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Haplotype Association Analysis for Late Onset Diseases
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In haplotype-based association studies for late onset diseases, one attractive design is to use available unaffected spouses as
controls (Valle et al. [1998] Diab. Care 21:949–958). Given cases and spouses only, the standard expectation-maximization
(EM) algorithm (Dempster et al. [1977] J. R. Stat. Soc. B 39:1–38) for case-control data can be used to estimate haplotype
frequencies. But often we will have offspring for at least some of the spouse pairs, and offspring genotypes provide
additional information about the haplotypes of the parents. Existing methods may either ignore the offspring information,
or reconstruct haplotypes for the subjects using offspring information and discard data from those whose haplotypes
cannot be reconstructed with high confidence. Neither of these approaches is efficient, and the latter approach may also be
biased. For case-control data with some subjects forming spouse pairs and offspring genotypes available for some spouse
pairs or individuals, we propose a unified, likelihood-based method of haplotype inference. The method makes use of
available offspring genotype information to apportion ambiguous haplotypes for the subjects. For subjects without
offspring genotype information, haplotypes are apportioned as in the standard EM algorithm for case-control data. Our
method enables efficient haplotype frequency estimation using an EM algorithm and supports probabilistic haplotype
reconstruction with the probability calculated based on the whole sample. We describe likelihood ratio and permutation
tests to test for disease-haplotype association, and describe three test statistics that are potentially useful for detecting such
an association. Genet. Epidemiol. 30:220–230, 2006. r 2006 Wiley-Liss, Inc.
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INTRODUCTION

Association analysis is a powerful method to
map genes for complex diseases [Risch and
Merikangas, 1996]. Because multimarker haplo-
types may yield more information than single
markers do, haplotype-based association analyses
have the potential to be more powerful than those
based on single markers.

A variety of sampling designs may be used in
association studies, including the case-control
design, case-parents trios, discordant sib pairs,
or more general pedigrees. One attractive design,
particularly for late onset diseases, is to use
available unaffected spouses as controls [Valle
et al., 1998]. Given cases and spouses only, the
standard expectation-maximization (EM) algo-
rithm can be used to estimate haplotype frequen-

cies [Excoffier and Slatkin, 1995; Long et al., 1995].
When offspring for some of the spouse pairs
are available, their genotypes provide additional
information about the haplotypes of the parents
[Valle et al., 1998]. It is then inefficient to
ignore offspring genotype information. A possible
solution is to reconstruct haplotypes for the
subjects based on their own genotypes and those
of their spouse and offspring, and conduct
association analysis using the haplotypes recon-
structed with high confidence. However, this
approach often will result in loss of informa-
tion from subjects whose haplotypes cannot
be reconstructed with high confidence, further
leading to inefficiency. It also can introduce
bias in haplotype frequency estimation since some
genotype patterns are intrinsically harder
to resolve.
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In addition to case-spouse control pairs, we often
will have case-offspring pairs, cases without family
information, and unrelated controls ascertained
independently of the cases. These individuals
provide additional information on haplotype fre-
quency estimation and help increase the power to
detect disease-haplotype association. For such data,
we propose a unified, likelihood-based method of
haplotype inference. For haplotype frequency esti-
mation, we introduce an EM algorithm that makes
use of offspring genotype information when avail-
able to apportion the contribution of ambiguous
haplotypes for the subjects, resulting in more
efficient haplotype frequency estimation. For sub-
jects without offspring genotype information, hap-
lotypes are apportioned as in the standard EM
algorithm for case-control data. The method also
supports probabilistic haplotype reconstruction
with the probability calculated on the basis of the
whole sample. To test for disease-haplotype asso-
ciation, we introduce likelihood ratio and permuta-
tion tests, and describe three other potentially
useful test statistics.

METHODS

First, we outline the data structure, notation, and
the hypotheses of interest. Second, for a sample
composed of cases, spouse or unrelated controls,

and offspring of some spouse pairs, cases, or
controls, we introduce an EM algorithm to estimate
haplotype frequencies. Third, we introduce like-
lihood ratio and permutation tests to test for
disease-haplotype association, and define three
permutation test statistics. Fourth, we extend our
method to X-linked markers. Fifth, we apply Bayes’
rule to haplotype reconstruction, using frequencies
estimated based on the whole sample. Sixth, we
describe a simulated population of disease-asso-
ciated and non-disease-associated haplotypes that
will be used in our computer simulations.

DATA STRUCTURE, NOTATION,
AND HYPOTHESES OF INTEREST

In haplotype association analysis in a case-
control study, we compare the distributions of
haplotypes in the case and control groups. Some
individuals from the two groups may be related
by having offspring in common, which is the
situation when we sample unaffected spouses of
the cases and their offspring for late onset diseases
[Valle et al., 1998]. In what follows, we assume the
data consist of three classes of pedigree structures:
nuclear families with known affection status for
the parents (for example, pedigree P1 in Fig. 1);
nuclear families with only one parent’s genotype
available (for example, pedigree P2 in Fig. 1); and
individuals (singletons) with known affection
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Fig. 1. Examples of pedigree structures used in haplotype analysis. P1: a nuclear family with s offspring; P2: a nuclear family with

t offspring and one parent’s genotype unavailable; P3: an affected singleton; P4: an unaffected singleton. Individual multilocus

genotypes are denoted as g. The haplogenotypes consistent with the subjects’ genotypes are listed after arrows.
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status (for example, pedigrees P3 and P4 in
Fig. 1). Each parent in a nuclear family may be
affected or unaffected. Examples of singletons
include unrelated cases and unrelated controls.
For a nuclear family, if we do not have offspring
genotype information, we assume the parents are
genetically independent and effectively form two
singleton pedigrees. Singletons and parents in
nuclear families contribute their haplotypes to the
case and control groups according to their affec-
tion status, and we refer to them as subjects in this
paper. Let n1 and n2 be the numbers of subjects in
the case and control groups, respectively. In this
paper, we ignore the affection status of the off-
spring, a reasonable choice for late onset diseases,
but perhaps not for earlier onset diseases.

