that
the computational time is significantly reduced. We have demonstrated this
advantage in the collision detection problem, but it occurs in other applications
too, such as the mapping of collision free regions in configuration space, path
finding and path planning. It has been noted in Section 2 that it is difficult to
compute the translational distance d~ for intersecting objects. Our algorithm
provides, with essentially no additional cost, a lower bound on d”. The use of
this lower bound in applications such as those just mentioned remains to be

explored.

Finally, a few comments should be made about sets which aren’t polytopes
or spherical extensions of polytopes. Suppose the algorithm is applied to the ver-
tex sets of nonconvex polytopes. Then it is easy to see that it produces the dis-
tance between the convex hulls of the nonconvex polytopes. This distance is a
conservative measure of collision and may be useful. When the distance between
an infinite polyhedral cylinder and a polytope is computed, the computations are
actually simplified: the vertex points are projected on a plane normal to the axis
of the cylinder and the algorithm is applied in the plane (R?). In the case of gen-
eral convex sets, it is necessary to have a procedure for evaluating the support
function of the sets. This is easy to arrange for ellipsoids and some other special -
objects. The convergence is not finite, but the algorithm can be made, through
the choice of ¢, to stop with a solution of specified accuracy. Prior experience

-with a similar algorithm [1] indicates that convergence rates for general sets
should be good.
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Figure 1 An example of object representation
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Figure 2  Equivalent flops (EF) and CPU times vs. total number of
vertices (M). Each data point is the average of 100 ran-
domly generzted examples.
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. Figure 4. Results for the examples in Figure 3. The d; are
the distances between K, and the K;.
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