We first consider haplotypes defined on a dense
set of m markers on an autosome and assume
Hardy-Weinberg equilibrium. When a haplotype
region is small, recombination is rare; to simplify
calculation, we assume recombination does not
occur within our sampled individuals. We denote
multilocus genotypes (phase unknown) as g,
haplogenotypes (phase known) as H, and haplo-
types as h. A haplogenotype H consists of two
unordered haplotypes, which we denote H 5

{h1, h2}. For simplicity, we often call multilocus
genotypes as genotypes.

Let p(h) and q(h) be the frequencies of haplotype
h in the case and control groups, respectively, and
let p and q be the corresponding vectors of
haplotype frequencies. For a haplogenotype
H 5 {h1, h2}, Hardy-Weinberg equilibrium implies
that the probabilities of H in the case and
control groups are p(H) 5 2p(h1)p(h2) and q(H) 5

2q(h1)q(h2) if h16¼h2, and p(H) 5 [p(h1)]2 and
q(H) 5 [q(h1)]2 if h1 5 h2. We wish to test the null
hypothesis H0: p(h) 5 q(h) for all haplotypes h
against the alternative hypothesis Ha: p(h) 6¼q(h)
for some h.

For X-linked markers, a male has only one
haplotype, and the probability of a haplogenotype
for a female can be derived similarly as above
under Hardy-Weinberg equilibrium. The null and
alternative hypotheses are the same as those for
autosomes.

AUTOSOMAL HAPLOTYPE
FREQUENCY ESTIMATION

Consider a nuclear family like P1 in Figure 1. In
P1, the father is affected and has multilocus
genotype g1f and the mother is unaffected and
has multilocus genotype g1m. Let S1f ¼

fHð1Þ1f ;H
ð2Þ
1f ; . . . ;H

ðaÞ
1f g be the set of haplogenotypes

that are consistent with the father’s genotypes and
similarly S1m ¼ fH

ð1Þ
1m;H

ð2Þ
1m; . . . ;H

ðbÞ
1mg be the set for

the mother. If there are no missing genotypes,
1ra, br2m�1. If one or more marker genotypes
are missing, the set of consistent haplogenotypes
can be large unless the two alleles at the marker
can be inferred from the spouse and offspring. For
a haplogenotype HðiÞ1f , we denote its two haplo-

types as hðiÞ1f ;1 and hðiÞ1f ;2, that is HðiÞ1f ¼ fh
ðiÞ
1f ;1; h

ðiÞ
1f ;2g.

Let s be the number of offspring in family P1

and G1 5 {g1f, g1m, g11,y, g1s} be the multilocus
genotypes of all individuals in the family. The
likelihood for the family is

PrðG1jp;qÞ ¼
Xa

i¼1

Xb

j¼1

pðHðiÞ1f ÞqðH
ðjÞ
1mÞ

�
Ys

v¼1

Prðg1vjH
ðiÞ
1f ;H

ðjÞ
1mÞ:

Notice that we use the haplotype frequencies of
the case group for the father because he is affected
and those of the control group for the mother
because she is unaffected. Under the assumption
of no recombination, the calculation of
Prðg1vjH

ðiÞ
1f ;H

ðjÞ
1mÞ is straightforward. Given the

parental haplotypes HðiÞ1f ¼ fh
ðiÞ
1f ;1; h

ðiÞ
1f ;2g and

H
ðjÞ
1m ¼ fh

ðjÞ
1m;1; h

ðjÞ
1m;2g, an offspring can equally likely

have one of the four possible haplogenotypes:

fhðiÞ1f ;1; h
ðjÞ
1m;1g, fhðiÞ1f ;1; h

ðjÞ
1m;2g, fhðiÞ1f ;2; h

ðjÞ
1m;1g, and

fhðiÞ1f ;2; h
ðjÞ
1m;2g. Then the conditional probability

Prðg1vjH
ðiÞ
1f ;H

ðjÞ
1mÞ is the proportion of these haplo-

genotypes that are consistent with g1v.
The above approach can be modified for nuclear

families with only one parent’s genotype avail-
able, like P2 in Figure 1. In P2, the mother is
unaffected with genotype unavailable. Her set of
possible haplogenotypes consists of all possible
haplogenotypes. When there is only one offspring
(t 5 1), we may equivalently use haplotype fre-
quencies for the mother to calculate the likelihood

PrðG2jp;qÞ ¼
Xc

i¼1

X
h

pðHðiÞ2f ÞqðhÞPrðg21jH
ðiÞ
2f ; hÞ

where the second summation is over all haplo-
types and g21 is the genotype of the single

offspring. The calculation of Prðg21jH
ðiÞ
2f ; hÞ is

similar as above. Given the father’s haplogeno-
type HðiÞ2f and the mother’s haplotype h, the
offspring can equally likely have one of two
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possible haplogenotypes, and Prðg21jH
ðiÞ
2f ; hÞ is the

proportion of these haplogenotypes that are
consistent with g21.

For a parent-offspring family such as P2 (Fig. 1),
one might want to use offspring genotypes to
narrow down the list of possible haplogenotypes
for the parent, and then treat the parent as a
singleton with the narrowed list of haplogenotypes.
In general, this is not a good approach because it is
possible that a parental haplogenotype is consistent
with an offspring’s genotype but the offspring
haplotype that is supposed to come from the other
parent is very rare in the population. This makes
the parental haplogenotype have a smaller prob-
ability to start with than if the parent were a
singleton. Thus, an appropriate approach is to take
into account the frequency of the haplotype from
the other parent as described above.

For an individual for whom we do not
have offspring genotype information, like the
affected singleton in P3 or the unaffected single-
ton in P4 (Fig. 1), the probability calculation
simplifies to that appropriate for a case-control

study. Let S3 ¼ fH
ð1Þ
3 ;Hð2Þ3 ; . . .HðeÞ3 g and S4 ¼

fHð1Þ4 ;Hð2Þ4 ; . . .H
ðfÞ
4 g be the sets of all haplogen-

otypes that are consistent with their multilocus
genotypes G3 and G4 respectively. The likelihood
for the singletons are

PrðG3jpÞ ¼
Xe

i¼1

pðHðiÞ3 Þ

and

PrðG4jqÞ ¼
Xf

i¼1

qðHðiÞ4 Þ:

We now describe an EM algorithm for calculat-
ing the maximum likelihood estimates (MLEs) of
the haplotype frequencies. After the kth iteration,
let p(k)(h) and q(k)(h) be the estimated frequencies
of haplotype h in the case and control groups,
respectively, and let p(k)(H) and q(k)(H) be the
corresponding probabilities for haplogenotype H.

Consider the father in P1 (Fig. 1). If a 5 1 and
hð1Þ1f ;1 ¼ hð1Þ1f ;2 (that is, he is homozygous at all

markers), he contributes two copies of this
haplotype to the case group; if a 5 1 and hð1Þ1f ;1 6¼

hð1Þ1f ;2 (that is, he is homozygous at all but

one marker), he contributes one copy of each
haplotype. If a41 and there are no missing geno-
types, all haplotypes hðiÞ1f ;j (i 5 1, y, a; j 5 1, 2)

are different. At the (k11)th iteration, using
Bayes’ rule, the posterior probability of

haplogenotype HðiÞ1f ¼ fh
ðiÞ
1f ;1; h

ðiÞ
1f ;2g (i 5 1, y, a) is

Pr HðiÞ1f jG1;p
ðkÞ;qðkÞ

� �

¼
PrðHðiÞ1f jp

ðkÞ;qðkÞÞPrðG1jH
ðiÞ
1f ;p

ðkÞ;qðkÞÞ

PrðG1jpðkÞ;qðkÞÞ

¼
pðkÞðHðiÞ1f Þ

Pb
j¼1 qðkÞðH

ðjÞ
1mÞ
Qs

v¼1 Prðg1vjH
ðiÞ
1f ;H

ðjÞ
1mÞPa

l¼1

Pb
j¼1 pðkÞðHðlÞ1f Þq

ðkÞðH
ðjÞ
1mÞ
Qs

v¼1 Prðg1vjH
ðlÞ
1f ;H

ðjÞ
1mÞ

:

ð1Þ

This is the father’s contribution of haplotype
hðiÞ1f ;jðj ¼ 1; 2Þ to the case group through haplogeno-
type HðiÞ1f . If one or more marker genotypes are
missing, his contribution of a haplotype may come
through several haplogenotypes. Since the sum of
the posterior probabilities (1) for all possible
haplogenotypes is one, the father’s total contribu-
tion of haplotypes is two. Similarly, we can
calculate the mother’s haplotype contributions to
the control group.

For family P2 (Fig. 1), when there is only one
offspring (t 5 1), we may directly use haplotype
frequencies for the mother. The father’s contribu-
tion can be simplified to

Pr HðiÞ2f jG2;p
ðkÞ;qðkÞ

� �

¼
pðkÞðHðiÞ2f Þ

P
h qðkÞðhÞPrðg21jH

ðiÞ
2f ; hÞPc

l¼1

P
h pðkÞðHðlÞ2f Þq

ðkÞðhÞPrðg21jH
ðlÞ
2f ; hÞ ð2 aÞ

and the mother’s contribution of haplotype h to
the control group can be calculated as

Pr hjG2;p
ðkÞ;qðkÞ

� �
¼

qðkÞðhÞ
Pc

i¼1 pðkÞðHðiÞ2f ÞPrðg21jH
ðiÞ
2f ; hÞPc

i¼1

P
h pðkÞðHðiÞ2f Þq

ðkÞðhÞPrðg21jH
ðiÞ
2f ; hÞ

:
ð2 bÞ

For the singleton in P3 (Fig. 1), if e 5 1, the
haplotypes are known and contributed directly to
the case group. If e41, at the (k11)th step, the
posterior probability of HðiÞ3 ¼ fh

ðiÞ
31; h

ðiÞ
32g (i 5 1, y, e) is

PrðHðiÞ3 jG3;p
ðkÞÞ ¼

pðkÞðHðiÞ3 Þ

PrðG3jpðkÞÞ
¼

pðkÞðHðiÞ3 ÞPe
l¼1 pðkÞðHðlÞ3 Þ

ð3Þ

and this is the contribution of haplotype hðiÞ3j

(j 5 1,2) to the case group through HðiÞ3 . The total
contribution of haplotypes again is two. Note that
the apportionment (2) is the same as in the
standard EM algorithm for a case-control study
[Excoffier and Slatkin, 1995; Long et al., 1995]. The
posterior probabilities of haplogenotypes for the
singleton in P4 (Fig. 1) can be similarly calculated,
with haplotype frequencies q(k) replacing p(k).
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In both families P1 and P2, if we had ignored the
offspring genotype information, we would have
calculated the parents’ contributions assuming
they were singletons. We achieve better appor-
tionment of their contributions by using addi-
tional information provided by the offspring
genotypes.

Once we have calculated contributions of
haplotypes for all the subjects (singletons and
parents in nuclear families), we update haplotype
frequency estimates in the case and control
groups. For a haplotype h, the updated estimate
p(k11)(h) is the sum of all contributions of h to the
case group divided by 2n1, where n1 is the number
of cases. Similarly, q(k11)(h) is the sum of all
contributions of h to the control group divided by
2n2, where n2 is the number of controls. We repeat
this process until the frequency estimates con-
verge. This is an example of an allele-counting
algorithm [Ceppellini et al., 1955], and also can be
shown to be an EM algorithm. To help ensure that
the frequency estimates are MLEs rather than local
maxima, we restart the algorithm with a variety of
non-zero starting values.

Under the null hypothesis, we do a similar
calculation. Here, all subjects contribute to a single
group and only one set of haplotype frequencies
will be estimated. At each iteration, the updated
frequency for haplotype h is the sum of contribu-
tions to h from all subjects divided by 2(n11n2).

Note that in (1), (2a), and (2b), the conditional

probabilities Prðg1vjH
ðiÞ
1f ;H

ðjÞ
1mÞ and Prðg2vjH

ðiÞ
2f ; hÞ do

not depend on haplotype frequencies and can be
calculated only once and stored. As a result,
although missing marker genotypes for subjects
will increase the number of consistent haplogeno-
types and result in longer computation time,
missing marker genotypes for offspring have
relatively small effect on computation since off-
spring genotypes are used only in these condi-
tional probabilities.

TESTING FOR DISEASE-HAPLOTYPE
ASSOCIATION

Let p̂ and q̂ be the MLEs of the haplotype
frequencies under the alternative hypothesis.
Given ðp̂; q̂Þ, the likelihood for a nuclear family
like P1 in Figure 1 is

LaðP1Þ ¼PrðG1jp̂; q̂Þ

¼
Xa

i¼1

Xb

j¼1

p̂ðHðiÞ1f Þq̂ðH
ðjÞ
1mÞ
Ys

v¼1

Prðg1vjH
ðiÞ
1f ;H

ðjÞ
1mÞ

and the likelihood for singletons like P3 and P4 in
Figure 1 are LaðP3Þ ¼

Pe
i¼1 p̂ðHðiÞ3 Þ and LaðP4Þ ¼Pf

i¼1 q̂ðHðiÞ4 Þ. Under the null hypothesis of equal
haplotype frequencies, their likelihood L0( � ) can
be similarly calculated using the MLEs estimated
based on the combined group.

To test for disease-haplotype association, we
may calculate the likelihood-ratio test statistic

T ¼ 2
X

P

log LaðPÞ�
X

P

log L0ðPÞ

 !
ð4Þ

where the sums are over all independent pedi-
grees P, and compare T to the chi-squared
distribution with N�1 degrees of freedom, where
N is the number of haplotypes truly present in the
population. In reality, we often do not know N.
One might instead use the number Nmax of all
theoretically possible haplotypes. However, as
expected, simulations suggest that when N is
much smaller than Nmax, as may be the case for a
dense set of markers owing to linkage disequili-
brium (LD), the likelihood-ratio test using Nmax�1
degrees of freedom can be very conservative (data
not shown). One might also use the number Nobs

of ‘‘observed’’ haplotypes. This also is inappropri-
ate because Nobs tends to be smaller than real N
and thus leads to anti-conservative tests; in
addition, ignoring the inherent variation in esti-
mating Nobs may also lead to anti-conservative
tests. Even if we know N, the asymptotics may not
work well for a moderate number of markers
because the number of parameters can be large
compared to the number of subjects; our simula-
tions on seven biallelic markers using 400 spouse
pairs showed that the results can be very
conservative (data not shown).

Alternatively, we may carry out a permutation
test by permuting the affection status of the
subjects—singletons and parents in nuclear
families. Specifically, to generate a permuted data
set, we randomly assign n1 subjects to the case
group and the other n2 subjects to the control
group. The observed test statistic then can be
compared with the statistics calculated for the
permuted data sets to assess significance. The log-
likelihood ratio (4) is one possible choice of test
statistic. In this situation, since a permuted data
set does not change the maximum likelihood of
the data under the null, we can equivalently base
our test on the log-likelihood

P
P log LaðPÞ under

the alternative hypothesis.
In an effort to increase the power to detect

disease-haplotype association, we define three
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additional test statistics, in which we combine
haplotypes into a few categories, and calculate
statistics based on the newly defined categories.
By combining haplotypes, we seek to consolidate
signals and reduce variation, so as to increase
power to detect disease-haplotype association.
First, since a disease-predisposing variant may
have originated on a single founder haplotype, we
compare each haplotype with the combined
category consisting of all the other haplotypes,
calculate chi-squared statistics for the resulting
2� 2 tables, and choose the largest statistic. We
call this the ‘‘best-haplotype’’ statistic. Second,
because there may exist 41 founder disease
haplotypes, we also compare every two haplo-
types with the combined category of the rest, and
choose the largest chi-squared statistic for the
resulting 2� 3 tables. We call this the ‘‘best-two-
haplotype’’ statistic. Third, for complex diseases,
it is likely that a disease predisposing variant
emerged long ago and recombinations between
the variant and a tightly linked marker have
occurred. Alternatively, multiple independent
founder variants may be present. In either of
these situations, a disease variant may be asso-
ciated with multiple haplotypes. Hence, we also
combine the haplotypes with higher frequency
estimates in the case group than in the control
group into one category, and the remaining
haplotypes into a second category, and then
calculate chi-squared statistic for the resulting
2� 2 table. We call this the ‘‘high-vs-low’’ statistic.
For these statistics, the best haplotype or grouping
of the haplotypes may vary among permuted
data sets.

The permutation test is computationally inten-
sive since the EM algorithm under the alternative
hypothesis must be carried out for each permuted
data set. However, because the additional infor-
mation of offspring genotypes often makes the
number of consistent haplogenotypes for a parent
much smaller (see Results), it is often much faster
to carry out the test using offspring information
than not.

X-LINKED HAPLOTYPE ANALYSIS

Our method can be extended to haplotype
analysis on the X chromosome. For X chromosome
markers, with no missing genotype and assuming
no recombination and no genotype error, paternal
haplogenotype is observed and maternal haplo-
genotype is resolved if offspring genotypes are
available. With missing genotypes, our method

can be easily modified to analyze the data. In this
situation, since a male offspring does not inherit X
chromosome from his father, a spouse pair with
only male offspring is effectively unrelated for the
purpose of this analysis, and the family can be
broken into two pedigrees—the father as a
singleton and the mother-son as a pedigree. For
a mother-son pedigree, the offspring genotypes
are used to narrow down the set of possible
haplogenotypes for the mother.

When haplotype frequencies are tallied for
calculating test statistics, a male will contribute
one haplotype, while a female will contribute two
haplotypes. If we suspect gender could play a role
in the disease risk, the permutations need to be
carried out separately for men and women. For
this situation, it is ideal to have a balanced subject
ascertainment with equal numbers of men and
women in the case and control groups.

PROBABILISTIC HAPLOTYPE
RECONSTRUCTION

Although we do not need to infer individual
haplotypes for detecting association of a haplo-
type with disease, knowledge of haplotypes may
be useful for further analyses. For example, once
we have detected association of a haplotype with
disease, we may wish to carry out further
phenotypic evaluation on individuals carrying
the associated haplotype, or to sequence a subset
of these individuals to find disease-predisposing
variants. If a subject is heterozygous at r1 marker,
his/her haplotypes are already known. For those
who have 41 possible haplogenotypes, we
reconstruct haplotypes probabilistically.

For autosomal markers, the equations (1)–(3)
provide the basis for our haplotype reconstruc-
tion. For example, for the father in P1 in Figure 1,
the (posterior) probability that his haplogenotype

is HðiÞ1f is given in (1), with p(k) and q(k) replaced

with the MLEs p̂ and q̂. This calculation of
posterior probability is efficient in the sense that
it is based on the MLEs of the parameters, which
in turn are estimated on the basis of the whole
data set. Posterior probability for X-linked haplo-
types can be similarly calculated.

For each subject, the haplogenotype with the
highest posterior probability may be assigned as
his/her reconstructed haplogenotype. We call this
method ‘‘probability-vote’’ reconstruction. To be
confident in our reconstruction, we may want to
assign a reconstructed haplogenotype only if its
posterior probability exceeds a pre-specified level
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b, say 99%. We call this method ‘‘level-b’’
reconstruction. For both methods, if a recon-
structed haplogenotype is correct, we call it a
success. If offspring genotypes are available, we
expect to improve the reconstruction success rate.

SIMULATION OF POPULATION
OF HAPLOTYPES

To assess our methods, we carried out computer
simulations. For our simulations, we constructed a
population of disease-associated and non-disease-
associated autosomal haplotypes defined on five
biallelic markers by using an evolutionary algo-
rithm first described by Devlin and Risch [1995]
and modified by Lange and Boehnke [2004].

We assumed a founder population of 1000
individuals, admixed from two subpopulations
each of size 500. Founder marker data were
randomly generated under linkage equilibrium
within subpopulations. However, the allele fre-
quencies were very different in the two subpopu-
lations, resulting in LD among the markers in the
mixed founder population. The first subpopula-
tion was simulated using allele frequencies .90
and .10 for each marker, while the second
subpopulation was simulated using allele fre-
quencies .10 and .90 for each marker. The
disease-predisposing variant was completely
linked to the third marker, and came only from
subpopulation 1 with frequency .40. In the mixed
founder population, all five markers had equally
frequent alleles, and the disease allele frequency
was .20. When growing the population, to shorten
the simulation time, we intentionally used a large
value (y5 .10) for recombination fraction between
adjacent markers. We grew the founder popula-
tion exponentially over 50 generations to reach a
final population of about 500,000 individuals. In
the final population, LD between the disease gene
and the five markers as measured by D0 were .77,
.74, .83, .62, and .76, and as measured by r2 were
.13, .15, .17, .09, and .13, respectively. All 32
possible haplotypes were present in the final
population. In addition, the disease variant could
be found on all 32 haplotypes, but at different
frequencies.

RESULTS

TYPE I ERROR RATE

We carried out computer simulations to check if
the type I error rate is under control for our test.
We simulated 10,000 replicate data sets of 400

affected-unaffected spouse pairs with one off-
spring, and with two random genotype missing
rates (0% and 10%). We compared the likelihood-
ratio test statistic with the chi-squared distribution
with 31 degrees of freedom because there were 32
haplotypes in our simulated population. For the
permutation tests, we generated 999 random
permutations for each replicate data set and used
(x11)/1,000 as the P-value estimate, where x is the
number of permuted data sets that were no less
extreme than the replicate. Table 1 lists the
estimated type I error rates at significance level
a5 .01. The likelihood-ratio test appeared to be
anti-conservative when offspring genotype infor-
mation is used, probably because the test statistic
converges to the limiting chi-squared distribution
slowly due to reduced number of sampling units
(that is, two subjects join to form a family) and
more complicated likelihood structure for each
unit; our simulations with 2,000 case-spouse-
offspring trios showed the type I error rate was
well under control (data not shown). Given that
the tests are correlated to some extent, especially
for the three statistics introduced in this paper,
the results for the permutation tests are within the
expected range of random fluctuation due to
sampling, and suggest that type I error rates are
under control.

POWER

We also carried out simulations to compare the
power to detect disease-haplotype association
with and without offspring genotype information,
and among the different test procedures we
introduced. We considered three disease models
(Table 2) and two random genotype missing rates
(0%, 10%). The models are additive, dominant,

TABLE 1. Estimated type I error rates (%) at significance
level a 5 1% with random missing genotype rates 10%
and 0%

Missing genotype rate:
10% 0%

Use offspring genotype: No Yes No Yes

Likelihood-ratio test: 0.81 1.70 0.92 1.83
Permutation test:

Log-likelihood 1.10 1.03 0.89 1.00
High vs. low 0.97 1.07 1.07 1.20
Best haplotype 1.03 1.03 0.96 1.00
Best two haplotypes 1.01 1.05 1.01 0.95

Note: Based on our simulated population and 10,000 replicate
data sets of 400 affected-unaffected spouse pairs each with one
offspring.
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and recessive, with disease allele frequency .20,
disease prevalence .10, and relative risk lS 5 1.20
for sibs of an affected individual. For each disease
model and each genotype missing rate, we
simulated 2,500 replicate data sets of 400 af-
fected-unaffected spouse pairs with one offspring.
Table 3 lists the estimated power to detect disease-
haplotype association at significance level a5 .01.

As expected, for all the tests, the power to detect
disease-haplotype association was higher when
using offspring genotype information than when
not using it; the two exceptions in Table 3 are
likely due to random variation in simulations, and
repeated simulations have shown the correct
order. The power also was higher when the
genotype missing rate was lower. Missing geno-
type data appeared to have a slightly stronger
adverse effect on the power of the three test
statistics based on combining haplotypes, pre-
sumably because the performance of these statis-
tics relies on correct grouping of haplotypes,
which depends on the accuracy of haplotype
frequency estimates. Nonetheless, for our simu-
lated population, these statistics showed great
potential in detecting disease-haplotype associa-
tion. With the same disease allele frequency,
prevalence, and sib relative risk, it was easier to

detect disease-haplotype association when the
disease model was additive or dominant than
when it was recessive. This is because when the
models have same modest disease allele fre-
quency, same sibling relative risk, and same
disease prevalence, a recessive model tends to
yield smaller difference in disease allele frequency
in the cases and controls than a dominant or
additive model.

Since 32 haplotypes were present in our simu-
lated population, the correct degrees of freedom
for the likelihood-ratio test were 31. For the
situations we considered, the permutation test
based on the log-likelihood statistic had power
similar to the likelihood-ratio test using the
correct degrees of freedom. Limited simulations
suggested that this also was true for popula-
tions with fewer existent haplotypes (data not
shown). Thus, in real applications in which we
may not know the correct degrees of freedom
because of the uncertainty of haplotype data,
the permutation test based on the log-likelihood
statistic may be a good alternative to the
likelihood-ratio test.

For the situations we considered, the permuta-
tion test based on the high-vs-low statistic, which
results from combining haplotypes according to
over- and under-representation in the case group,
had the highest power to detect disease-haplotype
association among the tests we carried out.
Limited simulations on populations with different
LD patterns suggested that when offspring
genotypes were available and the genotype mis-
sing rate was low, the power of the permutation
test based on the high-vs-low statistic was often
the highest, and when offspring genotypes were
not available or the genotype missing rate was
very high, the power of the permutation test based

TABLE 2. Disease models used in simulations

p f0 f1 f2

Model 1: Additive .20 .055 .166 .277
Model 2: Dominant .20 .051 .186 .186
Model 3: Recessive .20 .084 .084 .480

Note: p is the population frequency of the disease-predisposing
allele and fi is the penetrance for the genotype with i copies of that
allele. All models have disease prevalence 10% and single-locus
sibling relative risk lS 5 1.2.

TABLE 3. Estimated power (%) at significance level a 5 1% with random missing genotype rates 10% and 0%

Missing genotype rate:

Additive model Dominant model Recessive model

10% 0% 10% 0% 10% 0%

Use offspring genotype: No Yes No Yes No Yes No Yes No Yes No Yes

Likelihood-ratio test: 51 62 56 66 46 57 52 61 18 24 20 27
Permutation test:

Log-likelihood 54 55 56 57 50 50 51 52 19 18 20 19
High vs. low 53 80 70 87 49 76 64 83 19 35 27 43
Best haplotype 20 43 33 56 17 38 29 53 7 15 11 23
Best two haplotypes 23 48 36 63 18 44 32 59 7 16 12 25

Note: Based on our simulated population and 2,500 replicate data sets of 400 affected-unaffected spouse pairs each with one offspring.
The three models are described in Table 2.
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on the log-likelihood statistic may be substantially
higher (data not shown). Among the three
statistics, the power of the best-haplotype and
best-two-haplotype statistics was lower than that
of the high-vs-low statistic, presumably due to
being unable to combine signals effectively for the
population used in our simulations, which had
multiple disease-associated haplotypes. However,
these two tests are potentially powerful for
alternative population histories in which the
disease variant is associated with a small number
of haplotypes.

Offspring genotypes provide information about
parental haplotypes. As a reference, we also
estimated the power of the likelihood-ratio test
under the ideal situation of having observed the
haplotypes. For the situations we considered, the
power under the ideal situation was very similar
to that for the likelihood-ratio test with one
offspring (data not shown), suggesting that even
one offspring can provide useful information with
respect to disease-haplotype association.

HAPLOTYPE RECONSTRUCTION

For each replicate data set, we also estimated
haplotype reconstruction success rates for the two
reconstruction methods we described, and calcu-
lated the average success rates over the 2,500
replicates we used in power estimation (Table 4).
As expected, the reconstruction success rates were
higher when using offspring genotypes than
when not using them. For example, for the models
we considered, with 10% missing genotypes, the

success rate for reconstructing haplogenotypes
with Z99% posterior probability increased from
23.0% with no offspring to 42.9% with one
offspring, 61.7% with two offspring, and 81.7%
with four offspring, while the success rate for
reconstructing haplogenotypes based on highest
posterior probability increased from 78.1% with
no offspring to 88.1% with one offspring, 93.2%
with two offspring, and 97.4% with four off-
spring. Higher genotype missing rates had an
adverse effect on reconstruction success rates, but
could be compensated for by using more off-
spring, if available. Schaid [2002] and Becker
and Knapp [2002] also observed the benefits of
offspring genotypes on parental haplotype
reconstruction.

To illustrate the advantage of having offspring
genotypes, we also calculated the average
number of consistent haplogenotypes for a parent
(Table 4). As the number of offspring increased,
the set of consistent haplogenotypes for a parent
became smaller and provided more certain
inference. As a by-product, many fewer itera-
tions of the EM algorithm were required for
convergence, and computation time was greatly
reduced.

DISCUSSION

In association studies for some late onset
diseases, there are significant advantages in using
unaffected spouses as controls. Because we often
are unable to obtain genotypes for parents of the
subjects, we cannot carry out the transmission/
disequilibrium test [Spielman et al., 1993]. The
alternative of using unaffected sibs as controls
generally results in low power due to overmatch-
ing [Boehnke and Langefeld, 1998]. Thus, a
well-designed case-control study is an attractive
alternative. Spouse controls tend to be convenient
to obtain and to be reasonably well matched
environmentally and genetically to the cases, as
long as gender does not play an important role in
disease risk [Valle et al., 1998]. Spouses also may
already have been obtained as part of an ongoing
linkage study. For haplotype analysis, if offspring
genotypes are available, we also are able to take
advantage of spouse genotypes mutually for both
members of a spouse pair.

In this paper, we described methods for efficient
haplotype analysis for case-control data with
some subjects forming spouse pairs and offspring
genotypes available for some subjects. We pro-

TABLE 4. Average reconstruction success rates and number
of consistent haplogenotypes at random genotype
missing rates 10% and 0%

Missing
genotype
rate:

Probability
vote (%) Level-99 (%)

Average
number of
consistent

haplogenotypesSuccess Success Non-success

10% 0% 10% 0% 10% 0% 10% 0%

] offspring:
0 78.1 88.4 23.0 37.9 0.4 0.4 10.2 5.2
1 88.1 97.8 42.9 84.0 0.3 0.2 4.2 2.0
2 93.2 98.8 61.7 91.6 0.2 0.1 2.5 1.5
3 95.9 99.2 73.7 95.4 0.1 o0.1 1.8 1.3
4 97.4 99.5 81.7 97.4 o0.1 o0.1 1.5 1.1

Note: Based on our simulated population and under Model 1 in
Table 2. The numbers are averages over 2,500 replicates. For the
probability-vote method, the non-success rate can be calculated as
(1 – success rate). Results under other models are similar.
Haplotypes are defined on five biallelic markers.
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posed a likelihood-based method of haplotype
inference, which works in a unified way with
three types of subjects: subjects as couples with
offspring genotype information available; subject-
offspring pairs; and subjects as singletons with-
out offspring information. Our method enables
efficient haplotype frequency estimation using an
EM algorithm and supports haplotype reconstruc-
tion with posterior probability calculated based on
the whole sample. Similar methods have been
used in the context of population haplotype
frequency estimation [Boehnke, 1991; Rohde and
Fuerst, 2001].

For parent-offspring pairs with the other par-
ent’s affection status unavailable, two approaches
are available. One approach is to assume the
affection status of the other parent was unaf-
fected; this is acceptable for diseases with low
prevalence because the probability of misclassifi-
cation will be low. An alternative approach is to
calculate population haplotype frequencies as
weighted combinations of case and control fre-
quencies using disease prevalence as the weight;
this may be good for diseases with moderate
prevalence but it relies on disease prevalence
estimation of the population.

We described likelihood ratio and permutation
tests to test for disease-haplotype association, and
defined four statistics for the permutation test.
Not surprisingly, simulations showed that all tests
were more powerful when using offspring geno-
type information than when not using it. For the
likelihood-ratio test, the correct degrees of free-
dom is the number of haplotypes truly present in
the population less one. However, we generally
do not know the number of existing haplotypes;
using the maximum possible number of haplo-
types as the degrees of freedom generally results
in a conservative test, while using the ‘‘observed’’
number of haplotypes often leads to an anti-
conservative test. In this situation, simulations
suggested that the permutation test based on the
log-likelihood statistic may be a good alternative.

For the situations we considered, the permuta-
tion test based on the high-vs-low statistic, which
results from combining haplotypes according to
over- and under-representation in the case group,
had the highest power to detect disease-haplotype
association. This is presumably because this
statistic is best suited for our simulated popula-
tion, which has multiple disease-associated hap-
lotypes. In populations in which there are only
one or two disease-associated haplotypes, we
expect the best-haplotype or best-two-haplotype

statistics also will be powerful. In some other
situations, especially in the absence of offspring
genotypes or if the genotype missing rate is high,
these three statistics may have lower power than
the log-likelihood because the performance of
these statistics probably relies more strongly on
the accuracy of haplotype frequency estimates.
The performance of our tests may also depend on
the LD between a disease-predisposing variant
and the markers of haplotypes, and on the LD
among the markers for the population under
study. Populations with different LD patterns
might yield different results.

In the permutation tests, we permuted affection
status across all subjects. If all subjects are case-
spouse control pairs, then permuting affection
status within spouse pair may be an alternative to
our permutation procedure. These two permuta-
tion procedures will lead to different but highly
correlated results. However, often we will have
some cases without family information and an
additional set of controls ascertained indepen-
dently of the cases. Permuting within families will
make these subjects non-informative for our
analysis. Thus, we chose to permute across all
subjects as we would do for a case-control study.

Haplotypes often cannot be inferred with
certainty. Missing genotypes in the data introduce
additional uncertainty. For late onset diseases,
genotypes from spouses and offspring can pro-
vide useful information about the haplotypes of
the subjects. Besides helping increase the power to
detect disease-haplotype association, offspring
genotypes can significantly improve haplotype
reconstruction success rates. If per-genotype effi-
ciency is the goal, however, genotyping offspring
may not be justified [Becker and Knapp, 2002].
But genotypes of offspring often are available due
to the need for other analyses such as studying
association between candidate genes and disease-
related phenotypes in the offspring of cases as a
risk population. In this situation, incorporating
available offspring genotypes into the disease-
haplotype association analysis becomes desirable,
and we proposed an efficient method towards
this goal.

The population we used in our simulation study
was artificial, although it was generated to mimic
approximately the history of an admixed and then
isolated population. We used this simulated
population to demonstrate the advantage of using
offspring genotype information in detecting dis-
ease-haplotype association and in reconstructing
haplotypes. To assess the generality of our results,
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we also carried out limited simulations using
populations with other LD patterns. The advan-
tage of using offspring genotypes was also
demonstrated in those populations, although the
relative merits of the test statistics were different.

Finally, we note that our method can be
extended to more general situations. Although
we presented the method for nuclear families and
singletons, in principle, it can be extended to any
pedigree structures as long as we know the
pedigree founders’ affection status and choose
not to use the affection status information on the
non-founders. We focused on haplotypes defined
on a dense set of markers among which recombi-
nation is rare, and therefore ignored recombina-
tion. If one wishes to analyze a larger
chromosomal region and allow for recombination,
the method can in principle be modified to
achieve this goal. In this situation, recombination
fractions come into play only through the condi-
tional probabilities, which can be calculated and
stored before the EM algorithm is carried out.

Haplotype analysis of late onset diseases is often
more difficult than that of early onset diseases
due to lack of parental genotype information.
When available, offspring genotypes can offer
information on the haplotypes of the subjects.
However, mixed pedigree structures often coexist
in a data set, with offspring information available
for only a subset of subjects and the number
of offspring varying across families. In this
paper, we described a unified method to analyze
such mixed types of pedigree structures
appropriately, leading to more efficient use of
available data and more power to detect disease-
haplotype association. We hope this method will
be useful for disease gene discovery for late onset
diseases. Software for simulation and data analy-
sis is available upon request from Chun Li, the
first author.
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J, Nylund SJ, Kohtamäki K, Tuomilehto-Wolf E, Toivanen L,
Vidgren G, Ehnholm C, Blaschak J, Langefeld CD, Watanabe
RM, Magnuson V, Ally DS, Hagopian WA, Ross E, Buchanan
TA, Collins F, Boehnke M. 1998. Mapping genes for non-insulin
dependent diabetes mellitus: design of the Finland-United
States Investigation of NIDDM Genetics (FUSION) study. Diab
Care 21:949–958.

230 Li and Boehnke

Genet. Epidemiol. DOI 10.1002/gepi


